

1 **Aromatic selenocyanates as a new class of non-mutagenic antimicrobial selenium compounds with**
2 **pronounced activity against multidrug resistant ESKAPE bacteria**

4 Muhammad Jawad Nasim ¹, Karolina Witek ^{2,3}, Annamária Kincses ⁴, Muhammad Sarfraz ¹, Ewa Żesławska ⁵,
5 Małgorzata Anna Marć ², Mário Gajdács ⁴, Gabriella Spengler ⁴, Wojciech Nitek ⁶, Gniewomir Latacz ², Elżbieta
6 Karczevska ³, Katarzyna Kieć-Kononowicz ², Claus Jacob ^{1,*}, Jadwiga Handzlik ^{2,*}

8 **Supplementary**

9 **1. General procedure for the synthesis of selenocyanates**

10 Selenocyanates were synthesized using the general protocol described by Wheeler and Merriam
11 with some modifications [1]. According to the procedure, Alkyl halides (10-20mmol) were treated
12 with KSeCN (12-25 mmols) in the presence of ethanol (10-20 ml). The reaction mixture was refluxed
13 for 6 hours and the progress of the reaction was monitored periodically by Thin Layer
14 Chromatography (TLC). After the completion of the reaction, the inorganic salt was separated by
15 filtration and the filtrate was heated with charcoal. The reaction mixture was filtered hot and the
16 filtrate was left for cooling. On cooling, the solution yielded crystals which were separated by
17 filtration. TLC was performed to evaluate the purity of the compound. Once purified, the samples
18 were analysed using Mass Spectroscopy (MS) and Nuclear Magnetic Resonance (NMR) for structural
19 confirmations as well as purity. Synthesis and chemical characteristics of compounds **1**, **3-7** and **10-12**
20 have been described before and our values are in agreement with the reported values [2-4].

21 **1.1. Synthesis of Benzyl selenocyanate (1)**

22 Benzyl bromide (1.71g, 10 mmol), KSeCN (1.73 g, 12 mmol) and ethanol (10 ml) were used. The
23 compound (**1**) was obtained as light crystals after purification by recrystallization with ethanol. Yield
24 72.5% (1.43 g, 7.25 mmol). TLC R_f (DCM, 100%): 0.64, ¹H NMR (DMSO-d₆, ppm): δ 7.36(m, 3H, 3C-H),
25 7.35 (m, 2H, 2 C-H), 4.30 (t, J=9.15 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆, ppm): δ 138.79, 129.32 (2C),
26 129.04 (2C), 128.26, 105.36(Se-CN), 33.08. LC-MS: purity 100 %, t_R = 5.52, (ESI) m/z: calculated for
27 C₈H₇NSe [M+H]⁺. 91.05, found: 91.00.

28 **1.2. Synthesis of 3-Methylbenzyl selenocyanate (3)**

29 3-Methylbenzyl chloride (2.81g, 20 mmol), KSeCN (3.6g, 25 mmol) and ethanol (20 ml) were used.
30 The compound (**3**) was obtained as light crystals after purification by recrystallization with ethanol.
31 Yield 83.5% (3.51g, 16.7mmol). TLC R_f (DCM, 100%): 0.65, ¹H NMR (DMSO-d₆, ppm): δ 7.23(m, 1H,
32 CH), 7.16 (m, 2H, 2CH), 7.11 (m, 1H, CH), 4.26 (t, J=9.10 Hz, 2H, CH₂), 3.24 (s, 3H, CH₃). ¹³C NMR
33 (DMSO-d₆, ppm): δ 138.60, 138.15, 129.82, 128.93 (2C), 126.42, 105.34 (Se-CN), 33.09, 21.42. LC-MS:
34 purity 98.57 %, t_R = 6.24, (ESI) m/z: calculated for C₉H₉NSe [M+H]⁺: 105.07, found: 105.02.

35 **1.3. Synthesis of 4-trifluoromethylbenzyl selenocyanate (4)**

36 4-Trifluoromethylbenzyl bromide (4.73g, 20 mmol), KSeCN (3.6g, 25 mmol) and ethanol (20 ml)
37 were used. The compound (**4**) was obtained as light crystals after purification by recrystallization with
38 ethanol. Yield 81.75% (4.32g, 16.35mmol). TLC R_f (DCM, 100%): 0.94, ¹H NMR (DMSO-d₆, ppm): δ
39 7.64 (d, J=8.21 Hz, 2H, 2 C-H), 7.42(d, J=8.21 Hz, 2H, 2 C-H), 4.02 (t, J=8.21 Hz, 2H, CH₂). ¹³C NMR
40 (DMSO-d₆, ppm): δ 144.67, 130.06, 128.07, 127.64, 125.56, 110.00, 30.87. LC-MS: purity 95.66 %, t_R =
41 9.82, (ESI) m/z: calculated for C₉H₆F₃NSe [M+H]⁺: 159.04, found: 159.04.

42 **1.4. Synthesis of 4-fluorobenzyl selenocyanate (5)**

43 4-Fluorobenzyl chloride (2.89g, 20 mmol), KSeCN (3.6g, 25 mmol) and ethanol (20 ml) were used.
44 The compound (**5**) was obtained as light crystals after purification by recrystallization with ethanol.
45 Yield 83.45% (3.57g, 16.69 mmol). TLC *R*_f (PE:EA; 4:1): 0.60, ¹H NMR (DMSO-d₆, ppm): δ 7.25 (m, 2H,
46 2 CH), 7.12 (m, 2H, 2 C-H), 3.92 (t, *J*=7.62 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆, ppm): δ 163.30, 160.07,
47 135.94, 131.29, 115.43, 30.93. LC-MS: purity 96.30 %, *t_R* = 9.06, (ESI) m/z: calculated for C₈H₆FNSe
48 [M+H]⁺: 109.05, found: 109.00.

49 *1.5. Synthesis of 2-fluorobenzyl selenocyanate (6)*

50 2-Fluorobenzyl chloride (2.89g, 20 mmol), KSeCN (3.6g, 25 mmol) and ethanol (20 ml) were used.
51 The compound (**6**) was obtained as light crystals after purification by recrystallization. Yield 75.45%
52 (3.23g, 15.09mmol). TLC *R*_f (DCM, 100%): 0.53, ¹H NMR (DMSO-d₆, ppm): δ 7.44 (m, 1H, 1 CH), 7.36
53 (m, 1H, 1 CH), 7.21(m, 2H, 2 CH), 4.33 (t, *J*=9.14 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆, ppm): δ 161.13,
54 159.16, 131.56, 130.16, 124.51, 115.59, 104.39 (Se-CN), 25.37. LC-MS: purity 96.30 %, *t_R* = 9.06, (ESI) m/z:
55 calculated for C₈H₆FNSe [M+H]⁺: 109.05, found: 109.00.

56 *1.6. Synthesis of 4-chlorobenzyl selenocyanate (7)*

57 4-Chlorobenzyl bromide (2.67g, 16.6 mmol), KSeCN (2.8 g, 19.4 mmol) and ethanol (20 ml) were
58 used. The compound (**7**) was obtained as light crystals after purification by recrystallization with
59 ethanol. Yield 85.24% (3.26 g, 14.15 mmol). TLC *R*_f (DCM, 100%): 0.75, ¹H NMR (DMSO-d₆, ppm): δ
60 7.34 (d, *J*=8.79 Hz, 2H, 2 CH), 7.25 (d, *J*=8.21 Hz, 2H, 2 CH), 3.93 (t def., 2H, CH₂). ¹³C NMR (DMSO-d₆,
61 ppm): δ 138.78, 131.96, 131.15, 128.72, 30.87. LC-MS: purity 99.35 %, *t_R* = 9.99, (ESI) m/z: calculated for
62 C₈H₆ClNSe [M+H]⁺: 125.02, found: 125.02.

63 *1.7. Synthesis of 4-bromobenzyl selenocyanate (10)*

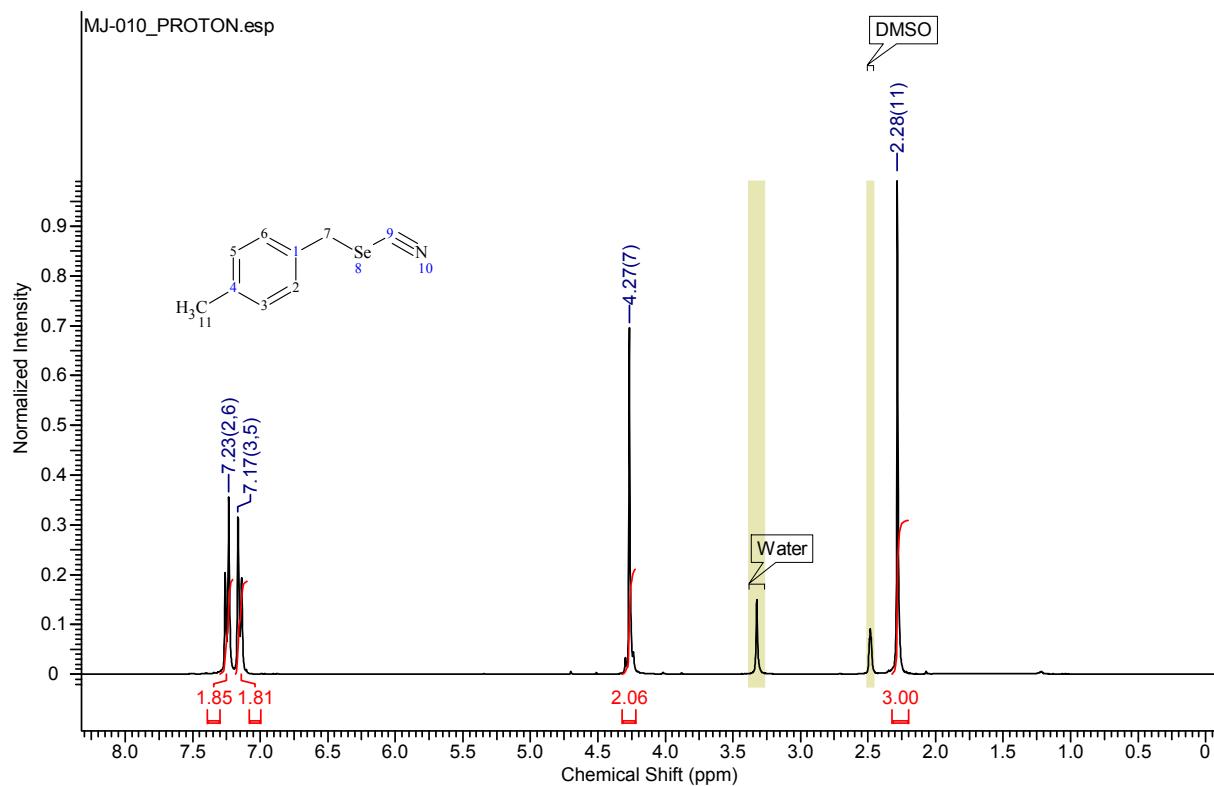
64 4-Bromobenzyl bromide (5g, 20 mmol), KSeCN (3.6g, 25 mmol) and ethanol (20 ml) were used.
65 The compound (**10**) was obtained as light crystals after purification by recrystallization with ethanol.
66 Yield 62.15% (3.42g, 12.43mmol). TLC *R*_f (DCM, 100%): 0.86, ¹H NMR (DMSO-d₆, ppm): δ 7.47 (d,
67 *J*=8.21 Hz, 2H, CH), 7.18 (d, *J*=8.21 Hz, 2H, CH), 3.91 (t, *J*=7.62 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆,
68 ppm): δ 139.18, 131.65, 120.46, 30.93. LC-MS: purity 100 %, *t_R* = 10.23, (ESI) m/z: calculated for
69 C₈H₆BrNSe [M+H]⁺: 168.97, found: 168.94.

70 *1.8. Synthesis of 4-nitrobenzyl selenocyanate (11)*

71 4-Nitrobenzyl chloride (3.43g, 20 mmol), KSeCN (3.6g, 25 mmol) and ethanol (20 ml) were used.
72 The compound (**11**) was obtained as light crystals after purification by recrystallization with ethanol.
73 Yield 72% (3.47g, 14.4mmol). TLC *R*_f (DCM, 100%): 0.50, ¹H NMR (DMSO-d₆, ppm): δ 8.21 (m, 2H,
74 CH), 7.63 (m, 2H, CH), 4.39 (t def, 2H, CH₂). ¹³C NMR (DMSO-d₆, ppm): δ 146.97, 130.57, 124.26,
75 105.25, 31.61. LC-MS: purity 97.77%, *t_R* = 5.30, (ESI) m/z: calculated for C₈H₆N₃O₂Se[M+H]⁺: 136.04,
76 found: 135.98.

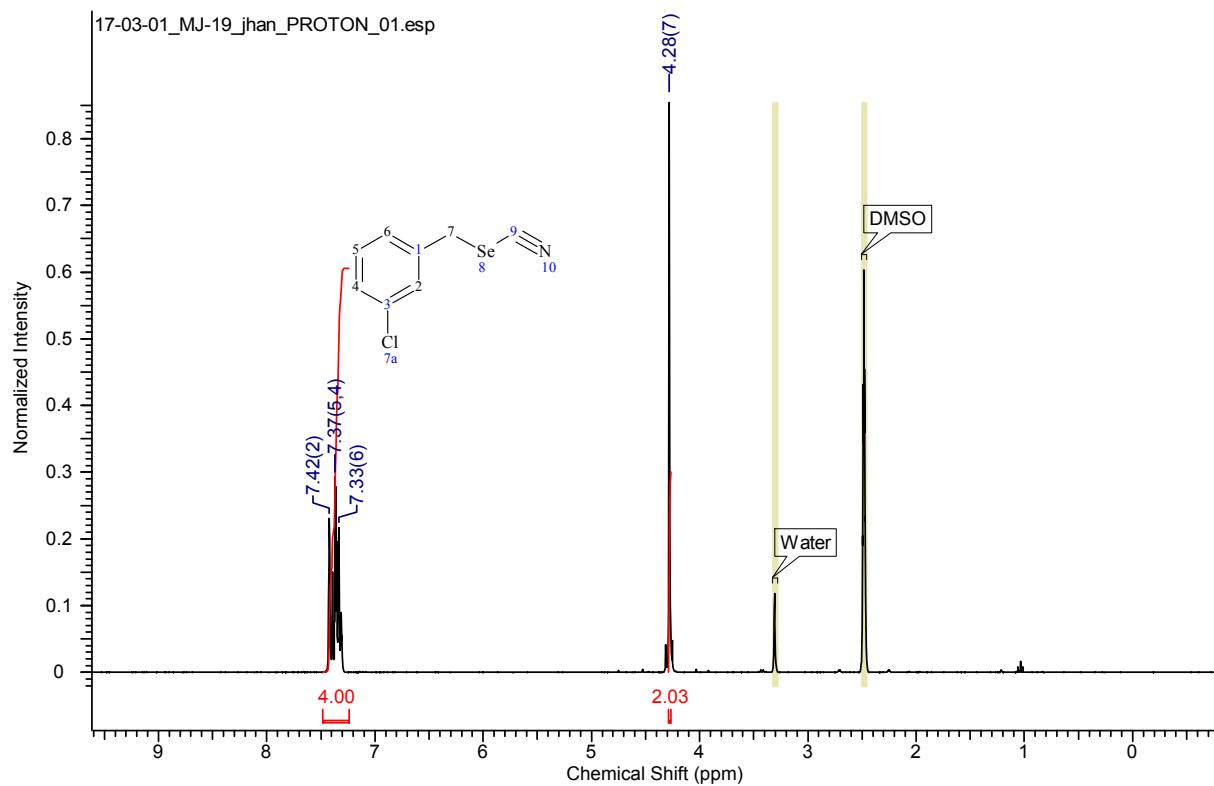
77 *1.9. Synthesis of 2-(selenocyanatomethyl) naphthalene (12)*

78 2- Chloromethyl naphthalene (2.51g, 14.2 mmol), KSeCN (2.6g, 18 mmol) and ethanol (14 ml)
79 were used. The compound (**12**) was obtained as light crystals after purification by recrystallization wit
80 ethanol. The compound was obtained in 81.27 % yield (2.85g, 11.54mmol). TLC *R*_f (DCM, 100%): 0.77,
81 ¹H NMR (DMSO-d₆, ppm): δ 7.92 (m, 4H, CH), 7.53 (m, 3H, CH), 4.49 (t, *J*=9.14 Hz, 2H, CH₂). ¹³C NMR
82 (DMSO-d₆, ppm): δ 135.76, 132.65, 132.36, 128.40, 127.76, 127.60, 127.38, 126.89, 126.49, 126.33, 104.94
83 (SeCN), 33.12. LC-MS: purity 97.56%, *t_R* = 6.73, (ESI) m/z: calculated for C₁₂H₉NSe [M+H]⁺: 141.07,
84 found: 141.03.

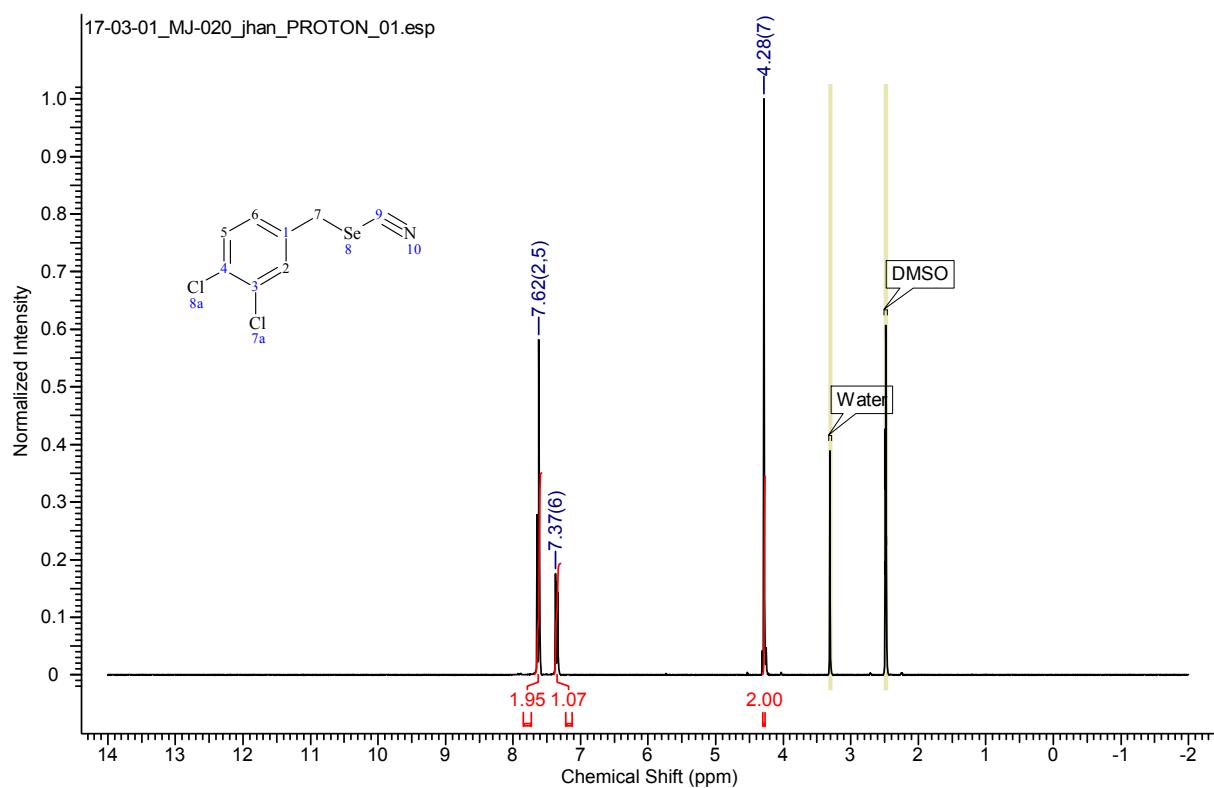

85 **References**

- 86 [1] Wheeler, H.L.; Merriam, H.F. On the action of alkylthiocyanates and alkyl isothiocyanates with thiol acids. *J.
87 Am. Chem. Soc.* **1901**, 23, 283-299.
- 88 [2] Plano, D.; Baquedano, Y.; Moreno-Mateos, D.; Font, M.; Jimenez-Ruiz, A.; Palop, J.A.; Sanmartin, C.
89 Selenocyanates and diselenides: a new class of potent antileishmanial agents. *Eur. J. Med. Chem.* **2011**, 46, 3315-
90 3323.
- 91 [3] Suzuki, H.; Usuki, M.; Hanafusa, T. A photochemical route to some substituted benzyl isoselenocyanates.
92 *Synthesis* **1979**, 1979, 705-707.
- 93 [4] Jacob, L.A.; Matos, B.; Mostafa, C.; Rodriguez, J.; Tillotson, J.K. A facile synthesis of substituted benzyl
94 selenocyanates *Molecules* **2004**, 9, 622-626.

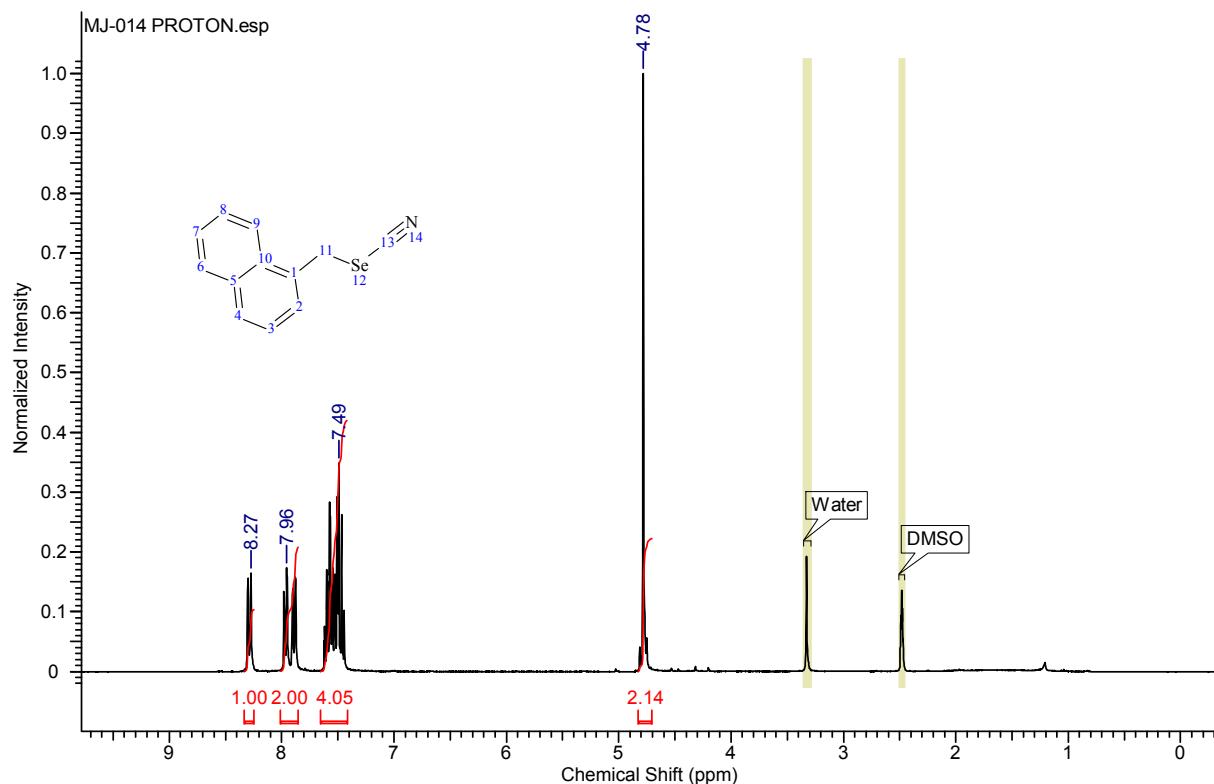
95 **Spectral data for new compounds**


96 **^1H NMRs of Novel Compounds**

97 **Compound 2**

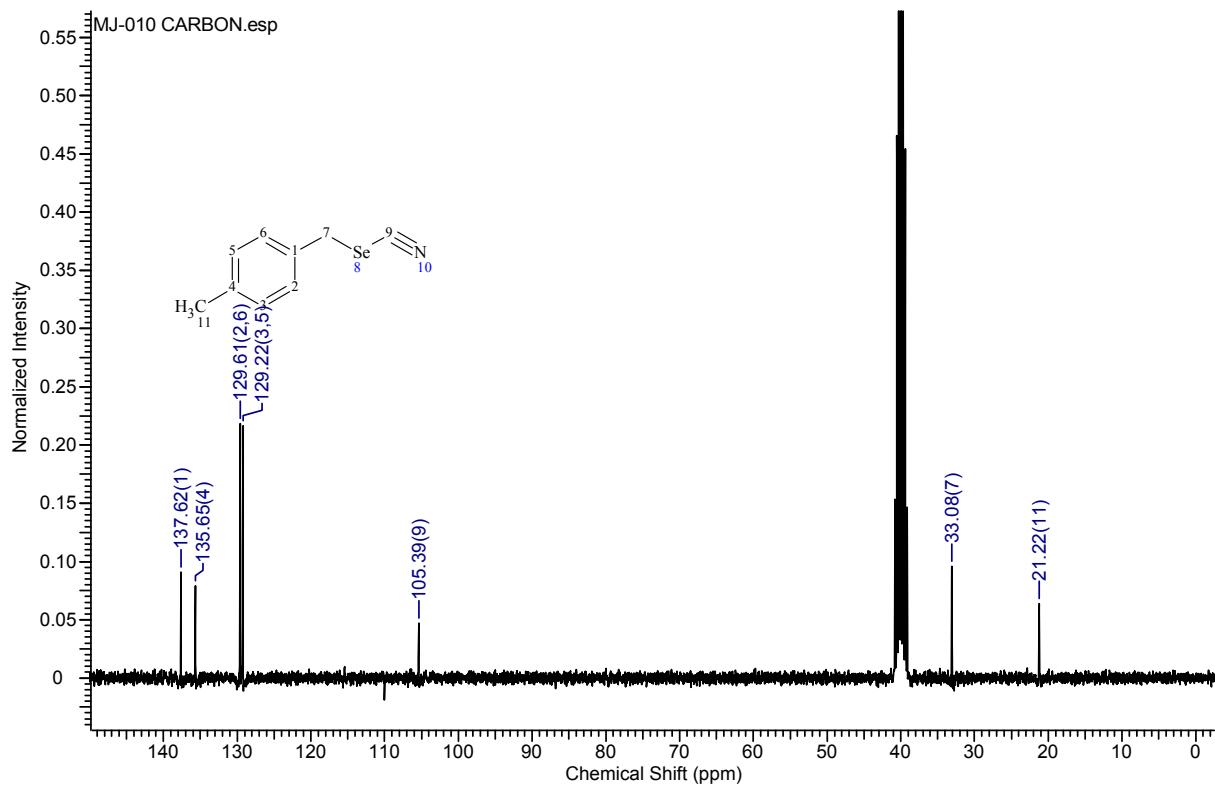

98

99 **Compound 8**

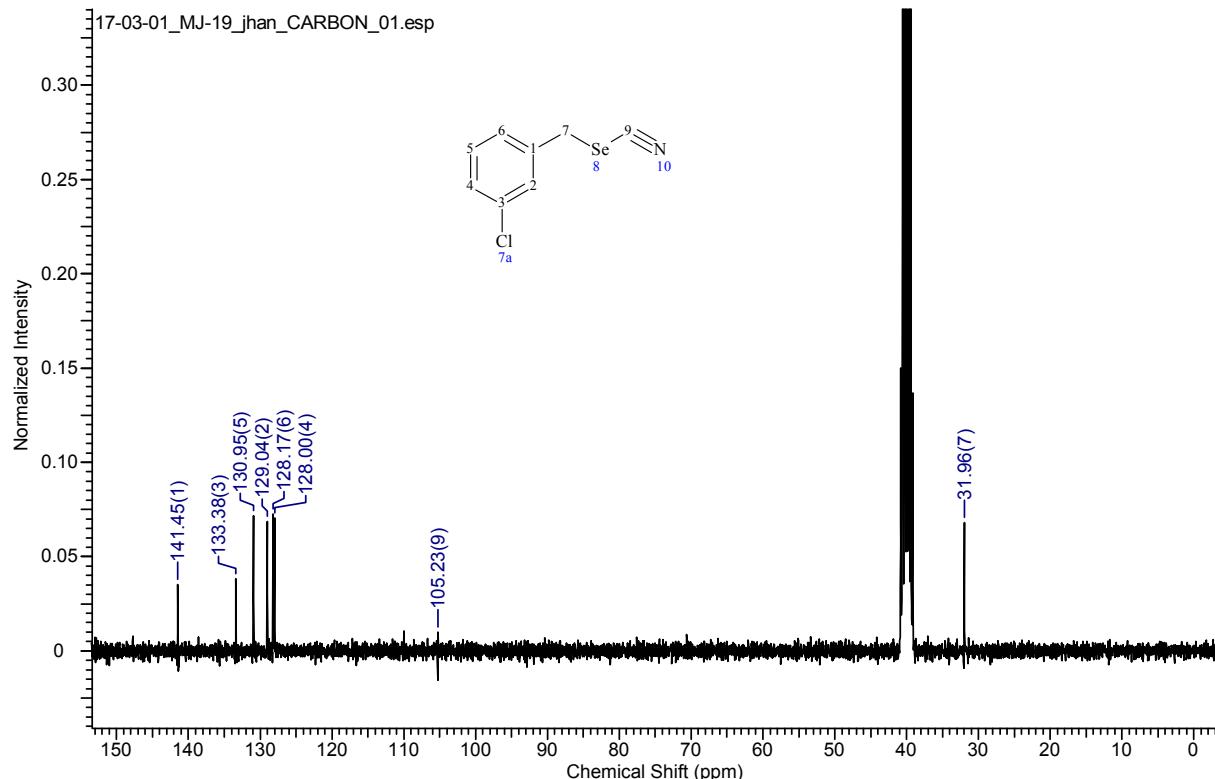

100

101 Compound 9

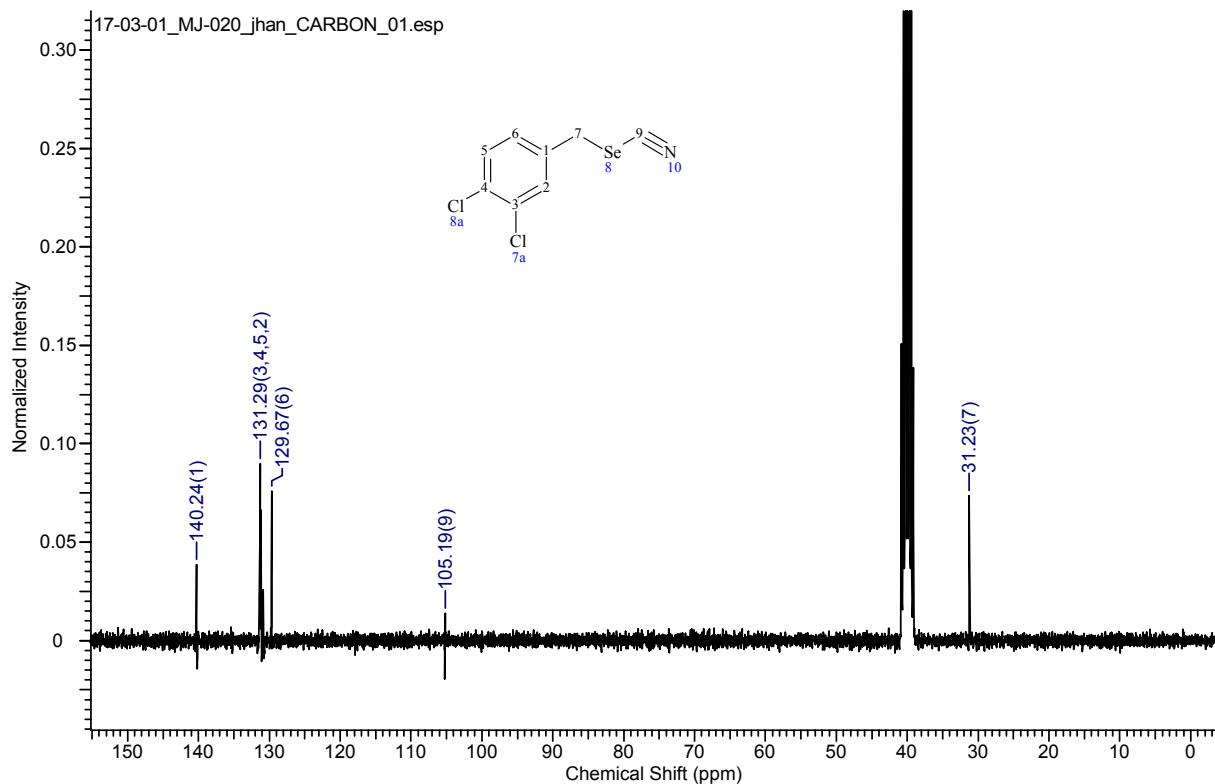
102


103 Compound 13

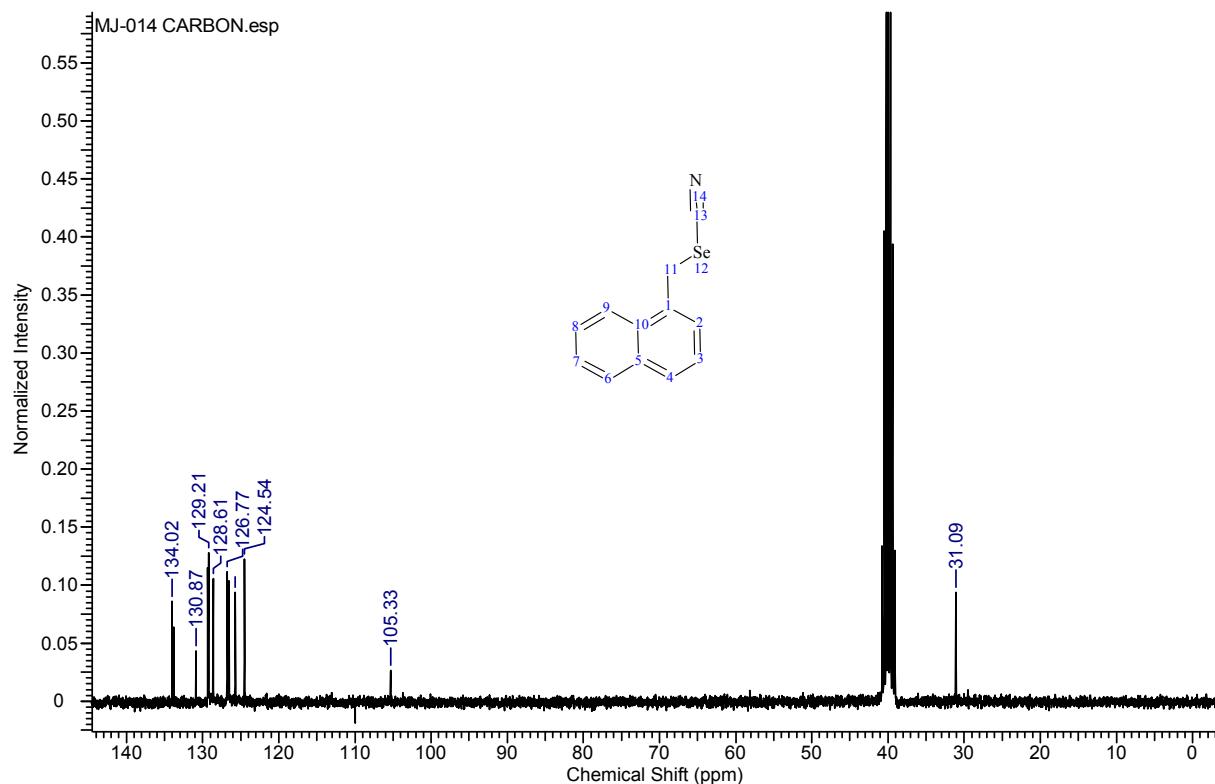
104


105 **13 C NMRs of selected compounds**

106 Compound 2


107

108 Compound 8



109

110 Compound 9

112 Compound 13

