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Abstract

Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both
applied probability and statistics but MLE cannot solve the problem of incomplete data or
hidden data because it is impossible to maximize likelihood function from hidden data.
Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this
problem if there is a relationship between hidden data and observed data. Such hinting
relationship is specified by a mapping from hidden data to observed data or by a joint
probability between hidden data and observed data. In other words, the relationship helps us
know hidden data by surveying observed data. The essential ideology of EM is to maximize
the expectation of likelihood function over observed data based on the hinting relationship
instead of maximizing directly the likelihood function of hidden data. Pioneers in EM
algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as
well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help
researchers comprehend it. Moreover some improvements of EM algorithm are also proposed
in the tutorial such as combination of EM and third-order convergence Newton-Raphson
process, combination of EM and gradient descent method, and combination of EM and particle
swarm optimization (PSO) algorithm.

Keywords: expectation maximization, EM, generalized expectation maximization, GEM, EM
convergence.

1. Introduction

Literature of expectation maximization (EM) algorithm in this tutorial is mainly extracted from
the preeminent article “Maximum Likelihood from Incomplete Data via the EM Algorithm”
by Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (Dempster, Laird, & Rubin, 1977).
For convenience, let DLR be reference to such three authors.

We begin a review of EM algorithm with some basic concepts. Before discussing main
subjects, there are some conventions. For example, if there is no additional explanation,
variables are often denoted by letters such as x, y, z, X, Y, and Z whereas values and constants
are often denoted by letters such as a, b, ¢, A, B, and C. Parameters are often denoted as Greek
letters such as a, S, y, ©, ®, and . Uppercase letters often denote vectors and matrices
(multivariate quantities) whereas lowercase letters often denote scalars (univariate quantities).
Script letters such as X and Y often denote data samples. Bold and uppercase letters such as X
and R often denote algebraic structures such as spaces, fields, and domains. Moreover, bold
and lowercase letters such as x, y, z, a, b, and ¢ may denote vectors. Bold and uppercase letters
suchas X, Y, Z, A, B, and C may denote matrices.

By default, vectors are column vectors although a vector can be column vector or row
vector. For example, given two vectors X and Y and two matrices A and B:
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X1 Y1
x=|"7 el
xT y’r
i3 Quz2 0 Qip biy b1z -+ by
A= a:21 a:22 a?n B = b?l b?Z b?k
Anm1 Amz2  ° Amn by bpy v Ak

X and Y above are column vectors. A row vector is represented as follows:

. _ Z2=(21,75,..,2,) . . .
The number of elements in vector is its dimension. Zero vector is denoted as 0 whose dimension
depends on context.

If considering rows and columns, myn matrix A can be denoted Amxn OF (&ij)mxn. VeCtor is 1-row
matrix or 1-column matrix such as Aixn Or Anxi. Scalar is 1-element vector or 1x1 matrix. A
matrix can be considered as a vector whose elements are vectors.

Let (0) denote zero matrix whose numbers of rows and columns depend on context. If
considering rows and columns, zero matrix can be denoted (0)mxn.

O 0 vee O
(0) = (O)mxn =1 . . "
O 0 vee O

Matrix A is square if m = n, which can be denoted A or (aij)n. Matrix A is diagonal if it is square
and its elements outside the main diagonal are zero:

A, 0O - 0
A= 0 A, - 0
0 0 - A
Let | be identity matrix or unit matrix, as follows:
1 0 - 0
=7 T
o o0 - 1

Note, I is diagonal and its diagonal elements are 1. The row (column) number of identity matrix
depends on context, but it can be denoted explicitly as Ix.
Vector addition and matrix addition are defined like numerical addition:
X1ty

X+Y= xz%)’z

Xr T Yy

a1 £ by A2 £ by 0 Ak by
A+B = az1 i b1 ax i b, Azn i byn
aml i bml amZ i me o amn i bmn

(ifn=K)

Vector and matrix can be multiplied with a scalar.
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kx,

kx = | %

kx,
ka,y, kay, - kaq,
ka=| ko ke ko
Kami Kams - Ky

Let superscript “7” denote transposition operator for vector and matrix, as follows:
XT = (xq, %5, 0, Xy)

ai1 dz1 Q4
AT = Q12 Az - Gp
alp azp e arp

Transposition operator is linear with addition operator as follows:
X+ =xT+YT
(A+B)T =AT + BT
Dot product or scalar product of two vectors can be written with transposition operator, as

follows:
T
XTY = z XiYi
i=1
However, the product XY results out a symmetric matrix as follows:
X1Yy1 X1Y2 ot X1)r
x x see x
xyT = yxT = 2:3’1 2:3’2 . 2:3’r
XrY1 X¢Y2 o Xe)r

The length of module of vector X in Euclidean space is:

IX| = VXTX =

The notation |.| also denotes absolute value of scalar and determinant of square matrix; for
example, we have |-1| = 1 and |A| which is determinant of given square matrix A. Note,
determinant is only defined for square matrix. Let A and B be two square nxn matrices, we have:
|cA| = c"|A| where c is scalar
AT = |A|
|AB| = |Al|B|
If A has nonzero determinant (#0), there exists its inverse denoted A™* such that:
AA™ =A"14A=1
Where 1 is identity matrix. If matrix A has its inverse, A is called invertible or non-singular. In
general, square matrix A is invertible is equivalent to the event that its determinant is nonzero
(#0). There are many documents which guide to calculate inverse of invertible matrix.
Let A and B be two invertible matrices, we have:
(AB)1=B"A1
A=At =11]A]
(AT)—l - (A—l)T
Given invertible matrix A, it is called orthogonal matrix if A = AT, which means AA™1 = A~1A
=AAT=ATA=.
Product (multiplication operator) of two matrices Amxn and Bnxk is:
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€11 C12 Cik
C21 (22 Cok
AB =C = .
Cm1 Cm2 Cmk
n
Cij = Z Ajpby;
v=1

Square matrix A is symmetric if aj; = a;i for all i and j. If A is symmetric then, AT = A. If both A
and B are symmetric with the same number of rows and columns then, they are commutative
such that AB = BA with note that the product AB and BA produces a symmetric matrix. Given
invertible matrix A, if it is symmetric, its inverse A* is symmetric too.

Given N matrices Aj such that their product (multiplication operator) is valid, we have:

N T 1
(]_[Al) = (M, AT = [ AT = ARaf, 4]
i=1 i=N

Product of matrix and vector is similar to product of matrix and matrix when vector is
considered as 1-column matrix or 1-row matrix, which results a vector.

a;; Q12 0 Qi X1 1

Q1 Az ° Qon X2 %)

Am1 Amz ° Qmn Xn Cm

— n
Where (S 2]-:1 ajjX;.
ayp Qg2 ot Qg
a a cee a
Ta 21 22 2n | .
Z'A = (21,29, vy Zp) | . . X =C = (cq,Cp -, Cpp)

Am1 Amz " Qmn

Where Cj = Z:Zl Zia,ij.
Given square matrix A, tr(A) is trace operator which takes sum of its diagonal elements.

tr(4) = Z ajj

l
Given invertible matrix A (n rows and n columns), Jordan decomposition theorem (Hardle &
Simar, 2013, p. 63) stated that A is always decomposed as follows:
A=UANU"' =UAUT
Where U is orthogonal matrix composed of eigenvectors. Hence, U is called eigenvector matrix.

u11 uz 1 e unl

ulz uzz e unz
U= : : : :

Uin Uzn e Upn

There are n column eigenvectors uj = (U1, U12,..., Utn) in U and they are mutually orthogonal,
ui'uj = 0. Where A is diagonal matrix composed of eigenvalues. Hence, A is called eigenvalue

matrix.
A 0 - 0
A=Y A d
0 0 - A,

Where 1; are eigenvalues. When invertible matrix A is decomposed according to Jordan
decomposition, we call A is diagonalized. If A can be diagonalized, it is called diagonalizable
matrix. Of course, if A is invertible, A is diagonalizable. There are many documents for matrix
diagonalization.
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Given two diagonalizable matrices A and B are equal size (nxn) then, they are
simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017) and hence, there exists
an orthogonal eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017)
(StackExchange, 2013):

A=Urut=uru"
B =UAU"1 =UAUT
Where I' and A are eigenvalue matrices of A and B, respectively.

Given symmetric matrix A, it is positive (negative) definite if and only if XTAX > 0 (XTAX
< 0) for all vector X0". It is positive (negative) semi-definite if and only if XTAX >0 (XTAX <
0) for all vector X. When diagonalizable A is diagonalized into UAU', it is positive (negative)
definite if and only if all eigenvalues in A are positive (negative). Similarly, it is positive
(negative) semi-definite if and only if all eigenvalues in A are non-negative (non-positive). If
A is degraded as a scalar, concepts “positive definite”, “positive semi-definite”, “negative
definite”, and “negative semi-definite” becomes concepts “positive”, “non-negative”,
“negative”, and “non-positive”, respectively.

Suppose f(X) is scalar-by-vector function, for instance, f: R" — R where R" is n-dimensional
real vector space. The first-order derivative of f(X) is gradient vector as follows:

df (X) <6f(X) af (X) af(X))

f,(X)=Vf(X)=W=Df(X)= ox; = dx, ' 0x,

) is partial first-order derivative of f with regard to xi. So gradient is row vector. The

Where or(x
axi

second-order derivative of f(X) is called Hessian matrix as follows:

0’F(X) 0*F(X)  0fX)

0x;  0x,0x, 9x,0x,

d2f(X) *f(X) a*f) 9*f(X)

f'X) = ax? = D2f(X) = 9,0, 9x2 9%,0%,
PfO0 OO W

0x,0x; 0x,0x, 0x?

0’ f(X) a8 (of(X)
0x;0x; =6_xl< 0x; )
0°f(X) 9*f(X)
dx? = 9x,0x;
Hence, second-order partial derivatives of x; (S) are on diagonal of the Hessian matrix. In
general, vector calculus is a complex subject. Here we focus on scalar-by-vector function with
some properties. Let ¢, A, B, and M be scalar constant, vector constant, vector constant, and

matrix constant, respectively, suppose vector and matrix operators are valid we have:
dc

d_X =
dATXx B dXTa
dx  dx
dX'X -

Kot
dATXXTB
—x - XT(ABT + BAT)
dATMX dXTMTA

= =ATM
dx dx

Where

T

=AT
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If M is a square matrix constant, we have:

dXTmMX
— T T
T M+ M)
d?XTmx MM
dxz

Hessian matrix is square matrix. Function f(X) is called n'"-order analytic function or n"-order
smooth function if there is existence and continuity of k™-order derivatives of f(X) where k = 1,
2,..., K. Function f(X) is called smooth enough function if K is large enough. According to
Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), if f(X) is second-order
smooth function then, its Hessian matrix is symmetric.
2 f(X) _9*f(X)

When X is univariate, gradient vector and Hessian matrix are degraded as scalar values.
Without loss of generality, by default, variable X in this research is multivariate as vector if
there is no additional explanation.

Given f(X) being second-order smooth function, f(X) is convex (strictly convex) in domain
X if and only if its Hessian matrix is semi-positive definite (positive definite) in X. Similarly,
f(X) is concave (strictly concave) in domain X if and only if its Hessian matrix is semi-negative
definite (negative definite) in X. Extreme point, optimized point, optimal point, or optimizer
X" is minimum point (minimizer) of convex function and is maximum point (maximizer) of
concave function.

X* = argmin f(X) if f convex in X
XeX
X* = argmax f(X) if f concave in X
XeX
Given second-order smooth function f(X), function f(X) has stationary point X" if its gradient

vector at X" is zero, Df(X") = 0'. The stationary point X" is local minimum point if Hessian
matrix at X" that is D?f(X") is positive definite. Otherwise, the stationary point X" is local
maximum point if Hessian matrix at X" that is D?f(X") is negative definite. If a stationary point
X" is neither minimum point nor maximum point, it is saddle point in which Df(X") = 0" and
D2f(X") = (0) where (0) denotes zero matrix whose all elements are zero. Finding extreme point
(minimum point or maximum point) is optimization problem. Therefore, if f(X) is second-order
smooth function and its gradient vector Df(X) and Hessian matrix D?f(X) and are both
determined, the optimization problem is processed by solving the equation created from setting
the gradient Df(X) to be zero (Df(X)=0T) and then checking if the Hessian matrix Df(X") is
positive definite or negative definite where X” is solution of equation Df(X)=0". If such equation
cannot be solved due to its complexity, there are some popular methods to solve optimization
problem such as Newton-Raphson (Burden & Faires, 2011, pp. 67-71) and gradient descent
(Ta, 2014).

A short description of Newton-Raphson method is necessary because it is helpful to solve
the equation Df(X)=0" for optimization problem in practice, especially in case that there is no
algebraic formula for solution of such equation. Suppose f(X) is second-order smooth function,
according to first-order Taylor series expansion of Df(X) at X=Xo with very small residual, we
have:

DF(X) = Df(Xo) + (X — Xo)" (D*f (X))
Because f(X) is second-order smooth function, D%f(Xo) is symmetric matrix according to
Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies:
D2f(Xo) = (D*(X0))"
So, we have:
Df(X) = Df(Xo) + (X — Xo)"D*f(X,)
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We expect that Df(X) = 0T so that X is a solution.
T'=Df(X) =~ Df(Xp) + (X — Xo)"D*f (X,)
It implies:

XT ~ XT — Df(XO)(DZf(Xo))_l
This means:

X~ Xo— (D*F(X0) ™ (DF (X))
Therefore, Newton-Raphson method starts with an arbitrary value of Xo as a solution candidate
and then goes through some iterations. Suppose at k™ iteration, the current value is X and the
next value Xk+1 is calculated based on following equation:

X1 ~ X — (D (X)) (D (X))
The value Xk is solution of Df(X)=0" if Df(X)=0" which means that Xi1=X« after some
iterations. At that time X1 = Xk = X” is the local optimized point (local extreme point). So, the
terminated condition of Newton-Raphson method is Df(Xk)=0". Note, the X" resulted from
Newton-Raphson method is local minimum point (local maximum point) if f(X) is convex
function (concave function) in current domain.

Newton-Raphson method computes second-order derivative D?f(X) but gradient descent
method (Ta, 2014) does not. This difference is not significant but a short description of gradient
descent method is necessary because it is also an important method to solve the optimization
problem in case that solving directly the equation Df(X)=0" is too complicated. Gradient
descent method is also iterative method starting with an arbitrary value of Xo as a solution
candidate. Suppose at k™ iteration, the next candidate point Xk+1 is computed based on the
current X as follows (Ta, 2014):

X1 = Xp + Gedy

The direction dx is called descending direction, which is the opposite of gradient of f(X). Hence,
we have dx = —Df(X«). The value tx is the length of the descending direction dk. The value t is
often selected an minimizer (maximizer) of function g(t) = f(Xk + tdx) for minimization
(maximization) where Xx and dk are known at k™ iteration. Alternately, tx is selected by some
advanced condition such as Barzilai-Borwein condition (Wikipedia, Gradient descent, 2018).
After some iterations, point X converges to the local optimizer X* when dix = 0. At that time
is we have X1 = Xk = X*. So, the terminated condition of Newton-Raphson method is dk=0".
Note, the X resulted from gradient descent method is local minimum point (local maximum
point) if f(X) is convex function (concave function) in current domain.

In the case that the optimization problem has some constraints, Lagrange duality (Jia, 2013)
is applied to solve this problem. Given first-order smooth function f(X) and constraints gi(X) <
0 and hj(X) = 0, the optimization problem is stated as follows:

Optimize f(X)

giX) <Ofori=1,

hj(X) =0forj= 1,n
A so-called Lagrange function la(X, 4, u) is established as sum of f(X) and constraints
multiplied by Lagrange multipliers 2 and . In case of m|n|m|zat|on problem, la(X, 4, u) is

muzm—ﬂm+Zme+mem
In case of maximization problem, la(X, 4, ) i |s
la(X, 2,1 = F(X) - ZLM@ mem

Where all 4i>0. Note, 2 = (A1, A2,..., Am)" andy (,u1 u, .. ,,Um)T are called Lagrange multipliers
and la(X, 4, ) is function of X, 4, and w. Thus, optimizing f(X) with subject to constraints gi(X)

7
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<0 and hj(X) = 0 is equivalent to optimize la(X, 4, x), which is the reason that this method is
called Lagrange duality. Suppose la(X, 4, ) is also first-order smooth function. In case of
minimization problem, the gradient of la(X, 4, ) with regard to X is

m n

Dla(X,2, @) = DF(X) + ) ADg(N) + ) u;Dh(X)
In case of maximization problem, the gradient of la(X, 4, w) wiEh regard to X is
Dla(X, 2, 1) = Df (X) — Z/l Dg(X) — Z 1;DA(X)

According to KKT condition (Wlklpedla Karush Kuhn—Tucker conditions, 2014), a local
optimized point (local extreme point) X" is solution of the following equation system:
(Dla(X, A, u) = 0T
giX)<ofori=1,
h;j(X) = 0 forj
Ai=0fori=1m

ki AgX) =0

The last equation in the KKT system above is called complementary slackness. The main task
of KKT problem is to solve the first equation Dla(X, 4, z) = 0T. Again some practical methods
such as Newton-Raphson method can be used to solve the equation Dla(X, 4, x) = 0.
Alternately, gradient descent method can be used to optimize la(X, 4, x) with constraints
specified in KKT system.

3

[uny

n

A

(gi(X) < O0fori= 1,m

hj(X) =0forj= 1,n
{A;=0fori=1,m
m
> hgn =0
\i=
Let P(.) denote probability,
0<P()<1

We need to skim some essential probabilistic rules such as additional rule, multiplication rule,
total probability rule, and Bayes’ rule. Given two random events (or random variables) X and
Y, additional rule (Montgomery & Runger, 2003, p. 33) and multiplication rule (Montgomery
& Runger, 2003, p. 44) are expressed as follows:
P(XUY)=PX)+P(Y)—-PXnNY)
P(XNY)=PX,Y)=PX|Y)P(Y) =PY|X)P(X)
Where notations U and N denote union operator and intersection operator in set theory
(Wikipedia, Set (mathematics), 2014). Your attention please, when X and Y are numerical
variables, notations U and N also denote operators “or” and “and” in theory logic (Rosen, 2012,
pp. 1-12). The probability P(X, Y) is known as joint probability. The probability P(X|Y) is called
conditional probability of X given Y:
P(X,Y) PXnY) PYIX)PX)
P(Y)  PXY) PV
Conditional probability is base of Bayes’ rule mentioned later.
If X and Y are mutually exclusive (X N Y = @) then, X U Y is often denoted as X+Y and we
have:

P(X|Y) =

P(X+Y)=PX) + P(Y)
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(Due to P(@) = 0)
Xand Y are mutually independent if and only if one of three following conditions is satisfied:
PXnY)=PX)PY)
P(X|Y) = P(X)
P(Y|X) = P(Y)
When X and Y are mutually independent, X n Y are often denoted as XY and we have:
P(XY) =P(X,Y) =P(XNnY)=PX)P(Y)
Given a complete set of mutually exclusive events X1, Xo,..., Xn such that
XiUX,U . UuX, =X +X,+ -+ X, = Qwhere (1 is probability space
X;inX;=0,Vi,j
The total probability rule (Montgomery & Runger, 2003, p. 44) is specified as follows:
n

P(Y) = P(Y|X))P(Xy) + P(Y[X2)P(X2) + -+ + P(Y|X,)P(Xy) = z P(Y|X)P(X;)
i=1
Where X; + X; + -+ X, =Qand X; N X; = Q,Vi,j
If X and Y are continuous variables, the total probability rule is re-written in integral form as
follows:

P(Y) = f P(Y|X)P(X)dX

X
Note, P(Y|X) and P(X) are continuous functions known as probability density functions
mentioned later. The important Bayes’ rule will also be mentioned later.

A variable X is called random variable if it conforms a probabilistic distribution which is
specified by a probability density function (PDF) or a cumulative distribution function (CDF)
(Montgomery & Runger, 2003, p. 64) (Montgomery & Runger, 2003, p. 102) but CDF and
PDF have the same meaning and they share interchangeable property when PDF is derivative
of CDF; in other words, CDF is integral of PDF. In practical statistics, PDF is used more
common than CDF is used and so, PDF is mentioned over the whole report. When X is discrete,
PDF is degraded as probability of X. Note, notation P(.) often denotes probability and it can be
used to denote PDF but we prefer to use lower case letters such as f and g to denote PDF. Given
a random variable having PDF f, we often state that “such variable has distribution f or such
variable has density function f”. Let F(X) and f(X) be CDF and PDF, respectively, equation 1.1

is definition of CDF and PDF.
( Xo

F(Xo) = P(X < Xo) = f FO0dX

Continuous case: <

d =
L_L fax =1 (1.1)

F(Xo) = P S Xp) = ) P(Y)
X<X,
FOXO) = POX) andz P(X) =1
X
In discrete case, probability at a single point Xo is determined as P(Xo) = f(Xo) but in continuous

case, probability is determined in an interval [a, b], (a, b), [a, b), or (a, b] where a, b, and X are
real as integral of the PDF in such interval as follows:

Discrete case:

b
Pla<X<b)= ff(X)dX

9
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Hence, in continuous case, probability at a single point is 0.

Equation 1.1 defines CDF and PDF for univariate random variable and so it is easy to
expend it for multivariate variable when X is vector. Let X = (X1, Xa,..., Xn)' be n-dimension
random vector, its CDF and PDF are re-defined as follows:

Continuous case:
Xo

F(Xo) = P(X < Xo) = P(x1 < x01,x2 < sz, ey Xn < xOn) = j f(X)dX

Xo Xo
f f f F(X)dx,dx, ... dx,
f f(X)dX—_ZIO f fX)dxydx, ... doy =1 (1.2)

Dlscrete case:
F(Xo) = P(X < Xo) = P(xl < x01,x2 < sz, ...,xn < xOn) = Z P(X)

YUY e

X1=X01 X25X02  Xn<Xon

f&X) =PX)

ZP(X)— Z Z Z P(X) =1

X1SX01 X2=X02  XnS<Xon

Marglnal PDF of partial variable xi where x; is a component of X is the integral of f(X) over all

Xj except Xi.
400 400
fo () = j j jf(x>dx1 g dxie o dn
Where, o

f fr,(x)dx; = 1

Joint PDF of x; and x; is defined as the mtegral of f(X) over all xx except x; and x;.
+00 400

fxlx](xl,x]) j f ff(X)dxl cdx_q gy . dxj_gdxjyg - dp

Where, o

+00 400

J f fxixj(xi,xj) dxidxj =1
Conditional PDF of x; given X; is defined as follows:

f (x;) fxixj(xl"xj)
N (X)) = ———
Xy A £, (%)
Indeed, conditional PDF implies conditional probability.

Given random variable X and its PDF f(X), theoretical expectation E(X) and theoretical
variance V(X) of X are:

10


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

E(X) = f XFOOAX (L3)

X

V(X) = E(X —EX))(X - EX))" = f(x —EX))(X — E(X)) fF(X)dX

X
=EXX") —EX)EX)T
The expectation E(X) of X is often called theoretical mean. When X is multivariate vector, E(X)
IS mean vector and V(X) is covariance matrix which is always symmetric. When X = (xg, Xo,...,
xn)" is multivariate, E(X) and V(X) have following forms:

(1.4)

E(x,)
E(xa)
V(x1) V(xy,x2) o V(xg,xp)
Viox)) VOx) ~ Vi)

Therefore, theoretical means and variances of partial variables x; can be determined separately.
For instance, each E(xi) is theoretical mean of partial variable xi given marginal PDF f, (x;).

E(x;) = fxif(X)dX = fxifxi(xi)dxi
X Xi
Each V(x;, ;) is theoretical covariance of partial variables x; and x; given joint PDF frix; (xi, x]-).

V(xl-,xj) = V(xj,xi) = E(xi — E(xl-)) (xj — E(x]-))
= f(xl —E(x)) (xj — E(xj))f(X)dX

X

= f f(xl - E(xl)) (XJ - E(Xj)) fxl.xj(xi,xj)dxidxj
Note, oY
E(xixj) = fxlx]f(X)dX = j- fxixjﬂcixj(xi,xj)dxidxj = V(xi,xj) + E(XL)E(.X])
X Xi Xj

Each V(xi) on diagonal of V(X) is theoretical variance of partial variable x; given marginal PDF
ij (xf)'
2 2 2
Ve = B — B’ = [ (= EG) 700X = [ (5 = BG) G
X Xi

NOte,
E(x?) = f K F (X)X = f X2 fi r)dx, = V) + (E)?

X Xi
Given two random variables X and Y along with a joint PDF f(X, Y), theoretical covariance of
X and Y is defined as follows:

V(X,Y) = E(X - EQO)(Y —EM))
- f f(X —EX)(Y — E(Y))' f(X,Y)dxdy

XY

(1.5)
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If the random variables X and Y are mutually independent given the joint PDF f(X, Y), its
covariance is zero, V(X, Y)=0. However, it is not sure that X and Y are mutually independent if
V(X, Y)=0. Note, joint PDF is the PDF having two or more random variables. If X and Y are
multivariate vectors, V(X, Y) is theoretical covariance matrix of X and Y given the joint PDF
f(X, Y). When X = (X1, X2,..., Xm)" and Y = (y1, Ya,..., yn)" are multivariate, V(X, Y) has following

form:
V(xy,y1)  V(xy,y) - V(X yn)
V(X,Y) = V(xzz»)ﬁ) V(xzz,yz) V(xzz:Yn)
V(xm' yl) V(xm' yz) V(xm' yn)

Where V(xi, yj) is covariance of xi and y;. We have:

V(xi,yj) = E(xi - E(xi)) (y]- - E(yj)) = f f(xi - E(xl-)) (y]- - E(yj))f(X, Y)dxdY

XY

= f f(xi—E(xi)) (35 = EG))) frwy, () )didly,
— E(xy) ~ ExOE()
Note, v o e
fX) —ff(X Y)dy = f f f f(X,Y)dy,dy, ...dy,
f(y) = ff(X Y)dX = To To f f(X,Y)dx;dx, ...dx,,
ful) = ]? j? f FOO AR, iy dxips o iy
£y (vj) = T +f’° f f(V)dy; . dy;_1dyjeq - dyn

wdx;_qdxipq - dxgy,

fxly,(xvyj) = _[O _[O f f&, Y)dy1 dy;_1dyjeq - dyy
am=jnﬂma=fmmmMm

Xi

E(y]) jyj (Y)dy = fy,fy](y,)dyj

Yj

E(xy;) = j J xiyif (X, Y)dXdy = f f XiYj frey; (%0, ¥7)dx;idy;
Xi Yj
As usual, E(X) and V(X) are often denoted as x and X, respectively if they are parameters of
PDF. Note, most of PDFs whose parameters are not E(X) and V(X). When X is univariate, X is
often denoted as ¢ (if it is parameter of PDF). For example, if X is univariate and follows
normal distribution, its PDF is:

f)

1 1(X—w
_Wexp<—§—02 )

12
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If X = (X1, X2,..., Xn)" is multivariate and follows multinormal (multivariate normal) distribution,
its PDF is:

n 1 1
FO0 = @25l Zexp (5 (0 - TE (X - )
In this case, parameters ¢ and X have following forms:

H1
p=E0 ="
Hn
011 012 *° O1n
=V =" 2 T 0
On1 Onz *° Onn

Of course, u and X are determined by equation 1.3 and equation 1.4, respectively with note that
¥ is symmetric and invertible in case of multinormal distribution. Each i is theoretical mean
of partial variable x; as usual.
Hi = E(x)
Each gij where i#] is theoretical covariance of partial variables x;j and x; as usual.
oy = o5 =V (x,x;) = V (x5, %;)
Note,
E(xix;) = 0y + wabt
Each aii on diagonal of X is theoretical variance of partial variable x; as usual.
i = of = V(x;)
Note,
E(x?) = of + uf
Without loss of generality, by default, random variable X in this research is multivariate as
vector if there is no additional explanation. Followings are some formulas related to theoretical
expectation E(X) and variance V(X).
Let a and A be scalar constant and vector constant, respectively, we have:
E(aX+A) =aE(X)+A
V(aX + A) = a?V(X)
Given a set of random variables X’ = {X1, Xa,..., Xn) and N scalar constants c; (s), we have:

N N
E (z cl-Xl-> = Z c;E(X;)

i=1 i

i=1
N N N-1 N
V <Z CiXi> = z ClZV(Xl) + 2 Z Z CiCjV(Xi,Xj)

i=1 i=1 i=1 j=i+1
Where V(X;, X;j) is covariance of Xi and X;.
If all Xi (s) are mutually independent, then

N N
E (Z cl-Xl-> = Z c;E(X;)

i=1 i=1

N N
1% <Z ciXi> = Z c?V(Xy)

i=1 i=1
Note, given joint PDF f(X1, Xa,..., Xn), two random variables Xi and X; are mutually
independent if f(Xi, X;j) = f(Xi)f(Xj) where f(Xi, X;), f(Xi), and f(X;) are defined as aforementioned

13


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

integrals of f(X1, X2,..., Xn). Therefore, if only one PDF f(X) is defined then, of course X1, Xa,...,
and Xy are mutually independent and moreover, they are identically distributed.

If all Xi (s) are identically distributed, which implies that every X; has the same distribution
(the same PDF) with the same parameter, then

B e

i=1 i=1
N N N-1 N
1% (Z cin-> = (Z ci2> V(X) +2 Z Z cicj |V(X)
i=1 i=1 i=1 j=i+1
Note, if all X; (s) are identically distributed, every Xi can be represented by the same random

variable X.
If all Xi (s) are mutually independent and identically distributed (iid), then

p(San) (3o

i=1 [

=1
N N
1% (2 cl-Xi> = (2 cf) 40¢)
i=1 i=1
Because EM algorithm is essentially an advanced version of maximum likelihood estimation
(MLE) method, it is necessary to describe MLE in short. Suppose random variable X conforms
to a distribution specified by the PDF denoted f(X | ®) with parameter ©. For example, if X is

vector and follows normal distribution then,

n 1 1
F(X10) = (2m) 23| 2exp (-5 (X - 27X — )

Where u and X are theoretical mean vector and covariance matrix, respectively with note that
O = (u, £)". The notation |.| denotes determinant of given matrix and the notation X! denotes
inverse of matrix X. Note, X is invertible and symmetric. Parameter of normal distribution is
theoretical mean and theoretical variance,

u=EX)

I=VX)=EX-wX-p’
But parameters of different distributions may be different from such mean and variance.
Anyhow theoretical mean and theoretical variance can be calculated based on parameter ©.

For example, suppose X = (X1, Xz,..., Xn)" follows multinomial distribution of K trials, its

PDF is:

n

K! %;
FOI0) = s Hp,-

]:
Where x; are integers and ® = (p1, ..., pn)" is the set of probabilities such that

M-

p;=1
j=1
n
ZX]' =K
j=1
x]' € {0,1, ,K}

Note, x;j is the number of trials generating nominal value j. Obviously, the parameter ® = (p,
P2,..., Pn)" does not include theoretical mean E(X) and theoretical variance V(X) but E(X) and
V(X) of multinomial distribution can be calculated based on ® as follows:

14
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E(x;) = Kp;
V(%) = Kp;(1-p))

When random variable X is considered as an observation, a statistic denoted z(X) is function of
X. For example, z(X) = X, 7(X) = aX + A where a is scalar constant and A is vector constant,
and z(X) = XXT are statistics of X. Statistic z(X) can be vector-by-vector functions, for example,
7(X) = (X, XXNT is a very popular statistic of X.

In practice, if X is replaced by sample X = {X1, Xa,..., Xn} including N observation X;, a
statistic is now function of X (s), for instance, quantities X and S defined below are statistics:

N
_ 1
i=1

1 N v v\T 1 N T vvT
S=NZ(Xi—X)(Xi—X) - N_inxi ~ XX
1= 1=

For multinormal distribution, X and S are estimates of theoretical mean x and theoretical
covariance matrix X. They are called sample mean and sample variance, respectively.
Essentially, X is special case of X when X has only one observation as X = {X}.

Statistic 7(X) is called sufficient statistic if it has all and only information to estimate
parameter @. For example, sufficient statistic of normal PDF is z(X) = (X, XX")". In fact,
parameter ® = (u, £)' of normal PDF, which includes theoretical mean x and theoretical
covariance matrix X, is totally determined based on all and only X and XXT (there is no
redundant information in z(X)) where X is observation considered as random variable, as
follows:

©=EX) = ij(XlG))dX

X
S=EX -wX - =EXX") —uu"
Similarly, given X = (X1, X2,..., Xn)', sufficient statistic of multinomial PDF of K trials is 7(X) =
(X1, X2,..., Xn)" due to:
_E(x)

pj K
Given a sample containing observations, purpose of point estimation is to estimate unknown
parameter ® based on such sample. The result of estimation process is the estimate © as
approximation of unknown ®. Formula to calculate © based on sample is called estimator of
@. As a convention, estimator of ® is denoted ®(X) or ®(X") where X is an observation and X
is sample including many observations. Actually, ©(X) or 8(X) is the same to ® but the
notation ©(X) or ®(X) implies that © is calculated based on observations. For example, given
sample X = {X1, Xa,..., Xn} including N observations iid X;, estimator of theoretical mean x of
normal distribution is:

,Vi=1,n

N
-1
M:ﬂ(X) =X=NZX1'
i=1

As usual, estimator of O is determined based on sufficient statistics which in turn are functions
of observations where observations are considered as random variables. Estimation methods
mentioned in this research are MLE, Maximum A Posteriori (MAP), and EM in which MAP
and EM are variants of MLE.

According to viewpoint of Bayesian statistics, the parameter ® is random variable and it
conforms some distribution. In some research, ® represents a hypothesis. Equation 1.6
specifies Bayes’ rule in which f(®|¢) is called prior PDF (prior distribution) of ® whereas f(®|X)
is called posterior PDF (posterior distribution) of ® given observation X. Note, & is parameter
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of the prior f(®|¢&), which is known as second-level parameter. For instance, if the prior f(®|¢)
is multinormal (multivariate normal) PDF, we have & = (uo, X0?)" which are theoretical mean
and theoretical covariance matrix of random variable ®. Because ¢ is constant, the prior PDF
f(®|¢) can be denoted f(®). The posterior PDF f(®|X) ignores & because & is constant in f(®|X).
F(OIX) = fX10)£(0]¢) (L6)
Jo fXI®)f(O18)
In Bayes’ rule, the PDF f(X | ®) is called likelihood function. If posterior PDF f(®|X) has the
same form of prior PDF f(®|¢), such posterior PDF and prior PDF are called conjugate PDFs
(conjugate distributions, conjugate probabilities) and f(®|¢) is called conjugate prior
(Wikipedia, Conjugate prior, 2018) for likelihood function f(X|®). Such pair of f(®|¢) and f(X|®)
is called conjugate pair. For example, if prior PDF f(®|¢) is beta distribution and likelihood
function P(X|®) follows binomial distribution then, posterior PDF f(®|X) is beta distribution
and hence, f(®|¢) and f(®|X) are conjugate distributions. Shortly, whether posterior PDF and
prior PDF are conjugate PDFs depends on prior PDF and likelihood function.
There is a special conjugate pair that both prior PDF f(®|¢&) and likelihood function f(X|®)
are multinormal, which results that posterior PDF f(®|X) is multinormal. For instance, when X
= (X1, X2,..., Xn)T, the likelihood function f(X|®) is multinormal as follows:

n 1 1
FX10) = W (%) = @) 23] Zexp (5 (X — w757 (X — )

Where © = (1, )" and u = (u1, p2,..., un)". Suppose only x is random variable which follows
multinormal distribution with parameter & = (uo, o) where z0 = (uo1, po2, .. ., pon)'. Note, T and
Yo are symmetric and invertible. The prior PDF f(®|¢) is:

n1 1 _
F(OIE) = FlE) = W (o, Zo) = (2m) 2181 Zexp — 5 (e — 1) 25" (1 = ko))
It is proved that the posterior PDF f(®|X)=f(«|X) distributes normally with theoretical mean M,
and covariance matrix X, as follows (Steorts, 2018, p. 13):

fOIX) = f(ulX) = FX|O)f (ul&) < N(M,,Z,)

n 1 1 T
= 2m) 2|z, Zexp (=5 (k- M) 5 (e — M)

Where (Steorts, 2018, p. 13),

M, =CE T+ Epo + ZpX)

L, = Et+zyHt
The sign “o¢” indicates proportion m

When X is evaluated as observation, let © be estimate of ©. It is calculated as a maximizer
of the posterior PDF f(®|X) given X. Here data sample X has only one observation X as X =
{X}, in other words, X is special case of X here.
fX10)f(©¢)

Jo F(X10)F(0]8)
Because the prior PDF f(®|¢) is assumed to be fixed and the value fef(Xle)f(G)lé) is constant
with regard to ®, we have:

0 = argmax f(0|X) = argmax
® ®

® = argmax f(0|X) = argmax f(X|0)
) )

Obviously, MLE method determines © as a maximizer of the likelihood function f(X | ®) with
regard to ® when X is evaluated as observation. It is interesting that the likelihood function
f(X|®) is the PDF of X with parameter ®. For convenience, MLE maximizes the natural
logarithm of the likelihood function denoted I(®) instead of maximizing the likelihood function.

® = argmax [(®) = argmaxlog(f(X|0)) (1.7)
0 0
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Where 1(®) = log(f(X | ®)) is called log-likelihood function of ®. Recall that equation 1.7
implies the optimization problem. Note, I(®) is function of ® if X is evaluated as observation.
1(©) = 1(81X) = log(f (X|©)) (1.8)
Equation 1.7 is the simple result of MLE for estimating parameter based on observed sample.
The notation 1(®|X) implies that 1(®) is determined based on X. If the log-likelihood function
I(®) is first-order smooth function then, from equation 1.7, the estimate © can be solution of
the equation created by setting the first-order derivative of I(®) regarding ® to be zero,
DI(®)=0". If solving such equation is too complex or impossible, some popular methods to
solve optimization problem are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient
descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush—Kuhn-Tucker conditions, 2014).
Note, solving the equation DI(®)=0" may be incorrect in some case, for instance, in theory, ®
such that DI(©)=0" may be a saddle point (not a maximizer).
For example, suppose X = (X1, X2,..., Xn)" is vector and follows multinormal distribution,

n 1 1
F(X10) = (2m) 23| 2exp (-5 (X - 27X — 1)
Then the log-likelihood function is

n 1 1
1(0) = — 7 log(2m) — S log|X| — 5 (X — WIETHX — )
Where . and X are mean vector and covariance matrix of f(X | ®), respectively with note that

O = (u, £)". The notation |.| denotes determinant of given matrix and the notation = denotes
inverse of matrix X. Note, X is invertible and symmetric. Because normal PDF is smooth

enough function, from equation 1.7, the estimate ® = (,1, E)T is solution of the equation
created by setting the first-order of 1(®) regarding x and X to be zero. The first-order partial
derivative of 1(®) with respect to « is (Nguyen, 2015, p. 35):
ale) X — )Tz
ou ¢
Setting this partial derivative to be zero, we obtain:
X-wWxl=0=X-u=>a0=X
The first-order partial derivative of I1(®) with respect to X is:

e 1, 1, ey
Due to:
0log(lz) _ .,
0z
And

OX — "2 (X =) otr((X =W)X —)TE7")
ED B ED
Because Bilmes (Bilmes, 1998, p. 5) mentioned:
XWX - =t(X - & -w=T)
Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(4) =
Y. a;;. This implies (Nguyen, 2015, p. 45):
oX — T 1(x — otr( (X — ) L

X - b (X =) _ ar(( u)a(z wET) _ E(X — )X — )TE
Where ¥ is symmetric and invertible matrix. Substituting the estimate f into the first-order
partial derivative of I(®) with respect to X, we have:

0l(©) 1

1
— L=y 1 vy - DX =T !
5 > +5 X -nX -
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The estimate ¥ is the solution of equation formed by setting the first-order partial derivative of
1(®) regarding X to zero matrix. Let (0) denote zero matrix.

We have:

a1(®)

a5 1— (0) 1

&~ I - DX - "2 = (0)

> -2+ - D& -’ =(0)
> 5= X - D& -’ _
Finally, MLE results out the estimate © for normal distribution given observation X as follows:

0=(a=XxS=X-pE-p7)
When i = X then £ = (0), which implies that the estimate £ of covariance matrix is arbitrary
with constraint that it is symmetric and invertible. This is reasonable because the sample is too
small with only one observation X. When X is replaced by a sample X = {X1, Xo,..., Xn} in
which all X;i (s) are mutually independent and identically distributed (iid), it is easy to draw the
following result by the similar way with equation 1.11.

N

1
p=f=5) X
i=1
=1 1 C A AN\T 1 C T AT
S=5=2) (- -7 =5 > XXT |- pa
i=1 i=1

Here, /i and £ are sample mean and sample variance m

In practice, if X is observed as particular N observations Xi, Xa,..., Xn. Let X = {X1, Xa,...,
Xn} be the observed sample of size N in which all Xi (s) are iid. Essentially, X is special case
of X when X has only one observation as X = {X}. The Bayes’ rule specified by equation 1.6
is re-written as follows:

fop) = LXIOF @)
Jo F(X10)f(B]€)

However, the meaning of Bayes’ rule does not change. Because all X; (s) are iid, the likelihood
function becomes product of partial likelihood functions as follows:

rexie) =] [ rexley 19)

The log-likelihood function of ® becomes:

N N
1(0) = 1(81X) = log((X16)) = log (ﬂf(xim)) =) log(f(xil®)  (L10)

The notation [(®]|X) implies that 1(®) is determined based on X. We have:
N

0 = argmax1(0) = argmaxz log(f (X;1©)) (1.11)
® o &

Equation 1.11 is the main result of MLE for estimating parameter based on observed sample.
If the log-likelihood function I(®) is first-order smooth function then, from equation 1.11, the
estimate ® can be solution of the equation created by setting the first-order derivative of 1(®)
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regarding O to be zero. If solving such equation is too complex, some popular methods to solve
optimization problem are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient
descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush—Kuhn-Tucker conditions, 2014).

For example, suppose each Xi = (Xi1, Xi,..., Xin)' is vector and follows multinomial
distribution of K trials,

FONIO) = o U,)]_[p,

Where xix are integers and © = (p, pz,..., pn)T is the set of probabilities such that

pj=1

r

~
1l
Juy

xisz

o

1l
=

]
xij € {0,1, ,K}
Note, xix is the number of trials generating nominal value k.
Given sample X = {X1, Xz,..., Xn} in which all X; (s) are iid, according to equation 1.10,
the log-likelihood function is

l(@)—l(@lX)—Zlog n( ')npxu
1 l]

i=1
N
= z log(K!) — Z log(x;;!) + Z x;jlog(p;)
i=1 j=1 j
Because there is the constraint 7_; p; = 1, we use Lagrange duality method to maximize 1(©).
The Lagrange function 1a(®, 4) is sum of 1(®) and the constraint }%_; p; = 1 as follows:

n

la(@,) = 1(@) + 4 1= ) p,
j=1
N n n n
= z log(K!) — z log(x;;!) + injlog(pj) +Al1- Z p;
=1 j=1 j=1 j=1
Note, A is called Lagrange multiplier. Of course, la(®, 4) is function of ® and A. Because
multinomial PDF is smooth enough, the estimate ® = (py, P, ..., P,)" is solution of the
equation created by setting the first-order of la(®) regarding p; and 1 to be zero. The first-order
partial derivative of la(®) with respect to p; is:
ala(G)) _ Zlivzl xij
op;j D;
Setting this partial derivative to be zero, we obtain following equation:

N . N
M_A:()ﬁ xi: | —Ap; =0
p; j j

i=1
Summing this equation over n variables p;j, we obtain'

-1
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Due to
n
D=
j=1
n
j=1
We have

Substitute 2 = nN into equation

i=1

We get the estimate ©® = (p;, Py, ..., Pn)" as follows:
R X Xij
Pi="KN
Quality of estimation is measured by mean and variance of the estimate ®. The mean of 0 is:
E(8) = j 00X) £(X|0)dx (1.12)

X
The notation ®(X) implies the formulation to calculate ©, which is resulted from MLE, MAP,
or EM. Hence, (X) is considered as function of X in the integral [, ©(X) f(X|©)dX. The ®

is unbiased estimate if E(©) = ©. Otherwise, if E(©) = © then, © is biased estimate. As usual,

unbiased estimate is better than biased estimate. The condition E(8) = @ is the criterion to
check if an estimate is unbiased, which is applied for all estimation methods.
The variance of © is:

v(®) = [ (800 - E0) (800 - EX)) f(xledax (113)

X
The smaller the variance V(8), the better the © is.
For example, given multinormal distribution and given sample X = {X1, Xo,..., Xn} where

all X (s) are iid, the estimate © = (4, E)T from MLE is:
X;
NZ

- NZ(Xi - D= )T

E@) = E ( Z >=1i5(xi)=%ib"(x>=u

i=1
Then fi is unblased estimate. We also have:

N N N N

E(S) = E( Z(x DX - M)T> (Z XXT - lem =) Xl + mﬂ)
N N ' =1
=—E(2XXT ZZ/,LX +Z“T> <lexf—2ﬁ XiT+NﬁﬁT>

i=1 i=1
(Due to X;aT = axT)

Due to:
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N
1 1
= NE (z X, XI —2Naa"™ + Naj ) =5 ( XX — NﬁﬁT>
i=1

(Duet =—Z

=5 2 E(X,XT) — E(apT) = —Z E(XXT) — E(aaT) = E(XXT) — E(aa7)

(Let X be random variable representing all iid X; (s))
=C+pu") - V@ +E@E@M"
(Dueto X = E(XXT) — uu® and the variance V(i) = E(Aa") — E(O)E(@T)
=CE+pu") = W@ +pu") = -V()
It is necessary to calculate the variance V (j1). In fact, we have:

N N N
N[l _1 _ L _lyn=t
V) = V(ﬁz Xi> = Nz;V(Xi) _szm) =SV =%

i=1
Therefore, we have:
E(£) =3 z N-1,
N

Hence, we conclude that £ is biased estimate because of E(£)#Zm
Without loss of generality, suppose parameter ©® is vector, the second-order derivative of
the log-likelihood function I(®) is called likelihood Hessian matrix (Zivot, 2009, p. 7) denoted

S(@).
S(0) = S(0]X) = D%1(0]X) (1.14)
Suppose O = (b4, 0-,..., 6)" where there are r partial parameters 6k, equation 1.14 is expended
as follows:
2%1(e]X) 0921(e]X) 2%1(0]X)
26?2 00,00, 00,00,
, d21(0]X) 2%1(e]X) 02%1(e]|X) 2%1(e]X)
Dl(GIX)=W= 96,00, 962 06,00,
2%1(e]X) 02%1(e]|X) 2%1(e]X)
00,00, 00,00, 06z
Where,
a21(0]X) a [3ld]X)
96,06, :a_9i< 26, )
0%1(elx) 09%1(e|X)
062 06,00,

The notation 1(®|X) implies that I(®) is determined based on X, according to equation 1.8. The
notation S(®|X) implies S(®) is calculated based on X. If sample X replaces X then,

5(®) = S(8]X) = D%1(B|X) (1.15)
Where X = {X1, Xa,..., Xn} be the observed sample of size N in which all X; (s) are iid. The
notation 1(®|X) implies that 1(®) is determined based on X, according to equation 1.11. The
notation S(®|X) implies S(O) is calculated based on X .

The negative expectation of likelihood Hessian matrix is called information matrix or
Fisher information matrix denoted 1(®). Please distinguish information matrix 1(®) from
identity matrix .

1(0) = —E(S(9)) (1.16)
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If S(O®) is calculated by equation 1.14 with observation X then, 1(®) becomes:
10) = 1(61%) = ~E(5(01)) = — [ D@IIF (XlO)dX w17)

X
The notation 1(®|X) implies that I(®) is determined based on X, according to equation 1.8. The
notation 1(®|X) implies 1(®) is calculated based on X. Note, D21(©|X) is considered as function
of X in the integral fXDzl(G)IX)f(XIG)dX.
If S(®) is calculated by equation 1.15 with observation sample X = {X1, Xa,..., Xn} in
which all X; (s) are iid then, I(®) becomes:

1) = 1(8]X) = —E(S(8]X)) = N = 1(8]X) = —NJDZZ(G)lx)f(XIG))dX (1.18)

X
Where X is random variable representing every Xi. The notation I(®|X) implies 1(®) is

calculated based on X . Note, D2I(®|X) is considered as function of X in the integral
fXDzl((alX)f(Xle))dX. Following is proof of equation 1.18.

1(8) = 1(8]Xx) = —E(S(0|X)) = —E(D?1(0]X))
(The notation I(®|X) implies that I(®) is determined based on X)

N
_E (Z Dzl(G)IXi)>
i=1
l (Due to equation 1.8 and iid Xi (s))

N N

= —ZE(DZI(G)lXi)) = —Z f D21(B|X)f (X;10)dX;
i;{l i=1x

_ —Zszl(GIX)f(XIG)dX
i=1x

(Let X be random variable representing every X;)
=—N j D2(O|X)f(X|®)dX = N *I(0|X)m

For M)IiE method, the inverse of estimator information matrix is called Cramer-Rao lower
bound denoted CR(®).
CR(®) =1(0)7! (1.19)

Where 1(®) is calculated by equation 1.17 or equation 1.18. Any covariance matrix of a MLE
estimate © has such Cramer-Rao lower bound. Such Cramer-Rao lower bound becomes V(®)
if and only if © is unbiased, (Zivot, 2009, p. 11):

V(©) = CR(®) if © biased

V(©®) = CR(®) if © unbiased
Note, equation 1.19 and equation 1.20 are only valid for MLE method. The sign “>" implies
lower bound. In other words, Cramer-Rao lower bound is variance of the optimal MLE estimate.
Moreover, beside the criterion E(8) = ©, equation 1.20 can be used as another criterion to
check if an estimate is unbiased. However, the criterion E(®) = @ is applied for all estimation
methods whereas equation 1.20 is only applied for MLE.

Suppose O = (61, b-,..., 6r)" where there are r partial parameter 6, so the estimate is © =

(9], 0,, ...,éT)T. Each element on diagonal of the Cramer-Rao lower bound is lower bound of
a variance of 8, denoted V(8y ). Let CR(8},) be lower bound of V(8 ), of course we have:

(1.20)
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V(b)) = CR(B,) if O biased

V(8y) = CR(H;) if O, unbiased
The sign “>” implies lower bound. Derived from equation 1.18 and equation 1.19, CR(@R) is
specified by equation 1.22.

SN 021(01X)\ _ 221(81X)
1(,)=—-N=~E (W) = —N!a—%f(m@)dx

(1.21)

1{ 3%1(0]X) (1.22)

-1
CR(B) = 1(0) " = ‘N( f a—%f(X|®)dX>

Where N is size of sample X = {X1, Xz,..., Xn} in which all X; (s) are iid. If there is only one
observation X then, N = 1. Of course, 1(8;,) is information matrix of ;. If 9 is univariate,
1(8),) is scalar, which called information value.

For example, let X = {X1, Xo,..., Xn} be the observed sample of size N with note that all X;
(s) are iid, given multinormal PDF as follows:

n 1 1 _
F(X10) = (2m) 23| 2exp (—5 (X — 57X — )
Where n is dimension of vector X and ® = (1, X)T with note that y is theoretical mean vector
and X is theoretical covariance matrix. Note, X is invertible and symmetric. From previous

example, the MLE estimate 8 = (g, 2)T given X is:
N

1Y A -
5 =NZ(Xi — DX — )
i=1

Mean and variance of (i from previous e>_<ample are:
E@) =p
1
vg) = Nz
We knew that j1 is unbiased estimate with criterion E(fi) = u. Now we check again if /i is
unbiased estimate with equation 1.21 as another criterion for MLE. Hence, we firstly calculate

the lower bound CR(f) and then compare it with the variance V(). In fact, according to
equation 1.8, the log-likelihood function is:

n 1 1
L(01X) = —log(2m) — S log|Z| — = (X — WIEHX —w
The partial first-order derivative of 1(®|X) with regard to x is (Nguyen, 2015, p. 35):
ole|x
©1X) _ X — )TE1
ou
X — w2 X —p)
ou
The partial second-order derivative of 1(®|X) with regard to x is (Nguyen, 2015, p. 36):

0%1O1X) _ 9 (O _ 0 0 roliy gyt gt
6—,112_@< o )—@(( — W) )=—( )=

(Due to X is symmetric)
According to equation 1.22, the lower bound CR({) is:

<due to =-2X -7 whenXis symmetric)
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921 - -
CR(p) = —%( | %f(XIG)dX> = %( | 2‘1f(XI@)dX>
X

X
-3 (= [ronoer) = fs-van
X

Due to V(1) = CR(f1), fi is unbiased estimate according to the criterion specified by equation
1.21.

Mean of £ from previous example is:
~ N-1
E(®) = — %
We knew that £ is biased estimate because E(£) # . Now we check again if £ is biased

estimate with equation 1.21 as another criterion for MLE. The partial first-order derivative of
I(®|X) with regard to X is:

al(e]X) 1 1 1 1 S
Due to:
dlog(IZ) _ .,
)
And
X —p's X —p) _or(X - - ')
E) B B}

Because Bilmes (Bilmes, 1998, p. 5) mentioned:
K- X - =t(X - & -w=T)
Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(4) = Y; a;;.
This implies (Nguyen, 2015, p. 45):
IX -2 (X —p) ou(X-wX-wT'E")
0% - FR -
According to equation 1.22, the lower bound CR(Z) is:

-1
021 a (ol
CR(Z) = —N<j$f(x|®)dx> = —%<f5< (§)Z|X)>f(X|®)dX>

X - X -

-1

:_% :_ZO al(s)zlx)f(XlG))dX> i

x

(Due to 1(®]X) is smooth enough) B

_ _% :_Z f ——z 4= z (X — )X — p)Ts" )f(XI@)dX)

X 1
_ _% :_z —%2‘1ff(XIG))dX+%f2‘1(X—u)(X—y)TZ‘lf(XIG)dX>

x x .

_ _% ;_E _%z-l +%jZ‘l(X—u)(X—u)TZ‘lf(XlG))dX)

X
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-1

1[0 1., 1 1oy T
=-~ 6_2](_52 oI }[(X—.U)(X—IJ) f(X|@)dX>

(Because Tt and (X — ) (X — )T are symmetric matrices)

-1 -1
d 1 1 1(0 1 1

T Ty-14 Ty-1y-1 - _Zy-1 4 —y-1
(02( 2Z +22 2 2)) N(@Z( 2Z +22 >>

-3

Where (0) is zero matrix. This implies the lower bound CR(Z) is inexistent. Hence, £ is biased
estimate. Even there is no unbiased estimate of variance for normal distribution by MLE =

MLE ignores prior PDF f(®|&) because f(®|%) is assumed to be fixed but Maximum A
Posteriori (MAP) method (Wikipedia, Maximum a posteriori estimation, 2017) concerns f(®|¢)
in maximization task when f@ f(X]0)f(0]¢) is constant with regard to ©.

fX10)f(6l$)

= argmax f(X]|0)f(0]¢)
Joraxieyery ey 1O

Let f(X, © | &) be the joint PDF of X and ® where © is also random variable too. Note, ¢ is
parameter in the prior PDF f(®|¢). The likelihood function in MAP is also f(X, ® | £).

1
N

0 = argmax f(0|X) = argmax
® ®

fX,018) = f(X|0)f(05) (1.23)
Theoretical mean and variance of X are based on the joint PDF f(X, @ | £) as follows:
E(X) = f fo(X,@|f)dXd@ (1.24)
X 0
V(X) = j j(x —EX))(X — E(X))' F(X,0]§)dxde (1.25)
X 0

Theoretical mean and variance of ® are based on f(®|¢) because f(®|¢) is function of only ®
when £ is constant.

£ = [ [ orcx.ei)axde = [ erelsdo (1.26)
X 0

(¢]

V(©) = f f(@ — E()(0 - E(0))' f(X,0[¢)dxde
X 0

_ f(@ — E(0)(0 - E(0)) f(0]&)de (1.27)

)
= E(007]$) — E(BIHE(OT]$)
In general, statistics of @ are still based on f(®|¢). Given sample X = {X3, X2,..., Xn} in which
all Xi (s) are iid, the likelihood function becomes:

focee) =] [raeio (1.28)
The log-likelihood function £(0) in MAPlzi; re-defined with observation X or sample X as
follows:
£(0) = log(f(X,018)) = 1(6) +log(f(61%)) (1.29)
£(8) = log(f(x,018)) = 1(6) +log(f(01%)) (1.30)
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Where 1(®) is specified by equation 1.8 with observation X or equation 1.10 with sample X.
Therefore, the estimate © is determined according to MAP as follows:

0= arg({)nax({’(@)) = argmax (l(@) + log(f(G)IE))) (1.31)

Good information provided by the prior f(®|&) can improve quality of estimation. Essentially,
MAP is an improved variant of MLE. Later on, we also recognize that EM algorithm is also a
variant of MLE. All of them aim to maximize log-likelihood functions. Likelihood Hessian

matrix S(®), information matrix 1(®), and Cramer-Rao lower bound CR(®), CR(8)) are
extended in MAP with the new likelihood function £(0).
5(0) = D*£(0)
1(8) = —E(5(8))
CR(®) =1(0)1
2 2
1(6,) = —N*E( €(®)> foa i )f(X 0l§)dxde
202 J ) o6

A~ A~ \—1
CR(6:) = 1(6y)
Where N is size of sample X' = {X1, Xz,..., Xn} in which all Xi (s) are iid. If there is only one
observation X then, N = 1.

Mean and variance of the estimate ® which are used to measure estimation quality are not
changed except that the joint PDF f(X, ® | &) is used instead.

£(6) = [ | 8ex.@)r(x, 0l)dxde (L32)
X 0

0 =ff(@(X,@)—E(X)) (@(X,@)—E(X))Tf(X,G)If)dXd@ (1.33)

The notation ©(X, ©) implies the formulation to calculate ®, which is considered as function
of X and © in the integral [, [, ©(X, 0)f (X, 0]§)dXd®. Recall the 8 is unbiased estimate if
E(®) = 0. Otherwise, if E(®) # 0 then, © is biased estimate. Moreover, the smaller the
variance V(®), the better the © is. Recall that there are two criteria to check if © is unbiased
estimate. Concretely, © is unbiased estimate if one of two following conditions is satisfied:
E(®)=0
V(©) = CR(0)
The criterion V(8) = CR(®) is expended for MAP.

It is necessary to have an example for parameter estimation with MAP. Given sample X =
{X1, Xo,..., Xn} in which all X; (s) are iid. Each n-dimension X; has following multinormal PDF:

n 1 1
FOXi10) = (2m)E[3 [ Zexp (- 5 O — wTE7 (X — )

Where u and X are mean vector and covariance matrix of f(X | ®), respectively with note that
® = (4, X)". The notation |.| denotes determinant of given matrix and the notation = denotes
inverse of matrix X. Note, X is invertible and symmetric.

In® = (i, )", suppose only x distributes normally with parameter & = (uo, o) Where o and
Y are theoretical mean and covariance matrix of x. Thus, X is variable but not random variable.
The second-level parameter ¢ is constant. The prior PDF f(®|&) becomes f(|¢), which specified
as follows:

n 1 1
F(OIE) = f(ulito, Zo) = (2m) 2|2o| Zexp (=5 (u = 1) 55 (= o) )
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Note, uo is n-element vector like x and Xo is nyn matrix like X. Of course, X is also invertible
and symmetric. Suppose u = (u, p2,..., un)", pto = (uo1, foz,. .., pon) ", and

611 612 6111
T I
On1 Onz =+ Onpn

It is deduced that uoj is theoretical mean of u; whereas dij (i#]) is covariance of i and g;.
Especially, dii is variance of .
Theoretical mean of X is:

E(X) = ffo(X,@lf)dXd@zffo(Xl@)f(@lE)dXd@
X 0 X 0

- | ( | Xf(XIG)dX>f(®IE)d® = [ wrc@ie)de = [ ufGulio o)

0 X ) I

=E(u) = uo
Theoretical variance of X is:

V(X) = f f(x —E(X))(X - EX) f(X,0|8)dXde

X 0

_ f f(x —EX))(X — E(X))' f(X|0)f(0]8)dXde
X 0

= f(f(x—E(X))(X—E(X))Tf(XI@)dX>f(@I€)d®
0 X

= [ zrele)de = [ 2 uluo 2)du = 2
0 u
The log-likelihood function in MAP is

£(0) = log(f(ul§)) + 1(®) = log(f (WI)) + ) log(F (X;10))
= ~log(2m) — ~log|z L e
) og( “)—E og| o|_§(.u_.uo) o (U= to)

N
1 1
+ Zl (—glogm) — Sloglz] == (X = p)TE (X - u))

Because normal PDF is smooth enough, from equation 1.24, the estimate © = (ﬁ,f)T is

solution of the equation created by setting the first-order of £(®) regarding « and X to be zero.
Due to (Nguyen, 2015, p. 35):

d
oM (X=-wWE' X —w)=-2X -’z
And (Nguyen, 2015, p. 35)
d
o (U= uo)"Zg (= 10)) = (W — )" (Zg* + Eo D) = (= )" ot + 25 )

=2(n— o) 25"
The first-order partial derivative of £(®) with respect to u is:
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N
d¢(0) _ _
W =—(u- ﬂo)Tzol + Z(Xi - #)TZ 1
i=1

1

N
= —u"sgt +ulzot + < Xl-T)z—l —NuTz?t
=1
N
=—u"(Eot + NZTH) + pZgt + (2 X{) D
i=1

Setting this partial derivative to be zero, we obtain:

N
—uTCEt+ N2 + ul 25t + (Z X{)):—l =0
i=1
N
= o+ N DT =35, + Z—lzxi
i=1

N
= o + N2 DHu =351, + Z_lin
i=1
N
= (5551 + NDp = 555 g + in

=1
Where | is identity matrix. Let,

N
_ 1
i=1
We obtain the following equation to estimate x and X:

p=CZ  + ND T EE o + NX)
The first-order partial derivative of I(®) with respect to X is:

N
04(0) 1., 1, —
T—Z(—EZ t52 Xi—w X —w'E )
1=
Due to:
dlog(IZh) _ .,
0%
And
0X; — e (X — ) or((X; — ) (X; — )"E )
o B oz

Because Bilmes (Bilmes, 1998, p. 5) mentioned:
X =T — W = (X — WX —wTE?)
Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(4) =
Y. a;;. This implies (Nguyen, 2015, p. 45):
oX; — Tz 1(X; — atr( (X; — X; —w)Txt

&Xi—w b X — ) _ ot (X, u)a(zl W) 50— (X, — )TE!
Where X is symmetric and invertible matrix. The estimate ¥ is the solution of equation formed
by setting the first-order partial derivative of I(®) regarding X to zero matrix. Let (0) denote
zero matrix.
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0 0 0
0=[0 0 0
0 0 0
We have:
a4 (0
( )_(0)
@2(——2 +2 zl(x WO - 075 = (0

= > 2+ (K~ 0~ 07 = (0)

i

N
1
= NZ(XL' WX — )" = Nz(XiXiT — X;uT — pXT + pu®)
i=1 i=1

1
= > O6XT = uxT = ] + ")

1< \ 2 < 1<
=== ) XX |——p ) X[ +uu" == > X X[ |- 2uX +pu”

N' 1 N i=1 N 1

1= 1= 1=

MAP results out a system of two equations whose solution is the estimate ® = (i, i)Tas
follows:
u=CZyr+ N (EZy ug + NX)

N
1 _
= (NZ XiXiT> — 2uX + up”
i=1
N
_ 1
K=§ 2%

=1
Because X is independent from the prior PDF f(u | 1o, Zo), it is estimated by MLE as usual,

N

« (1 o

2= (Nz Xg({) — XXT
i=1

The estimate £ in MAP here is as same as the one in MLE and so, it is biased. Substituting £
for X, we obtain the estimate g in MAP:

A= (8251 + NI) (855 o + NX)

Where | is identity matrix and

Note,
N

N
_ 1 1
E(X)=E (NZ Xi> = —Z E(X) = EX) = o

i=1
N

V(X)szz ) ZV(X)——V(X)——

=1
Now we check if 1 is unbiased estimate. In fact we have:

E() = ((220 +NI) (825 o + NX)) = (855t + NI) (5550 + NE(R))
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N
= (825t +NI) <2251u0 + Z E(Xl-)>

i=1
= (855" + NI) 7 (S5 + NE(X)) = (S35 + NI) ™ (£55 o + Nito)

(Due to E(X) = o)
= (8251 + NI (8551 + NI o = po
Therefore, the estimate /i is biased because the variable x is not always to equal po.
Now we try to check again if g is unbiased estimate with Cramer-Rao lower bound. The

second-order partial derivative of £(0®) regarding x is:

621?(9) _ 0 <a€(®)> _ d ( ,LLT(Z_l + Nz—l) + 'uTZ_l + (i XT>Z_1>
=5 \—=— =5~ 0 040 i
ou ou\ du ou i=1

= -yt + NI )T = —(Zgt + N2
(Because X and Xo are symmetric)
Cramer-Rao lower bound of i is:

-1

1 022(0
CRGD) =~ j j © ¢ x, 016)axde
X 0

ou?

-1

:% ff(zgl-l—NZ‘l)f(X,@lE)dXd@
[C]

X
-1 -1

1 1
— 5| [t vz reinde | =gl [ @t Nl ode
e I

1
=5 @' N

Variance of fi is:
V() =V((EZgt + ND™(EZ5 o + NX))
=V(EZP+ ND71Z2 u + NEZo + NDTIX) = V(N(EZ ! + NI)LX)
= N2V((ZZt + ND)™1X)
Because it is difficult to calculate V(4), suppose we fix T so that £ = %, = X, we have:
V(1) = N2V (22! + ND™X) = N2V((EZ~t + NI)7'X) = N2V((I + NI)71X)
v ()= - Yy
N+1 (N + 1)?
(Dueto V(X) = %Z)
The Cramer-Rao lower bound of ji is re-written as follows:
1 1 1 -

CR(D) = 3 (E5 +NZT) =S (7T NET) ™ = S (21 + W) t= TR
Obviously, i is biased estimate due to V() # CR(j1). In general, the estimate ® in MAP is
affected by the prior PDF f(®|¢). Even though it is biased, it can be better than the one resulted
from MLE because of valuable information in f(®|&). For instance, if fixing X, the variance of

[ from MAP ( (Ni’1)2 Z) is “smaller” (lower bounded) than the one from MLE (%Z) n

Now we skim through an introduction of EM algorithm. Suppose there are two spaces X
and Y, in which X is hidden space whereas Y is observed space. We do not know X but there
is a mapping from X to Y so that we can survey X by observing Y. The mapping is many-one
function ¢: X — Y and we denote ¢ 1(Y) = {X € X: o(X) = Y} as all X € X such that p(X) =Y.
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We also denote X(Y) = ¢ 2(Y). Let f(X | ®) be the PDF of random variable X € X and let g(Y |
®) be the PDF of random variable Y € Y. Note, Y is also called observation. Equation 1.34
specifies g(Y | ®) as integral of f(X | ®) over ¢ (Y).

g1 = | fuxie)x (.30
oY)
Where O is probabilistic parameter represented as a column vector, @ = (61, 62,..., 6;)" in which
each 6 is a particular parameter. If X and Y are discrete, equation 1.34 is re-written as follows:

gwie) = ) f(x10)
Xep~1(Y)
According to viewpoint of Bayesian statistics, ® is also random variable. As a convention, let
Q be the domain of ® such that ® € Q and the dimension of Q is r. For example, normal
distribution has two particular parameters such as mean x and variance o> and so we have © =
(u, 6®)T. Note that, ® can degrades into a scalar as ® = 6. The conditional PDF of X given Y,
denoted k(X | Y, ®), is specified by equation 1.35.
f(X10)
k(X|Y,0) 7(719) (1.35)
According to DLR (Dempster, Laird, & Rubin, 1977, p. 1), X is called complete data and the
term “incomplete data” implies existence of X and Y where X is not observed directly and X is
only known by the many-one mapping ¢: X — Y. In general, we only know Y, f(X | ®), and
k(X'|Y, ®) and so our purpose is to estimate ® based on such Y, f(X | ®), and k(X | Y, ®). Like
MLE approach, EM algorithm also maximizes the likelihood function to estimate ® but the
likelihood function in EM concerns Y and there are also some different aspects in EM which
will be described later. Pioneers in EM algorithm firstly assumed that f(X | ®) belongs to
exponential family with note that many popular distributions such as normal, multinomial, and
Poisson belong to exponential family (please see table 1.1). Although DLR (Dempster, Laird,
& Rubin, 1977) proposed a generality of EM algorithm in which f(X | ®) distributes arbitrarily,
we should concern exponential family a little bit. Exponential family (Wikipedia, Exponential
family, 2016) refers to a set of probabilistic distributions whose PDF (s) have the same
exponential form according to equation 1.36 (Dempster, Laird, & Rubin, 1977, p. 3):
f(X10) = b(X) exp(0T7(X))/a(®) (1.36)
Where b(X) is a function of X, which is called base measure and z(X) is a vector function of X,
which is sufficient statistic. For example, the sufficient statistic of normal distribution is z(X)
= (X, XX")T. Equation 1.36 expresses the canonical form of exponential family. Recall that Q
is the domain of ® such that ® € Q. Suppose that Q is a convex set. If @ is restricted only to Q
then, f(X | ®) specifies a regular exponential family. If ® lies in a curved sub-manifold Qo of
Qthen, f(X | ®) specifies a curved exponential family. The a(®) is partition function for variable
X, which is used for normalization.

a(®) = fb(X)exp(@TT(X))dX

X
As usual, a PDF is known as a popular form but its exponential family form (canonical form
of exponential family) specified by equation 1.36 looks unlike popular form although they are
the same. Therefore, parameter in popular form is different from parameter in exponential
family form.
For example, multinormal distribution with theoretical mean x and covariance matrix X of
random variable X = (X1, Xz,..., Xn)" has PDF in popular form is:

n 1 1
FXI,5) = @r) 215172+ exp (=5 (X — 75X — )
Hence, parameter in popular form is ® = (u, £)". Exponential family form of such PDF is:
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-2 X 1 rp-1 1
f(X16,,0,) = (2m) 2 xexp| (64, 6,) (XXT) /exp (_191 6,6, —510g|—292|)

Where,
_ (61
0= (92)
6; =2 'u
1
92 = __2_1
2 n
b(X) = (2n)" 2
X
(X) = (XXT)

1 1
a(©) = exp (~ 5 676576, — 5 logl—26,1)

Hence, parameter in exponential family form is @ = (61, 62)". Although, f(X | 61, 62) looks unlike
f(X | u, £) but they are the same, f(X | 61, 62) = f(X | i, X). In fact, we have:

0Tz(X) = (6,, 92)( X ) = (z—lu,—lz—l)( X ) = uTL1X — %XTz—lx

xXxT 2 Yo &
We also have:
1 Tpo-1 1 1 Ty—1yy—1 1 -1
a(®) = exp (—291 0,6, —Elog|—292|> = exp (Eu DR WH ,u—ilogIZ I)
1 Ty—1 1 l 1 Ty—1
= exp (511 ) u+§10gIEI) = |Z|2 * exp (E” z u)
(Due to [Z7Y =2/
Therefore,
_n 1 1 1
F(X161,6,) = (2 2|2/ 2 x exp (W72 X — S XTE TN = S T3

n 1 1
= (2m)72|Z|"Z * exp (— > XTE X —uTe X — uTE X + ;ﬂzﬂo)

2
(Because X is symmetric, 11X = X" 1)

= (Zn)_%|2|_% * exp (—%((XT —unE71x — (xT - MT)Z_1M)>

n 1 1
= (2m) 7 2|Z|"Z * exp ( XTe X =y X —XT2 Yty + T2 1)

n 1 1
= (2m) 2|22 x exp <_E ((XT —un)E (X - u)))

n 1 1
= (2m)7Z|Z|7Z x exp <_E X -z (X - u)) = f(X|p,Z)m

The exponential family form is used to represents all distributions belonging to exponential
family as canonical form. Parameter in exponential family form is called exponential family
parameter. As a convention, parameter ® mentioned in EM algorithm is often exponential
family parameter if PDF belongs to exponential family and there is no additional information.

Table 1.1 shows some popular distributions belonging to exponential family along with
their canonical forms (Wikipedia, Exponential family, 2016). In case of multivariate
distributions, dimension of random variable X = (x1, X2,..., Xn)" is n.

Distribution Popular Exponential 7(X) b(X) a(®)
PDF family
parameter
()
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X\ 2 —y1 X n 1.
= f(|2|M2|31 < 6, - ) (XXT) (2m)"2 exp(_Zglrgzlgl
= = |21 2 _ 1
=1 6, =—=X 1
3 * e_%(X_M)TZ_l(X_ﬂ) g 2 - Elog|—202|)

S
z f(X|P1 pz 6, = log(p,) Xq K! 1
: l_[p"’ 62 =108(p2) ) | | 7 ) | Ti-a(t)
o n 1 H *
5 T 1(x’ ) 6, =log(p)/ |\
Where, Y7, p; = 1,
Yiax;=K,and x; €
{0,1,..,K}.

Table 1.1. Some popular distributions belonging to exponential family
It is necessary to survey some features of exponential family. The first-order derivative of
log(a(®)) is expectation of transposed z(X).

, _a'(®) _dlog(a(®)) da(®)/de 1 d(J, b(Xexp(07z(X))dX)
log'(a(®)) = a®  do  a®)  a® . a0
d(b T
1 f (bx)exp(e r(X)))dX
a(0) doe

X
- f (2(0) b () exp(872(X))/a(®) dX = (E(x(X)|8))"

The second-order der)i(vative of log(a(®)) is (Jebara, 2015):
log”(a(®)) = % (a,(®)> _a"(®) a'(e)(a'(e))

a(® ) a(®) a(®) a(e)
B all(@)
— a(e)
Where,
a'(e) _ 1 jdz (b(X)exr)(@TT(X)))dX
a(®) a(©) de

_ f (2(0) (2(0) bX) exp(872(X)) /a(®) dX = E(

Hence (Hardle &)éimar, 2013, pp. 125-126),
log”(a(®)) = £ (z0)(x(0) |o) - (EEI0)(EEI0)" = VE(0l6)

= f (z(X) — E@(X)10))(z(X) — E(x(X)|©)) f(X|®)dX

X
Where V(z(X) | ®) is central covariance matrix of 7(X). Please read the book “Matrix Analysis
and Calculus” by Nguyen (Nguyen, 2015) for comprehending derivative of vector and matrix.
Let a(® | Y) be a so-called observed partition function for observation Y.

a(e|Y) = f b(X)exp(0Tt(X))dX

p~1(Y)
Similarly, we obtain that the first-order derivative of log(a(@ | Y)) is expectation of transposed
7(X) based on Y.
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1 d([ -1y, b(Oexp(677(X))dX) = (E@(0)|Y,0))"

log'(a(®|Y)) =

a(0) do
If f(X | ®) follows exponential family, the conditional density k(X | Y, ®) is determined as
follows:
f(X10)
k(X|Y,0) =
(v, g(Y|e)

Indeed, k(X | Y, ®) is conditional PDF. If f(X | ®) follows exponential family then, k(X | Y, ©®)
also follows exponential family. In fact, we have:

fxie) b(X) exp(077(X))/a(©) B b(X)exp(0T7(X))

guiey [ ., b exp(@7t(X))/a(®)dX [ i, b(X)exp(0TT(X))dX
= b(X) exp(077(X))/a(B]Y)

Note that k(X | Y, ®) is determined on X € ¢~1(Y). Of course, we have:

k(X|Y,0) =

B b(X)exp(0TT(X)) f¢—1(y) b(X)exp(0T7(X))dX
| kerroax= [ =G0 - a(e1)
o-1(v) o-1(v)
B a(0|Y) 3
“a(ely)

The first-order derivative of log(a(® | Y)) is:
log'(a(0]V)) = (EC(X)|Y,0))" = f (z(0))" k(X|Y,0)dX

p~HY)
The second-order derivative of log(a(®) | Y) is:

log” (a(@]Y)) = V(z(X)|Y,©)
= f (z(X) — E(z(X)1Y,0))(z(X) — Ez(X)]Y, G)))Tk(XIY, 0)dx

1Y)
Where V(z(X) | Y, ©®) is central covariance matrix of z(X) given observed Y. Table 1.2 is
summary of f(X | ®), g(Y | ©), k(X | Y, ®), a(®), log’(a(®)), log”’(a(®)), a(®@ | Y), log*(a(® | Y)),
and log”’(a(® | Y)) with exponential family.

f(X10) = b(X) exp(0"7(X))/a(0)
g(Y|®) = f b(X) exp(077(X))/a(©) dX

1)
k(X|Y,0) Z b(X) exp(077(X))/a(0]Y)

k(X|Y,0)dX = 1
oY)
a(®) = fb(X)exp(@TT(X))dX
X

log'(a(®)) = (Ex(X)|0))" = f Fx10)(z(x))" dx

X
log”(a(®)) = V(r(X)]0) = f (z(X) — E(x(X)]0))(z(X) — E(x(X)|®)) f(X|®)dX

X
a(0|Y) = j b(X)exp(0T7(X))dX
e 1Y)
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log'(a(0IV)) = (EG ()Y, 0))" = f kXY, 0)(r(x))" dx
1Y)

log”(a(@|Y)) = V(z(X)|Y,0)

- f (x(X) — EGCOIY, ©))(z(X) — E@(X)]Y, 8)) k(X|Y, 8)dx
(V)
Table 1.2. Summary of f(X | ®), g(Y | ®), k(X | Y, ®), a(®), log’(a(®)), a(® | Y), and log’(a(®
| Y)) with exponential family

Simply, EM algorithm is iterative process including many iterations, in which each iteration
has expectation step (E-step) and maximization step (M-step). E-step aims to estimate
sufficient statistic given current parameter and observed data Y whereas M-step aims to re-
estimate the parameter based on such sufficient statistic by maximizing likelihood function of
Xrelated to Y. EM algorithm is described in the next section in detail. As an introduction, DLR
gave an example for illustrating EM algorithm (Dempster, Laird, & Rubin, 1977, pp. 2-3).

Example 1.1. Rao (Rao, 1955) presents observed data Y of 197 animals following
multinomial distribution with four categories, such as Y = (y1, Y2, y3, Y4) = (125, 18, 20, 34).
The PDF of Y is:

V1 Y2 V3 Va4
0= G ()" (-9 -9 ()
i 1yl| 2 4 4 4 4 4 4

Note, probabllltles Py1, Py2, Py3, and pya in g(Y | O) are 1/2 + 6/4, 1/4 — 014, 1/4 — 6/4, and 6/4,
respectively as parameters. The expectation of any sufficient statistic y; with regard to g(Y | 6)
is:

E(yilY,0) = yipy,
Observed data Y is associated with hidden data X following multinomial distribution with five
categories, such as X = {X1, X2, X3, X4, X5} Where y1 = X1 + X2, Y2 = X3, Y3 = X4, Y4 = Xs. The PDF
of X is:

X1 X2 X3 X4
pon =269+ 6-9 -0
[, () \2 4 4 4 4 4 4
Note, probabilities pxi, Pxe, Px3, Px4, and pys in f(X | &) are 1/2, 6/4, 1/4 — 614, 1/4 — 614, and 6/4,

respectively as parameters. The expectation of any sufficient statistic x; with regard to f(X | 6)
is:

X5

E(x;10) = x;py,
Due to y1 = X1 + X2, Y2 = X3, Y3 = X4, Y4 = Xs, the mapping function ¢ between X and Y is y1 =
@(X1, X2) = X1 + Xo. Therefore g(Y | 0) is sum of f(X | ) over x1 and x> such that x; + x2 = y1
according to equation 1.34. In other words, g(Y | 6) is resulted from summing f(X | ) over all
(X1, X2) pairs such as (0, 125), (1, 124),..., (125, 0) and then substituting (18, 20, 34) for (X3, Xa,
xs) because of y1 = 125 from observed Y.
125

g(r1e) = Z ZO: f(X16)

x1=0 \x,=125—-x4
Rao (Rao, 1955) applied EM algorithm into determining the optimal estimate 6". Note y2 = Xs,
Y3 = X4, Y4 = Xs are known and so only sufficient statistics x; and xz are not known. Given the t™"
iteration, sufficient statistics x; and x, are estimated as x1® and x.® based on current parameter
69 and g(Y | 6) in E-step below:
x” + x5 =y = E(n|Y,6©)
Given py1 = 1/2 + 6/4, which |mpI|es that:
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© _ © 1 oW
y,” =E(n|Y,09) = yip,, =3 St T

When y1 = 125, we have:

1 6@
(t) + xgt) = 125( +T>

This suggests us to select:
1/2
(t) )
=FE Y,0 =125 ———m—«+—
(alv.0%) = 1254 55w 74
6 /4

1/2+6® /4
According to M-step, the next estimate 8% is a maximizer of the log-likelihood function of X
related to Y. This log-likelihood function is:

log(f(X16)) = log <(Zl 1%0)!
= ()

+ (x5 + x4)log(1 — 6)
The first-order derivative of log(f(X | 9) is:
dlog(f(X16))  x, + x5 X3t X+ X5 — (Xp + X3+ x4 +%5)0
de 9 1-6 6(1—6)
Because Y2 = x3 = 18, y3 = X4 = 20, ya = X5 = 34 and X is approximated by x.®, we have:
dlog(f(X16)) 2 +34 - (x? +72)0
90 B (1 —
As a maximizer of log(f(X | 6), the next estimate 1 is solution of the following equation

log(F (X10)) _ 2D 434 — ( “)+72)9

2P = E(x,|Y,00) = 125

) (xq + 2x5 + 2x3 + 2x4 + 2x5)10g(2) + (x, + x5)log(6)

=0
90 6(1—0)
So we have:
(t)
gesn _ X2 T34
xét) + 72
Where,
0® /4
2P =125 /

1/2+60® /4
For example, given the initial 8% = 0.5, at the first iteration, we have:

6W/4  125%05/4
1/2+6MW/4  05+05/4

o — xV+34 25+34 06082
§1)+72 T 25+72
After five iterations we gets the optimal estimate 6"
6" =0W =06® =0.6268
Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) lists estimates of & over five iterations (t =1,
2, 3, 4, 5) with note that 8% is initialized arbitrarily and 8" = 6® = #® is determined at the 5™
iteration. The third column gives deviation 6" and & whereas the fourth column gives the ratio
of successive deviations. Later on, we will know that such ratio implies convergence rate.
* _ g(t+l)

t 0 6 -6 L)
1/609=05 0.1268 | 0.1465

MO
xM =125
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0@ =0.6082 | 0.0186 | 0.1346
0@ =0.6082 | 0.0186 | 0.1346
0® = 0.6243 | 0.0025 | 0.1330
0® = 0.6243 | 0.0025 | 0.1330
0™ =0.6265 | 0.0003 | 0.1328
0% =0.6265 | 0.0003 | 0.1328

4 0% =0.6268 | 0 0.1328
5 0% =0.6268 | 0 0.1328
0® =0.6268 | 0 0.1328

Table 1.3. EM algorithm in simple case
For example, at the first iteration, we have:
6* — W = 0.6268 — 0.5 = 0.1268
6*—0® 9@ —p* 06082 —0.6268

= = = 0.1465
g -0 g _ g+ 0.5 — 0.6268

2. EM algorithm
Expectation maximization (EM) algorithm has many iterations and each iteration has two steps
in which expectation step (E-step) calculates sufficient statistic of hidden data based on
observed data and current parameter whereas maximization step (M-step) re-estimates
parameter. When DLR proposed EM algorithm (Dempster, Laird, & Rubin, 1977), they firstly
concerned that the PDF f(X | ®) of hidden space belongs to exponential family. E-step and M-
step at the t™ iteration are described in table 2.1 (Dempster, Laird, & Rubin, 1977, p. 4), in
which the current estimate is ®, with note that f(X | ®) belongs to regular exponential family.
E-step:

We calculate current value 7 of the sufficient statistic z(X) from observed Y and current

parameter ®© according to equation 2.6:

@ = E(z(X)|y,0W®)

M-step:
Basing on 70, we determine the next parameter ®t*9 as solution of equation 2.3:
E@(X)|e) =1®
Note, ©*D will become current parameter at the next iteration ((t+1)" iteration).
Table 2.1. E-step and M-step of EM algorithm given regular exponential PDF f(X|®)
EM algorithm stops if two successive estimates are equal, ®" = @0 = @D, at some t™ iteration.
At that time we conclude that ®" is the optimal estimate of EM process. Please see table 1.2 to
know how to calculate E(z(X) | ®©) and E(z(X) | Y, ®©). As a convention, the estimate of
parameter ©® resulted from EM process is denoted ®” instead of ® in order to emphasize that
®" is solution of optimization problem.
It is necessary to explain E-step and M-step as well as convergence of EM algorithm.
Essentially, the two steps aim to maximize log-likelihood function of ®, denoted L(®), with
respect to observation Y.

0* = argmax L(0)
)

Where,
L(©) =1og(g(Y1))
Note that log(.) denotes logarithm function. Therefore, EM algorithm is an extension of
maximum likelihood estimation (MLE) method. In fact, let I(®) be log-likelihood function of
® with respect to X.
1(0) = log(f(X10)) = log(b(X)) + 0T7(X) —log(a(®)) (2.1)
By referring to table 1.2, the first-order derivative of [(®) is:
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di(e) _ dlog(£(¥1)) _

®  de (r(0)" ~log'(a(®)) = (x(0))' - (E@0le)) (22

We set the first-order derivative of 1(®) to be zero with expectation that 1(®) will be maximized.
Therefore, the optimal estimate ® is solution of the following equation which is specified in
M-step.

E(x(X)|0) = 7(X)
The expression E(z(X) | ®) is function of ® but z(X) is still dependent on X. Let z) be value of
7(X) at the t™" iteration of EM process, candidate for the best estimate of © is solution of equation
2.3 according to M-step.
E((X)]|0) = t® (2.3)
Where,

BEO0I0) = [ FexI)e(x)ax
X
Thus, we will calculate z® by maximizing the log-likelihood function L(®) given Y. Recall that
maximizing L(®) is the ultimate purpose of EM algorithm.
0" = argmax L(0)
(€]

Where,
L(©) = log(g(Y10)) = log f f(x|@)dx (2.4)
=Y
Due to:
_ fX10)
KXY 0= 1e)
It implies:

L(©) =log(g(Y10)) = log(f(X|0)) — log(k(X|Y,©))
Because f(X | ®) belongs to exponential family, we have:
f(X18) = b(X) exp(©"7(X))/a(6)
k(X|Y,0) = b(X) exp(077(X))/a(0|Y)
The log-likelihood function L(®) is reduced as follows:
L(0) = —log(a(®)) + log(a(0]V))
By referring to table 1.2, the first-order derivative of L(®) is:
dL(©) , , T T
0 - —log'(a(®)) +log'(a(®]Y)) = —(E(x(X)10)) + (Ex(X)|Y,0)) (2.5)
We set the first-order derivative of L(®) to be zero with expectation that L(®) will be
maximized, as follows:
T T
—(E@X)10) + (E@X)|Y,8)) =0
It implies:
E(x(X)|0) = E(z(X)]Y, 0)
Let ®Y be the current estimate at some t™ iteration of EM process. Derived from the equality
above, the value 7 is calculated as seen in equation 2.6.
® = E(z(X)|Y,0®) (2.6)
Where,

E(z(X)|y,0®) = f k(X|Y,00)r(X)dx

1Y)
Equation 2.6 specifies the E-step of EM process. After t iterations we will obtain ®" = @t =
®Y such that E(z(X) | Y, @) = E(z(X) | Y, ©") = 0 = E(z(X) | ®") = E(z(X) | ®*Y) when @)
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is solution of equation 2.3 (Dempster, Laird, & Rubin, 1977, p. 5). This means that ®” is the
optimal estimate of EM process because @ is solution of the equation:
X E(z(X)|0) = E(z(X)|Y,©)
Thus, we conclude that ®" is the optimal estimate of EM process.
0" = argmax L(0)
]

The EM algorithm shown in table 2.1 is totally exact with assumption that f(X|®) belongs to
regular exponential family. If f(X|®) is not regular, the maximal point (maximizer) of the log-
likelihood function 1(®) is not always the stationary point ®" so that the first-order derivative
of I(®) is zero, I’(®”) = 0. However, if f(X|®) belongs to curved exponential family, the M-step
of the EM algorithm shown in table 2.1 is modified as follows (Dempster, Laird, & Rubin,
1977, p. 5):
0D = argmax [(0) = argmax [(0|t®) = argmax (@Tr(t) - log(a(@)))) (2.7)
0eQ, e, e,

Where 79 is calculated by equation 2.6 in E-step. This means that, in more general manner, the
maximizer ®*3 will be found by some way. Recall that if @ lies in a curved sub-manifold Qo
of Q where Q is the domain of @ then, f(X | ®) belongs to curved exponential family.

In general, given exponential family, within simple EM algorithm, E-step aims to calculate
the current sufficient statistic < that the log-likelihood function L(®®Y) gets maximal with such
7O at current ®© given Y whereas M-step aims to maximize the log-likelihood function I(®)
given 79, as seem in table 2.2. Note, in table 2.2, f(X|®) belongs to curved exponential family
but it is not necessary to be regular.

E-step:

Given observed Y and current ®©, current value 0 of the sufficient statistic z(X) is the

value that the log-likelihood function L(®®Y) gets maximal with such 7. Concretely,

suppose ®" be a maximizer of L(®) given Y where L(®) is specified by equation 2.4.

0" = argmax L(0) = argmax L(0|Y)

Suppose " is formulated as fun(?tion of 7(X), for ?nstance, @ = h(z(X)) with note that ®"
is not evaluated because z(X) is not evaluated. Thus, the equation ®" = h(z(X)) is only
symbolic formula. Let 0 be a value of z(X) such that ®® = h(z(X)). This means t® €
{(X):0® = h(z(X))} with note that ®" is replaced by @Y. If h(z(X)) is invertible, < =
h-i(@Y).

If the PDF f(X|®) belongs to regular exponential family, z¢ is calculated more easily
according to equation 2.6, given Y and ©©,

® = E(z(X)|Y,00)
Where,
E(z(x)|r,0®) = f k(X|Y,0®)r(X)dx
e~1(Y)
M-step:
Basing on 7, we determine the next parameter @Y by maximizing the log-likelihood
function 1(®) given 70, where 1(®) is specified by equation 2.1. Actually, the sufficient
statistic ¥ calculated in E-step is substituted for unobserved z(X) in 1(®) so that it is
possible to maximize I(®) with subject to ©.
0+ = argmax (0] ™)
If the PDF f(X|®) belongs to regular expor?ential family, @ s solution of equation 2.3
given 7O,
E(@(X)]|0) =t®

Where,
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E((X)|0) = f FxIO)T(X)dX

X
If the PDF f(X|®) belongs to curved exponential family, @Y is determined by equation
2.7 given 70,

O+ = argmax (@Tr(t) - log(a(@)))
0eq,

Table 2.2. E-step and M-step of EM algorithm given exponential PDF f(X|®)
EM algorithm stops if two successive estimates are equal, ®" = @0 = @D, at some t" iteration.
At that time, ® is the optimal estimate of EM process, which is an optimizer of L(®).
0" = argmax L(0)
(€]

Going back example 1.1, given the t™ iteration, sufficient statistics x; and x, are estimated as
x1® and x.© based on current parameter 9 in E-step according to equation 2.6.
A 410 = 30 = E(y,]1,60)
Given py1 = 1/2 + 6/4, which implies that:
1 60
xit) + xgt) = E(y1|Y, H(t)) = Y1Py, = V1 <§ + T)
Because the probability of y1 is 1/2 + 6/4 and y1 is sum of x1 and x, let p,|,, be conditional
probability of x; given y: and let p,.,|,,, be conditional probability of x. given yi such that
_ P(x1, 1) _ P(xy,¥1)
Paln = T T 1/2+6/4
_ P(x3,y1) _ P(x3,¥1)
Paln = T T 12+ 6/4

px1|3’1 + px2|y1 =1
Where P(x1, y1) and P(x2, y1) are joint probabilities of (x1, y1) and (x2, y1), respectively. We can
select P(xq, y1) = 1/2 and P(x2, y1) = 6/4, which implies:

1/2

1/2+6® /4
6 /4

1/2+ 60 /4

10 = B(al?,69) = 5%, = 5

2 = E(x]Y,09) = yOpy, 1y, = 10

Such that

t t t
MOINCINC

Note, we can select alternately as P(x1, y1) = P(x2, y1) = (1/2 + 6/4) | 2, for example but fixing
P(x1, y1) as 1/2 is better because the next estimate 6% known later depends only on x2®.
When y is evaluated as y; = 125, we obtain:

1/2
®
x;” =125 ———————
1 1/2 + 60 /4
6® /4
xP =125 /

1/2+ 610 /4
The expectation y1® = E(y1 | Y, 89) gets value 125 when y; is evaluated as y; = 125 and the
probability corresponding to y: gets maximal as 1/2 + 69/4 = 1.

Essentially, equation 2.3 specifying M-step is result of maximizing the log-likelihood
function I(®). This log-likelihood function is:
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1(0) = log(f (x16))
(Zl 1 l)
=lo
g( e
+ (x3 + x5)log(08) + (x5 + x4)log(1 — 0)
The first-order derivative of log(f(X | 9) is:
dlog(f(X10)) _ Yot Xs X3t Xy Xt Xs— (xy + x3+ x4 +x5)0
deo 0 1-6 6(1—6)
Because Y2 = x3 = 18, y3 = x4 = 20, Y4 = Xs = 34 and X is approximated by x.®, we have:
alog(f(XIH)) B xgt) + 34 — ( © 4 72)9
a6 B 6(1-6)
As a maximizer of log(f(X | 6), the next estimate 8V is solution of the following equation

dlog(f (X16)) _ ) + 34— (P +72)8

) (xq + 2x5 + 2x3 + 2x, + 2x5)log(2)

=0
a0 6(1—-0)
So we have:
®)
glerny _ X2 T34
xD + 72
Where,
6 /4
O =125 0/t
1/2+6® /4
For example, given the initial 8 = 0.5, at the first iteration, we have:
0 /4 125 * 0.5/4
x =125 A /%2

1/2+6M/4 0.5+0.5/4

oD x” +34  25+34 06082
(1)+72 T 25+72
After five iterations we gets the optlmal estimate 4"
6* = 0O =9® =0.6268

Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) show resulted estimation m

For further research, DLR gave a preeminent generality of EM algorithm (Dempster, Laird,
& Rubin, 1977, pp. 6-11) in which f(X | ®) specifies arbitrary distribution. In other words, there
is no requirement of exponential family. They define the conditional expectation Q(®’ | ®)
according to equation 2.8 (Dempster, Laird, & Rubin, 1977, p. 6).

Q(0'1e) = E(log(f(X10")|Y,0) = f k(X|Y,0®)log(f(X]0"))dX 2.8)
(V)
If X and Y are discrete, equation 2.8 can be re-written as follows:

Q(0'10) = E(log(f(X10")|Y,0) = Z k(X|Y,®)log(f(X10))
Xep~1(Y)
The two steps of generalized EM (GEM) algorithm aim to maximize Q(® | ®Y) at some t™"
iteration as seen in table 2.3 (Dempster, Laird, & Rubin, 1977, p. 6).
E-step:
The expectation Q(® | ®V) is determined based on current parameter ®Y, according to
equation 2.8. Actually, Q(® | ®Y) is formulated as function of ®.
M-step:
The next parameter @Y js a maximizer of Q(® | ®Y) with subject to ®. Note that @2
will become current parameter at the next iteration (the (t+1)™ iteration).
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Table 2.3. E-step and M-step of GEM algorithm
DLR proved that GEM algorithm converges at some t™ iteration. At that time, ®" = @ = @®
is the optimal estimate of EM process, which is an optimizer of L(®).
0" = argmax L(0)

(€]

It is deduced from E-step and M-step that Q(® | ®V) is increased after every iteration. How to
maximize Q(®|0Y) is the optimization problem which is dependent on applications. For
example, the estimate @Y can be solution of the equation created by setting the first-order
derivative of Q(®|0Y) regarding ® to be zero, DQ(O|OY) = 0. If solving such equation is too
complex or impossible, some popular methods to solve optimization problem are Newton-
Raphson (Burden & Faires, 2011, pp. 67-71), gradient descent (Ta, 2014), and Lagrange duality
(Wikipedia, Karush—-Kuhn-Tucker conditions, 2014). Note, solving the equation DQ(0|0Y) =
0" may be incorrect in some case, for instance, in theory, ®% such that DQ(®V|@®Y) = 0T
may be a saddle point (not a maximizer).

GEM algorithm still aims to maximize the log-likelihood function L(®) specified by
equation 2.4, which is explained here. Following is proof of equation 2.8. Suppose the current
parameter is @ after some iteration. Next we must find out the new estimate ®” that maximizes
the next log-likelihood function L(®’).

@" = argmax L(@") = argmaxlog(g(Y]0"))
o’ o’

The next log-likelihood function L(®’) is re-written as follows:

f(X16")

kXY, o) %

L(®'") =log f f(X]0")dX | = log f k(X|Y,©)

e~1(Y) e~
Due to

k(X|Y,0)dX = 1
p~HY)
By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function

log fu(x)v(x)dx qu(x)log(v(x))dx

X X

Wherefu(x)dx =1

into L(®’), we have (Sean, 2009, p. 6):
' ( f(X10") >
L(®") > f k(X|Y,®)log | ————< | dX

" k(X|Y,0)

e~y

= j k(X|Y,®)(1og(f(X|@'))—1og(k(X|Y,@)))dX
o 1Y)

= j k(X|Y,®)log(f(X]0"))dX — f k(X|Y,®log(k(X|Y,®))dX
1Y) 1Y)

= Q(0'|0) — H(0]6)

Where,

0(0'|0) = f k(XIY,®)log(f(X]0"))dX

1Y)
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H(O'|0) = f k(X|Y,®)log(k(X|Y,0"))dX
e~1(Y)
The lower-bound of L(®”) is defined as follows:
Ib(©’ |®) =Q(®” |©) - H(O | ©)

Of course, we have:

L(®)>1b(®’ | ®)
Suppose at some t™ iteration, when the current parameter is ®©, the lower-bound of L(®) is re-
written:

Ib©]0Y) = Q@] e - H@©e" |eY)

Of course, we have:

L(®) > Ib(® | ®W)
The lower bound Ib(® | ®Y) has following property (Sean, 2009, p. 7):

Ib(@®Y | e0) =QdY | W) - H(OY | eY) = L(OY)

Indeed, we have:
lb(@(t)lg(t)) — Q(@(t)|@(t)) _ H(@(t)lg(t))

= f k(X|Y, 0©)log (f(x]0®))dx - j k(X]Y,0©)log (k(X|v,0)) dx
1Y) (M)

Xx|e®
k(XlY, G)(t))log (%) dX

o~ 1(Y)

k(XlY, G(t))log (g(YlG)(t))) dX = log (g(yle(t))) f k(XlY, @(t))dX
o) =1
= log (g(Y|®(t))) =1(e®)

Recall that the main purpose of GEM algorithm is to maximize the log-likelihood L(®) =
log(g(Y|®)) with observed data Y. However, it is too difficult to maximize log(g(Y | ®)) because
g(Y | ®) is not well-defined when g(Y | ®) is integral of f(X | ®) given a general mapping
function. DLR solved this problem by an iterative process which is an instance of GEM
algorithm. The lower-bound (Sean, 2009, pp. 7-8) of L(®) is maximized over many iterations
of the iterative process so that L(®) is maximized finally. Such lower-bound is determined
indirectly by the condition expectation Q(® | ®®) so that maximizing Q(® | ®Y) is the same to
maximizing the lower bound. Suppose @Y is a maximizer of Q(® | ®V) at t™" iteration, which
is also a maximizer of the lower bound at t™ iteration.

0D = argmax [b(0]|0©®) = argmax Q(6|0®)
%) (]

Note, H@®® | ®Y) is constant with regard to ®. The lower bound is increased after every
iteration. As a result, the maximizer ®" of the final lower-bound after many iterations will be
expected as a maximizer of L(®) in final.
Therefore, the two steps of GEM is interpreted with regard to the lower bound Ib(® | ®V)
as seen in table 2.4.
E-step:
The lower bound Ib(® | ®Y) is re-calculated based on Q(® | V).
M-step:
The next parameter @Y is a maximizer of Q(® | ®) which is also a maximizer of Ib(®
| ©®Y) because H(O®Y | ®Y) is constant.
0¢*D) = argmax [h(0|0®)) = argmax Q(6|0®)
® C)

Note that @Y will become current parameter at the next iteration so that the lower
bound is increased in the next iteration.
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Table 2.4. An interpretation of GEM with lower bound
Because Q(® | ©V) is defined fixedly in E-step, most variants of EM algorithm focus on how
to maximize Q(®’ | ®) in M-step more effectively so that EM is faster or more accurate. Figure
2.1 (Borman, 2004, p. 7) shows relationship between the log-likelihood function L(®) and its
lower-bound 1b(® | ®W).

IH(OED|E)

L(O9)=Ib(©7]0%)

[b(®|®') . i
(@) ol i@iD

>
O

Figure 2.1. Relationship between the log-likelihood function and its lower-bound
Now ideology of GEM is explained in detail m
The next section focuses on convergence of GEM algorithm proved by DLR (Dempster,
Laird, & Rubin, 1977, pp. 7-10) but firstly we should discuss some features of Q(®’ | ®). In
special case of exponential family, Q(®’ | ®) is modified by equation 2.9.

Q(0'10) = E(log(b(X))|Y,0) + (0077 — log(a(®")) (2.9)
Where,
E(log(b(X))|v,0) = j k(X|Y,®log(b(X))dX
o~ 1(Y)
79 = E(t(X)|Y,0) = f k(X|Y,0)t(X)dX
1Y)

Following is a proof of equation 2.9.

Q(0'10) = E(log(f(x10")|r,0) = f k(X|Y,®)log(f(X10"))dX
o~ 1(Y)

= f k(X|Y,®)log(b(X) exp((0)77(X))/a(0"))dX

1Y)

_ j k(x1Y,0) (1og(b(X)) + (8)7(X) — log(a(e") ) dX

o 1Y)

= f k(X|Y,®log(b(X))dX + f k(X|Y,0)(©)Tr(X)dX

@1(Y) @1(Y)

— f k(X|Y,0) log(a(@’))dX
p~1(Y)
Y,0) + (0T f k(X|Y,0)t(X)dX —log(a(0"))

1Y)
Y, G)) + (ONTE((X)|Y,0) — log(a(@)’))

= E(log(b(X))

= E(log(b(X))
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Because k(X | Y, ®) belongs exponential family, the expectation E(z(X) | Y, ®) is function of ©,
denoted ze. It implies:
Q(0'10) = E(log(b(X))|Y,0) + (0)"1¢ — log(a(®’))m
If f(X|®) belongs to regular exponential family, Q(®’ | ®) gets maximal at the stationary point
@" so that the first-order derivative of Q(®’ | ®) is zero. By referring to table 1.2, the first-order
derivative of Q(®’ | ®) with regard to @’ is:
de(e’|e) , T
—qg = (@) —log'(a(®) = (re)" — (E(X)]9))
Let 79 be the value of ze at the t iteration.
t® =E(z(X)|r,00) = f k(X|Y,0®)r(X)dx
1Y)
The equation above is indeed equation 2.6. The next parameter @Y is determined at M-step
as solution of the following equation.
do(e’le) IG))
—o— = (@) - (EcmIe) =
This implies
E(z(X)|@) =@
The equation above is indeed equation 2.3. If f(X|®) belongs to curved exponential family, et
is determined as follows:

G)(t+1) — argmaXQ(@’le) — argmax ((@I)Tf(t) — log(a(el)))
Y o’

The equation above is indeed equation 2.7. Therefore, GEM shown in table 2.3 degrades into
EM shown in table 2.1 and table 2.2 if f(X|®) belongs to exponential family. Of course, this
recognition is trivial. Example 1.1 is also a good example for GEM when multinomial
distribution belongs to exponential family and then we apply equation 2.7 into maximizing
Q(©’]0).

In practice, if Y is observed as particular N observations Y1, Yo,..., Yn. Let Y = {Y1, Yo,...,
Yn} be the observed sample of size N with note that all Y; (s) are mutually independent and
identically distributed (iid). Given an observation Y;j, there is an associated random variable Xi.
All X (s) are iid and they are not existent in fact. Each X; € X is a random variable like X. Of
course, the domain of each Xj is X. Let X = {Xy, Xo,..., Xn} be the set of associated random
variables. Because all X; (s) are iid, the joint PDF of X is determined as follows:

£OX10) = f(X0,Xa, ., Xn10) = ﬂf(x ©)

Because all X; (s) are iid and each Y; is associated with X;, the conditional joint PDF of X given
Y is determined as follows:

(XY, ©) = k(Xy, Xo o) XnVa, Yoy o) Yy, ©) = l_[k(X Yy, Yy, .., Yy, ©) = nk(X 1Y, ©)
The conditional expectation Q(®’ | ®) given samples XandY is determined as foIIows

0(0'10) = j k(X1Y, ©)log(£(X167)dX
()
N

_ f f f [ [xly.0) |+ log(ﬁf(Xilﬁ)’)) dXy ...dX, dX,

1) o71(r) @ L(vy) \J=1
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- j f f ﬁk(X| v, 0) *(ilog(f(Xd@’)))dXN...dXZXm

et Y) 971 (2) 7 (YN) J =1 i=1
= j f k(X| ,0) |+ log(f(X;10")) dXy ...dX, dX;
o~it) o~10r) 1<YN> l
=) f f log(f(XI@)) l_[k(X| ,0) dXy ... dX, dX,
=1 p=1(ry) 9~ 1(1y) 1(YN)

(Suppose f(Xi | ®) and k(X; | Y,, @) are analytic functions)

_ Z f f f fa(x xplog(£(X10") * 1_[ k(X;]Y;, 0) dX dXy ... dX, dX,
=1 o=1(vP ¢~1(Y2) @ H¥YN) X
( S(X, X)) = {(1) g . Q - f S(X, X)u(X)dX = u(Xl-)\‘

like Riemann integral
with note that the domain of X and X; is X

N
§(X, X)log(f(X10") x 1_[ k(X;|Y;,0) dXy ...dX, dX, dX
1) e7(Y2) e X(Yw) Jj=1

N
5(X, X)log(£(X10") * 1_[ k(X;|Y, ©) dXydX,dX, .. dX
=1

],

>

X ¢ (Y1), 1 (Y2)p” (Y N)
2]

/

N
_ log(f(X10")) * f 5(X, X,) * H k(X;|Y;, ©) dXydX,dX; ...dX
@1 (YD), 1(V2),..0 (Y N) j=1
= log(f(x10")
i=1
* S(X, X)) k(X;|Y;, ©)
<P_jv(y1)r<l’_1(yz)z---lfp_1(YN)
| ] eIy, 0) axyax,dx, .. ax
j=1,ji
N
_ ZJlog(f(XIG)’))
i=1x
. | 5(X, X)k(X,]Y, 0)

(p_l(yl)'(p_l (YZ):---:(P_l (Yi—l)z
w_j\](Yi)’(p_l (Yi+1):---:§0_1(YN)

* 1_[ k(X;|Y;,0) dXy ... dX;y1dX;dX;_; ... dX,dX; ..dX

j=1,j#i
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i [ 10g(rx101)

i=1
' | sexokern, o)
@ (Y1), 1 (V2),. 071 (Vi_1) @~ E(Y))
N
* 1_[ k(X;|Y;,0) dXy ... dX;yq dX; dX;_; ... dX,dX; dX

(p_l(yl‘+1),...,(p_1(YN) ]=1!]¢l

Mz

=" [1og(rixien) «| [ cxokCxn, 0)ax

=1 @~1(yy)
N
* f 1_[ k(X;|Y;,©) dXy ... dX;p,dX;_q ... dX,dX; dX
¢_1(Y1)J(P_1(Y2);---, j=1!j¢i

O Y1) (Yiz1)w0 (Y N)

N
_ Z f log(f(X10")) * f 5(X, X)k(X;|Y;, ©)dX;
i=1x e~1(yy)

* 1_[ j k(X;|v;, 0)dx; |dX

j=1j#i p-i(y))

Mz

f log(f(X10")) = f (X, X)k(X;|Y;, ©)dX; |dx
X

e~1(yy)

1l
[y

i

Due to ]k(x,-|yj,@)dxj=1
@t(v))

N
Z f fcs(x XDk(X;1Y;, ©)log(£(X10")dX dX;
i=1 (0] 1(Yl)
(Suppose f(Xi | ®) and k(X; | Yj, ®) are analytic functions)
Like taking Riemann integral on [, §(X, X;)k(X;|Y;, ®)log(f (X]0"))dX, we have:

j (X, X)k(X;1Y;, ©)log(f (X]0"))dX dX; = j k(X;1Y;, ©log(f (X;16"))dX;
pHYD X )
As a result, the conditional expectation Q(®’ | ®) given an observed sample Y = {Y1, Ya,...,

Yn} and a set of associated random variables X = {Xi, Xo,..., Xn} is specified as follows:
N

QE10) = | KCxilV; &)log(f (xi[07)ax;
=1 p=1(yy
Note, all X () are iid and they are not existent in fact. Because all X; are iid, let X be the random
variable representing every X and the equation of Q(®’ | ®) is re-written according to equation

2.10.
N

@)=y | kxI¥, 0)log(£(x1))dx (2.10)

=1 p=1(vy
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The similar proof of equation 2.10 in case that X; (s) are discrete is found in (Bilmes, 1998, p.
4). If X and all Y; (s) are discrete, equation 2.10 can be re-written as follows:
N

Q@18 =" > k(XIV;, 0)log(f(x|e")
i=1 Xep~1(Y})
In case that f(X | ®) and k(X | Yi, ®) belong to exponential family, equation 2.10 becomes
equation 2.11 with an observed sample Y = {Y1, Ya,..., Yn}.

0(0'10) = (z E(log(b(O))|Y,, @)> + <(®')T > r@,yl) ~ Nog(a(@))  (211)
Where, = -
E(log(b(X))|1;,0) = f k(X|Y;, ®log(b(X))dX
)
oy, = EGOOI0) = [ k(X% 0)r(0dX
)

Please combine equation 2.9 and equation 2.10 to comprehend how to derive equation 2.11.
Note, 7g,y, is dependent on both © and Yi.

DLR (Dempster, Laird, & Rubin, 1977, p. 1) called X as complete data because the
mapping ¢: X — Y is many-one function. There is another case that the complete space Z
consists of hidden space X and observed space Y with note that X and Y are separated. There
is no explicit mapping ¢ from X and Y but there exists a PDF of Z € Z as the joint PDF of X €
XandY €Y.

f(Z|8) = f(X,Y]0)
In this case, the equation 2.8 is modified with the joint PDF f(X, Y | ®). The PDF of Y becomes:

f(rle) = f (X, ¥]©)dx

X

The PDF f(Y|®) is equivalent to the PDF g(Y|®) mentioned in equation 1.34. Although there is
no explicit mapping from X to Y, the PDF of Y above implies an implicit mapping from Zto Y.
The conditional PDF of X given Z is specified according to Bayes’ rule as follows:

£@21¥,0) = X, Y1Y,6) = FHINFIY) = f(xIY,0) = Lo _ T TIO)
' Y ' frle) [ fx vieydx
The conditional PDF f(X|Y, ®) is equivalent to the conditional PDF k(X|Y, ®) mentioned in
equation 1.35. Of course, given Y, we always have:

ff(XIY, @)dX =1

Equation 2.12 specifies the conditional expectation Q(®’ | ®) in case that there is no explicit
mapping from X to Y but there exists the joint PDF of X and Y.

Q(e'1e) = j f(ZIY,®)log(f(Z10"))dX = j FX1Y,®)log(f(X,Y]0"))dX (2.12)

Where,
f&X,Yl0)  f(X,Y|0)
fY18) [, f(X, Y|©)dX
Note, X is separated from Y and the complete data Z = (X, Y) is composed of X and Y. For
equation 2.12, the existence of the joint PDF f(X, Y | ®) can be replaced by the existence of the
conditional PDF f(Y|X, ®) and the prior PDF f(X|®) due to:
f&X,Y[0) = f(Y]X,0)f(X]0)

fXY,0) =
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In applied statistics, equation 2.8 is often replaced by equation 2.12 because specifying the
joint PDF f(X, Y | ®) is more practical than specifying the mapping ¢: X — Y. However,
equation 2.8 is more general equation 2.12 because the requirement of the joint PDF for
equation 2.12 is stricter than the requirement of the explicit mapping for equation 2.8. In case
that X and Y are discrete, equation 2.12 becomes:

0(0'|0) = Z P(X]Y,®)log(P(X, Y|0"))

X
In case that X and Y are discrete, P(X, Y | ®) is the joint probability of X and Y whereas P(X | Y,
®) is the conditional probability of X given'Y.

Equation 2.12 can be proved alternately without knowledge related to complete data (Sean,
2009). This proof is like the proof of equation 2.8. In fact, given hidden space X, observed
space Y, and a joint PDF f(X, Y | ®), the likelihood function L(®’) is re-defined here as log(f(Y
| ®”)). The maximizer is:

0" = argmax L(0") = argmaxlog(f(YIG)’))
e’ e’

Suppose the current parameter is ® after some iteration. Next we must find out the new estimate
®" that maximizes the next log-likelihood function L(®°). Suppose the total probability of
observed data can be determined by marginalizing over hidden data:

fwm0=fﬂxnwmx

X
The expansion of f(Y | ®) is total probability rule. The next log-likelihood function L(®’) is
re-written:

fX,Y|0")
L(®) =1lo Y|e' lo f X,Y|0)dX lo f X|Y,0 dX
(0" =log(f(16") = g( fx,v1e" ) g< fX| )f(XIYG)
Because hidden X is the complete set of mutually excluswe variables, the sum of conditional
probabilities of X is equal to 1 given Y and @.
ff(XIY, 0)dXx =1
X

Where,
fX,Y[0)
fXIY,0) =
J f(X,Y0)dX
Applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function

log ju(x)v(x)dx qu(x)log(v(x))dx

X X

where j u(x)dx =1

X

into L(®’), we have (Sean, 2009, p. 6):
, fX,Y]0")

L(@ ) > <3! f(XlY, @)log (m))

— ( f F(X|Y,0) (1og(f(x, Y10") — log(f(X|Y, @))) dX>
X

— (f fX|y, @)log(f(X,YI@’))dX) — (f FX1Y, 0)log(f (XY, @))dX)
X X

49


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

= Q(0'|0) — H(0|0)
Where,

Q(o'|0) = f fXIy,®)log(f(X,Y(0"))dX

X
H(0'|®) = ff(XIY, ®)log(f(X|Y,0"))dX

Obviously, the lower-bound of L(®) is:
b(©'10) = Q(0'|0) — H(©|0)
As aforementioned, the lower-bound I1b(®’|®) (Sean, 2009, pp. 7-8) is maximized over many
iterations of the iterative process so that L(®”) is maximized finally. Because H(®|®) is
constant with regard to @’, it is possible to eliminate H(®|®) so that maximizing Q(®’|®) is
the same to maximizing the lower bound. In final, when GEM converges @0 = @) = @", we
have:
0" = argmax [b(0'|@) = argmax Q(0'|0)
o’ o’

We have the proof m

Mixture model mentioned in subsection 5.1 is a good example for GEM without explicit
mapping from X to Y. Another well-known example is three-coin toss example (Collins &
Barzilay, 2005) which applies GEM into estimating parameters of binomial distributions
without explicit mapping.
Example 2.1. There are three coins named coin 1, coin 2 and coin 3. Each coin has two sides
such as head (H) side and tail (T) side. Let hidden random variable X represent coin 1 where X
is binary (X = {H, T}). Let 61 be probability of coin 1 receiving head side.

01 = P(X=H)
Of course, we have:
PX=T)=1-6:

Let observed random variable Y represent a sequence of tossing coin 2 or coin 3 three times.
Such sequence depends on first tossing coin 1. For instance, if coin 1 shows head side (X=H),
the sequence is result of tossing coin 2 three times. Otherwise, if coin 1 shows tail side (X=T),
the sequence is result of tossing coin 3 three times. For example, suppose first tossing coin 1
results X=H then, a possible result Y = HHT means that we toss coin 2 three times resulting
head, head, and tail from coin 2. Obviously, X is hidden and Y is observed. In this example, we

observe that
Y=HHT
Suppose Y conforms binomial distribution as follows:
heq _ tiry —
POYIX) = 92}1(1 Hz)tlle H
93 (1 - 93) le = T

Where 6, and 65 are probabilities of coin 2 and coin 3 receiving head side, respectively. Note,
h is the number of head side from trials of tossing coin 2 (if X=H) or coin 3 (if X=T). Similarly,
t is the number of tail side from trials of tossing coin 2 (if X=H) or coin 3 (if X=T). The joint
probability P(X, Y) is:
0,02(1—-6,) ifX =H
P(X,Y)=PX)P(Y|X) =
X1 X)PYIX) {(1—61)9§’(1—03)tifX=T
In short, we need to estimate @ = (61, 62, 65)" from the observation Y=HHT by discrete version
of Q(®’ | ®). Given Y=HHT, we have h=2 and t=1. Thus, the probability P(Y|X) becomes:
02(1—6,)ifX=H
P(Y|(X) =P =HHT|X) =
(¥ix) = F( 1%) {932(1—93)ifX=T
The joint probability P(X, Y) becomes:
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P(X,Y) =
X Y) {(1 —-0))02(1-6,)ifX=T
The probability of Y is calculated as follows:
PY)=PY|X=H)+PY|X=T)=02(1-06,) +062(1—65)
The conditional probability of X given Y is determined as follows:
0:65(1—6) .
ifX=H
P(X,Y) ]67(1—6,)+065(1—63)
P(Y) 1-6,)02(1—6
0| _a-eesa-6) .,
05(1—-6,)+06s(1—65)
The discrete version of Q(®’ | ®) is determined as follows:

0(0']0) = Z P(X]Y,®)log(P(X, Y|0"))

PX|Y) =

X

= 01022(1 - 02) lo (91(91)2(1 _ 91))

0Z2(1—6,) + 02(1—05) oV 12 :

(1-6,)62(1—65)
62(1 — 6,) + 62(1 — 65)

0,02(1—6,)
02(1— 6,) + 62(1 — 65) (log(61) + 2log(6;) + log(1 — 6;))
(1—6,)6%(1—65)
log(1 — 67) + 2log(6}) + log(1 — 64
02(1— 6,) + 62(1 — 65) (log(1 — 67) + 2log(63) + log(1 — 63))

Note, Q(®’|®) is function of @ = (61, 62, 65’)". The next parameter Ot = (6, g,(+1),
0:D)T is a maximizer of Q(©’|®) with regard to ®, which is solution of the equation created
by setting the first-order derivative of Q(®’|®) to be zero with note that the current parameter

log((1 — 6D (62)*(1 - 63))

isO0=0.
The first-order partial derivative of Q(®’|®) with regard to 1’ is:
0Q(0'[0) 0:03(1—6,) 1 (1—6,)63(1 - 63) 1

00]  02(1—0,) +02(1—0,)6] 02(1—0,)+02(1—06;)1—6]
_ 0:67(1 — 6,) — 61(6:63(1 — 8,) + (1 — 61)63(1 — 65))
0;(1—6,)(02(1 — 6,) + 62(1 — 65))

29(0'|6)

0]

to be zero, we obtain:

o — 6,65 (1—6,)

P 0,05(1—05) + (1-6,)65(1 — 65)

Therefore, in M-step, given current parameter ®® = (619, 6,0, 8;:0)7 the next partial parameter
61V is calculated as follows:

Setting this partial derivative

O (1 _ o®
g+ _ by (62 ) (1 0, )
1 - 2 2
60(65°) (1-0) + (1 - 6)(657) (1 - 6%)
The first-order partial derivative of Q(®’|®) with regard to 6>’ is:
0Q(0'10)  6,63(1—6)) 2 - 36;
00,  65(1—6,) +65(1—6;)0,(1—6;)
29(€’]6)

Setting this partial derivative —5g [0 be zero, we obtain:

2
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2
Hé = §
Therefore, in M-step, given current parameter @® = (6,0, 8,0, #;30)T, the next partial parameter
0D s fixed:
pLH+ %
The first-order partial derivative of Q(®’|®) with regard to 65’ is:
0Q(0'10)  (1-6)685(1—-6;) 2—36,
06;  63(1—6,) +63(1 - 65) 65(1 - 63)

o Te(@']8) _
Setting this partial derivative —5g 10 be zero, we obtain:
3
05 = 2
373

Therefore, in M-step, given current parameter ®® = (619, 6,0, 9;:0)T the next partial parameter
6 is fixed:
2

3
In short, in M-step of some t™" iteration, given current parameter ®® = (6,0, 6,9, 8;:0)7, only

61D is updated whereas both ;D and 05V are fixed with observation Y=HHT.

o+ o1 (0f”) (1~ 01%)

() (1-00) + (1-00)(657) (1-6°)
2

6§t+1) —

02(t+1) — 0§t+1) —

For instance, let ®® = (6,M, 8,1, 9T be initialized arbitrarily as 61 = #,M = 9;) = 0.5, at
the first iteration, we obtain:
1 7 0.5%(0.5)2%(1—0.5)+(1—0.5)%(0.5)2%(1—-05)
2
2) 2
0. = 6{” ==

At the second iteration with current parameter @ = (91?=0.5, 6,®=2/3, #;¥=2/3)", we obtain:

2
o 05+(3) +(1-3)
0, 2

% 2 2 2
05+ (3) *(1—§)+(1‘°-52)* (3) ~(1-3)
353) _ 93(3) =2
As a result, GEM inside this example converges at the second iteration with final estimate @@

=0® =0"=(6."=0.5, 0,"=2/3, 65'=2/3)" m

In practice, suppose Y is observed as a sample Y = {Y1, Y2,..., Yn} of size N with note that
all Y; (s) are mutually independent and identically distributed (iid). The observed sample Y is
associated with a a hidden set (latent set) X = {X1, Xz,..., Xn} of size N. All X; (s) are iid and
they are not existent in fact. Let X € X be the random variable representing every Xi. Of course,
the domain of X is X. Equation 2.13 specifies the conditional expectation Q(®’ | ®) given such

.

0 0.5

=0.5

N
ee@'10) = ) [ rexiv, 0)log(Fx, leN)ax (2.13)

i=1yx
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Equation 2.13 is a variant of equation 2.10 in case that there is no explicit mapping between X;
and Y; but there exists the same joint PDF between X; and Y. Please see the proof of equation
2.10 to comprehend how to derive equation 2.13. If both X and Y are discrete, equation 2.13
becomes:

N
Q(O'10) = > > P(XI¥; 0)log(P(X, %10") (2.14)
i=1 X
If X is discrete and Y is continuous such that f(X, Y | ®) = P(X|®)f(Y | X, ®) then, according to
the total probability rule, we have:

£(Y10) = > P(XI®)f(YX,0)

X
Note, when only X is discrete, its PDF f(X|®) becomes the probability P(X|®). Therefore,
equation 2.15 is a variant of equation 2.13, as follows:

Q(e'10) = ZZP(XM, ©)log(P(X[6)f (%X,6") (2.15)

Where P(X | Yi, ®) is determmed by Bayes’ rule, as follows:
POXIY, ) — PX|O)f (YiIX,©)
2x P(X|0)f (Y;|X, ©)
Equation 2.15 is the base for estimating the probabilistic mixture model by EM algorithm,
which will be described later in detail. Some other properties of GEM will be mentioned in
next section.

3. Properties and convergence of EM algorithm

Recall that DLR proposed GEM algorithm which aims to maximize the log-likelihood function
L(®) by maximizing Q(®’ | ®) over many iterations. This section focuses on mathematical
explanation of the convergence of GEM algorithm given by DLR (Dempster, Laird, & Rubin,
1977, pp. 6-9). Recall that we have:

1() = log(9(v1e)) =log| | rexieax
oY)
0(©'10) = E(log(£(X107)[7,0) = [ KCxIY, ©)log(£(x10))dx
1Y)
Let H(®’ | ®) be another conditional expectation which has strong relationship with Q(®’ | ®)
(Dempster, Laird, & Rubin, 1977, p. 6).
H(©'|0) = E(log(k(X|Y,0")|v,0) = j k(X|Y,®)log(k(X|Y,0"))dX (3.1)

o~ 1(Y)
If there is no explicit mapping from X to Y but there exists a joint PDF f(X, Y | ®) of X and Y,
equation 3.1 can be re-written as follows:

H(©'|0) = E(log(f(X]Y,0))|Y,0) = ff(xnf, ®)log(f(X|Y,0"))dX
X

Where,
fX,Y|0)
[ f(X,Y|©)dX

fXIY,0) =
From equation 2.8 and equation 3.1, we have:

Q(0'|0) = L(®") + H(0'|®) (3.2)
Following is a proof of equation 3.2.
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0(0']0) = j k(X|Y,®)log(f(X|0"))dX = f k(X|Y,®)log(g(Y|0)k(X|Y,0"))dX
(M) 1Y)
- f k(XIY, ©)log(g(¥160))dx + f k(X1Y, ©)log(k(XY, ©))dX
1Y) e~ Y)

=log(g(Y10") f k(X|Y,0)dX + H(©'|0) =log(g(Y|0")) + H(®'|®)

o~ 1(Y)

=L(O)+HO'|0)m
Lemma 3.1 (Dempster, Laird, & Rubin, 1977, p. 6). For any pair (®’, ®) in Q X Q,
H(©'|0) < H(0]0) (3.3)
The equality occurs if and only if k(X | Y, ®”) = k(X | Y, ®) almost everywhere m
Following is a proof of lemma 3.1 as well as equation 3.3. The log-likelihood function L(®’)

is re-written as follows:

f(X10")

kXY, o) %

L(®'") =log f f(X]0")dX | = log f k(X|Y,©)
1Y) P~ 1(Y)
Due to
k(X|Y,0)dX = 1

p~HY)
By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function

log fu(x)v(x)dx qu(x)log(v(x))dx
Wherefu(x)dx =1

into L(®’), we have (Sean, 2009, p. 6):

X|@’
L(®") = f k(X|Y,@)log<%>dx
@~1(Y) '

k(x1Y,0) (log(f (x10")) — log(k(X|Y,©))) dx
o 1Y)

k(X|Y,®)log(f(X]0"))dX — j k(X|Y,®log(k(X|Y,©))dX

@~ 1(Y) o~1(Y)
=Q(0'|6) — H(B]0)
=L(0')+ H(O'|0) —H(O|O)
(Due to Q(®’|®) = L(®’) + H(®’|®))

It implies:
H(0'|0) < H(0|0)
According to Jensen’s inequality (Sean, 2009, pp. 3-4), the equality H(®’|®) = H(®|®) occurs
if and only if k(X | Y, ®’) is linear or f(X | @) is constant. In other words, the equality occurs
ifand only if k(X | Y, ®”) = k(X | Y, ®) almost everywhere when f(X | ®) is not constant and k(X
|Y,®)isaPDF m
We also have the lower-bound of L(®), denoted Ib(®’|®) as follows:
Ib(©°|©) = Q(0’|6) - H(6|O)
Obviously, we have:
L(®) > Ib(®’|®)
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As aforementioned, the lower-bound Ib(®’|®) is maximized over many iterations of the
iterative process so that L(®’) is maximized finally. Such lower-bound is determined indirectly
by Q(®’|®) so that maximizing Q(®’|®) with regard to ®’ is the same to maximizing I1b(®’|®)
because H(®|®) is constant with regard to ®’.

Let {G)(t)}:j =0W,0®,...,00,0¢*D), . be asequence of estimates of @ resulted from
iterations of EM algorithm. Let ® — M(®) be the mapping such that each estimation @© —
O™ at any given iteration is defined by equation 3.4 (Dempster, Laird, & Rubin, 1977, p. 7).

et = M(e®) (3.4)
Definition 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). An iterative algorithm with mapping
M(®) is a GEM algorithm if
Q(M(0)|8) = Q(6]6)m (3.5)
Of course, specification of GEM shown in table 2.3 satisfies the definition 3.1 because @ s
a maximizer of Q(® | ®) with regard to variable ® in M-step.
Q(M(@(t))lg(t)) — Q(@(Hl)l@(t)) > Q(@(t)le(t)),Vt
Theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). For every GEM algorithm
L(M(®)) = L(0) forall® € Q (3.6)
Where equality occurs if and only if Q(M(®) | ®) = Q(® | ®) and k(X | Y, M(®)) = k(X | Y, ®)
almost everywhere m
Following is the proof of theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7):
L(M(©)) - L(©) = (QM(O)]8) — H(M(©)|®)) - (Q(6]6) — H(6|))
= (Q(M(0)|0) - Q(0]0)) + (H(0l0) — H(M(0)|0)) = 0m
Because the equality of lemma 3.1 occurs if and only if k(X | Y, ®’) = k(X | Y, ®) almost
everywhere and the equality of the definition 3.1 is Q(M(®) | ®) = Q(® | ®), we deduce that
the equality of theorem 3.1 occurs if and only if Q(M(®) | ®) = Q(® | ®) and k(X | Y, M(®)) =
k(XY, ®) almost everywhere. It is easy to draw corollary 3.1 and corollary 3.2 from definition
3.1 and theorem 3.1.
Corollary 3.1 (Dempster, Laird, & Rubin, 1977). Suppose for some 0* € Q, L(®") > L(®) for
all @ € Q then for every GEM algorithm:

() LME) =LE)

(2) QM(©) | &) = Q6" | &)

) kXY, M@®))=k(X|Y,®) m
Proof. From theorem 3.1 and the assumption of corollary 3.1, we have:

{L(M(G))) > L(0) forall® € O
L(©*) > L(O) forall® € Q
This implies:
{L(M(G)*)) > L(0%)
L(M(0")) < L(®")
As a result,
L(M(©%)) = L(®")
From theorem 3.1, we also have:
Q(M(©7)|0%) = Q(6%|0%)
k(X|v, M(0%)) = k(X|Y,0)"™
Corollary 3.2 (Dempster, Laird, & Rubin, 1977). If for some 0 € Q, L(®") > L(®) for all ® €
(1 such that ® # ®*, then for every GEM algorithm:
MO)=0"m
Proof. From corollary 3.1 and the assumption of corollary 3.2, we have:
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L(M(©%)) = L(®")
L(©*) > L(®) forall® € Qand © # O
If M(®@") #®", there is a contradiction L(M(®")) = L(®") > L(M(®")). Therefore, we have M(®")
=0 m
Theorem 3.2 (Dempster, Laird, & Rubin, 1977, p. 7). Suppose {G(t)}:; is the sequence of
estimates resulted from GEM algorithm such that:
(1) The sequence {L(G(t))}:; =L(0W),L(0@),...,L(0W), .. is bounded above, and
(2) QO™ | W) - Q(BY | eY) > o™ — eW)T(O™D) — W) for some scalar &> 0 and all
t.
Then the sequence {G)(t)}:i converges to some ®" in the closure of Q m

Proof. The sequence {L(G)(t))}:: is non-decreasing according to theorem 3.1 and is
bounded above according to the assumption 1 of theorem 3.2 and hence, the sequence
{L(G)“))}:j converges to some L” <+, According to Cauchy criterion (Dinh, Pham, Nguyen,
& Ta, 2000, p. 34), for all ¢ > 0, there exists a t(¢) such that, for all t > t(¢) and all v > 1:

v

L(0®+) — L(0®) = Z (L(G)(t”)) _ L(@(t+i—1))) <

By applying equation 3.2 and equation 3.Cl%, :‘or all i>1, we obtain:
Q(@(t+i)|@(t+i—1)) _ Q(@(t+i—1)|®(t+i—1))
— L(@(t+i)) + H(@(t+i)|@(t+i—1)) _ Q(@(t+i—1)|®(t+i—1))
< L(@(t+i)) + H(@(t+i—1)|®(t+i—1)) _ Q(@(t+i—1)|@(t+i—1))
— L(@(t+i)) _ L(@(t+i—1))
(Due to L@ ) = (@™ | @1y — HO®™D | @) according to equation 3.2)

It implies
v v
Z (Q(G(t+i)|®(t+i—1)) _ Q(@(t+i—1)|®(t+i—1))> < Z (L(G(”")) _ L(@(Hi—l)))
i=1 i=1

=L(eE) —L(0W) < e
By applying v times the assumption 2 of theorem 3.2, we obtain:
v

&> z (Q (@(t+i)|@(t+i—1)) — Q(@(t+i—1)|®(t+i_1)))
i=1
v

= SZZ(@(HD - (E)(”i‘l))T(@(Hi) — (;_)(t+i—1))
i=1

It means that
v

Z|@(t+i) _ @(t+i—1)|2 <¢/E
i=1
Where,
|@(t+i) _ @(t+i—1)|2 _ (G)(”") _ @(t+i—1))T(@(t+i) _ @(t+i—1))
Notation |.| denotes length of vector and so [@®) — @11 js distance between @) and "
-1, Applying triangular inequality, for any & > 0, for all t > t(¢) and all v > 1, we have:
v

|+ — @(t)|2 < Z|@(t+i) - (a(f’ri—1)|2 <eg/é

=1
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According to Cauchy criterion, the sequence {G)(t)}:i converges to some ®” in the closure of
Q.

Theorem 3.1 indicates that L(®) is non-decreasing on every iteration of GEM algorithm
and is strictly increasing on any iteration such that Q(@® | ®®) > Q(®® | ®Y). The corollaries
3.1 and 3.2 indicate that the optimal estimate is a fixed point of GEM algorithm. Theorem 3.2
points out convergence condition of GEM algorithm but does not assert the converged point
®" is maximizer of L(®). So, we need mathematical tools of derivative and differential to prove
convergence of GEM to a maximizer ®°. We assume that Q(®’ | ©), L(®), H(®’ | ©), and M(O)
are smooth enough. As a convention for derivatives of bivariate function, let D" denote as the
derivative (differential) by taking i"-order partial derivative (differential) with regard to first
variable and then, taking j"-order partial derivative (differential) with regard to second variable.
If i =0 (j = 0) then, there is no partial derivative with regard to first variable (second variable).
For example, following is an example of how to calculate the derivative D*Q(®® | V),

- A Gl )

- Firstly, we determine D**Q(0'|0) = ———*

- Secondly, we substitute ®© and @Y for such DQ(®’ | ®) to obtain D*Q(E® | @),
Equation 3.1 shows some derivatives (differentials) of Q(®’ | ®), H(®’ | ®), L(®), and M(®).

0Q(0’|0)
DQ(0'|0) = ———

Q(0’'|©) FIeY

0%Q(0'|0)
00’00

02Q(0'|0)
0(0')?

dH(0'|0)

00’
92H(0'|0)

00’00
0%2H(0'|0)
2(0")2

D™Q(0'|e) =
D*°Q(0'|e) =
D°H(©'|0) =
D'H(©'|0) =

D2°H(@'|0) =

dL(®)

do

d2L(©)

a41(0)

DM(0) = 10
Table 3.1. Some differentials of Q(®’ | ®), H(®’ | ®), L(®), and M(®)

When @’ and @ are vectors, D°(...) is gradient vector and D?%(...) is Hessian matrix. As a

convention, let 0 = (0, 0,..., 0)" be zero vector.

Lemma 3.2 (Dempster, Laird, & Rubin, 1977, p. 8). For all ® in Q,

DH(0|0) = E (dlog(k(%ly’ Ny, @) =07 (3.7)

DL(©) =

D?L(0) =

(3.8)

D2H(0]0) = —D'H(8|0) = —Vy <dlog(k§gly’ )ly @)
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2
. (dlog(k((l)ély; )|, @) . <<dlog(k§)é)|y' @))) . @) ,
__(d%log(k(X|Y,0)) '
_ —E( oy v, @)
D1°Q(0]0) = DL(®) = E (W Y, @) (3.10)
D200 (0]0) = D2L(0) + D2°H(0|0) = E (dzloi((];())z(l@)) Y, @) (3.11)
dlog(f (X19)) dlog(f(X10))’
o [ R

= D2L(0) + (DL(0))" — D?°Q(6]0)m
Note, Vn(.) denotes non-central variance (non-central covariance matrix). Followings are
proofs of equation 3.7, equation 3.8, equation 3.9, equation 3.10, equation 3.11, and equation
3.12. In fact, we have:

DmH(@'|@))=iE(log(k(Xw,@'))|Y,@)=i J k(X|Y,®)log(k(X|Y,0"))dX

00’ 00’
( ) p~1(Y)
dlog(k(X|Y,0") dlog(k(X|Y,0"))
= f k(X]Y,©) o dX =E 10 Y,0)=
e~

k(X|Y,0) d(k(X]Y,0") ix
j " k(XlY,0)  de’

o~ 1(
It implies:
k(X|Y,0)d(k(X|Y,0)) d d
10 — - -
D°H(0|0) PETAD e dx o f k(X|Y,©)dx e (1)
e~ 1Y)
=07
Thus, equation 3.7 is proved.
We also have:
0DYH(0'|0) 1 dk(X|Y,0)dk(X|Y,0")
11 ! _-_ ~ 7 - ) )
DT H(©'10) = 90 j k(X|Y,0)  doe de’ dx
o~ 1(Y)
It implies:
1 dk(X|Y,0) dk(X|Y,0)
11 —
DT H(®]6) = j k(X|Y,0) do de dx
1Y) ,
1 dk(X|Y,0) dlog(k(X|Y,©))
= j k(X|Y,©) <k(X|Y, T > dx = VN< 30 Y,0
1Y)
We also have:
dDH(e’'|0) d?log(k(X|Y,0"))
20 ’ — — ’
D?*°H(0'|0) = o E< S(GRE Y,G))
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_ k(X|Y, 0) (dk(XIY, @'))2 X B ((dlog(k(XIY, @'))>2

v

N2 de’ do’
o) (k(X|Y,0")
It implies:
DK (6]0) = f T L L LA\
B "I\k(X|Y,0)  de

o~ 1(Y)

v, (dlog(k(XIY, 0)) v @)

do

Hence, equation 3.8 and equation 3.9 are proved.
From equation 3.2, we have:
D?°Q(0'|®) = D?L(0") + D?°H(0'|0)
We also have:

00’
e~1(Y)

DlOQ(®'|@)=i< f k(X|Y,@)1og(f(X|@'))dx>

_ f k(X|Y,0) dlog(gg,(lel)) dax
1Y)

_ dlog(£(X10")) . (dlog(f(x|6")
= _L)k(xw,@) " dX—E< /G y,@>
kv arenen
- fxje)  de’

o~ 1(¥)
It implies:

10 _ k(XlY,0)df(X|©) 1 df(x|e)
b Q(@|@)_¢_J® fxl@)  de dX‘(p_lf(y)gm@) o

__ 1 dfxje) .~ 1 d
_9(Y|9)(p_1j(y) de dX_g(y|@)d@< jf(X|@)dX>

1Y)
1 dg(Y|e) dlog(g(¥|e))

“gYe de de = DL(®)
Thus, equation 3.10 is proved.
We have:
ap°Q(e’'le) o k(X|Y,0)df (X]|0")
20 ! — —
DTeee) = 00’ _a®'< ()f(XI(E)’) de’ dX)
(Y
_ d (df(X|e")/de"\  ~  _ (d*log(f(X|0")
_ j()k(XlY,G))d@,< 1) >dX—E< |10
e~y

(Hence, equation 3.11 is proved)

= f k(X|Y,0) ((d2f(X10')/d(0)2)f(X]0") — (df (X|0")/d0")?)/(F(X]6))" dx

1Y)
B (d*f(x1e9)/d@©)*) <df(X|@')/d@'>2
_ (p_!(y)k(XlY,@) ey (p_J(y)k(XIY, o) (") X
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3 (d*f(X]0")/d(0")?%) dlog(f(x1©"))
= _f k(X|Y,0) 010 dx — Vy < 10 Y, @)
o~ 1(Y)
It implies:
2 3 (d*f(X0)/d(©)%) dlog(f (X1©))

o~ 1(Y)

_ 1 d*f(x10) dlog(f(X1))
= 5019 fm oy o~ (G o)
o1

1 f(X10) dlog(f(X10))
—mw< o dX)‘VN(T o)
(Y

__ 1 &gle)  (diog(f(xI®))|, o
~ g(Y|@) d(e)? N de ’
Due to:

d’log(g(¥|©)) 1 d*g(Y|e)

DO =37 ~grie) d(@)?

— (DL(®))’
We have:
D?°Q(©|0) = D?L(0) + (DL(G)))2 —Vy (%&X'@)) Y, @)

Therefore, equation 3.12 is proved m
Lemma 3.3 (Dempster, Laird, & Rubin, 1977, p. 9). If f(X | ®) and k(X | Y, ®) belong to
exponential family, for all ® in Q, we have:

DYH(©'|0) = (EC(X)]Y,0)) — (E(X)]Y,0"))" (3.13)
D?°H(0'|0) = =V (z(X)|Y,0") (3.14)
D'Q(e'|e) = (E(T(X)le))T - (E(T(X)|®'))T (3.15)
D?°Q(0'|0) = -V (z(X)|0")m (3.16)

Proof. If f(X | ®”) and k(X | Y, ®’) belong to exponential family, from table 1.2 we have:
dl Y|e' d T
08/ ("107) _ (b(X) exp((@)T700)/a(0)) = (r(0)) - log'(a(@"))

de’ ~ de’ . .
= (X)) - (EG@(X)]e))
And,
dzl (Yl@l) d r ’ " ! !
0%')2 . Tte7 (b0 exp((0)77(1))/a (@) = —log"(a(8") = —V (x(X)|6)
And,
dlog(k((l)é !Y: 09) _ d‘é, (b(X) exp((©@)"2(X))/a(®'|Y)) = 7(X) — log' (a(©")|Y)
= (%) = (E@X)|Y,0))"
And,
d2log(k(X|Y,0") d , ) vl
Ogg(@y )_ 3057 (L0 exp((8)77(1))/a(@'IN) = ~log" (a(®'1Y)
= —V(X)|Y,0")
Hence,
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D1°H(G)’|®)=a(;,< f k(XIY,G))log(k(XIY,@’))dX)

1Y)
_ f k(le’O)dlog(k(X!Y,G)))dX
de
o~ 1(Y)
= f k(xY,0)(z(x))" dx — f kXY, 0)(E@ ()Y, 0))" dX
@1(Y) p1(Y)
= (E@X)Y,0)) — (E@X)|Y,0))" f k(X|Y,0)dX

1Y)

= (E@(X)Y,0)) — (E@X)|Y,0))"
Thus, equation 3.13 is proved.

We have:
62
20 ! — !
D*H(®'|0) = FIGIE f k(X|Y,®)log(k(X|Y,0"))dX
1Y)
d?log(k(X|Y, @’
_ f k(X|Y,0) Ogg (é,)lz ) gy = f k(X|Y, ©)log” (a(0")|V)dX
p~1(Y) oY)
= —log" (a(©")|Y) f k(X|Y,0)dX = —log” (a(0)|Y) = -V (z(X)|Y,0")
p~H(Y)
Thus, equation 3.14 is proved.

We have:

0
DlOQ(®'|@)=W< J k(X|Y,@)log(f(X|@’))dx>
e~ Y)

_ f k(X|Y,0) dlog(gg,“@,)) dx
1Y)
- f k(x|Y,0)(z(x))" dx — f k(X|Y,0)(E(X)]0)) dX
@~ 1(Y) @~ 1(Y)
= (E@)10) - (EEx)IeN) f k(X]Y,0)dX = (E@(X)[0)) - (E(x)]e))"

e~1(Y)
Thus, equation 3.15 is proved.
We have:

62
D290 (0']0) = 6(@’)2< j; )k(X|Y, @)log(f(X|@'))dX>
o~y

2 ’
= f k(X|Y, @)d loi((];(,;(zle ) dx = — f k(X|Y,®)log" (a(0"))dX
o711 P~1(r)
= —log" (a(")) f k(X|Y,0)dX = —log"(a(0") = —V(z(X)|0")

1Y)
Thus, equation 3.16 is proved m
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Theorem 3.3 (Dempster, Laird, & Rubin, 1977, p. 8). Suppose the sequence {G)(t)}:j is an
instance of GEM algorithm such that
DlOQ(@(t+1)|®(t)) — OT
Then for all t, there exists a @V on the line segment joining ®® and ©**Y such that
Q(@(t+1)|®(t)) — Q(G(t)lg(t)) — _(@(t+1) — @(t))TDZOQ(@(()t+1)|@(t))(@(t+1) _ @(t))
Furthermore, if D*°Q(®™Y | ®Y) is negative definite, and the sequence {L((&)(t))}:j is

bounded above then, the sequence {@(t)}:i converges to some ©” in the closure of Q m
Note, if ® is a scalar parameter, D°Q(®"*V | ®Y) degrades as a scalar and the concept
“negative definite” becomes “negative” simply. Following is a proof of theorem 3.3.
Proof. Second-order Taylor series expending for Q(® | ®Y) at ® = @Y to obtain:
Q(@|®(t)) — Q(@(t+1)|®(t)) + DlOQ(@(t+1)|®(t))(® _ @(t+1))
n (9 _ @(t+1))TD20Q(@gt+1)|@(t))(® _ @(t+1))
= Q(@)(Hl)l@)(t)) + (@ _ @(t+1))TD20Q(@gt+1)|@(t))(@ _ @(t+1))
(due to D°Q(0¢*M|0®) = o)
Where @,V is on the line segment joining ® and @Y, Let ® = ®Y, we have:
Q(@(t+1)|®(t)) _ Q(@(iﬁ)l@(t)) = (e - G(t))TDZOQ(@(()t+1)|@(t))(@(t+1) —o®)
If D2°Q(O™Y | @) is negative definite then,
Q(@(t+1)|®(t)) —_ Q(G)(t)le(t)) = _(@(t+1) _ G(t))TDon(GgIHﬂ|®(t))(®(t+1) — @(t)) >0
Whereas,
(0D — @u))T(@(m) —0®) >0
So, for all t, there exists some &> 0 such that
T
Q(@(t+1)|@(t)) _ Q(@(t)lg(t)) > Sz((::)(t+1) — @(t)) (@(Hl) — @(t))
. . . g +oo
In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {G)(t)}t=1
converges to some ®" in the closure of Q if the sequence {L(G)(t))}:j is bounded above m

Theorem 3.4 (Dempster, Laird, & Rubin, 1977, p. 9). Suppose the sequence {G)(f)}:j is an
instance of GEM algorithm such that

(1) The sequence {G)(t)}:i converges to ®” in the closure of Q.

(2) DYQ(O™YV | @MW) =0 for all t.

(3) DXQ(O™V | ®V) is negative definite for all t.
Then DL(®") = 07, D?°Q(O®" | ®") is negative definite, and

DM(0") = D2°H(0°|0")(D2°Q(0°]0) 'm (3.17)

The notation “~1” denotes inverse of matrix. Note, DM(®") is differential of M(®) at ® = O,
which implies convergence rate of GEM algorithm. Obviously, ®” is local maximizer due to
DL(®") = 0" and D*Q(®" | ®"). Followings are proofs of theorem 3.4.

From equation 3.2, we have:
DL(@(t+1)) — DlOQ(@(t+1)|®(t)) _ DlOH(G(t+1)|®(t)) — _D10H(®(t+1)|®(t))

(Due to D*°Q(0®+V]|0®) = 07)
When t approaches +<o such that @Y = @ = @" then, D°H(®" | ®") is zero according to
equation 3.7 and so we have:
DL(®") = 0"

Of course, D?°Q(®” | ®") is negative definite because D?°Q(O@™Y | ®Y) is negative definite,
when t approaches +< such that @V = @V = @",

62


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

By first-order Taylor series expansion for D°Q(®: | ©,) as a function of ®; at ®; = ®" and
as a function of @, at ®, = @", respectively, we have:
D™Q(0,]0;) = D™Q(0,]0%) + (8; — 0")' D™ Q(0,]0*) + R{(0;)
D™Q(0,]0,) = D™Q(0|0,) + (0, — 0")"D*°Q(0*]0,) + R,(6,)
Where R1(®1) and R2(®2) are remainders. By summing such two series, we have:
2D'°Q(0,0,)
= D'°Q(0,|0") + D*°Q(07|0,) + (8, — 6")" D™ Q(6,]0")
+ (0, —0*)"D?°Q(0%|0,) + R1(0,) + R,(0;)
By substituting ®; = ®® and ®, = @Y, we have:
2D10Q(®(t+1)|®(t))
— DlOQ(O(t+1) O*) + DlOQ(@* O(t)) + (@(t) _ 9*)TD11Q(®(t+1)
+ (0D — 09) D20 (0*|0®) + R, (0©) + R, (0¢+D)
Due to DQ(O®Y | @V) = 0T, we obtain:
OT — DlOQ(@(t+1) @*) + DlOQ(@* @(t)) + (@(t) _ @*)TDllQ(G)(t+1) @*)
+ (04D — 9%) D20Q(0*|0®) + R, (00) + R,(0(E+D)

0")

It implies:
(@(t+1) _ G)*)TDZOQ(@* @(t))
— _(o® _ o\ p11 t+D|@*) _ ( n10 (t+1)
(e® — %) D*Q(e"V]e*) — (DQ(0
— (Ry(6©) + Ry(0(+))

Multiplying two sides of the equation above by D?°Q(®" | ©®) and letting M(®V) = @),
M(®") = @, we obtain:

(M(e®) - M@©)" = (6¢+0 — o)
— _(@(t) _ @*)TDllQ(@(t+l) @*) (DZOQ(G* @(t)))_l
_ (D10Q(®(t+1) @(t))) (DZOQ(@* @(t)))_l

©*) + D'°Q(e"

@(t)))

©*) + D°Q(o

_ (Rl(e(t)) + Rz(e(t+1))) (DZOQ(G)* @(t)))—1
Let t approach +e= such that ®® = @™V = @", we obtain DM(®") as differential of M(®) at ®"
as follows:
DM(0%) = —D11Q(0*16")(D2°Q(0°10")) " (3.18)

Due to, when t approaches +=, we have:

DllQ(@(t+1) (;)*) = D'1Q(0*|0")

D*°Q(0|e®) = D2°Q(e*]0%)

DloQ(@(Hl) @*) — DlOQ(@*|@*) =07

DQ(e*|e®W) = p1°Q(e*|6*) = 07

Jim R (0©) = Jim R;(6®) =0

tl—i>£-noo R, (@(t+1)) = @(tymnl)@* RZ(@(t+1)) =0

The derivative DQ(®’ | ®) is expended as follows:
DQ(®'|®) = DL(®') + D1H(0'|0)
It implies:
D11Q(0*|0") = DL(0*) + D'1H(6*|0*)
=0+ D''H(0%|6%)
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(Due to theorem 3.4)
(Due to equation 3.8)
Therefore, equation 3.18 becomes equation 3.17.
DM(0%) = D H(0*|0*)(D?°Q(0*10")) 'm
Finally, theorem 3.4 is proved. By combination of theorems 3.2 and 3.4, | propose corollary
3.3 as a convergence criterion to local maximizer of GEM.
Corollary 3.3. If an algorithm satisfies three following assumptions:
(1) QM@ | ©Y) > Q(OY | ©Y) for all t.
(2) The sequence {L(G(t))}:: is bounded above.
(3) D°Q(®" | ®") = 0" and D?°Q(®" | ®") negative definite with suppose that @ is the
converged point.
Then,
(1) Such algorithm is an GEM and converges to a local maximizer ®" of L(®) such that
DL(®") = 0" and D?’L(®") negative definite.
(2) Equation 3.17 is obtained m
The assumption 1 of corollary 3.3 implies that the given algorithm is a GEM according to
definition 3.1. From such assumption, we also have:
Q(@(Hl)l@(t)) — Q(@(t)lg(t)) >0

(0D — @)(t))T(@(m) —0®W) >0
So there exists some & > 0 such that

Q(@(t+1)|@(t)) — Q(@(t)lg(t)) > Sz(@(t+1) — @(t))T(@(Hl) — @(t))
In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {G)“)}:j

converges to some ©" in the closure of Q when the sequence {L(G)(t))}:i is bounded above

according to the assumption 2 of corollary 3.3. From equation 3.2, we have:
DL(@(t+1)) — DlOQ(@(t+1) |@(t)) _ DlOH(@(t+1) |®(t)) — _DIOH(@(C+1) |®(t))

When t approaches +<° such that @® = @D = @" then,

DL(®") = DYQ(®" | ®") — DH(®" | ®)
D°H(®" | ®") is zero according to equation 3.7. Hence, along with the assumption 3 of
corollary 3.3, we have:

DL(®") =D*Q(®"|®") =0T

Due to DL(®") = 0, we only assert here that the given algorithm converges to ®" as a stationary
point of L(®). Later on, we will prove that ®" is a local maximizer of L(®) when Q(M(©Y) |
0Y) > Q(eY | W), DL(®") = 0, and D*’Q(®" | ®") negative definite. Due to D*Q(®" | ®") =
0T, we obtain equation 3.17. Please see the proof of equation 3.17 m

By default, suppose all GEM algorithms satisfy the assumptions 2 and 3 of corollary 3.3.
Thus, we only check the assumption 1 to verify whether a given algorithm is a GEM which
converges to local maximizer ®". Note, if the assumption 1 of corollary 3.3 is replaced by
“Q(M(®Y) | ©9) > QY | ®Y) for all t” then, ®” is only asserted to be a stationary point of
L(®) such that DL(®") = 0". Wu (Wu, 1983) gave a deep research on convergence of GEM in
her/his article “On the Convergence Properties of the EM Algorithm”. Please read this article
for more details about convergence of GEM.

Because H(®’ | ®) and Q(®’ | ®) are smooth enough, D*’°H(®" | ®") and D*°Q(0®” | ®") are
symmetric matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second
derivatives, 2018). Thus, D*°H(®" | ®") and D*°Q(®" | ®") are commutative:

D*H(©" | ©)D¥Q(0" | @") = D¥Q(0" | )H*Q(0" | ©")

64


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

Suppose both D?°H(®" | ®") and D*°Q(®" | ®") are diagonalizable then, they are simultaneously
diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is an (orthogonal)
eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange,
2013):

D?°H(©*|0*) = UH;U?

D*Q(©*|0*) = UQ.U™!
Where He" and Q. are eigenvalue matrices of D?°H(®" | ") and D?Q(®" | ®"), respectively,
according to equation 3.19 and equation 3.20. Of course, hi", hy",..., hy" are eigenvalues of
D®H(®" | ®") whereas q1", 02",..., g are eigenvalues of D?°Q(®" | ®").

R, 0 - 0
Hp=(0 R 0 (3.19)
0 0 - h
¢ 0 - 0
=% % 0 (3.20)
0 0 - g

From equation 3.17, DM(®") is decomposed as seen in equation 3.21.
DM (@) = (UHU™H)(UQU™) ™! = UHUTU(Q)™'U ™ = U(H;(Qe)™ DU~ (3.21)
Let Me" be eigenvalue matrix of DM(®), specified by equation 3.17. As a convention Me™ is

called convergence matrix.
hi
/ mi=2 0 . 0 \
a1
0

L
M; = Hy(Q) ' = m2 = 0 (3.22)

-
0 0 comi= q—:
T
Of course, all mi" = hi" / gi" are eigenvalues of DM(®") with assumption gi* < 0 for all i. We
will prove that 0 <m;" <1 for all i by contradiction. Conversely, suppose we always have m;" >
1 or mi" < 0 for some i. When © degrades into scalar as ® = & with note that scalar is 1-element
vector, equation 3.17 is re-written as equation 3.23:
DM(O) = M* — e = [y MEP)—MO) 0D 6"
") =Me=m"= lim —— 5 = MM Zo 5 (3.23)
-1
= D2°H(6"10*)(D?*°Q(6716%))
From equation 3.23, the next estimate 6*Y) approaches 8" when t — +<o and so we have:
M(e(t)) _ M(e(t+1)) 9(t+1) _ 0(t+2)
DM(97) = Me =m” = lim —— 58—y = im — &5 5@
Q(t+2) _ 9(t+1)

= Jim = e —g®

So equation 3.24 is a variant of equation 3.23 (McLachlan & Krishnan, 1997, p. 120).
6(t+2) _ 9(t+1)

N M o=t — T 3.24
DM(0") = Mg =m" = lim G e (3.24)

Because the sequence {L(B(t))}:j =L(6W),L(6D®),...,L(6W), ... is non-decreasing, the

sequence {H(t)}::i =0W,0@, ..,0®, .. is monotonous. This means:
91S92339t39t+1SS9*
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Or
It implies
6(t+1) _ 6*
02w =7
So we have
- 6(t+1) _ 6*
OSDM(H)ZMe ZtETngl

However, this contradicts the converse assumption “there always exists mi" > 1 or m;" < 0 for
some i”. Therefore, we conclude that 0 < m;" < 1 for all i. In general, if @ is stationary point
of GEM then, D?Q(®" | ®") and Q. are negative definite, D®’H(®" | ®") and He" are negative
semi-definite, and DM(®") and Me" are positive semi-definite, according to equation 3.25.

q; <0,Vi

h; <0,Vi (3.25)

0<m <1,Vi
As a convention, if GEM algorithm fortunately stops at the first iteration such that @ = @@
=®" then, mi" = 0 for all i.

Suppose ©9 = (6,9, 9,0, ... 6,9) at current t™ iteration and ©" = (61", 67",..., 6"), each m;"
measures how much the next 6% is near to 6;". In other words, the smaller the m;" (s) are, the
faster the GEM is and so the better the GEM is. This is why DLR (Dempster, Laird, & Rubin,
1977, p. 10) defined that the convergence rate m* of GEM is the maximum one among all m;”,
as seen in equation 3.26. The convergence rate m” implies lowest speed.

h
m* = max{mj, mj, ...,m;} where mj = - (3.26)
m:

*

i 1
From equation 3.2 and equation 3.17, we have (Dempster, Laird, & Rubin, 1977, p. 10):
DZL(G)*) — DZOQ(@*IG)*) _ DZOH(G)*I(E)*) — DZOQ((E)*IG)*) _ DM(@*)DZOQ(G)*l@*)
= (I - DM(©%))D?*°Q(0*|0%)
Where | is identity matrix:

=\

By the same way to draw convergence matrix Me~ with note that D*H(®" | @), D*’Q(0" | ©%),
and DM(@®") are symmetric matrices, we have:

L, = (I - Me)Qe (327)
Where L¢" is eigenvalue matrix of D2L(®"). From equation 3.27, each eigenvalue Ii" of L¢” is
proportional to each eigenvalues g of Q¢" with ratio 1-m;" where m;” is an eigenvalue of Me".
Equation 3.28 specifies a so-called speed matrix Se":

si=1—-m] 0 0
S: = 0 sp=1-my - 0 (3.28)
0 0 e S =1—mj
This implies
Le = SeQe

From equation 3.25 and equation 3.28, we have 0 < ;" < 1. Equation 3.29 specifies Le” which
is eigenvalue matrix of D?L(®").
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L=sigi 0 0
= ¢ bL=se oo 0 (3.29)
0 0 - L=sig

From equation 3.28, suppose @0 = (1©, 6,0,..., 6:9) at current t" iteration and ®" = (61,
02",..., 0r), each si = 1-m;" is really the speed that the next 6*Y moves to 6;". From equation
3.26 and equation 3.28, equation 3.30 specifies the speed s” of GEM algorithm.
s =1-m"
Where, (3_30)
m‘ = r?n%x{m},mz, .omy}

As a convention, if GEM algorithm fortunately stops at the first iteration such that @ = @@
=@ then,s" =1.

For example, when ® degrades into scalar as ® = ¢, the fourth column of table 1.3
(Dempster, Laird, & Rubin, 1977, p. 3) gives sequences which approaches M = DM(6")
through many iterations by the following ratio to determine the limit in equation 3.23 with 6"
= 0.6268.

9(t+1) — 9"

90 — g+
In practice, if GEM is run step by step, 8" is not known yet at some t™" iteration when GEM
does not converge yet. Hence, equation 3.24 (McLachlan & Krishnan, 1997, p. 120) is used to
make approximation of Me™ = DM(6") with unknown 6" and 6 # 60+,
9(t+2) _ 0(t+1)

DM@O") ~ — D —5m
It is required only two successive iterations because both 8% and 6% are determined at t™
iteration whereas 64 is determined at (t+1)" iteration. For example, in table 1.3, given # =
0.5, @ =0.6082, and 6®) = 0.6243, at t = 1, we have:
DM(6%) ~ 83 —9@  0.6243 — 0.6082 01488
O~ @a =g =~ 0e082-05

Whereas the real Me” = DM(6") is 0.1465 shown in the fourth column of table 1.3 at t = 1.

We will prove by contradiction that if definition 3.1 is satisfied strictly such that Q(M(®®)
|00 > Q(OM | ®Y) then, Ii" < 0 for all i. Conversely, suppose we always have I;* > 0 for some
i when Q(M(0Y) | ®Y) > Q(OY | ®Y). Given © degrades into scalar as ® = § with note that

scalar is 1-element vector, when Q(M(@V) | 8Y) > Q@Y | ®V), the sequence {L(6 (t))}::i =
L(6W),L(6®@),...,L(6D), ...is strictly increasing, which in turn causes that the sequence
{9“)}:1 =0W, 0@, ., 9®, _is strictly monotonous. This means:

0 <0y <+ <O <Bpyq < <O

Or
0,>60,>>60,>60,,>>0"

It implies

9(t+1) —9*

w< 1,Vt
So we have

9(t+1) —9*
Se=1-M;=1—- lim ———>0

t—o+o0 e(t) —0*
From equation 3.29, we deduce that D?L(6") = Le" = Se'Qe" < 0 where Q:" = D®Q(6" | ") < 0.
However, this contradicts the converse assumption “there always exists Ii" > 0 for some i when
QM(B®Y) | 8Y) > Q(BY | ®Y)”. Therefore, if QM(OY) | W) > QO | ®WY) then, Ii" < 0 for all
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i. In other words, at that time, D’L(®") = L¢" is negative definite. Recall that we proved that
DL(®") = 0 for corollary 3.3. Now we have D?L(®") negative definite, which means that @" is
a local maximizer of L(®") in corollary 3.3. In other words, corollary 3.3 is proved.

Recall that L(®) is the log-likelihood function of observed Y according to equation 2.3.

L(8) = log(g(v1e)) =log( [  r(xieDax
p~1(Y)

Both —-D?°H(®" | ®") and —D¥*Q(®" | ®") are information matrices (Zivot, 2009, pp. 7-9)
specified by equation 3.31.

1;(0*) = —D?°H(0*|0*%)
I4(®") measures information of X about ®" with support of Y whereas lo(®@") measures
information of X about ®". In other words, 14(®") measures observed information whereas
lo(®") measures hidden information. Let Vi(®”) and Vo(®") be covariance matrices of ®” with
regard to 14(®@") and Io(®"), respectively. They are inverses of 1n(®") and lo(®") according to
equation 3.32 when ®” is unbiased estimate.

V(07 = (14(89)
Vo(0") = (Io(")

Equation 3.33 is a variant of equation 3.17 to calculate DM(®") based on information matrices:
_1 _1
DM(©") = I4(0") (Io(07) = (V4(07)) Vy(e") (3.33)

If f(X | ®), g(Y | ®) and k(X | Y, ®) belong to exponential family, from equation 3.14 and
equation 3.16, we have:

(3.32)

D?°H(©*|0*) = =V (z(X)|Y,0%)

D?°Q(0|0") = —V(z(X)|0")
Hence, equation 3.34 specifies DM(@") in case of exponential family.

DM(©) = V(x(X)|Y,0")(V(z(x)|e") (3:34)
Equation 3.35 specifies relationships among Vu(©%), Vo(®"), V(z(X) | Y, ©%), and V(z(X) | @)
in case of exponential family.
-1
V(0 = (V(z(X)IY,0%))

I (3.35)
Vo (@) = (V(z(X)e")

4. Variants of EM algorithm

The main purpose of EM algorithm (GEM algorithm) is to maximize the log-likelihood L(®)

=log(g(Y | ®)) with observed data Y by maximizing the condition expectation Q(®’ | ®). Such

Q(®’ | ®) is defined fixedly in E-step. Therefore, most variants of EM algorithm focus on how

to maximize Q(®’ | ®) in M-step more effectively so that EM is faster or more accurate.

4.1. EM with prior probability

DLR (Dempster, Laird, & Rubin, 1977, pp. 6, 11) mentioned that the convergence rate DM(®")
specified by equation 3.17 can be improved by adding a prior probability z(®) in conjugation
with f(X | ©), g(Y | ®) or k(X | Y, ®) according to maximum a posteriori probability (MAP)
method (Wikipedia, Maximum a posteriori estimation, 2017). For example, if z(®) in
conjugation with g(Y | ®) then, the posterior probability z(® | Y) is:

9(Y0)r(0)
n(0Y) =
Jo9(Y10)7(0)de
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Because feg(Yle))n(@)d@ is constant with regard to ©, the optimal likelihood-maximization
estimate ®" is a maximizer of g(Y | ®)z(®). When n(®) is conjugate prior of the posterior
probability z(® | X) (or z(® | Y)), both z(®) and z(® | X) (or z(® | Y)) have the same
distributions (Wikipedia, Conjugate prior, 2018); for example, if z(®) is distributed normally,
7(® | X) (or z(® | Y)) is also distributed normally.
For GEM algorithm, the log-likelihood function associated MAP method is £L(©) specified
by equation 4.1.1 with note that z(®) is non-convex function.
L£(0) =log(g(Y10)m(0)) = L(©) + log(n(®)) (4.1.1)
It implies from equation 3.2 that
Q(0'1) +log(m(6")) = L(0") + log(n(€") + H(€'|0) = L(©") + H(€'|6)
Let,
Q+(0'10) = Q(e’|©) + log(7(6") (4.1.2)
GEM algorithm now aims to maximize Q+(®’ | ®) instead of maximizing Q(®’ | ®). The proof
of convergence for Q+(®’ | ®) is not changed in manner but determining the convergence
matrix Me for Q+(®’ | ®) is necessary. Because H(®’ | ®) is kept intact whereas Q(®’ | ®) is
replaced by Q+(®’ | ®), we expect that the convergence rate m” specified by equation 3.26 is
smaller so that the convergence speed s is increased and so GEM algorithm is improved with
regard to Q+(®’ | ®). Equation 4.1.3 specifies DM(®") for Q+(®’ | ®).

DM(0%) = D H(0*|6")(D?°Q,(0"]6")) (4.1.3)
Where Q+(®’ | ©) is specified by equation 4.1.2 and D®°Q+(®’ | ©) is specified by equation
4.1.4.

D?°Q,(0'|0) = D?°Q(0’'|0) + D?°L(n(0")) (4.1.4)
Where,

L(n(@’)) = log(n(@’))
Because Q(®’ | ®) and 7z(®*) are smooth enough, D®Q(®" | ®") and DXL (z(®")) are symmetric
matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018).
Thus, D?Q(®" | ®") and D?°L(z(®")) are commutative:

D*Q(0” | ©")D*L((@")) = D*°L(x(®"))D*’Q(®" | @)

Suppose both D?°Q(®" | ®") and D¥L(z(®")) are diagonalizable then, they are simultaneously
diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is an (orthogonal)
eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange,
2013):

D*Q(e%|0") =vQ;v~!

D*L(m(0)) = VIV 1
Where Q¢” and TI¢" are eigenvalue matrices of D?°Q(®" | ®") and D®L(z(®")), respectively.
Note Q" and its eigenvalues are mentioned in equation 3.20. Because #(®") is non-convex
function, eigenvalues z1", 72",..., " of ITe" are non-positive.

T[ik 0 eee 0
= %0
0 0 - m

From equation 4.1.2, D*Q.(®" | ®") is decomposed as below:

D?°Q,(97]0*) = D?°Q(07|07) + DX°L(n(0%)) = VQsV 1+ VIV 1 =V (Q; + M;)V !
So eigenvalue matrix of D?°Q+(®" | ®") is (Qe” + IIe") and eigenvalues of D?°Q+(®" | ®") are
i + 7, as follows:
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G+m 0 0
gm=| 9 @tm o0
0 0 e gyt Ty
According to equation 3.19, the eigenvalue matrix of D*°H(®" | ©") is He" fixed as follows:
;e 0 - 0
L I

Due to DM(®") = D*H(®" | ©")D¥*Q.(®@" | ®"), equation 3.21 is re-calculated:
DM(0*) = (UH;U HWUQ; + TI)HU Y™ = UHUTTU(Qs + ) 1U
= U(H;(Q; + )~ Hu~! ]
As a result, the convergence matrix Me which is eigenvalue matrix of DM(®) is re-calculated

by equation 4.1.5.
hi
/ mi = ——— 0 0 \
q; + 1y
0 oM 0
M; = Hi(Qz + 1) ™" = e e (4.1.5)
b
0 0 ceomE = ——
. qr + Ty
The convergence rate m™ of GEM is re-defined by equation 4.1.6.
h*
m" = m&x{m{,mﬁ, .., my} where m; = pr -I-lnlfk (4.1.6)

Because all hi", gi", and 7" are non-positive, we have:
hi hi .
* * S _* 4 Vl
q +1m; g X
Therefore, by comparing equation 4.1.6 and equation 3.26, we conclude that m” is smaller with
regard to Q+(®’ | ®). In other words, the convergence rate is improved with support of prior
probability z(®). In literature of EM, the combination of GEM and MAP with support of 7(®)

results out a so-called MAP-GEM algorithm.

4.2. EM with Newton-Raphson method
In the M-step of GEM algorithm, the next estimate @Y is a maximizer of Q(® | ®Y), which
means that @Y s a solution of equation D°Q(® | ®Y) = 0" where D°Q(® | ©®Y) is the first-
order derivative of Q(® | ®®) with regard to variable ®. Newton-Raphson method (McLachlan
& Krishnan, 1997, p. 29) is applied into solving the equation D°Q(® | ®Y) = 0. As a result,
M-step is replaced a so-called Newton step (N-step).

N-step starts with an arbitrary value ®q as a solution candidate and also goes through many
iterations. Suppose the current parameter is ®;, the next value ®; +1 is calculated based on
equation 4.2.1.

-1 T
01 = 0; — (D?°(0;]0©®)) ~ (D¢ (0;]0®)) (4.2.1)
N-step converges after some i™" iteration. At that time, ®i.1 is solution of equation D°Q(® | V)
= 0 if ©®i+1=0i. So the next parameter of GEM is @™V = @.1. The equation 4.2.1 is Newton-
Raphson process. Recall that D°Q(® | ®Y) is gradient vector and D?°Q(® | ®Y) is Hessian
matrix. Following is a proof of equation 4.2.1.
According to first-order Taylor series expansion of D°Q(® | ®Y) at ® = ®; with very small
residual, we have:
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T

D1°Q(0]0®) = p1°Q(6;|0®) + (0 — 8,)7 (D*°q(6;]0®))
Because Q(® | ®Y) is smooth enough, D?Q(® | ®Y) is symmetric matrix according to
Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies:

D*Q(e | ©Y) = (D*Q(e | 6Y))T
So we have:
DQ(e]e®) = p1°Q(0,|0®) + (6 — 6,)TD?°Q(0,|0W)
Let ® = @i+1 and we expect that D°Q(®i+1 | ®V) = 0T so that ;1 is a solution.
07 = D1°Q(0;4,]|0®) = D1°Q(0;|0®) + (8;4, — ©,)"D?°Q(6;|6®)

It implies:

(01" = (0) — D*°Q(0;]0®) (DZOQ(@il@“)))_l
This means:

-1 T
01 = 0, — (D°Q(0;]0®)) ~ (D™°Q(0;]0®)) m
Rai and Matthews (Rai & Matthews, 1993) proposed a so-called EM1 algorithm in which
Newton-Raphson process is reduced into one iteration, as seen in table 4.2.1 (Rai & Matthews,
1993, pp. 587-588). Rai and Matthews assumed that f(x) belongs to exponential family but their
EML algorithm is really a variant of GEM in general. In other words, there is no requirement
of exponential family for EM1.
E-step:
The expectation Q(® | ®VY) is determined based on current ®Y, according to equation
2.8. Actually, Q(® | ®V) is formulated as function of ©.
M-step:
The next parameter @Y is:
-1 T
0D = 0@ — (p20g(e®[e®)) ~ (D°Q(e®]e®)) (4.2.2)
Table 4.2.1. E-step and M-step of EM1 algorithm
Rai and Matthews proved convergence of EM1 algorithm by their proposal of equation 4.2.2.
Second-order Taylor series expending for Q(® | ®Y) at ® = @Y to obtain:
Q(@|®(t)) — Q(@(t+1)|®(t)) + DlOQ(@(t+1)|@(t))(® _ @(t+1))
n (9 _ @(1:+1))TD20Q(®(()L“+1)|@(t)>(® _ @(t+1))
Where 0™ is on the line segment joining ® and @Y, Let ® = ®Y, we have:
Q(@(t+1)|@(t)) _ Q(@(t)l(::)(t))
— _Dloo(e(t+1)|®(t))(@(t+1) _ @(t))
— (ett+v) — @(t))TDZO(G(()t+1)|®(t))(®(t+1) —0®)
By substituting equation 4.2.2 for Q@Y | @) — Q(®® | ®®) with note that D*°Q(® | ®V) is
symmetric matrix, we have:
Q(@(t+1)|@(t)) _ Q(@(t)|@(t))

= ~D0q(e*]e) « (00g(6¥]6)) " « (D1%0(6¥]6))’
~D10Q(8®[0®) « (Don(@(t>|@<t)))‘1 «02(6{*0[e®) « (D2°g(e®]0®))
+ (D10g(8®]0®))"
(Due to ((DZOQ(@@|®@))_1)T = ((DZOQ(@@|9“)))T>_

Let,

-1

1

= (Don(@(t)|@(t)))‘1>
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-1 -1

A= (DZOQ(G(t)le(t))) % D20(88t+1)|®(t)) % (DZOQ(O(t)lg(t)))
Because Q(®’ | ®) is smooth enough, D®XQ(O® | ©V) and D*Q(®:™ | ®Y) are symmetric
matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018).
Thus, D*Q(BY | @Y) and D*Q("*Y | ®V) are commutative:

D20Q(@(t) | @(t))DZOQ(®O(t+1) | @(t)) - D20Q(@Q(t+1) | ®(t))DZOQ(®(t) | @(t))
Suppose both D?Q(OY | ®Y) and D*Q(O,"Y | ®Y) are diagonalizable then, they are
simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is an
(orthogonal) eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017)
(StackExchange, 2013):

DZOQ(O(t)le(t)) — WQ(gt)W_l
p2Q(ey*|e®) = wol w1

Where Q¢® and Q.**?" are eigenvalue matrices of D?Q(O®Y | @) and DXQ(O:™? | @),
respectively. Matrix A is decomposed as below:

A= (woPw)" « (Wl w1) « (wePw-1)”
_ W( gt))_1W_1WQ£t+1)W_1W( ét))_l _ W( ét))_1Q£t+1)Qgt)W_1

-1
_ W( gt)) S)Qé”l)W‘l _ WQng)W_l
(Because Qe and Q.Y are commutative)
Hence, eigenvalue matrix of A is also Qe™Y. Suppose D?°Q(®:"*V | ®VY) is negative definite, A
is negative definite too. We have:

Q(@(t+1)|@(t)) _ Q(@)(t)|@(t))
— _D10Q(®(t+1)|®(t)) % (DZOQ(G)(t)le(t)))_l . (DloQ(e(t)le(t)))T

_D10Q(@(t)|@(t)) % A * (DloQ(@(t)lg(t)))T
Because D*Q(0" | @) is negative definite, we have:
DlOQ(@(t+1)|®(t)) % (Don(@(t)l(;)(t))) 1 . (DloQ(@(t)lg(t)))T <0
Because A is negative definite, we have:
D1OQ(@(t)|@(t)) « A * (Dloo(@(t)le(t)))T “0
As a result, we have:
Q(e®V|e®) — g(6®W]e®) > 0,vtm
Hence, EM1 surely converges to a local maximizer ®" according to corollary 3.3 with
assumption that D?°Q(®™Y | ®V) and D?°Q(®® | ®Y) are negative definite for all t where
@0V is a point on the line segment joining ® and @Y,

Rai and Matthews made experiment on their EM1 algorithm (Rai & Matthews, 1993, p.
590). As a result, EM1 algorithm saved a lot of computations in M-step. In fact, by comparing
GEM (table 2.3) and EM1 (table 4.2.1), we conclude that EM1 increases Q(® | ®V) after each
iteration whereas GEM maximizes Q(® | ®V) after each iteration. However, EM1 will
maximizes Q(® | ®Y) at the last iteration when it converges. EM1 gains this excellent and
interesting result because of Newton-Raphson process specified by equation 4.2.2.

Because equation 3.17 is not changed with regard to EM1, the convergence matrix of EM1
is not changed.

M, = H.Q;"
Therefore, EM1 does not improve convergence rate in theory as MAP-GEM algorithm does
but EM1 algorithm really speeds up GEM process in practice because it saves computational
cost in M-step.
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In equation 4.2.2, the second-order derivative D?°Q(®® | ®Y) is re-computed at every
iteration for each @(t). If D?°Q(O® | ®M) is complicated, it can be fixed by D?°Q(OY | ®@W)
over all iterations where ®® is arbitrarily initialized for EM process so as to save
computational cost. In other words, equation 4.2.2 is replaced by equation 4.2.3 (Ta, 2014).

@(t+1) — @(t) _ (DZOQ(O(l)le(l)))_l (DloQ(G(t)le(t)))T (423)

In equation 4.2.3, only D*Q(®® | ®) is re-computed at every iteration whereas D*Q(OWY |
0W) is fixed. Equation 4.2.3 implies a pseudo Newton-Raphson process which still converges
to a local maximizer ®" but it is slower than Newton-Raphson process specified by equation
4.2.2 (Ta, 2014).

Newton-Raphson process specified by equation 4.2.2 has second-order convergence. |
propose to use equation 4.2.4 for speeding up EM1 algorithm. In other words, equation 4.2.2
is replaced by equation 4.2.4 (Ta, 2014), in which Newton-Raphson process is improved with
third-order convergence. Note, equation 4.2.4 is common in literature of Newton-Raphson
process.

Qi+ — ® _ (DZOQ(q)(t)le(t)))_l (D10Q(®(t)|@(t)))T
Where, (4.2.49)
1 -1 T
o® — @ _ 5 (Don(@(t) |@(t))) (DloQ(@(t) |@<t)))

The convergence of equation 4.2.4 is same as the convergence of equation 4.2.2. Following is
a proof of equation 4.2.4 by Ta (Ta, 2014).
Without loss of generality, suppose @ is scalar such that ® = 0, let

q(8) = D°Q(6]6®)
Let r(0) represents improved Newton-Raphson process.

0
n(6) = q(0)

q'(6 + w(6)q(6))
Suppose w(#) has first derivative and we will find w(6). According to Ta (Ta, 2014), the first-
order derivative of (0) is:

(6
7'(6) = )

q' (6 + w(6)q(8))
q(e)q"(e + w(0)q(0))(1+ ' (8)q(6) + w(6)q'(6))

('(6 + w(©)q(®))
According to Ta (Ta, 2014), the second-order derivative of 5(6) is:

n 9
n'(8) = — q"(0)

q'(6 + w(0)q(6))
2q (0)q" (6 + w(0)q(0))(1 + w'(6)q() + w(6)q'(8))

(¢/(6+ ww)q(e)))
290) (q"(6 + 0(©a®))’ (1+'(©)a(6) + w(©)q )’
('8 + w(®)q(8)))
L 907" (6 + 0(8)a(®))(1 + ' (6)4(0) + w(0)q'(8))"
('8 + 0©)q(®))
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N (9(8)°q"(6 + w()q(8))w" (6)

2
(¢'(6 + w(8)9(9)))
4 q(0)q" (6 + w(6)q(0))(20'(0)q'(6) + w(6)q" (6))
2
(4'(6 + w(6)q(6)))

If 8 is solution of equation q(6) =0, Ta (Ta, 2014) gave:

q(6) =0

17(6_) =6

n'@=0

nen q”( 2) N

O =" (1+20(0)q' @)

In order to achieve n”'(8) = 0, Ta (Ta, 2014) selected:
w® =~ L& v
2q'(6)

According to Ta (Ta, 2014), Newton-Raphson process is improved as follows:

gt+1) — g(®) _ q(e(t))

qr (Q(t) — M)
2q'(60)
This means:
o+ =9 — DIOngle(t)) ©
p2og (9@ — 2 Q(66) |0
2D20Q(g]e®)

As aresult, equation 4.2.4 is a generality of the equation above when @ is vector.

| propose to apply gradient descent method (Ta, 2014) into M-step of GEM so that Newton-
Raphson process is replaced by gradient descent process with expectation that descending
direction which is the opposite of gradient vector D°Q(® | ®) speeds up convergence of GEM.
Table 4.2.2 specifies GEM associated with gradient descent method, which is called GD-GEM

algorithm.
E-step:
The expectation Q(® | ®Y) is determined based on current ®©, according to equation
2.8. Actually, Q(® | ©V) is formulated as function of .
M-step:
The next parameter @Y s:
QU+ = 1) _ 5 (® (D10Q(@(t>|@(c)))T (4.2.5)
Where y® > 0 is length of the descending direction. As usual, y© is selected such that
y® = argmax Q(CD(t)l(E)(t)) (4.2.6)
Y
Where,
d® = e 4 VD10Q(@(t)|@(t))

Table 4.2.1. E-step and M-step of GD-GEM algorithm
Note, gradient descent method is used to solve minimization problem but its use for solving
maximization problem is the same. Second-order Taylor series expending for Q(® | ®Y) at ®
= @™ to obtain:
Q(®|®(t)) — Q(@(t+1)|®(t)) + DlOQ(@(t+1)|@(t))(® _ @(t+1))

n (@ _ @(t+1))TD20Q(®gt+1)|@(t))(® _ ®(t+1))
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Where @,V is on the line segment joining ® and @Y. Let ® = ©Y, we have:
Q(@(t+1)|@(t)) — Q(@(ﬂ'@(ﬂ)
— _D10Q(®(t+1)|®(t))(@(t+1) _ @(t))
— (ett+v) - @(t))TDZO(G(()t+1)|®(t))(®(t+1) —0®)
By substituting equation 4.2.5 for Q(@®Y | @®) — Q(@"Y | ®Y), we have:
Q(@(t+1)|@(t)) - Q(@(t)|@(t))
= y®p1og(pt+D|e®) (D10Q(®(t)|@(t)))T

—_(v®)?p10 Ol®Y x« p2o( @D [a®)) « (p10 ®]e® r
(r®)"prQ(e®|e) « D2(0, 7|0 ) « (D1Q(e|6™)
Due to:
DQ(0t+D|e®) « (D10Q(®(t)|®(t)))T >0
Suppose DZO(G)ng) |G)(t)) is negative definite

y(t) >0
As a result, we have:
(e V|e®) — g(6®W[e®) > 0,vtm
Hence, GD-GEM surely converges to a local maximizer ®" according to corollary 3.3 with
assumption that D?°Q(®™? | ®Y) is negative definite where ®? is a point on the line
segment joining ® and Y,

It is not easy to solve the maximization problem with regard to y according to equation
4.2.6. So if Q(® | @) satisfies Wolfe conditions (Wikipedia, Wolfe conditions, 2017) and
concavity and D*Q(® | ®Y) is Lipschitz continuous (Wikipedia, Lipschitz continuity, 2018)
then, equation 4.2.6 is replaced by equation 4.2.7 (Wikipedia, Gradient descent, 2018).

© _ (DlOQ(G(t)|®(t)) — DloQ(@(t)|@(t—1))) (0® — e(t-D)

ID10Q(0®]0®) — p1og(e®]et-1)|?
Where |.| denotes length or module of vector.

4.2.7)

4.3. EM with Aitken acceleration
According to Lansky and Casella (Lansky & Casella, 1992), GEM converges faster by
combination of GEM and Aitken acceleration. Without loss of generality, suppose © is scalar

such that © = 6, the sequence {B(t)}:: =0W,0@, ..,0®, ... is monotonous. From equation

3.23
- 6(t+1) — 9"
DM(E") = I g
We have the following approximate with t large enough (Lambers, 2009, p. 1):
6(t+1) — 9" 9(t+2) —0*

90 —g+  grD _ g
We establish the following equation from the above approximation, as follows (Lambers, 2009,

p. 1):
9(t+1) — 9" 0(t+2) —9*

9® _g+ gD _ g
S (6D — 97)” ~ (9E+2 — 9*)(0® — %)
= (g(t+1))2 _ 26(t+1)6* ~ Q(t+2)e(t) _ Q(t+2)e* — g+
= (9(t+2) _ 29(t+1) + e(t))e* ~ e(t)(e(t+2) _ 29(t+1) + H(t)) _ (9(t+1) _ e(t))z
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Hence, 6" is approximated by (Lambers, 2009, p. 1)
(pt+D) — g(t))z
et+2) — 29(t+1) 4 ()
We construct Aitken sequence {9(”}:1 =0W, 9@, ., 8@, . such that (Wikipedia, Aitken's
delta-squared process, 2017)

g* ~ 9 —

(t+1) _ g(®)? ©)?
(6 60) o _(86°)
pE+2) — 29t+1) 4 g(©) A29©
Where A is forward difference operator,
AOD) = g(t+1) _ g(®)

(4.3.1)

O — g® _

And
A20® = A(A0D) = A(6EHD — 9O) = A9+ — Ag(®)
— (0(t+2) _ 9(t+1)) _ (9(t+1) _ g(t)) — 9(t+2) _ 29(t+1) + g(t)
When @ is vector as © = (61, a,..., 6", Aitken sequence {@(t)}:j =0W, 0@, ...,00 s
defined by applying equation 4.3.1 into its components 6 (s) according to equation 4.3.2:

(20

Vi=12,..,1 (4.3.2)
Az

6 = g _

Where,
Aei(t) — ei(t+1) _ Hi(t)
2260 = 9D _ 2@+ D) | ®
According theorem of Aitken acceleration, Aitken sequence {@(t)}:j approaches @ faster

than the sequence {G(t)}:i =0W,0@,...,0®, ... with note that the sequence {G)(t)}:j is
instance of GEM.

: éi(t) — 6
lim (t)— =0
t—+o0 gi _ 91*
Essentially, the combination of GEM and Aitken acceleration is to replace the sequence
{G(t)}:i by Aitken sequence {@(t)}:i as seen in table 4.3.1.
E-step:
The expectation Q(® | ®Y) is determined based on current ®©, according to equation
2.8. Actually, Q(® | ©V) is formulated as function of ®. Note thatt=1, 2, 3,... and @©
=W,
M-step:
Let @D = (6,9, 0,0, 6T be a maximizer of Q(® | ©V). Note @™ will become
current parameter at the next iteration ((t+1)™ iteration).

— ~ p— ~ — ~ — T - -
Aitken parameter ¢~ = (91“ Vg gl 1)) is calculated according to
equation 4.3.2.

(Aeft‘”)2

AZB-(t_l)
l
If 91 = §(t-2) then, the algorithm stops and we have 8¢~1 = (-2 = @*,
Table 4.3.1. E-step and M-step of GEM algorithm combined with Aitken acceleration
Because Aitken sequence {@(t)}:jconverges to @” faster than the sequence {G)(t)}:i does, the
convergence of GEM is improved with support of Aitken acceleration method.

Alt—-1) _ H(t-1)
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In equation 4.3.2, parametric components 6 (S) converges separately. Guo, Li, and Xu (Guo,

Li, & Xu, 2017) assumed such components converges together with the same rate. So they

replaced equation 4.3.2 by equation 4.3.3 (Guo, Li, & Xu, 2017, p. 176) for Aitken sequence
{@(t)}%-oo.
t=1

Rl

00 — g® _
00 =00 — o

4.4. ECM algorithm
Because M-step of GEM is complicated, Meng and Rubin (Meng & Rubin, 1993) proposed a
so-called Expectation Conditional Expectation (ECM) algorithm in which M-step is replaced
by several computationally simpler Conditional Maximization (CM) steps. Each CM-step
maximizes Q(® | ®Y) on given constraint. ECM is very useful in the case that maximization
of Q(® | ®Y) with constraints is simpler than maximization of Q(® | ®) without constraints
as usual.
Suppose the parameter @ is partitioned into S sub-parameters ® = {®1, @>,..., ®s} and there
are S pre-selected vector function gs(®):
G ={g,(0);s=12,..,5} (4.4.1)
Each function gs(®) represents a constraint. Support there is a sufficient enough number of
derivatives of each gs(®). In ECM algorithm (Meng & Rubin, 1993, p. 268), M-step is replaced
by a sequence of CM-steps. Each CM-step maximizes Q(® | ®®) over ® but with some function
0s(®) fixed at its previous value. Concretely, there are S CM-steps and every s CM-step finds
O that maximizes Q(® | ®Y) over @ subject to the constraint gs(®) = gy(@* 1), The
next parameter @Y is the output of the final CM-step such that @Y = @) Table 4.4.1
(Meng & Rubin, 1993, p. 272) shows E-step and CM-steps of ECM algorithm.
E-step:
As usual, Q(® | ®Y) is determined based on current ®© according to equation 2.8.
Actually, Q(® | @) is formulated as function of @.
CM-steps:
There are S CM-steps. In every s" CM step (s =1, 2...., S), finding

o(t+3) = argmax {Q (6|0®) with subject to g4(0) = g, (G)(H%))} (4.4.2)
®

The next parameter ®*3 is the output of the final CM-step (S CM-step):

oE+1) — G(Hg) (4.4.3)
Note, ©*9 will become current parameter at the next iteration ((t+1)" iteration).
Table 4.3.1. E-step and CM-steps of ECM algorithm
ECM algorithm stops at some t'" iteration such that @® = @ = @*, CM-steps depend on how
to define pre-selected functions in G. For example, if gs(®) consists all sub-parameters except
O then, the s CM-step maximizes Q(® | ®V) with regard to ®@s whereas other sub-parameters
are fixed. If gs(®) consists only ©s then, the s" CM-step maximizes Q(® | ®V) with regard to
all sub-parameters except ®s. Note, definition of ECM algorithm is specified by equation 4.4.2
and equation 4.4.3
From equation 4.4.2 and equation 4.4.3, we have:
Q(@(t+1)|@(t)) — Q(M(@(t))lg(t)) > Q(G(t)|®(t)),Vt

Hence, the convergence of ECM is asserted according to corollary 3.3. However, Meng and
Rubin (Meng & Rubin, 1993, pp. 274-276) provided some conditions for convergence of ECM
to a maximizer of L(®).
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5. Applications of EM

5.1. Mixture model
As usual, let X be the hidden or latent space and let Y be the observed space. Especially, the
random variable X in X represents latent class or latent component of random variable Y in Y.
Suppose X is discrete and ranges in X = {1, 2,..., K}. The so-called probabilistic finite mixture
model is represented by the PDF of Y, as seen in equation 5.1.1.

K

F(710) = ) axfy(¥16y) (5.1.1)
X=1
Where,
0 = (ay,ay, ..., g, 01,05, ...,0)T
K
Z a, = 1
k=1

Note, Y can be discrete or continuous. Recall that the ultimate purpose of EM algorithm is to
maximize f(Y|®) with subject to ®. Each fx(Y|6x) is called the X' partial PDF of Y whose partial
parameter is 6x. Each fx(Y|6x) is also called the X" observational PDF of Y. It is really the
conditional PDF of Y given X, as seen in equation 5.1.2.

fx(Y10x) = fF(Y]X,0%) (5.1.2)
From equation 5.1.1, the mixture model f(Y|®) is the mean of K partial PDFs. The variable X
implies which partial PDF “generates” Y (Bilmes, 1998, p. 5).

Each ax is called mixture coefficient. It is really the probability of discrete X, as seen in
equation 5.1.3. However, in mixture model, each ax is also considered as parameter, which is
belongs to the compound parameter ©.

ay = P(X) (5.1.3)
The joint probabilistic distribution of X and Y, which implies the implicit mapping between X
and Y, is product of the mixture coefficient ax and the X" PDF of Y, as seen in equation 5.1.4.

F(X,Y18) = POOFYIX, 6x) = axfx(Y165) (514)
This implies:
FV10) = ) F(X,¥10) = ) PUOS(YIX.0) = ) auf(Y165) (515)

Equation 5.1.6 specifies the conditional probability of X give_n Y. Please pay attention to this
important probability.
ax fx(Y10x)
e fi(Y16,)
Following is the proof of equation 5.1.6. According to Bayes’ rule, we have:
P(x x,0
POt = 21V = y,68) = < PO 01,6
2x=1 PCOS(YIX, 0x)
Applying equation 5.1.3 and equation 5.1.4, we have:
e fr (¥16x)

2?:1 axfx(Y16y)

P(X|Y,0) = (5.1.6)

PX=x|Y =y,0) =

In other words, equation 5.1.6 is establishedm
Now GEM algorithm is applied into mixture model for estimating the parameter ®. Derived
from equation 2.12, the conditional expectation Q(®’|®) of mixture model becomes:

0(@'16) = Y P(XIY,0)log(£(X,¥[6)) = ) PXIY,Olog(axfy(¥I6p)  (51.7)
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In practice, suppose Y is observed as a sample Y = {Y1, Y2,..., Yn} of size N in which all Y; (s)
are mutually independent and identically distributed (iid). The observed sample Y is associated
with a a hidden set (latent set) X' = {X1, Xa,..., Xn} of size N. All X (s) are iid and they are not
existent in fact. Let X € X be the random variable representing every X;. Of course, the domain
of X is X. Derived from equation 2.15, equation 5.1.8 specifies Q(®’|®) given such Y.

N

Q(O'10) = > > P(XI¥; )log(axfx (%165)) (5.18)

Equation 5.1.8 is the general case of equation 5.1.7. At the t" iteration of GEM, given current
parameter OO = (1O, a2,.... ak®, 6,10, 6,0,..., 6O)T, the conditional expectation specified
by equation 5.1.8 is written as foIIows

o(ele®) = ZZP(XIYUG@)Iog(axfx(weX))

Thus, the unknown of Q(0|0Y) is @ (al, 02,..., ak, 61, Oa,..., 6k)". Because X is discrete and
ranges in {1, 2,..., K}, the conditional expectatlon Q(0|6Y) is re-written as equation 5.1.9 for
convenience.

0(e|e®) = z Z P(k|Y;, ) log(aef (Yi16:)) (5.1.9)

i=1k=1

Where the conditional probability P(k | Y, ®Y) is determined by equation 5.1.10 which is indeed

equation 5.1.6.
(t)fk( g(t))

(o)

At M-step of the current t™ iteration, Q(®|®Y) specified by equation 5.1.9 is maximized with
subject to ®. How to maximize Q(®|®®Y) with subject to ® is dependent on types of partial
PDFs fi(Yil6k).

Because there is the constraint }};}_; 6, = 1, we use Lagrange duality method to maximize
to maximize Q(®|®WY). The Lagrange function la(®, 4 | ®Y) is sum of Q(®|®Y) and the
constraint YX_, a,, = 1, which is specified by equation 5.1.11.

K
la(,0®) = g(6]6®) + 1 (1 -> ak>
k=1

P(k|v;,0®) = P(X = k|y;,0®) = (5.1.10)

N K

_ Z Z P(k|Y;, 0©)log(aty) (5.1.11)
i=1 kl?l K

4 ; kZ:l P(k|Y, 0©)log(fi (¥i16,)) + A (1 - kZl ak>

Note, 4 > 0 is called Lagrange multiplier. Of course, la(®, A | ®V) is function of ® and A. The
next parameters ax**? that maximizes Q(®|0Y) is solution of the equation formed by setting
the first-order partial derivative of Lagrange function regarding ax and 4 to be zero with suppose
that the Lagrange function is first-order smooth function.
dla(0,2|0®)

aak N

N K K
9 z Z P(k|v;, ©©)log(ay) + 2 (1 - Z ak> _ 0

i=1 k=1 k=1
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@z—P(k|Y 00)—1=0

ThIS |mpI|es
N

> P(k[Y, 00) — a2 = 0 (5.1.12)

i=1
Summing equation 5.1.12 over K classes {1, 2,..., K}, we have (Bilmes, 1998, p. 5):

Zzp(ﬂy ow) — AZ a4 =0

i=1k=
SN-1=0
K K
(due to ZP(k|Yi,®(t)) = 1and Z a, = 1)
k=1 k=1
S A=N

Substituting 2 = N into equation 5.1.12, the next parameters ox™? is totally determined by

equation 5.1.13.
N

1
af*" == P(k[Y, 0©) (5.1.13)

i=1
Note, the conditional probability P(k | Yi, ®®) is determined by equation 5.1.10.

When parameters a*Y and 1 are determined, the Lagrange function la(®, 4 | ®9) is now
function of parameters 6k as la(66®). The next parameters 6"V is solution of the equation
formed by setting the first-order partial derivative of Lagrange function regarding 6k to be zero
with suppose that the Lagrange function is first-order smooth function.

0la(0,2|0®) o

“ 20, (iiP(le O(”)log(fkwwk))) =07

i=1k=
- z p(k[Y, 0©) alog(fk(Y 16:) _ 4

Thus the next parameters Hk(“l) is solution of the equation 5.1.14.
N

dlo Y;|0
Z P(k|Y;, 0®) g(fu(¥il6:) _ 07 (5.1.14)
i=1 96k
The two steps of GEM algorithm for constructing mixture model at some t™" iteration are shown
in table 5.1.1. Note, suppose the Lagrange function is first-order smooth function.
E-step:
The conditional probability P(k | Yi, ®) is calculated based on current parameter @© =
(a1, a2¥,..., ak®, 6,10, 8,0, ..., 6«7, according to equation 5.1.10.

(t)fk( |9(t))
£aa A (1]of%)
M-step:

The next parameter @Y = (a1 ™D, oD, o ™D, 9,0 9,00 g IYT which is a
maximizer of Q(® | ®Y) with subject to @, is calculated by equation 5.1.13 and equation
5.1.14. Note, 6 is solution of the equation 5.1.14.

=

P(k|v;,0®) =
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N

1
a}({t+1) — Nz P(k|Yi,9(t))
i=1
v atog(fil(v[6{ )
HISHD:ZP(lei'@(t)) 08 fk( ‘| k ) — 0T
i=1 90k

Table 5.1.1. E-step and M-step of GEM algorithm for constructing mixture model regarding
first-order smooth Lagrange function
GEM algorithm converges at some t™" iteration. At that time, @ = @™V = @0 is the optimal
estimate of mixture model regarding first-order smooth Lagrange function.
Suppose that each PDF fi(Yi|6k) ) belongs to regular exponential family and then, solving

equation 5.1.4 is easier as follows:
N

S (i, 00) ZEULIA) _ oy
k

o EN:P(HYL-, 0®) dlog (b(Yi) expfgz,ff(lfi))/a(ek)) o
=1 !

(Due to fi(Yil6k) ) belongs to exponential family)
N
& z P(k|Y, 0®) ((r(m)T - log’(a(@k))) =07
i=1

N
o z P(k|v; 0©) (T(Yi)T - (E(T(Y)wk))T) =07
i=1

(Due to log’(a(6k)) = (E(z(Y|&)))", please see table 1.2)
In general, the next parameters 6{**V is solution of the equation 5.1.15 within regular
exponential family.
N
z P(k|Y;,09)(z(Y;) — E@(Y)|6;)) = 0 (5.1.15)
i=1
Where Y is the random variable representing all Y; (s) and,

B@)I6) = [ (MfiIo)dY
Y
The two steps of GEM algorithm for constructing mixture model at some t™" iteration are shown
in table 5.1.2 with suppose that each partial PDF fx(Y|6x) is assumed to belong regular
exponential family.
E-step:
The conditional probability P(k | Yi, ®©) is calculated based on current parameter @® =
(a1, a29,..., ak®, 6,10, 8,0, ..., 6«7, according to equation 5.1.10.

t t
o0
t t
K e f(v]e®)
M-step:
The next parameter @Y = (g™, oD ™D, 6,0 9,00 oI which is a

maximizer of Q(® | ®Y) with subject to ©, is calculated by equation 5.1.13 and equation
5.1.15. Note, 6"V is solution of the equation 5.1.15.

P(k|v;,0®) =
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N

1
al(ct+1) Nz P(klyi» @(t))

i=1

LD, ZP(k|Y o) (‘L’(Y) = (r(y)|e<t+1))) =0

Table 5.1.2. E-step and M- step of GEM algorithm for constructing mixture model regarding
regular exponential family

GEM algorithm converges at some t™" iteration. At that time, @ = @™V = @0 is the optimal

estimate of mixture model regarding regular exponential family.

There is a special case that each fi(Yi|6k) is normal distribution, which is popular in domain
of mixture model, with note that normal distribution belongs to regular exponential family.
Thus, let Y be random variable representing all Y;. Without loss of generality, suppose Y is
vector so that each f(Y|6k) is multinormal distribution. Recall that each fi(Y|6k) is called the k™
partial PDF of Y or the k™ observational PDF of Y. In this case, the mixture model is called
normal mixture model (Gaussian mixture model) and it is easy to solve equation 5.1.14 or
equation 5.1.15 for 6k. Suppose random variable Y is vector of size n.

n 1 1
fx(Y10,) = (2m) 2|24 | 2exp (— 5 Y — )T (Y — #k)) (5.1.16)

Where ux and Xk are mean vector and covariance matrix of fk(Y|6k), respectively. The notation
|.| denotes determinant of given matrix and the notation ! denotes inverse of matrix . Note,
Yk is invertible and symmetric. Now we find other parameters 6 = (.9, £ )T by solving
directly equation 5.1.14 or equation 5.1.15. Recall that each Y; conforms to multinormal
distribution, according to equation 5.1.16.

n 1
Fei16) = 2m) 212l Zexp (=5 (% — w55 Y — ) )

Where ux and Xx are mean and covariance matrix of fk(Yi|6k), respectively. The Lagrange
function is re-written as follows:

N K
o) = ZZ P(k|Y;, 0©)log(at)

i=1k

Nk
1
+ Z Z P(k|Y;, 0®) (—Elog(ZR) - ElogIZkI
i=1 k=1
K
1 Ty-1
=S O = S = ) ) +2( 1= ) e
k=1

Where p is the dimension of Y;; in other words, p is the dimension of space Y.
The first-order partial derivative of Lagrange function with respect to u is (Nguyen, 2015,

p. 35):
31a(0,1|0®) <
2a(OMOT) 3 (k] 09 - 2
a(y; — X (Y —
<due to ( 'uk)a‘uk (i~ i) = —2(Y; — u,)"2;t when X! is symmetric
k

The next parameter 4 that maximizes Q(®]®Y) is solution of the equation formed by setting
the first-order partial derivative of Lagrange function with regard to ux to be 0T. Note that 0 =
(0, 0,..., 0)" is zero vector.

dla(0,1|0W)

=07
O
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N
& D P(k[%, 09) (% — )5 = 07

e <Z P(k|y;, 0©)(Y; - uk)T> Yt =0"

i=1

N
= > P(k[%, 00) (% - w)" = 07
i=1
N
= > P(K]Y, 09)(%, — ) = 0
i=1

N N
3" POl 0)c= Y P01 0) =0
i=1

=1

N N
o (7 Ple1100) = ) Peefr o)

i=1 i=1
This implies equation 5.1.17 to specify the next parameter ;. (*V.

(e+1) _ 2iea P(K|Y, 0D)Y;
) L, P(k|v, 0©)
Note, the conditional probability P(k | Yi, ®©) is determined by equation 5.1.10.
The first-order partial derivative of Lagrange function with respect to X is:

o®) N

dla(0,A 1., 1__ -
(T ZP(k|Yi,®(t)) (—Ezkl +§Zk1(yi_l"k)(yi _.uk)TZkl)
K =

(5.1.17)

4

Due to:
0log(I%el) _ .,
0% k
And
O(Y; — ) TS — ) atr((Yi —w) (Y — uk)TZzZl)
Eb B 9%,
Because Bilmes (Bilmes, 1998, p. 5) mentioned:
(Y — ) "E MY — ) = (Y — ) (% — )2
Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(4) = ).; a;;.
This implies (Nguyen, 2015, p. 45):

— _ - Ty-—1
a(Yl - :uk)TEkl(Yi - .uk) — atr((Yl 'uk)(Yl 'uk) Zk ) — _ZEI(YL _ .uk)(Yl _ ,le)Tlel
Where Zx is symmetric and invertible matrix. Substituting the next parameter (% specified
by equation 5.1.16 into the first-order partial derivative of Lagrange function with respect to

>k, we have:

N
dla(0,A|0W®) 1 1 T
A ) AN [ _ty-1 4 Sy-1fy _ ,,&+D\(y _ , t+1) _1)

5 le(kln,e) ) (=55t + 5 (= ) (% - ) 3

=

The next parameter X*% that maximizes Q(®|®Y) is the solution of equation formed by setting
the first-order partial derivative of Lagrange function regarding Xk to zero matrix. Let (0)
denote zero matrix.
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0 0 0
0 0 0
o=
0 0 0
We have:
ola(e,2|0®) ©
azk -

@zP(k|YL,G)“)) (——zk +;zk (% = )(v; - u(””) )—(0)

= Z P(k|YL,®(t))< —%, + (y M(HD (t+1)) )
N

= z P(k|y @(t)) <(y 'u(t+1))(Y ,Ll(t+1) (2 P(k|Yi' @(t))) %, = (0)

l_%\l N 1
s <z P(k|yl.'@(t))> ES 2 P(klyi:@(t)) <(Y ,u(tﬂ))(Y 'u(t+1)) )
This li?nlplies equation 5.1.18 to 1specify the next parameter (%),

N P(kly, e® < (t+1) Y, — (t+1) )
g _ (el @) (1 — ™)~ ™) (5.1.18)
Y =

¥ P(k]Y, 00)
Note, the conditional probability P(k | Yi, ®Y) is determined by equation 5.1.10 and the next
parameter .Y is specified by equation 5.1.17.

As a result, the solution &Y = (™Y, V)T of equation 5.1.14 or equation 5.1.15 is
specified by equation 5.1.17 and equation 5.1.18 when each fi(Y|6k) is multinormal distribution
within normal mixture model. The two steps of GEM algorithm for constructing normal
mixture model at some t" iteration are refined in table 5.1.3 (Bilmes, 1998, p. 7).

E-step:
The conditional probability P(k | Yi, ®V) is calculated based on current parameter @© =
(a1, 29,.... ok ®, 010, 6,0,.... 6«®)T, according to equation 5.1.10. Note, in normal
mixture model, each observational PDF fi(Y|6k) is (multivariate) normal distribution with
mean vector ux and covariance matrix X such that 6« = (ux, Z)".

a® fk(Y' g(t))
t t
£ aOA(1 o)
M-step:
The next parameter @Y = (a1 ™D gD oD, 9, 6,0 oI which is a

maximizer of Q(® | ®Y) with subject to O, is calculated by equation 5.1.13, equation
5.1.17, and equation 5.1.18 with current parameter @®,

P(k|Y;, 0®) =
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N
1
a}({t+1) — NZ P(k|Yi, @(t))
i=1
(t+1) _ P P(k|Yi, @(t))yi
‘ N, P(k]Y, 00)

1, P(k|Y, 00) <(Y — i) (v - uff“))T>

iL, P(k|v, 0©)

Table 5.1.3. E-step and M-step of GEM algorithm for constructing normal mixture model
GEM algorithm converges at some t™" iteration. At that time, @ = @™V = @0 is the optimal
estimate of normal mixture model.

An interesting application of finite mixture model is soft clustering. Traditional clustering
methods assign a fixed cluster to every data point in sample, which means that every data point
belongs exactly to one cluster. There are some popular (hard) clustering methods such as K-
means and K-medoids (Han & Kamber, 2006, pp. 451-457). Soft clustering is more flexible
when every data point belongs to more than one cluster and the degree of assignment is
represented by a probability. Concretely, GEM algorithm for normal mixture model described
in table 5.1.3 is applied into soft clustering. Given sample Y = {Y1, Y,..., Yn} of size N in
which all Y; (s) are iid and each Yi is also called a data point, soft clustering partitions Y into K
clusters and each cluster k is considered as hidden variable (X =1, 2,..., K) and is represented
by the aforementioned normal PDF fi(Y|6k)

n 1
Fei16) = 2m) 212l Zexp (=5 (% — w55 Y — ) )

Where 6k = (ux, )" includes mean vector u and covariance matrix Zx of fi(Y|6k), respectively.
Especially, ux is considered as centroid of cluster k. Given cluster k, the degree of assignment
that a data point Y belonging to cluster k is specified by such fk(Y|6k). Therefore, GEM algorithm
for normal mixture model is used to learn ® = (a1, az,..., ak, 61, 02,..., Ok)'. The parameter ax
indicates degree of popularity of cluster k, which can be considered as capacity or size of cluster
k. It can be also considered as coverage ratio of cluster k. The higher the ax is, the larger the
cluster k is. Essentially, soft clustering is to estimate ox and 6« by GEM. Suppose after GEM
results out the best estimate @ = (a1”, a2’,..., ax’, 61", 82",..., )T, it is required to determine
to which cluster a new data point Y is more likely to belong. We calculate K joint probabilities
p1 = a1 f1(Y]|01)), p2 = a2 T2(Y]62"),..., and px = ax fk(Y|6k"). Indeed, each px is the joint
probability of Y and cluster k that come together. Suppose some pj is maximum then, Y is more
likely to belong cluster j.

Of course, the probability of each data point Y within soft clustering for K clusters is
K

FV10) = ) afelV16:)
k=1
But this probability f(Y|®) is not important. The most important task of GEM for soft clustering
is to compute the estimate ®" = (a1, a2’,..., ak’, 61", 62',..., O")" from sample Y in order to
determine clusters because each cluster k is represented by a pair {ax”, 6 }.
Example 5.1.1. Given sample Y = {Y1, Y2, Y3, Y4}, we apply GEM for soft clustering Y into

Zl(ct+1) —

K=2 clusters.
Y1i|Ye
Y. 0] O
Y| O 1
Ys| 2| 0
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Of course, we have Y1 = (y11=0, y12=0)", Y2 = (y21=0, y22=1)", Y3 = (yz1=2, y32=0)T, and Y4 =
(ya1=2, y42=1)". The parameter ® = (a1, az, 61, 62) is initialized as follows:
ail) = agl) =0.5
u? = Y = (0,007
W _y@w_(1 0
2 =50 = ( . 1)
Note, it is easy to calculate normal PDF fi(Y|6k) with known 6k = (ux, Z)".

At the 1% iteration, E-step we have:

fl(y1 91(1)) ~0.16
v,[689) = 0.16
Y,|67) = 0.097
Y,|65V) = 0.097

(vale:)
(v2]o:”)
(v2]e:”)
(vs]6") = 0.022
(v5[02”)
(vs[o:)
(vs[oz”)

= oo

Y5|6Y) = 0.022
AL
Y,|6Y) = 0.013

= &

"

=0.5

P(k = 1|y, 0W) =
F,(1[o®) + a7, (n]6D)

P(k = 2|y, 0W) = =05

D (o) + a7, (1[6)

=0.5

P(k = 1|1, 0W) =
D5 (1]6®) + a7 (1]6)

P(k = 2|v,,0W) = =0.5

«Pfi(1]0) + e (Y| 0)

P(k = 1|v5,0W) = =0.5

«Pfi(15]0) + e (1] 0)

=0.5

P(k = 2|v5,0W) =

ail) fi (Y3 91(1)) + agl) fa (Y3 91(1))

P(k = 1|y, 0W) = =05

ail) fi (Y4 91(1)) + agl) fa (Y4 91(1))

P(k = 2|v,,0W) = =0.5

V£ (1,]60) + O (vi[0)
At the 1% iteration, M-step we have:
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a? =
a4

@ _ Zi:lp(k = 1|Yi» @(1))Yi
leP(k = 1|Yi'®(1))

s (k= 11,00) (1 - ) (v~ )’

1

) =

a? =
@

@ i 1P(k = 2|y, W)y,
- l=1P(k = 2|Yl' @(1))

N P(k = 2|y, 0M) <(Y M(Z))(Y M(Z)) >

2

= =

4zp(k = 1|y, 0™) = 05

= (1,0.5)7

+ P(k =2|y,0W)

4zp(k = 2|y, 0™) = 05

= (1,0.5)7

P(k =1|r,
P(k = 2|1y,
P(k = 1|1,
P(k = 2|1,
P(k = 1|5,

i1 P(k = 2|1, 00)
At the 2" jteration, E-step we have:

fi(7

6?) = 0.1171

6,”)

6,”)

-

-

6,”)

6,”)
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025)

=0.5

=0.5

=0.5

=0.5
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() (2)
a” foYs]60
P(k = 2|v,,0®) = — 2(2)2( - ) =05
a, fl(Y3 0, )+a2 fz(Y3 0, )
(2) ()
a,” f1( Y4|O
P(k = 1]¥,,0®) = — 1(2)1( s ) =05
a, fl(Y4 0, )+a2 fZ(Y4 0, )
(2) (2)
a,” foY,|0
P(k = 2|1, 0@) = — 2(2)2( L ) =05
a, fl(Y4 0; )+a2 fz(Y4 h )
At the 2" iteration, M-step we have:
4
«® = %Z P(k = 1Y, 0@) = 05
i=1
4 _ )
@ _ Ziei P(k = 1]y, 0@y, 1057
= = ,05
My ::}zlp(k — 1|Yi'@(2)) ( )
T
s o) () -)
3) _ _
B I CER D) o 025)

4
1
af? =2 ) P(lc=2]v,09) = 0.5

=1
o _ 2t P(k = 2]Y, 0@)y,

= 1 . T
Ha + P(k=2|y,0®) (1,0.5)
T
3 i1 P(k = 27, 6®) <(Yl — )% - 1Y) ) 1 0
- _
. =1 Pk = 2|V, 0®) =00 o02s)

Therefore, GEM stops at the 2" iteration with the estimate ®@ = 0®) = @" = (a1", 2", 61", 627)".
a; =a, =0.5
ui=u3 = (1,057
e _ o _ (1 0
| | Henmfp 0p) |
Given new data point Y = (0.5, 0.5)", it is required to determine to which cluster Y is more

likely to belong. We calculate K joint probabilities as follows:
p1=aif,(Y]6]) = 0.5%0.28 = 0.14
P2 = ayf,(Y|0;) = 0.5%0.28 = 0.14
Due to some p1=pz, the likelihood that Y belongs to such two clusters is equal m
Every observation in ordinary sample is univariate or multivariate but there is a case that
ordinary sample becomes dyadic sample related to two sets of objects, which causes some
modifications of mixture model. Dyadic data which is also called co-occurrence data (COD)
contains co-occurrent events of objects. It is necessary to obtain statistical models to represent
dyadic data and fortunately, finite mixture model is the one. Recall that EM is applied to learn
mixture model. Here we focus on EM and mixture model for dyadic data or COD.
Given two finite sets X = {Xx1, X2,..., Xn) and Y = {y1, y2,..., ym) with note that x; (s) and y;
(s) represent X'-objects and Y-objects, respectively; exactly, they are names of objects. The
numbers of X -objects and Y-objects are | X|=N and |Y|=M, respectively. For example, in
information retrieval, x; (s) are documents and y; (s) are keywords. Hence, xi and y; are not
evaluated as numbers. An observational pair (xi, yj) € X X Y is called a co-occurrence of X;
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and y;. Dyadic data or COD S contains these co-occurrences with note that a co-occurrence (xi,
yj) can exist more than one time. So, each co-occurrence (xi, y;j) is indexed by an index r. As a
result, each co-occurrence is denoted by the triple (xi, yj, r) and we have (Hofmann & Puzicha,
1998, p. 1):
S={(x,y,r):1<r<|s|} (5.1.19)
Where,
x; EX = {xl,xz, ...,x|x|}

Vi €Y ={nye vy}

Of course, the size of § is |S|. As a convention, xi(r) and y;(r) indicate that X-object and Y-
object at the r'" co-occurrence are xi and y;, respectively. Thus, the triplet (xi, yj, r) can be
denoted as (xi(r), yj(r), r). For example, suppose X = {x1, X2, Xx3) and Y = {y1, y2), and dyadic
data of 4 co-occurrences, S = {(x1, Y1, 1), (X1, Y1, 2), (X1, Y2, 3), (X1, Y1, 4)}, we observe that x;
and y1 occur together three times at r=1, r=2, and r=4 where as x1 and y, occur together one
time at r=3. In the first co-occurrence (xu, y1, 1), the notation x1(1) indicate that the X-object at
this co-occurrence is xi1. In the third co-occurrence (xi, y2, 3), the notation y»(3) indicate that
the Y-object at this co-occurrence is ya.

If each co-occurrence of x; and yj is associated with a value z (Hofmann, Puzicha, & Jordan,
Learning from Dyadic Data, 1998, p. 1), the triple (xi, yj, r) becomes the quadruplet (xi, yj, , r)
which is called valued co-occurrence of x;j and yj. The value z is called associative value or co-
occurrent value. If z is value of a variable Z then, Z is called associative variable or co-occurrent
variable. As a result, the sample § is called valued dyadic data or valued COD. Note, Z can be
univariate or multivariate (vector).

S={(xpy,Zr)1<r<]|S|} (5.1.20)
Where,
x; € X = {x1, %5, ., X201}

Y €Y ={yuye Yy}

As a convention, Z(r) or z(r) indicates that the associative value at r'" co-occurrence is Z=z.
Thus, the quadruplet (xi, yj, Z, r) can be denoted as (xi(r), yj(r), Z(r), r). For example, suppose
X ={Xq, X2, x3) and Y = {y1, ¥2), and valued dyadic sample of 4 co-occurrences, § = {(x1, y1, 6,
1), (X1, ¥1, 8, 2), (X1, Y2, 7, 3), (X1, Y1, 9, 4)}, we observe that x; and y; occur together three times
at r=1, r=2, and r=4 where as x1 and y» occur together one time at r=3. Moreover, at r=1, r=2,
r=3, and r=4, associative values are Z(1)=6, Z(2)=7, Z(3)=8, and Z(4)=9, respectively. Valued
dyadic data is special case of dyadic data. As a convention, dyadic data is default if there is no
additional information.

Given fixed x, let Sy, be the X -partitioned subset of § which contains co-occurrences

whose X -objects are fixed at xk (Hofmann & Puzicha, Statistical Models for Co-occurrence
Data, 1998, p. 1). Note, S, can be empty. The size of S, is Sy, |-

Se, = (05, 27): % = X} (5.1.21)
Dyadic data § is partitioned into | X| subsets S, .
[X1

s = U Sy
k=1

Vi# S, NSy, = 1)
Given fixed y, let §,, be the Y-partitioned subset of § which contains co-occurrences whose
Y-objects are fixed at y1. Note, S, can be empty. The size of S, is |S,,,|.

Sy, ={(xwyj2.7):y; = v} (5.1.22)
Dyadic data § is partitioned into |Y| subsets S,,.
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Vi#],Sy, NS, =0
Given fixed x¢ and fixed y), let Sy, ,, be the subset of the § which contains co-occurrences
whose X -objects and Y-objects are fixed at xx and yi. Note, S, ,, can be empty. The size of

'SkaI is |5kaz|'

kY1

S = (X0 ¥, 2,7): % = X0,y = w1} (5.1.23)
Let n(xi) and n(y;) denote the number of x; and the number of yj, respectively.
n(xi) = |'le‘|

(5.1.24)

n(y;) = | |
Let n(xi, y;) denote the number of x; and ;.

n(x1, ;) = |Sxy)| (5.1.25)
Let n(xily;) and n(yj|xi) denote the frequency of xi given y; and the frequency of y; given Xi,
respectively.

n(x: ;)
n(xily;) =
Y n(y;)

( ) (5.1.26)
n xi,yj
n(yjlxl) - n(xl-)
For example, suppose X = {X1, X2, x3) and Y = {y1, y2), and dyadic data of 4 co-occurrences, S
={(x1, y1, 1), (x1, y1, 2), (X1, y2, 3), (X1, y1, 4)}, we have S, ={(x1, y1, 1), (x1, y1, 2), (X1, y2, 3),
(X1, y1, D}, Sy, = Sxy =D, Sy, = {(Xw, y1, 1), (X1, Y1, 2), (X1, Y1, 4)}, Sy, = {(X1, y2, 3)} Sxyy =
= {(Xl, Y1, 1) (Xl, Y1, 2) (Xla Y1, 4)} ‘leyz {(XL Y2, 3)} ‘szyl = ‘szyz = 5x3y1 x3y2 =0,
n(xy) = 1, n(x2) = n(x3) =0, n(y1) = 3, n(y2) = 1, n(xz, y1) = 3, n(X1, Y2) = 1, n(x2, y1) = n(x2, y2)
= n(x3, y1) = n(x3, ¥2) = 0, n(x1 | y1) = 1, n(x1 | y2) = 1, n(x2 | y1) = n(x2 | y2) = n(xa | y1) = n(xs |
y2) =0, n(y1 | X1) = 3/4, n(y2 | x1) = 1/4.

Suppose each co-occurrence (xi, yj) belongs to a latent variable C and C has K values cx (S).
These values ck (s) are called classes or aspects and thus, mixture model for dyadic data is also
called aspect model or latent class model which aims to discover the latent variable C. Without
loss of generality, let ck = k where k = 1, 2,..., K. The random variable C has discrete
distribution such that every value has an associated probability ax. Of course, there are K
probabilities ax (s). There are three kinds of dyadic mixture model for dyadic data such as
symmetric mixture model (SMM), asymmetric mixture model (AMM), and product-space
mixture model (PMM). These models were introduced by Hofmann and Puzicha (Hofmann &
Puzicha, Statistical Models for Co-occurrence Data, 1998).

The mixture model of dyadic data is called symmetric mixture model (SMM) if ax (s) are
independent from both x; and y;. SMM is defined as follows (Hofmann & Puzicha, Statistical
Models for Co-occurrence Data, 1998 p. 2):

P(xl,y] |®) Z akP(xl,y] |k) Z APk dj|k (5.1.27)
Where ax is the probability of aspect k. Note, P(.) denote probability.
ai = P(k)
The p;, is the probability of x; given aspect k.
ik = P(x;lk)

The g, is the probability of y;j given aspect k.
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qjic = P(y|k)
This implies that xi and y; are mutually independent in SMM.
P(x;, y5|k) = PCxil k)P (; k)
The joint probability of xi, y;, and k is:
P(x;,yj, k) = P(k)P(x;, yj|k) = arP(x;|K)P(vj|k) = arpirajik
The parameter of SMM is © = (ak, piKk, 0jk)" in which there are K(|X| + |Y| + 1) partial

parameters ok, Pik, and Qi Note
11 1Y

zak—lzqu—lszm—l

By applying GEM, given dyadlc sample 5 at the t" |terat|on of GEM, given current parameter
0 = (a®, pi®, q,|k(t))T the conditional expectation Q(®|0®) is (Nguyen, Learning Dyadic
Data and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, p. 5):

LY ¢
0(0]6®) = > P(k|xi(r), 3, 0 og(arpueaye)

r=1k=1
x| 1yl (5.1.28)
Z Z n(xl,y]) z P(k|xl,yj, G(t)) (log(ak) + log(p”k)
i=1j=

+log(q,-|k))

Where,
o
P(k|x;,y;,00) = — (t‘)' L (5.1.29)

1=1% Py 495
Note, n(xi, yj) is the number of co-occurrences (xi, ;) in §, which is specified by equation 5.1.25.
Please refer to equation 5.1.6 and equation 5.1.10 to comprehend equation 5.1.29. Because

there are three constraints
[ 1Yl

Z“k—lzpllk 1Zq1|k—1

We use Lagrange duality method to maX|m|ze to maX|m|ze Q(®|0Y). The Lagrange function
la(®, A | ®Y) is sum of Q(®|®Y) and these constraints, as follows (Nguyen, Learning Dyadic
Data and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, p. 5):

K x| i
la(0,2|0®) = @(0|6®) + A, (1 — Z ak> +2,(1- Z Pije |+ 43| 1— z jilk

X1 1Yl =
Z z n(xl,yj) Z P(k|xl,y], G(t)) (log(ak) + log(p”k) + log(q”k))
i=1 j=

| X 1Yl

A <1—Z(Zk>+ﬂz 1_Zpl|k +A3 1—Zq1|k

Note, A = (A1, A2, A3)" where 1:>0, 1,>0, and /1320 are called Lagrange multlpllers. Of course,
la(®, A | ®Y) is function of ® and /. The next parameters @Y that maximizes Q(®|©") at M-
step of some t" iteration is solution of the equation formed by setting the first-order partial
derivatives of Lagrange function regarding ® and A to be zero.

The first-order partial derivative of Lagrange function regarding ax is:
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1x1 1Yl

dla(0,A|0®
a( | ) Zzn(x“y] P(k|xl,y], ®) -2,

i=1j=
Setting this partial derlvatlve to be zero, We obtain:
1l 1Yl

Z Z n(x;,y;)P(klx, 5, 0) — aydy = 0
i=1j=1
Summing the equation above over K aspects {1, 2,..., K}, we have:
1l 1Yl

Z z n(x; ;) Z P(k|x;,y;,0®9) — 4, z a, =0

i=1j=
le (Yl || I'yl

& zZn(xl,yj) =04 = Zzn(xvyl

i=1 j=
This means the next parameters ax®? |s

e _ ZEEE G )P(klxi 3, 0©)
k

lel Iyl n(xl,y])

The first-order partial derivative of Lagrange functlon regarding pi is:
1Yl

dla(®,A|e®
(Op |!< ) z :n(xl,yj P(klxl,yj, (t)) — A
i

Setting this partial derivative to be zero we obtaln
1Yl

Z n (2, ;)P (k|x0,y;, 0©) = piidz = 0
j=1

Summing the equation above over X, we have:

1l 1Yl 1 X1

Zzn(xu:)’])P(k|xuy]'®(t)) Azzpdk =0

i=1j=
11 1Yl

S = Z Z n(ax, y;)P(k|x;, v;,0)
i=1 j=1
This means the next parameters pix**Y is:
(t+1) _ lyl "(xuy])P(k|xl,y],®(‘))

'|‘C x

(t+1) _ IXI n(xl’y])P(k|xl’y]’ G)(t))

e
J lel |y| n(xl,y])P(klxl,y],G)(t))
The two steps of GEM algorithm for SMM at some t" iteration are shown in table 5.1.4.
E-step:
The conditional probability P(k | xi, y;, ®©) is calculated based on current parameter @©
= (a®, pik®, gj®)T, according to equation 5.1.29.

(t) ® ©®
A Pie9jik

K o, 0 ©
=1 % Pii 4

(5.1.30)

(5.1.31)

(5.1.32)

P(klxi, yj' @(t)) =
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M-step:
The next parameter @Y = (™D, pi®™, gi™)T, which is a maximizer of Q(® | @)
with subject to @, is calculated by equation 5.1.30, equation 5.1.31, and equation 5.1.32.

LD = lel Iyl "(XL'YJ)P(HXUYJ' (t))

k ZIJ_CI Iyl n(xl,y])

(t+1) _ lyl n(xl,y])P(k|xl,y], o)
i|k ZIJ_CI Iyl n(xl,y])P(k|xl,y],9(t))
(t+1) _ n(xi»yj)P (k|xi, y;,09)
9|k

Zm lyl n(xl,y])P(k|xl,y],@(t))

Table 5.1.4. E-step and M -step of GEM algorlthm for SMM
GEM algorithm converges at some t™" iteration. At that time, " = @™V = @0 is the SMM itself.
When SMM is applied into soft clustering, dyadic data is clustered according to blocks and
each ax is coverage ratio of cluster k (aspect k).

The mixture model of dyadic data is called asymmetric mixture model (AMM) if a () are
only independent from xi or from y;. Without loss of generality, given ax (s) are only
independent from y; (of course, it is dependent on xi), AMM is defined as follows (Hofmann &
Puzicha, Statistical Models for Co-occurrence Data, 1998, p. 3):

K

P(x;,vi|0) = pigjii = v Z A i1k (5.1.33)
The o is the probability of aspect k given xi. =
ay; = P(klx;)
Where pi is the probability of xi.
pi = P(xy)
The gk is the conditional probability of y; given aspect k. Suppose y; is dependent from x; given

k, we have:
qji = P(yjlxi, k) = P(y;]k)
Note, g is the conditional probability of y; given xi, which is defined as follows:
K

ajii = P(yj|xi) = Z Ak|iqjik
k=1

The joint probability of xi, yj;, and k is:
P(x;, v, k) = P(x))P(y;, k|x;) = P(x)P(klx)P(yj|xi k) = piaw)iP(¥;]k) = piciijix
The parameter of AMM is ® = (o, pi, Qi)' in which there are K(|X| + |Y]) + |X| partial

parameters o, i, and gj. Note
1X1 1Yl

Zakll_lzpl_lijlk_l

By applying GEM, given dyadlc sample S at the ti" |terat|0n of GEM, given current parameter
00 = (a®, pi®, gjk®)T, the conditional expectation Q(®|OY) is:
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S| K
Q(ele®W) = z Z P(k|x;(r),y;(r), O(t))log(akliPinlk)

i 5,130
z Z n(x;, ;) Z P(k|x;y;,0®) (log(akh) + log(p;)
i=1j=

+ log(qﬂk))

Where,
I(c?p(t)q(fl)c
Lt
P(klx, 7, 00) = =T NG (5.1.35)
=1 lll pl q]”

Please refer to equation 5.1.6 and equation 5.1.10 to comprehend equation 5.1.35. Because

there are three constraints
[X| (Yl

zakll_lzpl_lijlk_l

We use Lagrange duality method to maX|m|ze to maX|m|ze Q(®|0Y). The Lagrange function

la(®, 1 | ©Y) is sum of Q(®|®Y) and these constraints, as follows:
|| 1Yl

K
la(9,2|0®) = Q(0|6®) + A, (1 — Z ak”) +2(1- Z pi |+4As(1- Z qjlk
X1 1Yl -
z z n(x;, ;) Z P(k|x;, y;,0®) (log(akh) + log(p;) + log(q”k))
ss K || 1Y
+Al<1_zakli>+/12 1_zpi + 13 1_qulk
k=1 i=1 j=1

Note, 1 = (A1, A2, A3)" where >0, 712>0, and 135>0 are called Lagrange multipliers. Of course,
la(®, 4 | ®) is function of ® and 4. The next parameters @Y that maximizes Q(®|0Y) at M-
step of some t™ iteration is solution of the equation formed by setting the first-order partial
derivatives of Lagrange function regarding ® and 4 to be zero.

The first-order partial derivative of Lagrange function regarding ax is:

1Yl
dla(e,2[0®) A|@<t>)
) ) e® yl
)= 3 ) b, 0) <
Setting this partial derivative to be zero we obtaln
1Yl
Zn(xi,yj)P(Hxi,yj, 0®) — apidy = 0
j=1
Summing the equation above over K aspects {1, 2,..., K}, we have:
1Yl K K
Z n(xl-,y]-) z P(k|xi,yj, G)(t)) - Z a,=0
j=1 k=1 k=1
1Yl 1Yl
S Zn(xl,y]) Lh=0s1 = Zn(xl,y])
j= j=1

This means the next parameters axi™*? is:
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(t+1) _ Iyl , (e, ;)P (ki v, 0©)

Cppi -~ = Iyl n(xl,y])

The first-order partial derivative of Lagrange function regarding pi is:
1Yl

ala(e A|e(f>) Z

(5.1.36)

n(xl, y] -,

Setting this partial derivative to be zero, we obtaln
1Yl

Zn(xi»)’j) —pil, =0
j=1

Summing the equation above over X, we have:

1l 1Yl |1

zZn(xl,y]) Azzpl =0

i=1j=
1x1 1Yl

S, = z z n(x;, ;)

i=1 j=1
This means the next parameters pi*™? is:

(t+1) _ lyl n(xl,yj)

l z:lix Yl n(xl,y])
The first-order partial derivative of Lagrange functron regarding Qi is:

dla(e,1|e®) ol 1
T Z n(x;, ;) — P(k|xi, 55, 09) — 45
66Ij|k = qjlx
Setting this partial derivative to be zero, we obtain:
||

Z n(xi, v;)P(k|xi, v, 09) = qjuds = 0
i=1

Summing the equation above over Y, we have:

1l 1Yl 1Yl

Z z n(x;, ;)P (k|x;, y;,00) — A5 Z qjik

i=1j=

(5.1.37)

Xl 1Yl 1x1 1Yl
& DY (i y)P (el v, 00) = 25 © 25 = > > n(x,y,)P (klxi, v, 0)
i=1j=1 i=1 j=1
This means the next parameters g is:
(t+1) _ lex1 n(xl,yJ)P(klxl,y],G)(t))

e
j lel Iyl n(xl,yJ)P(k|xuy], @(t))
The two steps of GEM algorithm for AMM at some t" iteration are shown in table 5.1.5.
E-step:
The conditional probability P(k | xi, yj, ®) is calculated based on current parameter @
= (oui®, pi®, i®)", according to equation 5.1.35.

(5.1.38)
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@), @) (@)
kllpl q}lk

K 0,06
1=1%); b; q]ll

P(klxl-, y], G(t)) =

M-step:
The next parameter @Y = (gD, pi®Y, i) T, which is a maximizer of Q(© | @V)
with subject to @, is calculated by equation 5.1.36, equation 5.1.37, and equation 5.1.38.

(t+1) _ lyl n(xl,y])P(k|xl,y], ©)

g = Iyl n(xl,y])

(t+1) _ l n(xi’yj)
Pi lel Iyl n(xl,y])

(t+1) _ |X| n(xl,y])P(k|xl,y],®(t))
Dk

Zm lyl n(xl,y])P(klxl,y],G)(t))

Table 5.1.5. E-step and I\/I -step of GEM algorithm for AMM
GEM algorithm converges at some t" iteration. At that time, ®" = @Y = @ is the AMM
itself. When AMM is applied into soft clustering, dyadic data is clustered vertically
(horizontally) and each axi is coverage ratio of cluster k (aspect k) according to xi. Soft
clustering with AMM is also called one-side clustering.

Product-space mixture model (PMM) is derived from SMM with a minor change that the
aspect set {1, 2,..., K} is Cartesian product of X -aspect set {1, 2,..., Ky} and Y-aspect set {1,
2,..., Ky }. In other words, the aspect space is still symmetric but is checked (stripped)
according to two directions X and Y.

{1,2,..,K} ={1,2, .., Kx} x {1,2, ..., Ky}
For every k belongs to {1, 2,..., K}, there always exists a respective pair: ky € {1,2, ..., Ky}
and ky € {1,2, s Ky}. However, for each k- or each ky, there are many respective k (Nguyen,
Learning Dyadic Data and Predicting Unaccomplished Co-occurrent Values by Mixture Model,
2020, p. 10).

(5.1.39)

k ~ {kx, ky}
ky~many k (5.1.40)
ky~many k
The sign “~” denotes correspondence. For example, given aspect set {1, 2, 3, 4, 5, 6}, X -aspect
set {a, b, c} and Y-aspect set {A, B}, we have a set of six correspondences: 1~{a, A}, 2~{a,
B}, 3~{a, C}, 4~{b, A}, 5~{b, B}, 6~{b, C}. Given a € {a, b, c}, we have three
correspondences among a and aspect set {1, 2, 3, 4, 5, 6} such as a~1, a~2, and a~3.
PMM is defined as follows (Hofmann & Puzicha, Statistical Models for Co-occurrence
Data, 1998, p. 4):

P(x;, ;@) = Z APl Uiy (5.1.41)
As usual, ax is the probability of aspect ck_but Dijk, IS the probability of x; given ky of k and
j|iey is the probability of yj given ky of k.
Pilky = P(xilkx)

Ay = P(vj]ky)
The joint probability of xi, y;, and k is:
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P(xl-,yj,k) = P(k)P(xi,yj|k) = akP(xl-lk)P(yj|k) = akP(inkx)P(yj|ky)
= AkPilkx j|ky
- - T - - -
The parameter of PMM is © = (ax, Dk q]-|ky) in which there are K + Ky | X| + Ky|Y| partial
parameters ox, pj|x,.» and qj|k . Note,
| 1Yl

z oy = 1 zpl“(x - 1 zq1|ky

Learning PMM is like Iearnlng SMM and so it is not necessary to duplicate the expansion of

Q(®|®Y). The two steps of GEM algorithm for PMM at some t™" iteration are shown in table
5.1.6.

E-step:
The conditional probabilities P(k | xi, yj, ®®), P(kx | Xi, yi, ®Y), and P(ky | xi, y;, ©9) are

calculated based on current parameter @® = (a,(f),pflt,zx, ](|t;2 ) according to equation

5.1.42, equation 5.1.43, and equation 5.1.44 (Nguyen, Learning Dyadic Data and
Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, p. 10).

(t)p(lt) q(lt)
k ilkx 1jlk
v, AO) = Y
P(k|x;, y;, 00) = L0 O (5.1.42)
P(kx|x: y;,09) = Z P(klxi, y;,09) (5.1.43)
k:ky~k
P(ky|x;,y;,0) = Z P(k|xi, y;, ) (5.1.44)
k:ky~k
Please refer to equation 5.1.6 and equation 5.1.10 to comprehend equation 5.1.42.
M-step:
The next parameter @1 = ( (”H,pffk;l), ](ltk“)) which is the maximizer of Q(© |
©WY) with subject to @, is calculated by equation 5.1.45, equation 5.1.46, and equation
5.1.47.

LD Zm lyl n(xl,yj)P(k|xl,y],®(t))

(5.1.45)

k lel Iyl n(xl,y])
(t+1) _ ley|1”(xi'3’f)P(kx|xvyj:@(t)) (5.1.46)
flex Zm lyl n(xl,y])P(kx|xl,y], t))
(t+1) _ lexl n(xl'yJ)P(kylxl'y}' t)) 5.1.47
Uiy = X1 |y| NG (5.1.47)
Xi- n(xl,y])P(k«y|xl,y], )

Table 5.1.6. E-step and M-step of GEM algorithm for PMM
GEM algorithm converges at some t™ iteration. At that time, " = @™V = @0 is the PMM itself.
When PMM is applied into soft clustering, dyadic data is clustered in checked (stripped) and
each ax is coverage ratio of cluster k (aspect k) but such cluster k corresponds to a pair of cluster
ky and cluster k. Soft clustering with PMM is also called two-side clustering.

When S is valued dyadic data in which every co-occurrence (xi, y;j) is associated with value
z from random variable Z then, SMM is reformed as follows (Nguyen, Learning Dyadic Data
and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, pp. 11-12):
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£(509,,210) = ) aibueufiZl o) (5.1.48)
AMM is reformed as follows: )
K
f(xi,y:,Z|®) = p; z ar|iqj ik fr (Z|ox) (5.1.49)
k=1

PMM is reformed as follows:

f(x:,),2]6) = Z Ptk iy e Z101) (5.1.50)

Where f«(Z|gx) is the k™" PDF of Z correspondlng to the aspect k, in which ¢ is parameter of
fk(Z|px). Of course, the parameter ® now must include all ¢«. It is possible to consider that

filZlpi) = f(ZIk, @)
Moreover, Z is only dependent on k.

fZxi, k, @) = f(Zk, oi) = fiu(Z]ok)
Note, suppose xi and y; (as well as y; given x;) are independent from Z given aspect k, which is
the hint to reform these models.

P(x;,y;|k, Z) = P(x;, y;]k)
P(yj|xi 2, k) = P(yj]x;, k)
For example, within SMM, the joint PDF of x;, yj, Z, and kK is:
f(xy:,Z, k) = P(k)P(x;, v, Z|k) = awP(xi, vk, Z) f (Z1k, i) = P (xi, y;|k) fre Z 1)
= a . P(x;|K)P(y;|k) fe Zlow) = awpipe i fic(Zlow)
Within AMM, the joint PDF of x;, y;, Z, and k is:
f(xi,yj,Z,k) = P(xi)P(yj,Z,k|xi) = piP(kai)P(yj,Z|xi,k)
= piariP(vj|xi, Z, k) f(Z|x;, k, 1) = piow)iP(vj|xi k) f (Zk, @i)
= piaiP(vi|k) e Clow) = picw i fie (Zloy)
Within PMM, the joint PDF of xi, yj, Z, and k is:
f(xi,y:,Z, k) = P(k)P(x;,v), Z|k) = aP(xi, y;|Z, k) f (Z1k, i) = arP(xi, y;|k) fre (Z 1)
= ap P(xilkx) P(yj|ky) fr 21 pi) = AcPiliex 9y fre (Z 1) m
Here it is only necessary to estimate gk because how to estimate other partial parameters was

aforementioned. By reforming the conditional expectation Q(®|@Y), it is easy to find out that
the next parameter ¢tV is solution of following equation:

IS]
> Pk, 5,),09) ol "éiff)"”")) (5.1.51)

r=1
Where P(k | xi(r), yi(r), ®Y) is specified by equation 5.1.29, equation 5.1.35, and equation
5.1.42 for SMM, AMM, and PMM, respectively. Especially, if f«(Z|p«) distributed normally,

the next parameter p™*? = (Y, Z™D)T containing mean & and covariance matrix %Y
is calculated as follows:

1) _ Zray P(k|x:(r), 35(r), 09)2(r)

) S P (k[ (r), 3, (1), 09)
. ISI P(k|xl(r) y](r) @(t)) ((Z(r) 'u(t+1))(Z(r) .U(Hl)) ) (5.1.52)
Ekt+1

L P (k|x; (), y;(r),0®)
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Where P(k | xi(r), yj(r), ®©) is specified by equation 5.1.29, equation 5.1.35, and equation
5.1.42 for SMM, AMM, and PMM, respectively. Please refer to equation 5.1.17 and equation
5.1.18 to comprehend equation 5.1.52.
Example 5.1.2. Suppose X = {x1, x2} and Y = {y1}, and valued dyadic sample of 4 co-
occurrences, S = {(xz, y1, 1, 1), (X1, y1, 9, 2) }, we will learn SMM given § by GEM shown in
table 5.1.4. Let Z be associative variable which distributes normally with mean — variance ¢« =
(ux, o®)" and is learned by equation 5.1.52. Obviously, we have Z(1)=1, Z(2)=9, n(x1, Y1) = 2,
and n(xz, y1) = 0. Suppose the number of aspects is K=2. The parameter ® = (ax, Pik, Uik, ¢k)
of SMM is initialized as follows:

ail) = agl) =0.5

o _. o__ @ _ (1) _
Pin = D211 = P12 = D22 = 0.5

n_ @ _
917 = q42 = 0.5
u® =y =

() = (@})® =1

At the 1% iteration, E-step, we have:

P(k = 1|xy,y,0W) =
P(k = 1|x2;y1, @(1)) =
P(k = 2|xy,y,,0W) =

P(k = 2|x2,y1, @(1)) =

rpaf)

ey + o
opat)

Al + o
Lopal)

A+ o
oL el

o,0,0, O O O
Ay Py bin T A2 P44z

At the 1% iteration, M-step, we have:

o

o

@3]
Pin

_ nCea,y)P(k = 1|x;,,0)

0.5
n(xy,y1)
_ n(xli yl)P(k = 2|x1, yl'e(l)) _
= =0.5
n(xy,y1)
— n(xli yl)P(k = 1|x1; yl'e(l)) =1
n(pr’l)P(k = 1|x1,y1,@(1))
— n(xZIyl)P(k = 1|x2'y1' 9(1)) =0
n(pr’l)P(k = 1|x1,y1, 9(1))
_ n(x1;}’1)P(k = 2|x1;3’1r®(1)) ~1
n(’%)’l)P(k = 2|x1,y1,®(1))
_ n(XZ;Y1)P(k = 2|x2;3’1' @(1)) -0
n(x1'Y1)P(k = 2|x1,y1, 9(1))
_ n(x1;Y1)P(k = 1|x1,y1,@(1)) —1
n(x1;}’1)P(k = 1|x1,y1,®(1))
_ n(x1;Y1)P(k = 2|x1,y1,®(1)) —1

- ey, y)P(k = 2|y, y,,00)
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@ _ P(k=1]x1,y1,0M)1 + P(k = 1]x5,y,,0M)9

B =5
: P(k = 1|x1,v,,0W) + P(k = 1|xp,,,0W)
@ Pk =2]x,y1,00)1 + P(k = 2|xy,y,,00)9 -
Uy ™ = N

P(k = 2|x1,y1,0D) + P(k = 2|x5,y,0)
P(k = 1|x1,¥1,0®)(1 = 5)2 + P(k = 1|x3,y,,0W)(9 — 5)2
=16
P(k = 1|xy, v, 0W) + P(k = 1|x3,y,,0D)
P(k = 2|xy, v, 00)(1 = 5)2 + P(k = 2|x3,y,,00)(9 — 5)2
=16
P(k = 2|xy,y1,0W) + P(k = 2|x;,y,,0D)
At the 2" jteration, E-step, we have:

(o)) =

()P =

“PP(T)‘I(T)
_ (2) _ 1|1111|1 _
P(k =1|x1,51,0%) =6 @-@ = 05
ay Pini T A Pi%)2
2.2 (2)
@y "P21149111
P(k = 1|xp,y,,0@) = ~ 0.5
Y1 OROROINNORON
Ay Py in T A2 P44z
2,2 (2)
a; P54
_ )\ — 2 1|211]2 _
P(k =2|x1,y1,0%) = 6@ = 05
ay P T A Pr%)2
2.2 (2)
a; ' py1s4
_ @)\ — 2 2|211]2 ~
P(k = 2|x,y,,02) = .00 . 0.@.@ >0

Ay Py T A P2
Note, because the probabilities P(k=1 | x2, y1, @) and P(k=2 | x2, y1, ®?) are arbitrary (0/0),
they are assigned to be 0.5.
At the 2" iteration, M-step, we have:

n(xy, y1)P(k = 1|xy,y,,0@) _

= 05
" n(xy, y1)
oGPl o)

n(xy,y1)

@ _ N0, y)P(k=1|x1,y,0@) )

1]1 — — N =

n(xy, y)P(k = 1|xy, y,,0@)

@ _ 0o y)P(k =1x,,y,0@)
P21 = — =0

n(xllyl)P(k = 1|x1,y1'@ )

@ _ n(xy, y)P(k = 2|x;, y,,0®) _
P12 n(xy, y)P(k = 2|x1,y,,0P)

@ _ N0, y)P(k = 2|x;,y,,0@)
bz = — 2 =0

n(xl,h)P(k = 2|x1,y1, 0 )

@ _ N0, y)P(k=1x1,y,0®)
T = @y~ 1

n(xy, y1)P(k = 1|x1,,,0@)

@ _ 1, y)P(k = 2|x;,y1,0@) )

e n(ey, y)P(k = 2|x1,y,0®)
3) _ P(k = 1|x1,y1,®(2))1 + P(k = 1|x2,y1,®(2))9 ~

- =5
! P(k = 1|x1,y1,0@) + P(k = 1|x,,y,,0®)
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@ _ Pk =2|x,y,0P)1 + P(k = 2|x,,,,02)9
M2 =k = 2|x1,y1,0@) + P(k = 2|x5,y,0@)
P(k = 1|x1,¥1,0@)(1 = 5)2 + P(k = 1|x3,y1,0@)(9 — 5)2
=16
P(k = 1|xy, v, 0@) + P(k = 1|x3,y,,0®)
P(k = 2|x1,¥1,0@)(1 = 5)2 + P(k = 2|x3,y1,0@)(9 — 5)2
=16
P(k = 2|xy,v1,0@) + P(k = 2|x3,y,,0@)
Therefore, GEM stops at the 2" iteration with the estimate @@ = @® = @" = (a”, pix’, Gjk
o).

5

(o)) =

() =

a; = a; = 0.5
p;u = pI|2 = 1,p;|1 = p;|2 =0

o _ @ _
G =9y, =1
pi=p; =5

(of)" = (0F)" =16
Similarly, it is easy to learn AMM and PMM =

5.2. Handling missing data

The goal of MLE, MAP, and EM is to estimate statistical based on sample. Whereas MLE and
MAP require complete data, EM accepts hidden data or incomplete data. Therefore, EM is
appropriate to handle missing data which contains missing values. Indeed, estimating
parameter with missing data is very natural for EM but it is necessary to have a new viewpoint
in which missing data is considered as hidden data (X). Moreover, the GEM version with joint
probability (without mapping function, please see equation 2.12 and equation 2.13) is used and
some changes are required. Before describing how to apply EM into handling missing data, we
should skim some concepts related to missing data.

Let X = (X1, X2,..., Xn)" be n-dimension random variable whose n elements are partial random
variables x; (s). Suppose X is composed of two parts such as observed part Xops and missing
part Xmis such that X = {Xobs, Xmis}. Note, Xobs and Xmis are considered as random variables.

X = {Xobs Xmis} = (X1, %2, 0, X)" (5.2.1)
When X is observed, Xobs and Xmis are determined. For example, given X = (X1, X2, X3, X4)", when
X is observed as X = (x1=1, x2=?, x3=4, X4=?, X5:9)T where question mask “?”” denotes missing
value, Xobs and Xmis are determined as Xobs = (X1=1, X3=4, xs=9)" and Xmis = (X2=?, Xa=?)". When
X is observed as X = (x1=?, X2=3, X3=4, X4=?, X5=?)" then, Xops and Xmis are determined as Xobs =
(%2=3, x3=4)" and Xmis = (x1=?, X4=?, x5=?)". Let M be a set of indices that x; (s) are missing
when X is observed. M is called missing index set.

M= {j:xj missing} where j = 1,n (5.2.2)
Suppose
M = {ml, mz, ,m|M|} (523)
Where,
m; = 1,_7’1
m; * m]
Let M is complementary set of the set M given the set {1, 2,...., n}. M is called existent index
set.
M = {j: x; existent} where j = I,n (5.2.4)

M or M can be empty. They are mutual because M can be defined based on M and vice versa.
MuM=1{1.2,..,n}
MNM=¢
Suppose

101


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

M = {my,my, ..., M7} (5.2.5)
Where,
ﬁli = 1,n
m; + m;
IM| + M| =n
We have:
T
Xomis = (x] jE M) (xml,xmz, ...,xmlMl) (5.2.6)
. —~\T T
Xops = (x]-:] € M) = (xml»me» ""xmlﬁl) (5.2.7)

Obviously, dimension of Xmis is M| and dimension of Xobs is [M| = n—|M|. Note, when
composing X from Xobs and Xmis as X = {Xobs, Xmis}, it is required a right re-arrangement of
elements in both Xobs and Xpmis.

Let Z = (21, Z2,..., Zn)" be n-dimension random variable whose each element z; is binary
random variable indicating if x; is missing. Random variable Z is also called missingness
variable.

1if x; missing
{0 if x; existent
For example, given X = (X1, X2, X3, X4)T, when X is observed as X = (x1=1, X2=?, Xs=4, X4=?,
x5=9)T, we have Xobs = (X1=1, X3=4, X5=9)7, Xmis = (X2=?, Xa=?)T, and Z = (21=0, z2=1, z3=0, z4=1,
ZsZO)T.

Generally, when X is replaced by a sample X = {X1, Xa,..., Xn} whose X; (s) are iid, let Z
={Z1, 2Z>,..., Zn} be a set of missingness variables associated with X. All Z; (s) are iid too. X
and Z can be represented as matrices. Given Xi, its associative quantities are Zi, Mi, and M;. Let
X = {Xobs, Xmis} be random variable representing every Xi. Let Z be random variable
representing every Zi. As a convention, Xobs(i) and Xmis(i) refer to Xons part and Xmis part of Xi.
We have:

z (5.2.8)

j:

Xi = {Xobs(i)»Xmis(i)} = (xil;xiz, ---:xin)T

T
Xmis (D) = (ximltximz' ---:xim|Mi|>

T

Xops(@) = (ximil,ximiz, . xlmlwll) (5.2.9)

M; = {mu»miz: ---:milMiI}

Mi == {n—’ll’l,ﬁliz, ...,ﬁli“ﬁ”}

Zi = (Zi1;Zi2: ""Zin)T
For example, given sample of size 4, X = {X1, X2, X3, Xa} in which X1 = (X11=1, X12=?, X13=3,
X14:?)T, X2 = (X21=7?, X22=2, X23=7?, X24:4)T, X3 = (X31=1, X32=2, X33=7, X34:?)T, and Xs = (X41=?,
X42=?, X43=3, X24=4)" are iid. Therefore, we also have Z; = (z11=0, 712=1, 713=0, 714=1)", Z2 =
(221=1, 222=0, 723=1, 724=0)", Z3 = (z:1=0, 73,=0, z33=1, z34=1)", and Zs = (za1=1, 242=1, 243=0,
244=0)". All Z; (s) are iid too.

X1 | X2 | X3 | X4 71| 22| 23 | 24
Xe| 1] ?2] 3] ? Z;10[1]0]1
Xo| ?21 2] 7] 4 Z;|1]0[1]0
Xs| 1| 2] 7] 7? Z3| 0] 0]1]1
Xa| 21?21 3] 4 Z4 111100

Of course, we have Xobs(l) (x11=1, x13=3)", Xmls(l) (X12=?, X12=?), Xobs(Z) (X22=2, X24=4)T,
Xmis(2) = (X21=?, X23=?)T, Xobs(3) = (X31=1, X32=2)", Xmis(3) = (X33=?, X34=?)", Xobs(4) = (X43=3,
X44=4)", and Xmis(4) = (xa1=?, x42=?)". We also have M1 = {m11=2, mio=4}, M, = {m,,=1,
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Mq12=3}, M2 = {m21=1, m»=3}, M, =_{77121=2, Mpp=4}, M3 = {ma1=3, ms,=4}, M; = {m3,=1,
M3,=2}, Ma = {ma1=1, msp=2}, and M, = {im,,=3, m,,=4}.
Both X and Z are associated with their own PDFs, as follows:
fX10) = f(Xobs) Xmis|©)
f(ZIXobs; Xmis; CD) (5.2-10)
Where © and @ are parameters of PDFs of X = {Xobs, Xmis} and Z, respectively. The goal of
handling missing data is to estimate ® and ® given X. Sufficient statistic of X = {Xobs, Xmis} IS
composed of sufficient statistic of Xops and sufficient statistic of Xmis.

T(X) = T(Xopss Xmis) = {T(Xops), T(Xmis) } (5.2.11)
How to compose z(X) from z(Xobs) and z(Xmis) is dependent on distribution type of the PDF
f(X|©).
The joint PDF of X and Z is main object of handling missing data, which is defined as
follows:

f(Xr Zl@r CD) = f(Xobs» Xmis: Z|®» d)) = f(leobs' Xmis' q))f(Xobs'Xmisle) (5-2-12)
The PDF of Xops is defined as integral of f(X|®) over Xmis:

f Xops|©) = .I- f KXobs) Xmis|©)dX s (5.2.13)

Xmis
The PDF of Xmis is conditional PDF of Xmis given Xops is:
f(XIG) f(Xobs'Xmisle)
f(XmleXobs' GM) - f(Xmlslxobs» @) - f(Xobslg) - f(Xobsle) (5-2-14)
The notation ®w implies that the parameter @wm of the PDF f(Xmis | Xobs, ®wm) is derived from the
parameter ® of the PDF f(X|®), which is function of ® and Xobs as ®m = U(®, Xobs). Thus, Om
is not a new parameter and it is dependent on distribution type.
Oy = u(0,X,ps) (5.2.15)
How to determine u(®, Xobs) is dependent on distribution type of the PDF f(X|®).
There are three types of missing data, which depends on relationship between Xobs, Xmis,
and Z (Josse, Jiang, Sportisse, & Robin, 2018):
- Missing data (X or X) is Missing Completely At Random (MCAR) if the probability of
Z depends on both Xops and Xmis such that f(Z | Xobs, Xmis, @) = f(Z | ©).
- Missing data (X or X) is Missing At Random (MAR) if the probability of Z depends on
Only Xobs SUCh that f(Z | xObs, Xmis, (D) = f(Z | xObs, (D)
- Missing data (X or X') is Missing Not At Random (MNAR) in all other cases.
There are two main approaches for handling missing data (Josse, Jiang, Sportisse, & Robin,
2018):

Using some statistical models such as EM to estimate parameter with missing data.

- Inputting plausible values for missing values to obtain some complete samples (copies)
from the missing data. Later on, every complete sample is used to produce an estimate
of parameter by some estimation methods, for example, MLE and MAP. Finally, all
estimates are synthesized to produce the best estimate.

Here we focus on the first approach with EM to estimate parameter with missing data. Without
loss of generality, given sample X' = {X1, Xo,..., Xn} in which all Xi (s) are iid, by applying
equation 2.13 for GEM with the joint PDF f(Xobs, Xmis, Z | ®, @), we consider {Xobs, Z} as
observed part and Xmis as hidden part. Let X = {Xobs, Xmis} be random variable representing all
Xi (s). Let Xons(i) denote observed part Xobs Of Xi and let Z;i be missingness variable
corresponding to Xi, by following equation 2.13, the expectation Q(®’, @’ | ®, ®) becomes:

N

Q(GI; c[)’|(§)’ CD) = Z f f(Xmislxobs(i):Zi: @, QD) * log(f(Xobs(i):Xmis’Zilel: (D’))deis

=1 Xmis
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= Z f f(Xmislxobs(i)r 8) * log(f(Xobs(i): Xmis: Zilel' q)’))dxmis

i=1 Xmis

N
= Z .[ f(XTm'S|X0bS(i)» G‘)Mi) * log(f(Xobs(i):Xmis'Zilel; q)’))deis

i=1 Xmis

-2, f £ (Xomis | Xobs (D), Om)
=1 Xonis

* log(f(Xobs(i)’ Xmis |®’, (D’) * f(Zi |Xobs(i): Xmis' G)" (D’))deis
N

= Z .[ f(Xmis|Xobs(i)» G')Mi) * log(f(Xobs(i):Xmis|®’) * f(Zilxobs(i):Xmis: q)’))deis

i=1 Xmis

:i f £ (Xomis | Xons (D), Om)

i=1 Xmis

* (log(f(Xobs(i);Xmislel)) + IOg(f(Zilxobs(i)'Xmisr q)I))) dXpmis

= Z j f(Xmis|Xobs(i); eMi)log(f(Xobs(i):XmislG)I))deis

=1 Xmis
N
+ z f f(Xmislxobs(i)’ @Mi)log(f(zi|Xobs(i)vais: q)’))deis
i=1 Xmis
In short, Q(®’, @’ | ®, @) is specified as follows:
Q(O',@'|0,®) = Q,(0'|0) + Q(P'|0) (5.2.16)
Where,
N
Q1(®’|G)) = Z f f(Xmislxobs(i)’ G)Mi)log(f(xobs(i):Xmislel))deis
=1 Xmis
N
QZ(CD’l@) = z .f f(Xmislxobs(i)’ G)Mi)log(f(zi|Xobs(i)'Xmis' q)’))deis
i=1 Xmis

Note, unknowns of Q(®’, @’ | ®, @) are ®’ and @’. Because it is not easy to maximize Q(®’,
®’ | ©, ®) with regard to ® and ®@’, we assume that the PDF f(X|®) belongs to exponential
family.
f(Xl@) = f(Xobs: Xmisle) = b(Xobe Xmis) * exp((G)TT(XobsrXmis))/a(e) (5-2-17)
Note,
b(X) = b(XObS'XmiS)
T(X) = T(Xops Xmis) = {T(Xops), T(Xmis)}
It is easy to deduce that
f(Xmislxobs: GM) = b(Xmis) exp((GM)TT(Xmis))/a(eM) (5-2-18)
Therefore,

f(Xmislxobs(i): G)Mi) = b(Xmis) exp ((eMi)TT(Xmis))/a(G)Mi)
We have:
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N

Ql(e,le) B Z -f f(XmiS|X0bS(i)' G‘)Mi)log(f(Xobs(i),Xmisl9’))(1)(mis
N =1 Xmis
-2, f f (Xmis|Xobs (D), Ou,)

=1 Xmis

* log(b(Xobs(i)'Xmis) exp((@’)TT(Xobs(i)’Xmis))/a(gl))deis

=i f f Kimis| Xobs (D, Ou,)

* (log(b(Xobs(i)'Xmis)) + (@’)TT(Xobs(i)'Xmis) - log(a(G)’))) deis
N
= Z j f(Xmis|Xobs(i): ®Mi)10g(b(Xobs(i)’Xmis))deis
i=1 Xmis
+ z j f(Xmislxobs(i): @Mi)(GI)TT(Xobs(i)'Xmis)deis
- z j f(Xmislxobs(i): @Mi)log(a(@’))dxmis
N =1 Xmis
= Z f f(Xmis|Xobs(i): ®Mi)10g(b(Xobs(i)'Xmis))deis
i=1 Xmis
+ (GI)TZ j f(Xmislxobs(i): @Ml-)T(Xobs(i):Xmis)deis
- log(a(@’)) z j f(Xmislxobs(i): E')Ml-)deis
N =1 Xmis
= Z f f(Xmis|Xobs(i): ®Mi)log(b(Xobs(i)'Xmis))deis
i=1 Xmis
+ (@,)Tz j f(Xmislxobs(i): @Mi)T(Xobs(i)eris)deis - Nlog(a(@’))

N
= Z f f(Xmis|Xobs(i): ®Mi)log(b(Xobs(i)'Xmis))deis

i=1 Xmis
N f f(Xmislxobs(i)’ @Mi)T(Xobs(i))deis ’

+(@NT Xmis — Nlog(a(0"))
; J f(Xmislxobs(i)r @Mi)T(Xmis)deis

Xmis
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= Z f f(Xmis|Xobs(i); G)Ml-)log(b(Xobs(i):Xmis))deis

i=1 Xmis
N T(Xobs(i)) ff(Xmislxobs(i):G)Mi)deis'

+ (@/)T Xmis _ NlOg(Cl(@’))
; f f(Xmislxobs(i); GMi)T(Xmis)deis

Xmis

N
= Z f f(XTm'S|X0bS(i)' ®Mi)log(b(Xobs(i)’Xmis))deis
=1 Xmis
N T(Xobs(i))»
+ (G),)TZ f f(Xmislxobs(i)' @Ml-)T(Xmis)deis N NlOg(Cl(@'))
i=1

Therefore, equation 5.2.19 specifies Q1(®’|®) given f(X|®) belongs to exponential family.
N

0:(0'10) = > E(108(5(Xos (D) Xmis)) |1,

i=1 N (5.2.19)
+ (07 ) (t(Xons(D), E(x(is) |01 )} — Nlog(a(8))

Where,
E(log(b(Xops (), Xmis))|Ou,)
= ff(Xmis|Xobs(i),@Mi)log(b(Xobs(i),Xmis))dxmis (5.2.20)
E(t(Xmis)|On,) = f £ (Xmis | Xops (0, O, )T Xmis) Wi 5221)
Xmis

At M-step of some t™" iteration, the next parameter @9 is solution of the equation created by
setting the first-order derivative of Q1(®’|®) to be zero. The first-order derivative of Q1(®’|®)
is:

N
00Q,(0'|6 T
Qla(ell ) = Z (E(T(Xobs(i); Xmis)leMi)) - Nlog'(a(@’))

i=1

N
= D {t(XobsD), E(tHmis)| 1)} — Nlog'(a(®))
By referring tableli.lz, we have:

log'(a(0)) = (E@(X)|0))" = f FX10)(z(x))" dx

X
Where,

fX10) = fXobs) Xmis|®) = b(Xops, Xmis) * exp((G)TT(XobsrXmis))/a(e)
b(X) = b(Xobs:Xmis)

T(X) = T(Xops) Xmis) = {T(Xobs)'T(Xmis)}
Thus, the next parameter @Y is solution of the following equation:
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N
9Q,(0'|®
% Z{T(Xobs(l)) E(t(Xmi)|0,)} — N(EG(X)[0))" =

This implies the next parameter OIGRAT solution of the following equation:

E((0]e) = NZ{T(XobS(o) E (i) [0}

As a result, at E-step of some t™" |terat|on given current parameter ®©, the sufficient statistic

of X is calculated as follows:
N

7® — %Z {T(Xobs(i)), E(T(Xmis)

i=1

o))} (5.2.22)

Where,
oy =u(0®,M;)

G)1(\2) = f f(Xmis Xobs (1), 91(\;3)T(Xmis)dxmis
Xmis
Equation 5.2.22 is variant of equation 5.2.11 when f(X|®) belongs to exponential family but
how to compose 7(X) from z(Xobs) and z(Xmis) is not determined exactly yet.
As a result, at M-step of some t™" iteration, given 7 and ®®, the next parameter @Y is a
solution of the following equation:
E(z(X)|©) = 7 (5.2.23)
Moreover, at M-step of some t iteration, the next parameter ™% is a maximizer of Qa(® |
0Y) given ©V as follows:
U+ = argmin Q,(P|0®) (5.2.24)
D

E(T(Xmis)

Where,
N

Q:(@109) =" [ (X
=1 Xmis
How to maximize Qz(® | ®Y) depends on distribution type of Zi which is also formulation of
the PDF f(Z | Xobs, Xmis, @). FOr some reasons, such as accelerating estimation speed or ignoring
missingness variable Z then, the next parameter @Y will not be estimated.
In general, the two steps of GEM algorithm for handling missing data at some t™ iteration
are summarized in table 5.2.1 with assumption that the PDF of missing data f(X|®) belongs to
exponential family.

Xobs(i)f 91(\;3)10g(f(zi |Xobs(i):Xmis' q)))deis (5-2-25)

E-step:
Given current parameter ®9, the sufficient statistic <" is calculated according to equation
5.2.22.
1 N
t® = 231X (D), E(r0mis) |0 )}
i=1
Where,
oy =u(e®,M,)
E(T(Xmis) 953) = f f(Xmis Xobs(i): GE\;?)T(Xmis)deis
Xmis
M-step:
Given 0 and @0, the next parameter @Y is a solution of equation 5.2.23.
E((X)|0) =z

107


https://doi.org/10.20944/preprints201802.0131.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2020 d0i:10.20944/preprints201802.0131.v9

Given Y, the next parameter @Y is a maximizer of Qx(® | ®Y) according to equation
5.2.24.
®E*D = argmin Q,(P|0W)
(o))

Where,

N

Qz(q)l@(t)) = Z f f(Xmis Xobs(i); Og?)log(f(zi|Xobs(i):Xmis' (D))deis
=1 Xmis

Table 5.2.1. E-step and M-step of GEM algorithm for handling missing data given
exponential PDF
GEM algorithm converges at some t" iteration. At that time, ®" = @Y = @V and ®* = @1
= @0 are optimal estimates. If missingness variable Z is ignored for some reasons, parameter
® is not estimated. Because Xmis is a part of X and f(Xmis | Xobs, ®wm) is derived directly from
f(X|®), in practice we can stop GEM after its first iteration was done, which is reasonable
enough to handle missing data.

An interesting application of handling missing data is to fill in or predict missing values.
For instance, suppose the estimate resulted from GEM is ®", missing values represented by
7(Xmis) are fulfilled by expectation of z(Xmis) as follows:

T(Xmis) = E(T(Xnis) [O3) (5.2.26)
Where,
On = u(0", Xops)

Now we survey a popular case that sample X = {X1, Xa,..., Xn} whose X; (s) are iid is MCAR
data and f(X|®) is multinormal PDF whereas missingness variable Z follows binomial
distribution of n trials. Let X = {Xobs, Xmis} be random variable representing every Xi. Suppose
dimension of X is n. Let Z be random variable representing every Zi. According to equation
5.2.9, recall that

Xi = Kops (D), Xmis (D} = (xi1, Xi2, ---rxin)T

T
Xmis(l) = (ximllximzi ---:xim|Mi|)

T
Xops (D) = (xiﬁlilfxirﬁizl ---»xirﬁimi|)
M; = {my1, myp, ..., My, }

Mi = {mill miZi :ml|lﬁl|}

Z; = (241, Zig) o) Zin)"
The PDF of X is:

n 1 1
f(X10) = f (Xobs) Xmis|®) = (2m) Z|Z| Zexp (— S X =R - u)) (5.2.27)
Therefore,
n 1 1
FX18) = F (Kops (D), Xnis (D16) = (2)" 23] 2exp (=5 (X; = 727 (X, - )
The PDF of Z is:
f(Z|®) = p¢@ (1 —p)n—c@ (5.2.28)
Therefore,

f(Zi|®) = pEI(1 — p)re@)
Where © = (4, )" and @ = p.
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i= (g, tpy oo, )"

011 012 ** O1p
5 = 021 O3z ** Oz (5.2.29)
On1 Onz2 *° Onn

Suppose the probability of missingness at every partial random variable x; is p and it is
independent from Xons and Xmis. The quantity c(Z) is the number of z; (s) in Z that equal 1. For
example, if Z = (1, 0, 1, 0)" then, ¢(Z) = 2. The most important task here is to define equation
5.2.11 and equation 5.2.15 in order to compose z(X) from z(Xobs), 7(Xmis) and to extract @m from
® when f(X|®) distributes normally.

The conditional PDF of Xmis given Xobs is also multinormal PDF.

f(Xmisle)M) = f(Xmislxobs» Oy) = f(Xmislxobs» Q)

_IM| _1 1 3 5.2.30
= (27'[) 2 |2M| 2exp <_E (Xmis - ,uM)TZMl(Xmis - .uM)) ( )

Therefore,
f(Xmis(i)lgMi) = f(Xmis(i)lxobs(i): GMi) = f(Xmis(i)lxobs(i); 0)
My _1 1 ] T _ ,
= (2m) 2 |ZMi| Zexp (‘E (Xmis(l) - .UML-) ZM%(Xmis(L) - MMJ)
Where 0, = (uMi,ZMi)T. We denote
f Kinis@DO1,) = f (KXmis (D |Xops (D), Our,)

Because f (Xomis(0)|Xons (i), Op,) only depends on ©,, within normal PDF whereas 0y,
depends on Xobs(i). Determining the function ©,,, = u(®, Xobs(i)) is now necessary to extract the

parameter ©,,, from © given Xops(i) when f(Xi|®) is normal distribution.

Let Omis = (umis, Zmis)" be parameter of marginal PDF of Xmis, we have:
1

o a 1 i
f(Xmislemis) = (27'[) 2 |Zmis| 2exp (_E(Xmis - .umis)T(Zmis) 1(Xmis

(5.2.31)
- .umis))
Therefore,
f(Xmis(i)|®mis(i))
_IMil L 1 . T -1 .
= (2m)" 2 |Zmis(l)| 2exp (_E(Xmis(L) - ,umis(’v)) (Zmis(L)) (Xmis(l)
— Umis (l))>
Where,
. T
.umis(l) = (ﬂmill Hmyr « f.umi|Mi|)
Omi;miy Omiymi, Gmi1mi|Mi|
. Omimy, Omzmy, Gmizmi ; (5'2'32)
z:mis(l) = i
Tmypgmia - Omgaamiz 7 O
Obviously, Omis(i) is extracted from ® given indicator M.
Let @obs = (1obs, Zobs)" be parameter of marginal PDF of Xobs, We have:
_lM] _1 1 _
f(Xobslgobs) = (277:) 2 |Zobs| ZeXp (_E(Xobs - .uobs)T(Zobs) 1(Xobs
(5.2.33)
- ﬂobs))

Therefore,
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f(Xobs(i)|@obs(i)) B
- (27'[) Izobs(l)l 2exp (__(Xobs(l) .uobs(l)) (Zobs(l)) (Xobs(l)
~ Has(D))
Where,

. T
Hobs (@) = (Hmil»ﬂmiz» o Py |)

Oy Mis Oy My, O-mi1mi|ﬁi|
S B S 5.2.34
i O-mizmm amizmiz O-mizmi|ﬁl.| ( )
z:obs(l) =
OMyagMix OMjag, Mz Oz, M|

Obviously, @ops(i) is extracted from © given indicator M; or Mi. We have:
F s @1Omis@) = [ F Kons D Xois (D10)Kops (D)
Xobs(i)
FFops @100 ®) = | £ Hons(D, Xnis(D10) i)
Xmis(i)

XO S .'Xmis )|©
F Kmis(D@11,) = f Konis (D1 Xops (D), ©) _ [ Kobs (), Ximis (D)]0)

f(Xobs(i)leobs(i))
Therefore, it is easy to form the parameter ©,,, = (uMi,ZMi)T from @mis(i) = (umis(i), Zmis(i))"
and Oobs(i) = (uobs(i), Zobs(i))" as follows (Hardle & Simar, 2013, pp. 156-157):
eMi = u(erxobs(i))
Hm; = tmis(D) + ( gg;so)) (Zobs(l)) (Xobs(l) Hobs(l)) (5.2.35)

z:Ml- = z:mis(i) ( mls(l)) (Zobs(l)) (Vr(r)lll)ss)
Where from Onis(i) = (umis(i), Zmis(i))" and @ons(i) = (uobs(i), Zobs(i))" are specified by equation
5.2.32 and equation 5.2.34. Moreover the k«l matrix V%5 (i) which implies correlation between
Xmis and Xops is defined as follows:

Omyymiy Omyymy, " Umi1ﬁli|ni|
Omi,mi; Omiymy, " Umizfﬁi|m.|
Vops (i) = ' (5.2.36)
OmyyMin - Omypg iz " Tmyy Mgy
The kxl matrix V225 (i) which implies correlation between Xobs and Xmis is defined as follows:
Omiymiy Omyymi, O-milmi|Mi|
Omiymi; Omiymi, Omamy .
Vobs (i) = il (5.2.37)

T~ 11 O/F.— m: Om
M| |2 T[T | My

Therefore, equation 5.2.35 to extract 0, from © given Xobs(i) is an instance of equation 5.2.15.
For convenience let,

T
Upm; = (#Mi(mu);#Mi(miz); o0 Mg (miIMl-l)) (5.2.38)
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ZMi(milr miq) ZMi(milf my) ZMi(mil' milMil)
Ty ZMi(mizrmil) ZMi(miZ' mpp) EMi(miZ' milMil)
\ZMi(m“MH' Mix)  Zw (Mg miz) Zag (it Mijay)

T
Equation 5.2.38 is result of equation 5.2.35. Given X,,;s(i) = (xmil,xmiz,.. xmthI)

then, ﬂMi(mij) is estimated partial mean of Xmy; and X, (m,, my,) is estimated partial

covariance of x,,, and x,, given the conditional PDF f(Xmis | ©,,).
At E-step of some t™" iteration, given current parameter ®9, the sufficient statistic of X is
calculated according to equation 5.2.22. Let
o)

1® = (0, 0)’ NZ T(Xops (D), E(7(Xpuis)

It is necessary to calculate the sufficient W|th normal PDF f(Xi|®), which means that we need
to define what 719 and 72 are. The sufficient statistic of Xons(i) is:

, ) ) T\T
T(Xobs(l)) = (Xobs(l)tXobs(L)(Xobs(l)) )
The sufficient statistic of Xmis(i) is:

T(Xmis(i)) = (Xmis(i); Xomis (D) (Xmis (i))T)T

We also have:
u(t)
M;
E(T(Xml-s) @g;?) = f f(Xmis @g;?)T(Xmis)deis = (t) O ( @)
55+
Xmis M M
Due to

. T
E (Xonis (0 (Xmis 1) [09) = £ 4 u@ ()’
Where y(t) and Z,(VQ are py, and Xy, at current iteration, respectively. By referring to equation
5.2.38, we have

,111(\2 ( )(mll) .u(t)(mlz) ':ul(VIl( lIMl))

And
Z{ORN ORI TAO
~(t) . ~(t) ~(t)
Z(t) "‘#1(\2(#1(\2) _ 021 () 022 i - 2|M |(L)
~(t) ~(t) ' MO
O|m; |1(l) O\m; |2(l) T Omylimg I(L)
Where,

Gy (D) = Zhp) (M miy) + pagy) (map I pafy) (miy)
Therefore, 71V is vector and 229 is matrix and then, the sufficient statistic of X at E-step of some
t™ iteration, given current parameter @0 is defined as follows:
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7® = (Tft),rgt))
(t) ® = —(t)
= (0,29, 50)
® © ®)
S11. S12 7 Sin (5.2.39)
® © ®)
rgt) = | S21 522 Szn
t t t
\Sr(zl) 1(12) Swgn)
Each x(t) is calculated as follows:
O _ xu if j & M; (5.2.40)
% N )(1) ifj € M; o
Please see equation 5.2.35 and equatlon 5.2.38 to know u(t)(]) Each s(t) is calculated as
follows:
( XiuXiy

ifué M;andv & M;

xlul'lM) (ml‘V)
N ifu € M;and v € M;
sO = 50 = NZ< , (5.2.41)
i .uMi (miu)xiv

ifu e M;andv & M;

(t) (mlw mw) + .u(t) (mlu).u(t) (miv)
\ ifu € M;andv € M;
Equation 5.2.39 is an instance of equation 5.2.11, which compose z(X) from z(Xobs) and z(Xmis)
when f(X|®) distributes normally. Following is the proof of equation 5.2.41.
If u € M; and v & M; then, the partial statistic xiuXiv is kept intact because xiy and xiy are in

Xobs are constant with regard to f(Xmis | G)I(j?) If u & M; and v € M; then, the partial statistic XiuXiv
® .
G)Mi) as follows:

is replaced by the expectation E(xiuxiv

E(xmxw 85)) f f(Xmis G)g;?)xiuxivdxmis = Xiu f f(Xmis

Xmls( ) Xomis
t
- xlu:u'M (miv)

If ue M; and v & M; then, the partial statistic xuxiv iS replaced by the expectation

08 )ip X

E(xl-uxi,, @,(Q) as follows:
E(xluxw Gg;)) f f(Xmis e(t))xluxwdxmls = Xy f f(Xmis e(t))xludxmls
Xmis Xmis
= sy (i) iy

If ue M; and v € M; then, the partial statistic XXy IS replaced by the expectation
E(xl-uxiv G)gf,?) as follows:

E(xiuxi,, @g;z) = j f(Xmls

Xmis

G(t))xluxw dXpmis = Z(t) (mlur mw) + .u(t) (mlu)/«‘(t) (miv) u
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At M-step of some t™" iteration, given z® and ®9, the next parameter @V = () TE)T js 3
solution of equation 5.2.23.

E@(X)|0) =1®
Due to

E@(l0) = (5)

Equation 5.2.23 becomes:

-
Y= ré“
Which means that
,u(Hl) —(t)
J % Vi, u,v (5.2.42)
{ o = olf? =8 — 207
Please see equation 5.2.40 and equation 5.2.41 to know x( and s(t)

Moreover, at M-step of some t'" iteration, the next parameter O = p™D) js a maximizer
of Q2(® | ®Y) given ®Y according to equation 5.2.24.
®*D = argmin Q,(P|6®)
(<))

Because the PDF of Z; is:
f(Zi|®) = p“@ (1 = p)re@
The Q2(®|OY) becomes:

Q:([0) = Z J s

G(t) log(f(Z |Xobs(l) Xomis» q)))delS

Z [ (i 0521081 2119 o

l 1XmlS

Zlog(f(Z |CD)) J mls @(t) Xmis
=Zlog(f(Z|d>)) Zlog(pcw(l— P e)
= > (c@dlog®) + (n - c(Z))log(1 - p))

The next parameter @™ = p®1 js solution of the equation created by setting the first-order
derivative of Qz(®|®(°) to be zero, which means that:

90, (c1>|@<f)) (c(Z) n-— C(Zi)> 1 N _ _
7/ z - _p(l—p) ;c(Zl-) npN | =0

It is easy to deduce that the next parameter p™% js:

I.V_ c(Z:
(D) % (5.2.43)
In general, given sample X' = {Xy, Xo,..., Xn} whose X; (s) are iid is MCAR data and f(X|®) is
multinormal PDF whereas missingness variable Z follows binomial distribution of n trials,
GEM for handling missing data is summarized in table 5.2.2.

| E-step: \
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Given current parameter @0 = (4O, =T the sufficient statistic 7 is calculated according
to equation 5.2.39, equation 5.2.40, and equation 5.2.41.

® = (Tit), Tgt))

o ((t) () -(t))T

X)Xy, e, Xy,
® ®) ®
S11 S12 7 Sin
Q 52(? sz(? sz(?
(t) (t) S(t)
n1 n2 nn
_(®) 1i xl]lfjeM
x:’ =
] N (t)(])lf]EM
( XiuXiy

ifuég M;andv & M;

xlunuM) (ml‘l))
N ifu € M;andv € M;
NONSNGNS 2 )
‘LL‘U vu
N i=1 uﬁ? (M) xiy
ifu e M;andv & M;

Z(t) (mlw mw) + .u(t) (mlu)/"(t) (miv)

\ ifu e M;andv € M;
Where 1, and Z, are specified in equation 5.2.35 and equation 5.2.38.

M-step:
Given 0 and @0, the next parameter @Y = (,&V XN s specified by equation
5.2.42.

ﬂ](t+1) —(t)

O_(t+1) — o_(t+1) 51557) _ xl(Lt)xlgt)

Given OO, the next parameter oD = p®Y is specified by equation 5.2.43.
p(t+D) — Yie1¢(Z)
) ) nN

Where c(Zi) is the number of zjj (s) in Zi that equal 1.

Table 5.2.2. E-step and M-step of GEM algorithm for handling missing data given normal
PDF

As aforementioned, an interesting application of handling missing data is to fill in or predict
missing values. For instance, suppose the estimate resulted from GEM is ®" = (1", £”)7, missing

Vj,u,v

T
part X,,is = (xml,xmz, ...,xmwi') is replaced by u;, as follows:

Xm; = iy (m;), vym; € M (5.2.44)
Note, u;, wWhich is extracted from 4" is estimated mean of the conditional PDF of Xmis (given
Xobs) according to equation 5.2.35. Moreover, u}’(4(mj) is estimated partial mean of X, given

the conditional PDF f(Xmis | ®)), please see equation 5.2.38 for more details about p;,. As
aforementioned, in practice we can stop GEM after its first iteration was done, which is
reasonable enough to handle missing data.
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It is necessary to have an example for illustrating how to handle missing data with
multinormal PDF.
Example 5.2.1. Given sample of size two, X = {X1, X2 } in which X1 = (X11=1, X12=?, X13=3,
X14=?)T and Xz = (X21=?, X22=2, X23=?, X24=4)" are iid. Therefore, we also have Z; = (z11=0, z12=1,
213=0, z14=1)" and Zz = (z21=1, 722=0, 723=1, 724=0)". All Zi (s) are iid too.
X1 | X2 | X3 | X4 21| 22 | 23 | 24
Xe| 1] ?21 3?2 [|Z]0]1]0]1
X2 ?2]1 2] ?] 4] |Z]1|]0]1]0
Of course, we have Xobs(1) = (X11=1, X13=3)", Xmis(1) = (X12=?, X14=?)", Xobs(2) = (X22=2, X24=4)T
and Xmis(2) = (x21=?, X23=?)". We also have M1 = {m11=2, m1,=4}, M, = {m;=1, m;,=3}, M2
= {ma1=1, m»=3}, and M, = {m,,=2, m,,=4}. Let X and Z be random variables representing
every Xi and every Z;, respectively. Suppose f(X|®) is multinormal PDF and missingness
variable Z follows binomial distribution of 4 trials according to equation 5.2.26 and equation
5.2.27. Dimension of X is 4. We will estimate ® = (4, )" and ® = p based on X.
= (i, iy, i3, tha)”

011 012 013 O14

021 Oz 033 Oz

031 032 033 O34

041 Oz2 043 Oy
The parameters ¢ and X are initialized arbitrarily as zero vector and identity vector whereas p
is initialized 0.5 as follows:

Y =

(1)_( (1)_0#(1)_0#(1) _Oy(l)_o)
/ oy =1 0, =0 0 =0 o = 0\
S B B
037 =0 035 =0 03357 =1 05, =0
\aﬁ) 0 ag) 0 ag) 0 aﬁ) 1/
p® =05

At 1% iteration, E-step, we have:
Xops(1) = (x; = 1,x3 = 3)"

pois (D = (1" = 0,4 = 0)'

o= (71 =0
mis 1 _ 1 _
042" = 44 = }1
Hops(1) = (1P = 0,1 = 0)
¢Y) (D
_ (011 1 037=0
2:obs(l) - (1) (D
03(1 )_ ° 0-38 ):
1 1
e =("20 %))
1 1
o, =0 0437 =

v _ v _
Vob5(1) — O = 0 014 = 0
1 _ -0 (1) -0

“1(\/111) = ﬂmis(l) + ( ggés(l)) (Zobs(l)) (Xobs(l) ﬂobs(l))
= (1@ = 4P = 0)'
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3022 =1 3424 = 0)

(1) mis ~Lryobs
Ty = Zmis (D) — (V332 (1) ) (Zps(1) Vinis ) =
M, mis ( obs )( obs ) ( mLs) 21%3(4'2) =0 21(1/111)(4’4) =1

Xobs(z) = (xz =2,x4 = 4‘)T r
mis(2) = (1 = 0,1 = 0)

Zmis(z) = ( ') -

L _ v _
VmiS(z) — <O-12 =0 0-14- -

obs (1 _ 1 _
T T T
1 1
VOl?S(z) — <021 =0 023 = >
mis (1) _ 1 _
o,, =0 0,5°=0

.uz(vllz) = .umis(z) + (Vorggs (2)) (Zobs(z))_l(xobs(z) - llobs(z))
= (1P = 04D = 0)

D (1)
| ] s =1 3P13) =0
(1) mis 1, 0bs M M,
o) = Zmis(2) = (VIS (2)) (Zops(2)) ~(V,22S5) =

M, mis ( obs )( obs ) ( mlS) ZI(le)(B'l) =0 21(\412)(3,3) =1

20 = %(xu D) =05
7D = %(Mﬂ(/}f(z) + xzz) =1
£ %(xm @) =15
70 = %(@}3(4) +X34) =2

1 2
s = 5((’511)2 + (232)(1,1) ) )) —1
1
51(;) = 52(1) =5 (x11.“1(v}1) (2) + /11(\;2) (1)x22) =0

1
s = 580 = 2 (mama + (203 + 4P WU @) = 15

2
1
51(1) = Sﬂ) = 2 (x11ll1(v}1) (4) + .UI(\}Z) (1)?524) =0
1 2
512 =3 ((252 @22) + (1) ) ) + (x22)2> =25

1
52(? = S'g) =5 (lh(wll) (2)xy3 + x22#1(\412) (3)) =0

1
s =5 =5 ((zf\;j @A) +uP U @) + x22x24> —4
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ssy = ((xlg)Z + (233(3,3) + (ug;g(s))z)> =

1
53(1) = Sg) =3 (x13.“1v}) 4) + ,Lt(l) (3)x24) =0

Se = %((25413 44) + (@) ) + (x24)2> =85

At 1% iteration, M-step, we have:

WP =0 Z o5
WD =20 =1
u =% =15
WP = — 5

@ _ (O _ () _
o =siy - (V) =075

2 _ @ _ . —(1) -(1) _

S S N
2 2 1 1) —(1

O3 =031 =513 — % %3~ =075
(2) (2) (1) -(1) =(1)

014" = 041 = S14 2x1 Xy =-1
0@ = s (7Y =15

2 ) (1) —(1) (1)

e e,
2 2 D _ 0

O34 = 04y = Sy — Xy =2

(2) 1) =(1)
033" = S33 —(x3 ) = 2.75

@ _ @ _ . —(1) —(1) _
O3y = 043 =Sz, —X3 Xy~ =-3

(2 _ (1) WY _
O4n’ =S4y — (4 ) =45

Z)+c(Z) 242
@ — C( 1 2 =05
p 4x2  dx2 O

At 2" iteration, E-step, we have:
Xops(1) = (xl =1,x3 = 3)T

.umls(]-) = (2) =1, .u(Z) = 2)

e -
Zmis(l) = < (2) -9 0_(2) — 4 5)
44 '

s = (17 = 05,487 = 15)’
5 (D :<olg_o.75 a%=0.75>
o317 =075 o337 =2.75
V) = <02?2)_ = )
0,3 = —3

(2) @ _
VObS(l) — <J12 =-0.5 014 = _1>
e afg) =-15 aﬁ) =-3
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.ul(\;l) = .umis(l) + ( orgés(l)) (Zobs(l)) (Xobs(l) .uobs(]-))
( 22) = 017,uP @ = 0.33)
35(2,2) = 0,67 37(24) = 0. 33)

2 mLs obs
X =2.(1) — (1)) (Z,ps(1) |74 =
My s ( ovs )( ons(D)” (V) 27(42) = 033 £ (44) = 1.17

Xops(2) = (xp = 2,24, = 4)T
Hmis(2) = (1 = 0.5, = 1.5)T
)= <al(f) =075 o2 = o.75>
e crg) = 0.75 crg) =2.75

Hops(2) = (1P = 1, " —2)

(2) (2)
5. (2) =<022 =15 o, —2>
ag) =2 aﬁ) =45
) _ (2) _
TnlS(z) 0 ==05 o5 =-1
obs (2) o@ — _3

34

yobs 2 = <(2) ~0.5 a§§)_—1.5>
mis sD 4 L@ _3

043
.ul(\/?) = Umis(2) + ( Orgés(z)) (Zobs(z)) (Xobs(z) llobs(z))
= (17 (W) = 005,45 (3) = 0-14)
@1, =052 1P (1,3) 0. 07)

(2 mls obs
@ =5 (2)- ) (2,,.(2)) " (vors) =
Mg T s (V5 @) (s (2) ™ () 2231 = 007 £0(33) =07

7 = %(Xn + uf»fj(l)) ~ 0.52
%) = = (i (@ + x2) = 11

'(2) %(xm + /,11(;2) )) = 1.57
7P = %( D) +x54) = 217

517 = ((xn)2 +(xPan+ (uﬁg(n)z)) = 0.76

s =@ = ; (xll,uM)(Z) + 1y (D) = 013

5P =5 = ;(xnxlg +(EPAD + P OuDP)) = 154
s = 59 =~ (11D (@) + 12 (V) = 017

s{P = ;(<2§2(2,2) + (152 @) ) + (x22)2> = 2.35
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1
52(? = Sg) =5 (luz(vi) (2)x13 + xzzliz(vfz) (3)) =0.39

1
=53 =3 ((zﬁf 24) + 1y @uy @) + x22x24> = 4.19

s@ = %((xm)z ¥ (252(3,3) + (ugjz)(s)f)) = 4.86

1
séi) = Sg) =3 (x13ﬂ1(\411)(4) + ,u,(;z (3)x24) = 0.77

s = %((Zﬁf 0+ (EP®) )+ (x24)2> = 8.64
At 2" iteration, M-step, we have:
uP =z =052
WP =x? =11
u® = P = 1.57
uP =P =217

011 = S11

0 = o = 5D _FDFD = 044

0 = o9 = s _ O = 072

© = @ — (22)" = 0.9

B0 - @ _ @52 ~ _gogg
14 1t =T

14 41 ,
3 _ 2 Z(2))" ~
0,5 = Sy5 — (x2 ) = 1.17

o) = o9 = s _ DD = 131

0 = 60 = @ _ zD50) = 185

G _.@ (@) o
033 = Si3 —(x3 ) =24
oD =D =sD DD~ _263

G _.@ (@) o
044 = Sya —(x4 ) = 3.94

c(Z)+c(Z,) 2+2 0.5
B 4%2 42
Because the sample is too small for GEM to converge to an exact maximizer with small enough
number of iterations, we can stop GEM at the second iteration with ©® = ®" = (4", )" and
®® = @" = p” when difference between @@ and ®® is insignificant.

w = =052, =1.1,u5 =157, u; =217)T

0i, =049 o}, =-044 o05=072 o}, =-096
05, =—044 03, =117 053 =-131 o5, =185

p(3)

2= 052072 ol =-131 05, =24 ol =—263
0i,=—-096 0}, =185 0j3=-2.63 0, =394
p* = 0.5

As aforementioned, because Xmis is a part of X and f(Xmis | ©wm) is derived directly from f(X|®),
in practice we can stop GEM after its first iteration was done, which is reasonable enough to
handle missing data.
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As aforementioned, an interesting application of handling missing data is to fill in or predict
missing values. For instance, the missing part Xmis(1) of X1 = (X11=1, X12=?, X13=3, X14=?)" is
fulfilled by py,, according to equation 5.2.44 as follows:

x12 = p = 1.1

X4 = Hy = 2.17
Now we survey another interesting case that sample X = {X1, Xo,..., Xn} whose Xi (s) are iid
is MCAR data and f(X|®) is multinomial PDF of K trials. We ignore missingness variable Z
here because it is included in the case of multinormal PDF. Let X = {Xobs, Xmis} be random
variable representing every Xi. Suppose dimension of X is n. According to equation 5.2.9, recall
that

Xi = {Xops (D), Xinis (D} = (Xi1, Xizs oo Xi)”
T
Xmis () = (ximl: Ximy» ---:xim|Mi|)
. T
Xobs(l) = (xiﬁlil'xirﬁizl ""ximilﬁil)
Mi = {mil,miz, ...,mi|Mi|}

M; = {1, Mz, ..., Ty 7, }
The PDF of X is:

K! .

FX10) = f Konsy Xis|©) = ———=] |}’ (5.2.45)
j=1(x'

Where xj are integers and ® = (p1, P...., pn)' is the set of probabilities such that

1

pj

o

1

J

n
2.
j
x €{0,1, ..., K}
Note, xj is the number of trials generating nominal value j. Therefore,

K! o
FXi10) = f Kops (D), Xmis()10) = n—|l_[1’j i
j=1(xij-) o1

K

1]
oy

Where,

xij =K
j=1
xij € {0,1, ,K}
The most important task here is to define equation 5.2.11 and equation 5.2.15 in order to
compose 7(X) from z(Xobs), 7(Xmis) and to extract ®m from ® when f(X|®) is multinomial PDF.

Let Omis be parameter of marginal PDF of Xmis, we have:
M|

f Xmis|Omis) = H—(')l_[ (P , ) (5.2.46)
m]-EM xm]-- j=1 mis
Therefore,
M|
. . Konis ()! Pm;; \ i
F (Kimis (D] @i (1)) = ——22 (—55)
ijMi (xlm]|) j=1 mis
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Where,

0. . (l) — ( pmil pmiz pml|Ml| )T
e Pmis(i) ' Pmis(i) o mls(l)

|M;]
Prnis (1) = Z P (5.2.47)
j=1
|M;]
Kmis(0) = z Xm;;
=1

Obviously, Omis(i) is extracted from ® given indicator Mi.

Let Oops be parameter of marginal PDF of Xobs, We have:
|M|

K,ps! Pm;\ ™
f Kobs|Oops) = —1_[ (P ) (5.2.48)
m;eM (x’ﬁf!) j=1 o
Therefore,
K., () ;] p X
. ' 1) mij
f(Xobs(L)leobs(l)) = - 1_[ (P (JL)>
[im;em, (ximj!) j=1 = obs
Where,

. - P\
0 (l) _ pmll pmlz i|M;]|
obs Pobs(i) ' Pobs(i) ' obs(l)
[M;]

Pops(i) = Z Piny; (5.2.49)
j=1

[M;]

KObS(i) = Z xTT’L,:j

j=1
Obviously, @aps(i) is extracted from @ given indicator M; or Mi.

The conditional PDF of Xmis given Xobs is calculated based on the PDF of X and the marginal
PDF of Xobs as follows:
f(XmisleM) = f(XmiS|X0bS' Q) =

K! n Xj
Tn (- nilji=1D;
_ ?:1("}' !) ’ !
Kops! |M| (pmj)xm]

f(Xobe Xmisle)
f(Xobsleobs)

|M| J=1\P,
H]'=1x171j obs
_ HlMl x’rﬁ]' ] lp
Kops! ] 1(x]') HIMI (Pm]> mj
obs
M| |M| )
— k! % p Hp ( obs) ™
m;
obs H|]M|1 (xm] ) !
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i I
- i ( 1_[ P, |* H(P"bs)xmj
obs| HJ 1 xm] j=1
w1l
o T ]_[ P’ | * ((Pope) o)

obs| HJ 1 xm]
This implies that the condltlonal PDF of Xmis given Xops is multinomial PDF of K trials.
f(Xmislxobs' G)M) = f(Xmislxobs' G)

M|
5.2.50
= |M| Hpm * ((PObS)KODS) ( )
obs' H] 1 xm]
Therefore,
f (Xmis D[ Xops (D), Or,) = f Kinis (D1 Xops (i), ©)
[M;]
Kops()
1_[ pml (PObS( ))
obs(l)'nlell xlmj g )
Where
|M;]
PObS(i) = z p?’Tl”
j=1
[M;]
KObS(i) = Z xTTlij
j=1
Obviously, the parameter ©,,, of the conditional PDF f(X,;5(1)|Xops (D), Op,) is:
Pm,
Pm,
Ou, = u(0, Xops (D) = Pmy, (5.2.51)
|M;]|

PObS(i) = z pﬁl”
j=1

Therefore, equation 5.2.51 to extract 0, from © given Xobs(i) is an instance of equation 5.2.15.
It is easy to check that
| M|
z Xmy; + Kops (1) = Kinis (D) + Kops (D) = K
j=1
|M;| [M;] |M]

mel} + Pops(i) = zpmu +zpml] Zp] =1

At E-step of some i |terat|on given current parameter ®(t) = (pl(t) pz(t) , Pa®)T, the sufficient
statistic of X is calculated according to equation 5.2.22. Let,
N
®)
G)Mi)}

® = %2 {t(Xobs ), E(t(Ximis)
T(Xobs(i)) = (xirﬁlixin_lzi - xlm|Ml|)T

L=
The sufficient statistic of Xobs(i) is:
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The sufficient statistic of Xis(i) with regard to £ (Xpmis(D)|Xops (), Op,) is:
xim1

ximz

T(Xmis (@) = | Fimimy
|M;]

s
j=1

We also have:

(T (Xomis)

(t)) f f( X,

Xmis

Xobs» @f\;i)T(Xmis)deis = Kpm|Mi|

j=1
Therefore, the sufficient statistic of X at E-step of some t™" iteration given current parameter @®
= (P19, p20,..., pnT is defined as follows:
T
7O = (xft),xgt), ...,f,(f))
2.52
7O Z xi; ifj & M; vj (5.2.52)
YTN (t) ifjeM;
Equation 5.2.52 is an instance of equatlon 5 2.11, which compose z(X) from z(Xobs) and z(Xmis)
when f(X|®) is multinomial PDF.
At M-step of some t" iteration, we need to maximize Q1(®’|®) with following constraint
n

D=
j=1
According to equatlon 5.2.19, we have:

0,(@'l6) = z E (108(b(ops (1) Xomis)) @1, + (O )TZ{T(XobS(L)) B (t(Xmis) O}
i=1
— Nlog(a(6")
Where quantities b(Xobs(i), Xmis) and a(®’) belongs to the PDF f(X|®) of X. Because there is the
constraint ¥%_; p; = 1, we use Lagrange duality method to maximize Q1(®’|®). The Lagrange
function la(®’, 1 | ®) is sum of Q1(®’|®) and the constraint ¥7_; p; = 1, as follows:

n

la(@',10) = ,(@'18) + 2( 1~ ¥ ]

=1
= > E(108(b(Xaps (D, X)) Ot )
=l N n
+ (@7 Z{T(Xobs(i)), E(t(Xpnis)|Onr,)} — Nlog(a(e")) + 2 ( 1 — Z P!
i=1 =1
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Where ®° = (p1’, p2’,..., pn’)". Note, 2 > 0 is called Lagrange multiplier. Of course, la(®’, 4 |
®) is function of ® and A. The next parameter @Y that maximizes Q1(®’|®) is solution of
the equation formed by setting the first-order derivative of Lagrange function regarding ®’ and

/. 1o be zero.
The first-order partial derivative of la(®’, 1 | ®) with regard to ®’ is:
N
ala(G’ M@) T . ,
00’ Z (E(T(Xobs(l) Xmls)leM )) - Nlog (a(@) ))
i=1
N

— Z{T(Xobs(i)),E(T(Xmis)|®Mi)}T — Nlog'(a(@)) = (4 A, .., )T
By referring tablel;lz, we have:
log'(a(@") = (EcC010)" = [ Fxie)(xen) ax
X

Thus,

dla(0',7A|0 , .
a(—l) Z{T(Xobs(l)) E(t(Xmi)|0m,)} — N(E@X)O)) — (44, .., DT

The first-order partral derrvatrve of la(®’, 4 | ®) with regard to A is:
6la(®’ Al@)
Zm

Therefore, at M-step of some t" iteration, given current parameter 00 = (m©, pY,..., p)T,
the next parameter @ is solution of the following equation:

(Z {T(Xobs(i)): E(T(Xmis) 91(\2)}7'
—N(E((X)10))" — (4,4, ..., 1) = 0T

i=1
n
-
j=1

A

This implies:
p A/N
A/N
— O _
E@x(X)®) =1 A/N
) A/N
n
R
\j=1
Where,
1 N
® = Nz {T(Xobs(i))'E(T(Xmis) 61(‘2)}
i=1
Due to |

E((X)]0) = j TOOFX10)AX = (Kpy, KDy o, Kp)"

X
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7® = (¢ fét)“__,fco)T

20 _ Z Xij ifj & M; v
TN (t) ifj eM;

We obtain n equations Kpj = —A/N + x and 1 constraint 3.7_; p; = 1. Therefore, we have:

x;jifj & M; .
Pi= kN KNZ{ pVifjem;

Summing n equations above we have:

. 1 % x;j if j & M;
—Zp, KN _NZ Z (t)lfJEM

j=1
N /1M |M;]
__ A i, + Y KD
" RN KNS i Pm
1=
Suppose every missing value Xim; is estimated by K pmj such that.
|M;] |M;]
Z Xy, = z Kp“)
We obtain:
N /M [M;]
1= At 2 + 2 = Z T
= TrN RN L\ LTt LK | S TRy T RN =
=1 \Jj=1 j=1
This implies
A=0
Such that

x;jifj & M;
Pj KNZ{ ®ifjiem
Therefore, at M-step of some t" |terat|on given current parameter ©© = (p1@, pO...., pa®)T,
the next parameter @Y is specified by following equation.

N f s
P(EFD) _ 1 Z xij ifj & M; vj (5.2.53)
Pi T KN. ’ Kp\? ifj € M;
1=
In general, given sample X = {X1, Xa,..., Xn} whose Xi (s) are iid is MCAR data and f(X|®) is
multinomial PDF of K trials, GEM for handling missing data is summarized in table 5.2.3.
M-step:
Given 79 and @9 = (p1©, p20,..., pa®)T, the next parameter @Y is specified by equation

5.2.53.
p(E+D) _ Z xi; ifj & M; v
Pi TkN piifj € M;

Table 5.2.3. E-step and M-step of GEI\/I algorlthm for handling missing data given
multinomial PDF
In table 5.2.3, E-step is implied in how to perform M-step. As aforementioned, in practice we
can stop GEM after its first iteration was done, which is reasonable enough to handle missing
data.
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Example 5.2.2. Given sample of size two, X = {X1, X2 } in which X1 = (Xx11=1, X12=?, X13=3,
x14=2)T and Xz = (X21=?, X22=2, X23=?, X24=4)" are iid.

X1 | X2 | X3 | X4
Xe| 1] ?2] 3] ?
Xo| 2] 2] 2] 4

Of course, we have Xobs(1) = (X11=1, X13=3)", Xmis(1) = (X12=?, X14=?)", Xobs(2) = (X22=2, X24=4)"
and Xmis(2) = (x21=?, X23=?)". We also have M1 = {m11=2, m1,=4}, M, = {m,=1, m;,=3}, M2
= {mx1=1, mx=3}, and M, = {m,,=2, m,,=4}. Let X be random variable representing every
Xi. Suppose f(X|®) is multinomial PDF of 10 trials. We will estimate ® = (p1, pz, ps, p4)". The
parameters p1, p2, p3, and p2 are initialized arbitrarily as 0.25 as follows:

T
0™ = (p” = 0.25,p{” = 0.25,p{" = 0.25,p{" = 0.25)
At 1% iteration, M-step, we have:

(2)=L(1+10*025)=0175
Pi =702 ' '
(2>=L(10*025+2)=0225
P2 = 10+2 ' '

p(2)=L(3+10*025)=0275
3 T 10+2 ' '

(2)=L(10*025+4)=0325
Pa =102 ' '

We stop GEM after the first iteration was done, which results the estimate @ = ®" = (p1", p2”,
p3”, pa)' as follows:

p1 = 0.175
p; = 0.225
psz = 0.275
ps = 0.325

In general, GEM is a powerful tool to handle missing data, which is not so difficult except that
how to extract the parameter ®w of the conditional PDF f(Xmis | Xobs, ®m) from the whole
parameter ® of the PDF f(X|®w) is most important with note that only f(X|®) is defined firstly
and then f(Xmis | Xobs, ®m) is derived from f(X|®). Therefore, equation 5.2.15 is cornerstone of
this method. Note, equation 5.2.35 and 5.2.51 are instances of equation 5.2.15 when f(X|®) is
multinormal PDF or multinomial PDF.

6. Discussions

The convergence of GEM is based on the assumption that Q(®’ | ®) is smooth enough but Q(®’
| ®) may not be smooth in practice when f(X | ®) may be discrete probability function. For
example, when f(X | ®) and k(X | Y, ®) are discrete, equation 2.8 becomes

Q(0'10) = E(log(f(X10))|Y,0) = Z k(X|Y,®)log(f(X|0))
Xep~1(Y)
This discussion section goes beyond traditional variants of GEM algorithm when Q(®’ | ®) is
not smooth. Therefore, heuristic optimization methods which simulate social behavior, such as
particle swarm optimization (PSO) algorithm (Poli, Kennedy, & Blackwell, 2007) and artificial
bee colony (ABC) algorithm, are useful in case that there is no requirement of existence of
derivative. Moreover, these heuristic methods aim to find global optimizer. | propose an
association of GEM and PSO which produces a so-called quasi-PSO-GEM algorithm in which
M-step is implemented by one-time PSO (Wikipedia, Particle swarm optimization, 2017).
Given current t iteration, ®© is modeled as swarm’s best position. Suppose there are n
particles and each particle i has current velocity Vi, current positions Wi, and best position
@i, At each iteration, it is expected that these particles move to swarm’s new best position
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which is the next parameter @1, The swarm’s best position at the final iteration is expected
as ®". Table 6.2 is the proposal of quasi-PSO-GEM algorithm.
E-step:
As usual, Q(® | ®Y) is determined based on current ®© according to equation 2.8.
Actually, Q(® | ®Y) is formulated as function of ©.
M-step includes four sub-steps:
1. Calculating the next velocity Vit*V) of each particle based on its current velocity Vi©®,
its current positions Wi, its best positions @i, and the swarm’s best position @:
VD = 0V + 1y (@ — w() + 1, (00 — w{) (6.1)
Where w, ¢1, and ¢ are particular parameters of PSO (Poli, Kennedy, & Blackwell,
2007, pp. 3-4) whereas r is a random number such that 0 <r < 1 (Wikipedia, Particle
swarm optimization, 2017).
2. Calculating the next position ¥;**V) of each particle based on its current position ¥;®
and its current velocity V;©:
l_}]i(t+1) — l_}]i(t) + Vi(t) (62)
3. If Q(@® | @Y) < Qi | @) then, the next best position of each particle i is re-
assigned as @i*Y = "1, Otherwise, such next best position is kept intact as @

— (Di(t).
4. The next parameter @Y is the swarm’s new best position over the best positions of
all particles:
0600 =g [oo10) (o8 o) . e(0 )] o9

o®
If the bias @Y — @) is small enough, the algorithm stops. Otherwise, ®**% and all
Vi) D i1 hecome current parameters in the next iteration.
Table 6.1. E-step and M-step of the proposed quasi-PSO-GEM
At the first iteration, each particle is initialized with ¥i® = @Y = ®® and uniformly distributed
velocity Vi®. Note, ®® is initialized arbitrarily. Other termination criteria can be used, for
example, Q(® | ®Y) is large enough or the number of iterations is large enough.

We cannot prove mathematically convergence of quasi-PSO-GEM but we expect that @)
resulted from equation 6.3 is an approximation of ®" at the last iteration after a large enough
number of iterations. However, quasi-PSO-GEM tendentiously approaches global maximizer
of L(®), regardless of whether L(®) is concave. Hence, it is necessary to make experiment on
quasi-PSO-GEM.

There are many other researches which combine EM and PSO but the proposed quasi-PSO-
GEM algorithm has different ideology when it one-time PSO is embed into M-step to maximize
Q(® | ®Y) and so the ideology of quasi-PSO-GEM is near to the ideology of Newton-Raphson
process. With different viewpoint, some other researches combine EM and PSO in order to
solving better a particular problem instead of improving EM itself. For example, Ari and Aksoy
(Ari & Aksoy, 2010) used PSO to solve optimization problem of the clustering algorithm based
on mixture model and EM. Rajeswari and Gunasundari (Rajeswari & Gunasundari, 2016)
proposed EM for PSO based weighted clustering. Zhang, Zhuang, Gao, Luo, Ran, and Du
(Zhang, et al., 2014) proposed a so-called PSO-EM algorithm to make optimum use of PSO in
partial E-step in order solve the difficulty of integrals in normal compositional model.
Golubovic, Olcan, and Kolundzija (Golubovic, Olcan, & Kolundzija, 2007) proposed a few
modifications of the PSO algorithm which are applied to EM optimization of a broadside
antenna array. Tang, Song, and Liu (Tang, Song, & Liu, 2014) proposed a hybrid clustering
method based on improved PSO and EM clustering algorithm to overcome drawbacks of EM
clustering algorithm. Tran, Vo, and Lee (Tran, Vo, & Lee, 2013) proposed a novel clustering
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algorithm for image segmentation by employing the arbitrary covariance matrices that uses
PSO for the estimation of Gaussian mixture models.
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