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Abstract 
Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both 

applied probability and statistics but MLE cannot solve the problem of incomplete data or 

hidden data because it is impossible to maximize likelihood function from hidden data. 

Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this 

problem if there is a relationship between hidden data and observed data. Such hinting 

relationship is specified by a mapping from hidden data to observed data or by a joint 

probability between hidden data and observed data. In other words, the relationship helps us 

know hidden data by surveying observed data. The essential ideology of EM is to maximize 

the expectation of likelihood function over observed data based on the hinting relationship 

instead of maximizing directly the likelihood function of hidden data. Pioneers in EM 

algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as 

well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help 

researchers comprehend it. Moreover some improvements of EM algorithm are also proposed 

in the tutorial such as combination of EM and third-order convergence Newton-Raphson 

process, combination of EM and gradient descent method, and combination of EM and particle 

swarm optimization (PSO) algorithm. 

Keywords: expectation maximization, EM, generalized expectation maximization, GEM, EM 

convergence. 

 

1. Introduction 
Literature of expectation maximization (EM) algorithm in this tutorial is mainly extracted from 

the preeminent article “Maximum Likelihood from Incomplete Data via the EM Algorithm” 

by Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (Dempster, Laird, & Rubin, 1977). 

For convenience, let DLR be reference to such three authors. 

We begin a review of EM algorithm with some basic concepts. Before discussing main 

subjects, there are some conventions. For example, if there is no additional explanation, 

variables are often denoted by letters such as x, y, z, X, Y, and Z whereas values and constants 

are often denoted by letters such as a, b, c, A, B, and C. Parameters are often denoted as Greek 

letters such as α, β, γ, Θ, Φ, and Ψ. Uppercase letters often denote vectors and matrices 

(multivariate quantities) whereas lowercase letters often denote scalars (univariate quantities). 

Script letters such as 𝒳 and 𝒴 often denote data samples. Bold and uppercase letters such as X 

and R often denote algebraic structures such as spaces, fields, and domains. Moreover, bold 

and lowercase letters such as x, y, z, a, b, and c may denote vectors. Bold and uppercase letters 

such as X, Y, Z, A, B, and C may denote matrices. 

By default, vectors are column vectors although a vector can be column vector or row 

vector. For example, given two vectors X and Y and two matrices A and B: 
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𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑟

) 𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑟

)

𝐴 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) 𝐵 = (

𝑏11 𝑏12 ⋯ 𝑏1𝑘
𝑏21 𝑏22 ⋯ 𝑏2𝑘
⋮ ⋮ ⋱ ⋮
𝑏𝑛1 𝑏𝑛2 ⋯ 𝑎𝑛𝑘

)

 

X and Y above are column vectors. A row vector is represented as follows: 

𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑟) 
The number of elements in vector is its dimension. Zero vector is denoted as 0 whose dimension 

depends on context. 

𝟎 = (

0
0
⋮
0

) 

If considering rows and columns, mxn matrix A can be denoted Amxn or (aij)mxn. Vector is 1-row 

matrix or 1-column matrix such as A1xn or Anx1. Scalar is 1-element vector or 1x1 matrix. A 

matrix can be considered as a vector whose elements are vectors. 

Let (0) denote zero matrix whose numbers of rows and columns depend on context. If 

considering rows and columns, zero matrix can be denoted (0)mxn. 

(𝟎) = (0)𝑚x𝑛 = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

Matrix A is square if m = n, which can be denoted An or (aij)n. Matrix Λ is diagonal if it is square 

and its elements outside the main diagonal are zero: 

Λ = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑟

) 

Let I be identity matrix or unit matrix, as follows: 

𝐼 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 

Note, I is diagonal and its diagonal elements are 1. The row (column) number of identity matrix 

depends on context, but it can be denoted explicitly as In. 

Vector addition and matrix addition are defined like numerical addition: 

𝑋 ± 𝑌 = (

𝑥1 ± 𝑦1
𝑥2 ± 𝑦2

⋮
𝑥𝑟 ± 𝑦𝑟

) 

𝐴 ± 𝐵 = (

𝑎11 ± 𝑏11 𝑎12 ± 𝑏12 ⋯ 𝑎1𝑛 ± 𝑏1𝑛
𝑎21 ± 𝑏21 𝑎22 ± 𝑏22 ⋯ 𝑎2𝑛 ± 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 ± 𝑏𝑚1 𝑎𝑚2 ± 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 ± 𝑏𝑚𝑛

) 

(if n = k) 

Vector and matrix can be multiplied with a scalar. 
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𝑘𝑋 = (

𝑘𝑥1
𝑘𝑥2
⋮
𝑘𝑥𝑟

) 

𝑘𝐴 = (

𝑘𝑎11 𝑘𝑎12 ⋯ 𝑘𝑎1𝑛
𝑘𝑎21 𝑘𝑎22 ⋯ 𝑘𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑘𝑎𝑚1 𝑘𝑎𝑚2 ⋯ 𝑘𝑎𝑚𝑛

) 

Let superscript “T” denote transposition operator for vector and matrix, as follows: 

𝑋𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑟)

𝐴𝑇 = (

𝑎11 𝑎21 ⋯ 𝑎𝑟1
𝑎12 𝑎22 ⋯ 𝑎𝑟2
⋮ ⋮ ⋱ ⋮
𝑎1𝑝 𝑎2𝑝 ⋯ 𝑎𝑟𝑝

)
 

Transposition operator is linear with addition operator as follows: 

(𝑋 + 𝑌)𝑇 = 𝑋𝑇 + 𝑌𝑇

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇
 

Dot product or scalar product of two vectors can be written with transposition operator, as 

follows: 

𝑋𝑇𝑌 =∑𝑥𝑖𝑦𝑖

𝑟

𝑖=1

 

However, the product XYT results out a symmetric matrix as follows: 

𝑋𝑌𝑇 = 𝑌𝑋𝑇 = (

𝑥1𝑦1 𝑥1𝑦2 ⋯ 𝑥1𝑦𝑟
𝑥2𝑦1 𝑥2𝑦2 ⋯ 𝑥2𝑦𝑟
⋮ ⋮ ⋱ ⋮

𝑥𝑟𝑦1 𝑥𝑟𝑦2 ⋯ 𝑥𝑟𝑦𝑟

) 

The length of module of vector X in Euclidean space is: 

|𝑋| = √𝑋𝑇𝑋 = √∑𝑥𝑖
2

𝑟

𝑖=1

 

The notation |.| also denotes absolute value of scalar and determinant of square matrix; for 

example, we have |–1| = 1 and |A| which is determinant of given square matrix A. Note, 

determinant is only defined for square matrix. Let A and B be two square nxn matrices, we have: 

|cA| = cn|A| where c is scalar 

|AT| = |A| 

|AB| = |A||B| 

If A has nonzero determinant (≠0), there exists its inverse denoted A–1 such that: 

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 
Where I is identity matrix. If matrix A has its inverse, A is called invertible or non-singular. In 

general, square matrix A is invertible is equivalent to the event that its determinant is nonzero 

(≠0). There are many documents which guide to calculate inverse of invertible matrix. 

Let A and B be two invertible matrices, we have: 

(AB)–1 = B–1A–1 

|A–1| = |A|–1 = 1 / |A| 

(AT)–1 = (A–1)T  

Given invertible matrix A, it is called orthogonal matrix if A–1 = AT, which means AA–1 = A–1A 

= AAT = ATA = I. 

Product (multiplication operator) of two matrices Amxn and Bnxk is:  
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𝐴𝐵 = 𝐶 = (

𝑐11 𝑐12 ⋯ 𝑐1𝑘
𝑐21 𝑐22 ⋯ 𝑐2𝑘
⋮ ⋮ ⋱ ⋮
𝑐𝑚1 𝑐𝑚2 ⋯ 𝑐𝑚𝑘

)

𝑐𝑖𝑗 =∑𝑎𝑖𝑣𝑏𝑣𝑗

𝑛

𝑣=1

 

Square matrix A is symmetric if aij = aji for all i and j. If A is symmetric then, AT = A. If both A 

and B are symmetric with the same number of rows and columns then, they are commutative 

such that AB = BA with note that the product AB and BA produces a symmetric matrix. Given 

invertible matrix A, if it is symmetric, its inverse A–1 is symmetric too. 

Given N matrices Ai such that their product (multiplication operator) is valid, we have: 

(∏𝐴𝑖

𝑁

𝑖=1

)

𝑇

= (𝐴1𝐴2…𝐴𝑁)
𝑇 =∏𝐴𝑖

𝑇

1

𝑖=𝑁

= 𝐴𝑁
𝑇𝐴𝑁−1

𝑇 …𝐴1
𝑇 

Product of matrix and vector is similar to product of matrix and matrix when vector is 

considered as 1-column matrix or 1-row matrix, which results a vector. 

𝐴𝑋 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

)(

𝑥1
𝑥2
⋮
𝑥𝑛

) = 𝐶 = (

𝑐1
𝑐2
⋮
𝑐𝑚

) 

Where 𝑐𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 . 

𝑍𝑇𝐴 = (𝑧1, 𝑧2, … , 𝑧𝑚)(

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) = 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝑛) 

Where 𝑐𝑗 = ∑ 𝑧𝑖𝑎𝑖𝑗
𝑚
𝑖=1 . 

Given square matrix A, tr(A) is trace operator which takes sum of its diagonal elements. 

tr(𝐴) =∑𝑎𝑖𝑖
𝑖

 

Given invertible matrix A (n rows and n columns), Jordan decomposition theorem (Hardle & 

Simar, 2013, p. 63) stated that A is always decomposed as follows: 

𝐴 = 𝑈Λ𝑈−1 = 𝑈Λ𝑈𝑇 

Where U is orthogonal matrix composed of eigenvectors. Hence, U is called eigenvector matrix. 

𝑈 = (

𝑢11 𝑢21
𝑢12 𝑢22

… 𝑢𝑛1
… 𝑢𝑛2

⋮ ⋮
𝑢1𝑛 𝑢2𝑛

⋮ ⋮
… 𝑢𝑛𝑛

) 

There are n column eigenvectors ui = (u11, u12,…, u1n) in U and they are mutually orthogonal, 

ui
Tuj = 0. Where Λ is diagonal matrix composed of eigenvalues. Hence, Λ is called eigenvalue 

matrix. 

Λ = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑟

) 

Where λi are eigenvalues. When invertible matrix A is decomposed according to Jordan 

decomposition, we call A is diagonalized. If A can be diagonalized, it is called diagonalizable 

matrix. Of course, if A is invertible, A is diagonalizable. There are many documents for matrix 

diagonalization. 
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Given two diagonalizable matrices A and B are equal size (nxn) then, they are 

simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017) and hence, there exists 

an orthogonal eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017) 

(StackExchange, 2013): 

𝐴 = 𝑈Γ𝑈−1 = 𝑈Γ𝑈𝑇

𝐵 = 𝑈Λ𝑈−1 = 𝑈Λ𝑈𝑇
 

Where Γ and Λ are eigenvalue matrices of A and B, respectively. 

Given symmetric matrix A, it is positive (negative) definite if and only if XTAX > 0 (XTAX 

< 0) for all vector X≠0T. It is positive (negative) semi-definite if and only if XTAX ≥ 0 (XTAX ≤ 

0) for all vector X. When diagonalizable A is diagonalized into UΛUT, it is positive (negative) 

definite if and only if all eigenvalues in Λ are positive (negative). Similarly, it is positive 

(negative) semi-definite if and only if all eigenvalues in Λ are non-negative (non-positive). If 

A is degraded as a scalar, concepts “positive definite”, “positive semi-definite”, “negative 

definite”, and “negative semi-definite” becomes concepts “positive”, “non-negative”, 

“negative”, and “non-positive”, respectively. 

Suppose f(X) is scalar-by-vector function, for instance, f: Rn → R where Rn is n-dimensional 

real vector space. The first-order derivative of f(X) is gradient vector as follows: 

𝑓′(𝑋) = ∇𝑓(𝑋) =
d𝑓(𝑋)

d𝑋
= 𝐷𝑓(𝑋) = (

𝜕𝑓(𝑋)

𝜕𝑥1
,
𝜕𝑓(𝑋)

𝜕𝑥2
, … ,

𝜕𝑓(𝑋)

𝜕𝑥𝑛
) 

Where 
𝜕𝑓(𝑋)

𝜕𝑥𝑖
 is partial first-order derivative of f with regard to xi. So gradient is row vector. The 

second-order derivative of f(X) is called Hessian matrix as follows: 

𝑓′′(𝑋) =
d2𝑓(𝑋)

d𝑋2
= 𝐷2𝑓(𝑋) =

(

 
 
 
 
 

𝜕2𝑓(𝑋)

𝜕𝑥1
2

𝜕2𝑓(𝑋)

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓(𝑋)

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓(𝑋)

𝜕𝑥2𝜕𝑥1

𝜕2𝑓(𝑋)

𝜕𝑥2
2 ⋯

𝜕2𝑓(𝑋)

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓(𝑋)

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(𝑋)

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓(𝑋)

𝜕𝑥𝑛2 )

 
 
 
 
 

 

Where 

𝜕2𝑓(𝑋)

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑖
(
𝜕𝑓(𝑋)

𝜕𝑥𝑗
)

𝜕2𝑓(𝑋)

𝜕𝑥𝑖
2 =

𝜕2𝑓(𝑋)

𝜕𝑥𝑖𝜕𝑥𝑖

 

Hence, second-order partial derivatives of xi (s) are on diagonal of the Hessian matrix. In 

general, vector calculus is a complex subject. Here we focus on scalar-by-vector function with 

some properties. Let c, A, B, and M be scalar constant, vector constant, vector constant, and 

matrix constant, respectively, suppose vector and matrix operators are valid we have: 
d𝑐

d𝑋
= 𝟎𝑇 

d𝐴𝑇𝑋

d𝑋
=
d𝑋𝑇𝑎

d𝑋
= 𝐴𝑇 

d𝑋𝑇𝑋

d𝑋
= 2𝑋𝑇 

d𝐴𝑇𝑋𝑋𝑇𝐵

d𝑋
= 𝑋𝑇(𝐴𝐵𝑇 + 𝐵𝐴𝑇) 

d𝐴𝑇𝑀𝑋

d𝑋
=
d𝑋𝑇𝑀𝑇𝐴

d𝑋
= 𝐴𝑇𝑀 
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If M is a square matrix constant, we have: 

d𝑋𝑇𝑀𝑋

d𝑋
= 𝑥𝑇(𝑀 +𝑀𝑇) 

d2𝑋𝑇𝑀𝑋

d𝑋2
= 𝑀 +𝑀𝑇 

Hessian matrix is square matrix. Function f(X) is called nth-order analytic function or nth-order 

smooth function if there is existence and continuity of kth-order derivatives of f(X) where k = 1, 

2,…, K. Function f(X) is called smooth enough function if K is large enough. According to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), if f(X) is second-order 

smooth function then, its Hessian matrix is symmetric. 

𝜕2𝑓(𝑋)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(𝑋)

𝜕𝑥𝑗𝜕𝑥𝑖
 

When X is univariate, gradient vector and Hessian matrix are degraded as scalar values. 

Without loss of generality, by default, variable X in this research is multivariate as vector if 

there is no additional explanation. 

Given f(X) being second-order smooth function, f(X) is convex (strictly convex) in domain 

X if and only if its Hessian matrix is semi-positive definite (positive definite) in X. Similarly, 

f(X) is concave (strictly concave) in domain X if and only if its Hessian matrix is semi-negative 

definite (negative definite) in X. Extreme point, optimized point, optimal point, or optimizer 

X* is minimum point (minimizer) of convex function and is maximum point (maximizer) of 

concave function. 
𝑋∗ = argmin

𝑋∈𝑿
𝑓(𝑋)  if 𝑓 convex in 𝑿

𝑋∗ = argmax
𝑋∈𝑿

𝑓(𝑋)  if 𝑓 concave in 𝑿
 

Given second-order smooth function f(X), function f(X) has stationary point X* if its gradient 

vector at X* is zero, Df(X*) = 0T. The stationary point X* is local minimum point if Hessian 

matrix at X* that is D2f(X*) is positive definite. Otherwise, the stationary point X* is local 

maximum point if Hessian matrix at X* that is D2f(X*) is negative definite. If a stationary point 

X* is neither minimum point nor maximum point, it is saddle point in which Df(X*) = 0T and 

D2f(X*) = (0) where (0) denotes zero matrix whose all elements are zero. Finding extreme point 

(minimum point or maximum point) is optimization problem. Therefore, if f(X) is second-order 

smooth function and its gradient vector Df(X) and Hessian matrix D2f(X) and are both 

determined, the optimization problem is processed by solving the equation created from setting 

the gradient Df(X) to be zero (Df(X)=0T) and then checking if the Hessian matrix Df(X*) is 

positive definite or negative definite where X* is solution of equation Df(X)=0T. If such equation 

cannot be solved due to its complexity, there are some popular methods to solve optimization 

problem such as Newton-Raphson (Burden & Faires, 2011, pp. 67-71) and gradient descent 

(Ta, 2014). 

A short description of Newton-Raphson method is necessary because it is helpful to solve 

the equation Df(X)=0T for optimization problem in practice, especially in case that there is no 

algebraic formula for solution of such equation. Suppose f(X) is second-order smooth function, 

according to first-order Taylor series expansion of Df(X) at X=X0 with very small residual, we 

have: 

𝐷𝑓(𝑋) ≈ 𝐷𝑓(𝑋0) + (𝑋 − 𝑋0)
𝑇(𝐷2𝑓(𝑋0))

𝑇
 

Because f(X) is second-order smooth function, D2f(X0) is symmetric matrix according to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies: 

D2f(X0) = (D2f(X0))
T 

So, we have: 

𝐷𝑓(𝑋) ≈ 𝐷𝑓(𝑋0) + (𝑋 − 𝑋0)
𝑇𝐷2𝑓(𝑋0) 
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We expect that Df(X) = 0T so that X is a solution. 

𝟎𝑇 = 𝐷𝑓(𝑋) ≈ 𝐷𝑓(𝑋0) + (𝑋 − 𝑋0)
𝑇𝐷2𝑓(𝑋0) 

It implies: 

𝑋𝑇 ≈ 𝑋0
𝑇 − 𝐷𝑓(𝑋0)(𝐷

2𝑓(𝑋0))
−1

 

This means: 

𝑋 ≈ 𝑋0 − (𝐷
2𝑓(𝑋0))

−1
(𝐷𝑓(𝑋0))

𝑇
 

Therefore, Newton-Raphson method starts with an arbitrary value of X0 as a solution candidate 

and then goes through some iterations. Suppose at kth iteration, the current value is Xk and the 

next value Xk+1 is calculated based on following equation: 

𝑋𝑘+1 ≈ 𝑋𝑘 − (𝐷
2𝑓(𝑋𝑘))

−1
(𝐷𝑓(𝑋𝑘))

𝑇
 

The value Xk is solution of Df(X)=0T if Df(Xk)=0T which means that Xk+1=Xk after some 

iterations. At that time Xk+1 = Xk = X* is the local optimized point (local extreme point). So, the 

terminated condition of Newton-Raphson method is Df(Xk)=0T. Note, the X* resulted from 

Newton-Raphson method is local minimum point (local maximum point) if f(X) is convex 

function (concave function) in current domain. 

Newton-Raphson method computes second-order derivative D2f(X) but gradient descent 

method (Ta, 2014) does not. This difference is not significant but a short description of gradient 

descent method is necessary because it is also an important method to solve the optimization 

problem in case that solving directly the equation Df(X)=0T is too complicated. Gradient 

descent method is also iterative method starting with an arbitrary value of X0 as a solution 

candidate. Suppose at kth iteration, the next candidate point Xk+1 is computed based on the 

current Xk as follows (Ta, 2014): 

𝑋𝑘+1 = 𝑋𝑘 + 𝑡𝑘𝒅𝑘 

The direction dk is called descending direction, which is the opposite of gradient of f(X). Hence, 

we have dk = –Df(Xk). The value tk is the length of the descending direction dk. The value tk is 

often selected an minimizer (maximizer) of function g(t) = f(Xk + tdk) for minimization 

(maximization) where Xk and dk are known at kth iteration. Alternately, tk is selected by some 

advanced condition such as Barzilai–Borwein condition (Wikipedia, Gradient descent, 2018). 

After some iterations, point Xk converges to the local optimizer X* when dk = 0T. At that time 

is we have Xk+1 = Xk = X*. So, the terminated condition of Newton-Raphson method is dk=0T. 

Note, the X* resulted from gradient descent method is local minimum point (local maximum 

point) if f(X) is convex function (concave function) in current domain. 

In the case that the optimization problem has some constraints, Lagrange duality (Jia, 2013) 

is applied to solve this problem. Given first-order smooth function f(X) and constraints gi(X) ≤ 

0 and hj(X) = 0, the optimization problem is stated as follows: 
Optimize 𝑓(𝑋)

𝑔𝑖(𝑋) ≤ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

ℎ𝑗(𝑋) = 0 for 𝑗 =  1, 𝑛̅̅ ̅̅ ̅
 

A so-called Lagrange function la(X, λ, μ) is established as sum of f(X) and constraints 

multiplied by Lagrange multipliers λ and μ. In case of minimization problem, la(X, λ, μ) is 

𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝑓(𝑋) +∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

+∑𝜇𝑗ℎ(𝑋)

𝑛

𝑗=1

 

In case of maximization problem, la(X, λ, μ) is 

𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝑓(𝑋) −∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

−∑𝜇𝑗ℎ(𝑋)

𝑛

𝑗=1

 

Where all λi ≥ 0. Note, λ = (λ1, λ2,…, λm)T and μ = (μ1, μ2,…, μm)T are called Lagrange multipliers 

and la(X, λ, μ) is function of X, λ, and μ. Thus, optimizing f(X) with subject to constraints gi(X) 
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≤ 0 and hj(X) = 0 is equivalent to optimize la(X, λ, μ), which is the reason that this method is 

called Lagrange duality. Suppose la(X, λ, μ) is also first-order smooth function. In case of 

minimization problem, the gradient of la(X, λ, μ) with regard to X is 

𝐷𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝐷𝑓(𝑋) +∑𝜆𝑖𝐷𝑔(𝑋)

𝑚

𝑖=1

+∑𝜇𝑗𝐷ℎ(𝑋)

𝑛

𝑗=1

 

In case of maximization problem, the gradient of la(X, λ, μ) with regard to X is 

𝐷𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝐷𝑓(𝑋) −∑𝜆𝑖𝐷𝑔(𝑋)

𝑚

𝑖=1

−∑𝜇𝑗𝐷ℎ(𝑋)

𝑛

𝑗=1

 

According to KKT condition (Wikipedia, Karush–Kuhn–Tucker conditions, 2014), a local 

optimized point (local extreme point) X* is solution of the following equation system: 

{
 
 
 

 
 
 
𝐷𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝟎𝑇

𝑔𝑖(𝑋) ≤ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

ℎ𝑗(𝑋) = 0 for 𝑗 =  1, 𝑛̅̅ ̅̅ ̅

𝜆𝑖 ≥ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

= 0

 

The last equation in the KKT system above is called complementary slackness. The main task 

of KKT problem is to solve the first equation Dla(X, λ, μ) = 0T. Again some practical methods 

such as Newton-Raphson method can be used to solve the equation Dla(X, λ, μ) = 0T. 

Alternately, gradient descent method can be used to optimize la(X, λ, μ) with constraints 

specified in KKT system. 

{
  
 

  
 
𝑔𝑖(𝑋) ≤ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

ℎ𝑗(𝑋) = 0 for 𝑗 =  1, 𝑛̅̅ ̅̅ ̅

𝜆𝑖 ≥ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

= 0

 

Let P(.) denote probability, 

0 ≤ 𝑃(. ) ≤ 1 

We need to skim some essential probabilistic rules such as additional rule, multiplication rule, 

total probability rule, and Bayes’ rule. Given two random events (or random variables) X and 

Y, additional rule (Montgomery & Runger, 2003, p. 33) and multiplication rule (Montgomery 

& Runger, 2003, p. 44) are expressed as follows: 

𝑃(𝑋 ∪ 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) − 𝑃(𝑋 ∩ 𝑌) 
𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) = 𝑃(𝑌|𝑋)𝑃(𝑋) 

Where notations ∪  and ∩  denote union operator and intersection operator in set theory 

(Wikipedia, Set (mathematics), 2014). Your attention please, when X and Y are numerical 

variables, notations ∪ and ∩ also denote operators “or” and “and” in theory logic (Rosen, 2012, 

pp. 1-12). The probability P(X, Y) is known as joint probability. The probability P(X|Y) is called 

conditional probability of X given Y: 

𝑃(𝑋|𝑌) =
𝑃(𝑋, 𝑌)

𝑃(𝑌)
=
𝑃(𝑋 ∩ 𝑌)

𝑃(𝑌)
=
𝑃(𝑌|𝑋)𝑃(𝑋)

𝑃(𝑌)
 

Conditional probability is base of Bayes’ rule mentioned later. 

If X and Y are mutually exclusive (𝑋 ∩ 𝑌 = ∅) then, 𝑋 ∪ 𝑌 is often denoted as X+Y and we 

have: 

𝑃(𝑋 + 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) 
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(Due to P(Ø) = 0) 

X and Y are mutually independent if and only if one of three following conditions is satisfied: 
𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋)𝑃(𝑌)

𝑃(𝑋|𝑌) = 𝑃(𝑋)

𝑃(𝑌|𝑋) = 𝑃(𝑌)
 

When X and Y are mutually independent, 𝑋 ∩ 𝑌 are often denoted as XY and we have: 

𝑃(𝑋𝑌) = 𝑃(𝑋, 𝑌) = 𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋)𝑃(𝑌) 
Given a complete set of mutually exclusive events X1, X2,…, Xn such that 

𝑋1 ∪ 𝑋2 ∪ …∪ 𝑋𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = Ω where Ω is probability space 

𝑋𝑖 ∩ 𝑋𝑗 = ∅, ∀𝑖, 𝑗 

The total probability rule (Montgomery & Runger, 2003, p. 44) is specified as follows: 

𝑃(𝑌) = 𝑃(𝑌|𝑋1)𝑃(𝑋1) + 𝑃(𝑌|𝑋2)𝑃(𝑋2) + ⋯+ 𝑃(𝑌|𝑋𝑛)𝑃(𝑋𝑛) =∑𝑃(𝑌|𝑋𝑖)𝑃(𝑋𝑖)

𝑛

𝑖=1

 

Where 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = Ω and 𝑋𝑖 ∩ 𝑋𝑗 = ∅, ∀𝑖, 𝑗 

If X and Y are continuous variables, the total probability rule is re-written in integral form as 

follows: 

𝑃(𝑌) = ∫𝑃(𝑌|𝑋)𝑃(𝑋)d𝑋

𝑋

 

Note, P(Y|X) and P(X) are continuous functions known as probability density functions 

mentioned later. The important Bayes’ rule will also be mentioned later. 

A variable X is called random variable if it conforms a probabilistic distribution which is 

specified by a probability density function (PDF) or a cumulative distribution function (CDF) 

(Montgomery & Runger, 2003, p. 64) (Montgomery & Runger, 2003, p. 102) but CDF and 

PDF have the same meaning and they share interchangeable property when PDF is derivative 

of CDF; in other words, CDF is integral of PDF. In practical statistics, PDF is used more 

common than CDF is used and so, PDF is mentioned over the whole report. When X is discrete, 

PDF is degraded as probability of X. Note, notation P(.) often denotes probability and it can be 

used to denote PDF but we prefer to use lower case letters such as f and g to denote PDF. Given 

a random variable having PDF f, we often state that “such variable has distribution f or such 

variable has density function f”. Let F(X) and f(X) be CDF and PDF, respectively, equation 1.1 

is definition of CDF and PDF. 

Continuous case:

{
  
 

  
 
𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = ∫ 𝑓(𝑋)𝑑𝑋

𝑋0

−∞

∫ 𝑓(𝑋)d𝑋

+∞

−∞

= 1

Discrete case:

{
 
 

 
 𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = ∑ 𝑃(𝑋)

𝑋≤𝑋0

𝑓(𝑋) = 𝑃(𝑋) and∑𝑃(𝑋)

𝑋

= 1

 (1.1) 

In discrete case, probability at a single point X0 is determined as P(X0) = f(X0) but in continuous 

case, probability is determined in an interval [a, b], (a, b), [a, b), or (a, b] where a, b, and X are 

real as integral of the PDF in such interval as follows: 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫𝑓(𝑋)𝑑𝑋

𝑏

𝑎
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Hence, in continuous case, probability at a single point is 0. 

Equation 1.1 defines CDF and PDF for univariate random variable and so it is easy to 

expend it for multivariate variable when X is vector. Let X = (x1, x2,…, xn)
T be n-dimension 

random vector, its CDF and PDF are re-defined as follows: 

Continuous case: 

𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = 𝑃(𝑥1 ≤ 𝑥01, 𝑥2 ≤ 𝑥02, … , 𝑥𝑛 ≤ 𝑥0𝑛) = ∫ 𝑓(𝑋)𝑑𝑋

𝑋0

−∞

= ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1d𝑥2…d𝑥𝑛

𝑋0

−∞

𝑋0

−∞

𝑋0

−∞

 

∫ 𝑓(𝑋)𝑑𝑋

+∞

−∞

= ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1d𝑥2…d𝑥𝑛

+∞

−∞

+∞

−∞

+∞

−∞

= 1 

Discrete case: 

𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = 𝑃(𝑥1 ≤ 𝑥01, 𝑥2 ≤ 𝑥02, … , 𝑥𝑛 ≤ 𝑥0𝑛) = ∑ 𝑃(𝑋)

𝑋≤𝑋0

= ∑ ∑ … ∑ 𝑃(𝑋)

𝑥𝑛≤𝑥0𝑛𝑥2≤𝑥02𝑥1≤𝑥01

 

𝑓(𝑋) = 𝑃(𝑋) 

 ∑𝑃(𝑋)

𝑋

= ∑ ∑ … ∑ 𝑃(𝑋)

𝑥𝑛≤𝑥0𝑛𝑥2≤𝑥02𝑥1≤𝑥01

= 1 

(1.2) 

Marginal PDF of partial variable xi where xi is a component of X is the integral of f(X) over all 

xj except xi. 

𝑓𝑥𝑖(𝑥𝑖) = ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1…d𝑥𝑖−1d𝑥𝑖+1…d𝑥𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

Where, 

∫ 𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖

+∞

−∞

= 1 

Joint PDF of xi and xj is defined as the integral of f(X) over all xk except xi and xj. 

𝑓𝑥𝑖𝑥𝑗(𝑥𝑖 , 𝑥𝑗) = ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1…d𝑥𝑖−1d𝑥𝑖+1…d𝑥𝑗−1d𝑥𝑗+1…d𝑥𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

Where, 

∫ ∫ 𝑓𝑥𝑖𝑥𝑗(𝑥𝑖, 𝑥𝑗)

+∞

−∞

d𝑥𝑖d𝑥𝑗

+∞

−∞

= 1 

Conditional PDF of xi given xj is defined as follows: 

𝑓𝑥𝑖|𝑥𝑗(𝑥𝑖) =
𝑓𝑥𝑖𝑥𝑗(𝑥𝑖, 𝑥𝑗)

𝑓𝑥𝑗(𝑥𝑗)
 

Indeed, conditional PDF implies conditional probability. 

Given random variable X and its PDF f(X), theoretical expectation E(X) and theoretical 

variance V(X) of X are: 
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𝐸(𝑋) = ∫𝑋𝑓(𝑋)d𝑋

𝑋

 (1.3) 

 

𝑉(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
= ∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))

𝑇
𝑓(𝑋)d𝑋

𝑋

= 𝐸(𝑋𝑋𝑇) − 𝐸(𝑋)𝐸(𝑋)𝑇 

(1.4) 

The expectation E(X) of X is often called theoretical mean. When X is multivariate vector, E(X) 

is mean vector and V(X) is covariance matrix which is always symmetric. When X = (x1, x2,…, 

xn)
T is multivariate, E(X) and V(X) have following forms: 

𝐸(𝑋) = (

𝐸(𝑥1)

𝐸(𝑥2)
⋮

𝐸(𝑥𝑛)

)

𝑉(𝑋) = (

𝑉(𝑥1) 𝑉(𝑥1, 𝑥2) ⋯ 𝑉(𝑥1, 𝑥𝑛)

𝑉(𝑥2, 𝑥1) 𝑉(𝑥2) ⋯ 𝑉(𝑥2, 𝑥𝑛)
⋮ ⋮ ⋱ ⋮

𝑉(𝑥𝑛, 𝑥1) 𝑉(𝑥𝑛, 𝑥2) ⋯ 𝑉(𝑥𝑛)

)

 

Therefore, theoretical means and variances of partial variables xi can be determined separately. 

For instance, each E(xi) is theoretical mean of partial variable xi given marginal PDF 𝑓𝑥𝑗(𝑥𝑗). 

𝐸(𝑥𝑖) = ∫𝑥𝑖𝑓(𝑋)d𝑋

𝑋

= ∫𝑥𝑖𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖
𝑥𝑖

 

Each V(xi, xj) is theoretical covariance of partial variables xi and xj given joint PDF 𝑓𝑥𝑖𝑥𝑗(𝑥𝑖 , 𝑥𝑗). 

𝑉(𝑥𝑖, 𝑥𝑗) = 𝑉(𝑥𝑗 , 𝑥𝑖) = 𝐸(𝑥𝑖 − 𝐸(𝑥𝑖)) (𝑥𝑗 − 𝐸(𝑥𝑗))

= ∫(𝑥𝑖 − 𝐸(𝑥𝑖)) (𝑥𝑗 − 𝐸(𝑥𝑗)) 𝑓(𝑋)d𝑋

𝑋

= ∫ ∫(𝑥𝑖 − 𝐸(𝑥𝑖)) (𝑥𝑗 − 𝐸(𝑥𝑗)) 𝑓𝑥𝑖𝑥𝑗(𝑥𝑖 , 𝑥𝑗)d𝑥𝑖d𝑥𝑗
𝑥𝑗𝑥𝑖

 

Note, 

𝐸(𝑥𝑖𝑥𝑗) = ∫𝑥𝑖𝑥𝑗𝑓(𝑋)d𝑋

𝑋

= ∫ ∫𝑥𝑖𝑥𝑗𝑓𝑥𝑖𝑥𝑗(𝑥𝑖 , 𝑥𝑗)d𝑥𝑖d𝑥𝑗
𝑥𝑗𝑥𝑖

= 𝑉(𝑥𝑖 , 𝑥𝑗) + 𝐸(𝑥𝑖)𝐸(𝑥𝑗) 

Each V(xi) on diagonal of V(X) is theoretical variance of partial variable xi given marginal PDF 

𝑓𝑥𝑗(𝑥𝑗). 

𝑉(𝑥𝑖) = 𝐸(𝑥𝑖 − 𝐸(𝑥𝑖))
2
= ∫(𝑥𝑖 − 𝐸(𝑥𝑖))

2
𝑓(𝑋)d𝑋

𝑋

= ∫(𝑥𝑖 − 𝐸(𝑥𝑖))
2
𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖

𝑥𝑖

 

Note, 

𝐸(𝑥𝑖
2) = ∫𝑥𝑖

2𝑓(𝑋)d𝑋

𝑋

= ∫𝑥𝑖
2𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖

𝑥𝑖

= 𝑉(𝑥𝑖) + (𝐸(𝑥𝑖))
2
 

Given two random variables X and Y along with a joint PDF f(X, Y), theoretical covariance of 

X and Y is defined as follows: 

𝑉(𝑋, 𝑌) = 𝐸(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))
𝑇

= ∫∫(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))
𝑇
𝑓(𝑋, 𝑌)d𝑋d𝑌

𝑌𝑋

 
(1.5) 
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If the random variables X and Y are mutually independent given the joint PDF f(X, Y), its 

covariance is zero, V(X, Y)=0. However, it is not sure that X and Y are mutually independent if 

V(X, Y)=0. Note, joint PDF is the PDF having two or more random variables. If X and Y are 

multivariate vectors, V(X, Y) is theoretical covariance matrix of X and Y given the joint PDF 

f(X, Y). When X = (x1, x2,…, xm)T and Y = (y1, y2,…, yn)
T are multivariate, V(X, Y) has following 

form: 

𝑉(𝑋, 𝑌) = (

𝑉(𝑥1, 𝑦1) 𝑉(𝑥1, 𝑦2) ⋯ 𝑉(𝑥1, 𝑦𝑛)

𝑉(𝑥2, 𝑦1) 𝑉(𝑥2, 𝑦2) ⋯ 𝑉(𝑥2, 𝑦𝑛)
⋮ ⋮ ⋱ ⋮

𝑉(𝑥𝑚, 𝑦1) 𝑉(𝑥𝑚, 𝑦2) ⋯ 𝑉(𝑥𝑚, 𝑦𝑛)

) 

Where V(xi, yj) is covariance of xi and yj. We have: 

𝑉(𝑥𝑖 , 𝑦𝑗) = 𝐸(𝑥𝑖 − 𝐸(𝑥𝑖)) (𝑦𝑗 − 𝐸(𝑦𝑗)) = ∫∫(𝑥𝑖 − 𝐸(𝑥𝑖)) (𝑦𝑗 − 𝐸(𝑦𝑗))

𝑌

𝑓(𝑋, 𝑌)d𝑋d𝑌

𝑋

= ∫ ∫(𝑥𝑖 − 𝐸(𝑥𝑖)) (𝑥𝑗 − 𝐸(𝑦𝑗)) 𝑓𝑥𝑖𝑦𝑗(𝑥𝑖 , 𝑦𝑗)d𝑥𝑖d𝑦𝑗
𝑦𝑗𝑥𝑖

= 𝐸(𝑥𝑖𝑦𝑗) − 𝐸(𝑥𝑖)𝐸(𝑦𝑗) 

Note, 

𝑓(𝑋) = ∫𝑓(𝑋, 𝑌)d𝑌

𝑌

= ∫ ∫ … ∫ 𝑓(𝑋, 𝑌)d𝑦1d𝑦2…d𝑦𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

𝑓(𝑌) = ∫𝑓(𝑋, 𝑌)d𝑋

𝑋

= ∫ ∫ … ∫ 𝑓(𝑋, 𝑌)d𝑥1d𝑥2…d𝑥𝑚

+∞

−∞

+∞

−∞

+∞

−∞

 

𝑓𝑥𝑖(𝑥𝑖) = ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1…d𝑥𝑖−1d𝑥𝑖+1…d𝑥𝑚

+∞

−∞

+∞

−∞

+∞

−∞

 

𝑓𝑦𝑗(𝑦𝑗) = ∫ ∫ … ∫ 𝑓(𝑌)d𝑦1…d𝑦𝑗−1d𝑦𝑗+1…d𝑦𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

𝑓𝑥𝑖𝑦𝑗(𝑥𝑖, 𝑦𝑗) = ∫ ∫ … ∫ 𝑓(𝑋, 𝑌)
d𝑥1…d𝑥𝑖−1d𝑥𝑖+1…d𝑥𝑚
d𝑦1…d𝑦𝑗−1d𝑦𝑗+1…d𝑦𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

𝐸(𝑥𝑖) = ∫𝑥𝑖𝑓(𝑋)d𝑋

𝑋

= ∫𝑥𝑖𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖
𝑥𝑖

 

𝐸(𝑦𝑗) = ∫𝑦𝑗𝑓(𝑌)d𝑌

𝑌

= ∫𝑦𝑗𝑓𝑦𝑗(𝑦𝑗)d𝑦𝑗
𝑦𝑗

 

𝐸(𝑥𝑖𝑦𝑗) = ∫∫𝑥𝑖𝑦𝑗𝑓(𝑋, 𝑌)d𝑋d𝑌

𝑌𝑋

= ∫ ∫𝑥𝑖𝑦𝑗𝑓𝑥𝑖𝑦𝑗(𝑥𝑖 , 𝑦𝑗)d𝑥𝑖d𝑦𝑗
𝑦𝑗𝑥𝑖

 

As usual, E(X) and V(X) are often denoted as μ and Σ, respectively if they are parameters of 

PDF. Note, most of PDFs whose parameters are not E(X) and V(X). When X is univariate, Σ is 

often denoted as σ2 (if it is parameter of PDF). For example, if X is univariate and follows 

normal distribution, its PDF is: 

𝑓(𝑋) =
1

√2𝜋𝜎2
exp (−

1

2

(𝑋 − 𝜇)2

𝜎2
) 
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If X = (x1, x2,…, xn)
T is multivariate and follows multinormal (multivariate normal) distribution, 

its PDF is: 

𝑓(𝑋) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

In this case, parameters μ and Σ have following forms: 

𝜇 = 𝐸(𝑋) = (

𝜇1
𝜇2
⋮
𝜇𝑛

)

Σ = 𝑉(𝑋) = (

𝜎11 𝜎12 ⋯ 𝜎1𝑛
𝜎21 𝜎22 ⋯ 𝜎2𝑛
⋮ ⋮ ⋱ ⋮
𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

)

 

Of course, μ and Σ are determined by equation 1.3 and equation 1.4, respectively with note that 

Σ is symmetric and invertible in case of multinormal distribution. Each μi is theoretical mean 

of partial variable xi as usual. 

𝜇𝑖 = 𝐸(𝑥𝑖) 
Each σij where i≠j is theoretical covariance of partial variables xi and xj as usual. 

𝜎𝑖𝑗 = 𝜎𝑗𝑖 = 𝑉(𝑥𝑖, 𝑥𝑗) = 𝑉(𝑥𝑗 , 𝑥𝑖) 

Note, 

𝐸(𝑥𝑖𝑥𝑗) = 𝜎𝑖𝑗 + 𝜇𝑖𝜇𝑗 

Each σii on diagonal of Σ is theoretical variance of partial variable xi as usual. 

𝜎𝑖𝑖 = 𝜎𝑖
2 = 𝑉(𝑥𝑖) 

Note, 

𝐸(𝑥𝑖
2) = 𝜎𝑖

2 + 𝜇𝑖
2 

Without loss of generality, by default, random variable X in this research is multivariate as 

vector if there is no additional explanation. Followings are some formulas related to theoretical 

expectation E(X) and variance V(X). 

Let a and A be scalar constant and vector constant, respectively, we have: 
𝐸(𝑎𝑋 + 𝐴) = 𝑎𝐸(𝑋) + 𝐴

𝑉(𝑎𝑋 + 𝐴) = 𝑎2𝑉(𝑋)
 

Given a set of random variables 𝒳 = {X1, X2,…, XN) and N scalar constants ci (s), we have: 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖𝐸(𝑋𝑖)

𝑁

𝑖=1

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖
2𝑉(𝑋𝑖)

𝑁

𝑖=1

+ 2∑ ∑ 𝑐𝑖𝑐𝑗𝑉(𝑋𝑖, 𝑋𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

Where V(Xi, Xj) is covariance of Xi and Xj. 

If all Xi (s) are mutually independent, then 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖𝐸(𝑋𝑖)

𝑁

𝑖=1

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖
2𝑉(𝑋𝑖)

𝑁

𝑖=1

 

Note, given joint PDF f(X1, X2,…, XN), two random variables Xi and Xj are mutually 

independent if f(Xi, Xj) = f(Xi)f(Xj) where f(Xi, Xj), f(Xi), and f(Xj) are defined as aforementioned 
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integrals of f(X1, X2,…, XN). Therefore, if only one PDF f(X) is defined then, of course X1, X2,…, 

and XN are mutually independent and moreover, they are identically distributed. 

If all Xi (s) are identically distributed, which implies that every Xi has the same distribution 

(the same PDF) with the same parameter, then 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖

𝑁

𝑖=1

)𝐸(𝑋)

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖
2

𝑁

𝑖=1

)𝑉(𝑋) + 2(∑ ∑ 𝑐𝑖𝑐𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

)𝑉(𝑋)

 

Note, if all Xi (s) are identically distributed, every Xi can be represented by the same random 

variable X. 

If all Xi (s) are mutually independent and identically distributed (iid), then 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖

𝑁

𝑖=1

)𝐸(𝑋)

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖
2

𝑁

𝑖=1

)𝑉(𝑋)

 

Because EM algorithm is essentially an advanced version of maximum likelihood estimation 

(MLE) method, it is necessary to describe MLE in short. Suppose random variable X conforms 

to a distribution specified by the PDF denoted f(X | Θ) with parameter Θ. For example, if X is 

vector and follows normal distribution then, 

𝑓(𝑋|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Where μ and Σ are theoretical mean vector and covariance matrix, respectively with note that 

Θ = (μ, Σ)T. The notation |.| denotes determinant of given matrix and the notation Σ–1 denotes 

inverse of matrix Σ. Note, Σ is invertible and symmetric. Parameter of normal distribution is 

theoretical mean and theoretical variance, 
𝜇 = 𝐸(𝑋)

Σ = 𝑉(𝑋) = 𝐸(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇
 

But parameters of different distributions may be different from such mean and variance. 

Anyhow theoretical mean and theoretical variance can be calculated based on parameter Θ. 

For example, suppose X = (x1, x2,…, xn)
T follows multinomial distribution of K trials, its 

PDF is: 

𝑓(𝑋|Θ) =
𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑗

𝑛

𝑗=1

 

Where xj are integers and Θ = (p1, p2,…, pn)
T is the set of probabilities such that 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑗

𝑛

𝑗=1

= 𝐾

𝑥𝑗 ∈ {0,1, … , 𝐾}

 

Note, xj is the number of trials generating nominal value j. Obviously, the parameter Θ = (p1, 

p2,…, pn)
T does not include theoretical mean E(X) and theoretical variance V(X) but E(X) and 

V(X) of multinomial distribution can be calculated based on Θ as follows: 
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𝐸(𝑥𝑗) = 𝐾𝑝𝑗

𝑉(𝑥𝑗) = 𝐾𝑝𝑗(1 − 𝑝𝑗)
∎ 

When random variable X is considered as an observation, a statistic denoted τ(X) is function of 

X. For example, τ(X) = X, τ(X) = aX + A where a is scalar constant and A is vector constant, 

and τ(X) = XXT are statistics of X. Statistic τ(X) can be vector-by-vector functions, for example, 

τ(X) = (X, XXT)T is a very popular statistic of X. 

In practice, if X is replaced by sample 𝒳 = {X1, X2,…, XN} including N observation Xi, a 

statistic is now function of Xi (s), for instance, quantities �̅� and S defined below are statistics: 

�̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

𝑆 =
1

𝑁
∑(𝑋𝑖 − �̅�)(𝑋𝑖 − �̅�)

𝑇

𝑁

𝑖=1

= (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − �̅��̅�𝑇 

For multinormal distribution, �̅�  and S are estimates of theoretical mean μ and theoretical 

covariance matrix Σ. They are called sample mean and sample variance, respectively. 

Essentially, X is special case of 𝒳 when 𝒳 has only one observation as 𝒳 = {X}. 

Statistic τ(X) is called sufficient statistic if it has all and only information to estimate 

parameter Θ. For example, sufficient statistic of normal PDF is τ(X) = (X, XXT)T. In fact, 

parameter Θ = (μ, Σ)T of normal PDF, which includes theoretical mean μ and theoretical 

covariance matrix Σ, is totally determined based on all and only X and XXT (there is no 

redundant information in τ(X)) where X is observation considered as random variable, as 

follows: 

𝜇 = 𝐸(𝑋) = ∫𝑋𝑓(𝑋|Θ)d𝑋

𝑋

 

Σ = 𝐸(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 = 𝐸(𝑋𝑋𝑇) − 𝜇𝜇𝑇 

Similarly, given X = (x1, x2,…, xn)
T, sufficient statistic of multinomial PDF of K trials is τ(X) = 

(x1, x2,…, xn)
T due to: 

𝑝𝑗 =
𝐸(𝑥𝑗)

𝐾
, ∀𝑗 = 1, 𝑛̅̅ ̅̅ ̅ 

Given a sample containing observations, purpose of point estimation is to estimate unknown 

parameter Θ based on such sample. The result of estimation process is the estimate Θ̂ as 

approximation of unknown Θ. Formula to calculate Θ̂ based on sample is called estimator of 

Θ. As a convention, estimator of Θ is denoted Θ̂(𝑋) or Θ̂(𝒳) where X is an observation and 𝒳 

is sample including many observations. Actually, Θ̂(𝑋) or Θ̂(𝒳) is the same to Θ̂  but the 

notation Θ̂(𝑋) or Θ̂(𝒳) implies that Θ̂ is calculated based on observations. For example, given 

sample 𝒳 = {X1, X2,…, XN} including N observations iid Xi, estimator of theoretical mean μ of 

normal distribution is: 

�̂� = �̂�(𝒳) = �̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

As usual, estimator of Θ is determined based on sufficient statistics which in turn are functions 

of observations where observations are considered as random variables. Estimation methods 

mentioned in this research are MLE, Maximum A Posteriori (MAP), and EM in which MAP 

and EM are variants of MLE. 

According to viewpoint of Bayesian statistics, the parameter Θ is random variable and it 

conforms some distribution. In some research, Θ represents a hypothesis. Equation 1.6 

specifies Bayes’ rule in which f(Θ|ξ) is called prior PDF (prior distribution) of Θ whereas f(Θ|X) 

is called posterior PDF (posterior distribution) of Θ given observation X. Note, ξ is parameter 
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of the prior f(Θ|ξ), which is known as second-level parameter. For instance, if the prior f(Θ|ξ) 

is multinormal (multivariate normal) PDF, we have ξ = (μ0, Σ0
2)T which are theoretical mean 

and theoretical covariance matrix of random variable Θ. Because ξ is constant, the prior PDF 

f(Θ|ξ) can be denoted f(Θ). The posterior PDF f(Θ|X) ignores ξ because ξ is constant in f(Θ|X). 

𝑓(Θ|𝑋) =
𝑓(𝑋|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 (1.6) 

In Bayes’ rule, the PDF f(X | Θ) is called likelihood function. If posterior PDF f(Θ|X) has the 

same form of prior PDF f(Θ|ξ), such posterior PDF and prior PDF are called conjugate PDFs 

(conjugate distributions, conjugate probabilities) and f(Θ|ξ) is called conjugate prior 

(Wikipedia, Conjugate prior, 2018) for likelihood function f(X|Θ). Such pair of f(Θ|ξ) and f(X|Θ) 

is called conjugate pair. For example, if prior PDF f(Θ|ξ) is beta distribution and likelihood 

function P(X|Θ) follows binomial distribution then, posterior PDF f(Θ|X) is beta distribution 

and hence, f(Θ|ξ) and f(Θ|X) are conjugate distributions. Shortly, whether posterior PDF and 

prior PDF are conjugate PDFs depends on prior PDF and likelihood function. 

There is a special conjugate pair that both prior PDF f(Θ|ξ) and likelihood function f(X|Θ) 

are multinormal, which results that posterior PDF f(Θ|X) is multinormal. For instance, when X 

= (x1, x2,…, xn)
T, the likelihood function f(X|Θ) is multinormal as follows: 

𝑓(𝑋|Θ) = 𝒩(𝜇, Σ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Where Θ = (μ, Σ)T and μ = (μ1, μ2,…, μn)
T. Suppose only μ is random variable which follows 

multinormal distribution with parameter ξ = (μ0, Σ0)
T where μ0 = (μ01, μ02,…, μ0n)

T. Note, Σ and 

Σ0 are symmetric and invertible. The prior PDF f(Θ|ξ) is: 

𝑓(Θ|𝜉) = 𝑓(𝜇|𝜉) = 𝒩(𝜇0, Σ0) = (2𝜋)
−
𝑛
2|Σ0|

−
1
2exp (−

1

2
(𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)) 

It is proved that the posterior PDF f(Θ|X)=f(μ|X) distributes normally with theoretical mean Mμ 

and covariance matrix Σμ as follows (Steorts, 2018, p. 13): 

𝑓(Θ|𝑋) = 𝑓(𝜇|𝑋) = 𝑓(𝑋|Θ)𝑓(𝜇|𝜉) ∝ 𝒩(𝑀𝜇, Σ𝜇)

= (2𝜋)−
𝑛
2|Σ𝜇|

−
1
2exp (−

1

2
(𝜇 −𝑀𝜇)

𝑇
Σ𝜇
−1(𝜇 − 𝑀𝜇)) 

Where (Steorts, 2018, p. 13), 

𝑀𝜇 = (Σ
−1 + Σ0

−1)−1(Σ𝜇0 + Σ0𝑋) 

Σ𝜇 = (Σ
−1 + Σ0

−1)−1 

The sign “∝” indicates proportion ■ 

When X is evaluated as observation, let Θ̂ be estimate of Θ. It is calculated as a maximizer 

of the posterior PDF f(Θ|X) given X. Here data sample 𝒳 has only one observation X as 𝒳 = 

{X}, in other words, X is special case of 𝒳 here. 

Θ̂ = argmax
Θ

𝑓(Θ|𝑋) = argmax
Θ

𝑓(𝑋|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 

Because the prior PDF f(Θ|ξ) is assumed to be fixed and the value ∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 is constant 

with regard to Θ, we have: 

Θ̂ = argmax
Θ

𝑓(Θ|𝑋) = argmax
Θ

𝑓(𝑋|Θ) 

Obviously, MLE method determines Θ̂ as a maximizer of the likelihood function f(X | Θ) with 

regard to Θ when X is evaluated as observation. It is interesting that the likelihood function 

f(X|Θ) is the PDF of X with parameter Θ. For convenience, MLE maximizes the natural 

logarithm of the likelihood function denoted l(Θ) instead of maximizing the likelihood function. 

Θ̂ = argmax
Θ

𝑙(Θ) = argmax
Θ

log(𝑓(𝑋|Θ)) (1.7) 
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Where l(Θ) = log(f(X | Θ)) is called log-likelihood function of Θ. Recall that equation 1.7 

implies the optimization problem. Note, l(Θ) is function of Θ if X is evaluated as observation. 

𝑙(Θ) = 𝑙(Θ|𝑋) = log(𝑓(𝑋|Θ)) (1.8) 

Equation 1.7 is the simple result of MLE for estimating parameter based on observed sample. 

The notation l(Θ|X) implies that l(Θ) is determined based on X. If the log-likelihood function 

l(Θ) is first-order smooth function then, from equation 1.7, the estimate Θ̂ can be solution of 

the equation created by setting the first-order derivative of l(Θ) regarding Θ to be zero, 

Dl(Θ)=0T. If solving such equation is too complex or impossible, some popular methods to 

solve optimization problem are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient 

descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush–Kuhn–Tucker conditions, 2014). 

Note, solving the equation Dl(Θ)=0T may be incorrect in some case, for instance, in theory, Θ̂ 

such that Dl(Θ̂)=0T may be a saddle point (not a maximizer). 

For example, suppose X = (x1, x2,…, xn)
T is vector and follows multinormal distribution, 

𝑓(𝑋|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Then the log-likelihood function is 

𝑙(Θ) = −
𝑛

2
log(2π) −

1

2
log|Σ| −

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) 

Where μ and Σ are mean vector and covariance matrix of f(X | Θ), respectively with note that 

Θ = (μ, Σ)T. The notation |.| denotes determinant of given matrix and the notation Σ–1 denotes 

inverse of matrix Σ. Note, Σ is invertible and symmetric. Because normal PDF is smooth 

enough function, from equation 1.7, the estimate Θ̂ = (�̂�, Σ̂)
𝑇

 is solution of the equation 

created by setting the first-order of l(Θ) regarding μ and Σ to be zero. The first-order partial 

derivative of l(Θ) with respect to μ is (Nguyen, 2015, p. 35): 
𝜕𝑙(Θ)

𝜕𝜇
= (𝑋 − 𝜇)𝑇Σ−1 

Setting this partial derivative to be zero, we obtain: 

(𝑋 − 𝜇)𝑇Σ−1 = 0 ⇒ 𝑋 − 𝜇 ⇒ �̂� = 𝑋 

The first-order partial derivative of l(Θ) with respect to Σ is: 
𝜕𝑙(Θ)

𝜕Σ
= −

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

Due to: 
𝜕 log(|Σ|)

𝜕Σ
= Σ−1 

And 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) = tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(𝐴) =
∑ 𝑎𝑖𝑖𝑖 . This implies (Nguyen, 2015, p. 45): 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
= −Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

Where Σ is symmetric and invertible matrix. Substituting the estimate �̂� into the first-order 

partial derivative of l(Θ) with respect to Σ, we have: 
𝜕𝑙(Θ)

𝜕Σ
= −

1

2
Σ−1 +

1

2
Σ−1(𝑋 − �̂�)(𝑋 − �̂�)𝑇Σ−1 
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The estimate Σ̂ is the solution of equation formed by setting the first-order partial derivative of 

l(Θ) regarding Σ to zero matrix. Let (0) denote zero matrix. 

(𝟎) = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

We have: 
𝜕𝑙(Θ)

𝜕Σ
= (𝟎) 

⇔ −
1

2
Σ−1 +

1

2
Σ−1(𝑋 − �̂�)(𝑋 − �̂�)𝑇Σ−1 = (𝟎) 

⇒ −Σ + (𝑋 − �̂�)(𝑋 − �̂�)𝑇 = (𝟎) 
⇒ Σ̂ = (𝑋 − �̂�)(𝑋 − �̂�)𝑇 

Finally, MLE results out the estimate Θ̂ for normal distribution given observation X as follows: 

Θ̂ = (�̂� = 𝑋, Σ̂ = (𝑋 − �̂�)(𝑋 − �̂�)𝑇)
𝑇
 

When �̂� = 𝑋 then Σ̂ = (𝟎), which implies that the estimate Σ̂ of covariance matrix is arbitrary 

with constraint that it is symmetric and invertible. This is reasonable because the sample is too 

small with only one observation X. When X is replaced by a sample 𝒳 = {X1, X2,…, XN} in 

which all Xi (s) are mutually independent and identically distributed (iid), it is easy to draw the 

following result by the similar way with equation 1.11. 

�̂� = �̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

Σ̂ = 𝑆 =
1

𝑁
∑(𝑋𝑖 − �̂�)(𝑋𝑖 − �̂�)

𝑇

𝑁

𝑖=1

= (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − �̂��̂�𝑇

 

Here, �̂� and Σ̂ are sample mean and sample variance ■ 

In practice, if X is observed as particular N observations X1, X2,…, XN. Let 𝒳 = {X1, X2,…, 

XN} be the observed sample of size N in which all Xi (s) are iid. Essentially, X is special case 

of 𝒳 when 𝒳 has only one observation as 𝒳 = {X}. The Bayes’ rule specified by equation 1.6 

is re-written as follows: 

𝑓(Θ|𝒳) =
𝑓(𝒳|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝒳|Θ)𝑓(Θ|𝜉)
Θ

 

However, the meaning of Bayes’ rule does not change. Because all Xi (s) are iid, the likelihood 

function becomes product of partial likelihood functions as follows: 

𝑓(𝒳|Θ) =∏𝑓(𝑋𝑖|Θ)

𝑁

𝑖=1

 (1.9) 

The log-likelihood function of Θ becomes: 

𝑙(Θ) = 𝑙(Θ|𝒳) = log(𝑓(𝒳|Θ)) = log (∏𝑓(𝑋𝑖|Θ)

𝑁

𝑖=1

) =∑log(𝑓(𝑋𝑖|Θ))

𝑁

𝑖=1

 (1.10) 

The notation l(Θ|𝒳) implies that l(Θ) is determined based on 𝒳. We have: 

Θ̂ = argmax
Θ

𝑙(Θ) = argmax
Θ

∑log(𝑓(𝑋𝑖|Θ))

𝑁

𝑖=1

 (1.11) 

Equation 1.11 is the main result of MLE for estimating parameter based on observed sample. 

If the log-likelihood function l(Θ) is first-order smooth function then, from equation 1.11, the 

estimate Θ̂ can be solution of the equation created by setting the first-order derivative of l(Θ) 
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regarding Θ to be zero. If solving such equation is too complex, some popular methods to solve 

optimization problem are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient 

descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush–Kuhn–Tucker conditions, 2014). 

For example, suppose each Xi = (xi1, xi2,…, xin)
T is vector and follows multinomial 

distribution of K trials, 

𝑓(𝑋𝑖|Θ) =
𝐾!

∏ (𝑥𝑖𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑖𝑗

𝑛

𝑗=1

 

Where xik are integers and Θ = (p1, p2,…, pn)
T is the set of probabilities such that 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝐾

𝑥𝑖𝑗 ∈ {0,1, … , 𝐾}

 

Note, xik is the number of trials generating nominal value k. 

Given sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid, according to equation 1.10, 

the log-likelihood function is 

𝑙(Θ) = 𝑙(Θ|𝒳) =∑log(
𝐾!

∏ (𝑥𝑖𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑖𝑗

𝑛

𝑗=1

)

𝑛

𝑖=1

 

=∑(log(𝐾!) −∑log(𝑥𝑖𝑗!)

𝑛

𝑗=1

+∑𝑥𝑖𝑗log(𝑝𝑗)

𝑛

𝑗=1

)

𝑁

𝑖=1

 

Because there is the constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1, we use Lagrange duality method to maximize l(Θ). 

The Lagrange function la(Θ, λ) is sum of l(Θ) and the constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1 as follows: 

𝑙𝑎(Θ, λ) = 𝑙(Θ) + 𝜆(1 −∑𝑝𝑗

𝑛

𝑗=1

)

=∑(log(𝐾!) −∑log(𝑥𝑖𝑗!)

𝑛

𝑗=1

+∑𝑥𝑖𝑗log(𝑝𝑗)

𝑛

𝑗=1

)

𝑁

𝑖=1

+ 𝜆(1 −∑𝑝𝑗

𝑛

𝑗=1

) 

Note, λ is called Lagrange multiplier. Of course, la(Θ, λ) is function of Θ and λ. Because 

multinomial PDF is smooth enough, the estimate Θ̂ = (�̂�1, �̂�2, … , �̂�𝑛)
𝑇  is solution of the 

equation created by setting the first-order of la(Θ) regarding pj and λ to be zero. The first-order 

partial derivative of la(Θ) with respect to pj is: 

𝜕𝑙𝑎(Θ)

𝜕𝑝𝑗
=
∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝑝𝑗
− 𝜆 

Setting this partial derivative to be zero, we obtain following equation: 

∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝑝𝑗
− 𝜆 = 0 ⇒ (∑𝑥𝑖𝑗

𝑁

𝑖=1

) − 𝜆𝑝𝑗 = 0 

Summing this equation over n variables pj, we obtain: 

∑((∑𝑥𝑖𝑗

𝑁

𝑖=1

) − 𝜆𝑝𝑗)

𝑛

𝑗=1

= (∑∑𝑥𝑖𝑗

𝑛

𝑗=1

𝑁

𝑖=1

) − 𝜆∑𝑝𝑗

𝑛

𝑗=1

= 0 
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Due to 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝐾

 

We have 

𝐾𝑁 − 𝜆 = 0 ⇒ 𝜆 = 𝐾𝑁 

Substitute λ = nN into equation 

(∑𝑥𝑖𝑗

𝑁

𝑖=1

) − 𝜆𝑝𝑗 = 0 

We get the estimate Θ̂ = (�̂�1, �̂�2, … , �̂�𝑛)
𝑇 as follows: 

�̂�𝑗 =
∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝐾𝑁
∎ 

Quality of estimation is measured by mean and variance of the estimate Θ̂. The mean of Θ̂ is: 

𝐸(Θ̂) = ∫ Θ̂(𝑋)

𝑋

𝑓(𝑋|Θ)d𝑋 (1.12) 

The notation Θ̂(𝑋) implies the formulation to calculate Θ̂, which is resulted from MLE, MAP, 

or EM. Hence, Θ̂(𝑋) is considered as function of X in the integral ∫ Θ̂(𝑋)
𝑋

𝑓(𝑋|Θ)d𝑋. The Θ̂ 

is unbiased estimate if 𝐸(Θ̂) = Θ. Otherwise, if 𝐸(Θ̂) ≠ Θ then, Θ̂ is biased estimate. As usual, 

unbiased estimate is better than biased estimate. The condition 𝐸(Θ̂) = Θ is the criterion to 

check if an estimate is unbiased, which is applied for all estimation methods. 

The variance of Θ̂ is: 

𝑉(Θ̂) = ∫(Θ̂(𝑋) − 𝐸(𝑋)) (Θ̂(𝑋) − 𝐸(𝑋))
𝑇

𝑋

𝑓(𝑋|Θ)d𝑋 (1.13) 

The smaller the variance 𝑉(Θ̂), the better the Θ̂ is. 

For example, given multinormal distribution and given sample 𝒳 = {X1, X2,…, XN} where 

all Xi (s) are iid, the estimate Θ̂ = (�̂�, Σ̂)
𝑇
 from MLE is: 

�̂� = �̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

Σ̂ =
1

𝑁
∑(𝑋𝑖 − �̂�)(𝑋𝑖 − �̂�)

𝑇

𝑁

𝑖=1

 

Due to: 

𝐸(�̂�) = 𝐸 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁
∑𝐸(𝑋𝑖)

𝑁

𝑖=1

=
1

𝑁
∑𝐸(𝑋)

𝑁

𝑖=1

= 𝜇 

Then �̂� is unbiased estimate. We also have: 

𝐸(Σ̂) = 𝐸 (
1

𝑁
∑(𝑋𝑖 − �̂�)(𝑋𝑖 − �̂�)

𝑇

𝑁

𝑖=1

) =
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

−∑𝑋𝑖�̂�
𝑇

𝑁

𝑖=1

−∑�̂�𝑋𝑖
𝑇

𝑁

𝑖=1

+∑�̂��̂�𝑇
𝑁

𝑖=1

) 

=
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 2∑�̂�𝑋𝑖
𝑇

𝑁

𝑖=1

+∑�̂��̂�𝑇
𝑁

𝑖=1

) =
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 2�̂�∑𝑋𝑖
𝑇

𝑁

𝑖=1

+𝑁�̂��̂�𝑇) 

(Due to 𝑋𝑖�̂�
𝑇 = �̂�𝑋𝑖

𝑇) 
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=
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 2𝑁�̂��̂�𝑇 + 𝑁�̂��̂�𝑇) =
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 𝑁�̂��̂�𝑇) 

(Due to �̂� =
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1 ) 

=
1

𝑁
∑𝐸(𝑋𝑖𝑋𝑖

𝑇)

𝑁

𝑖=1

− 𝐸(�̂��̂�𝑇) =
1

𝑁
∑𝐸(𝑋𝑋𝑇)

𝑁

𝑖=1

− 𝐸(�̂��̂�𝑇) = 𝐸(𝑋𝑋𝑇) − 𝐸(�̂��̂�𝑇) 

(Let X be random variable representing all iid Xi (s)) 

= (Σ + 𝜇𝜇𝑇) − (𝑉(�̂�) + 𝐸(�̂�)𝐸(�̂�)𝑇) 
(Due to Σ = 𝐸(𝑋𝑋𝑇) − 𝜇𝜇𝑇 and the variance 𝑉(�̂�) = 𝐸(�̂��̂�𝑇) − 𝐸(�̂�)𝐸(�̂�)𝑇) 

= (Σ + 𝜇𝜇𝑇) − (𝑉(�̂�) + 𝜇𝜇𝑇) = Σ − 𝑉(�̂�) 
It is necessary to calculate the variance 𝑉(�̂�). In fact, we have: 

𝑉(�̂�) = 𝑉 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁2
∑𝑉(𝑋𝑖) =

𝑁

𝑖=1

1

𝑁2
∑𝑉(𝑋) =

𝑁

𝑖=1

1

𝑁
𝑉(𝑋) =

1

𝑁
Σ 

Therefore, we have: 

𝐸(Σ̂) = Σ −
1

𝑁
Σ =

𝑁 − 1

𝑁
Σ 

Hence, we conclude that Σ̂ is biased estimate because of 𝐸(Σ̂) ≠ Σ ■ 

Without loss of generality, suppose parameter Θ is vector, the second-order derivative of 

the log-likelihood function l(Θ) is called likelihood Hessian matrix (Zivot, 2009, p. 7) denoted 

S(Θ). 

𝑆(Θ) = 𝑆(Θ|𝑋) = 𝐷2𝑙(Θ|𝑋) (1.14) 

Suppose Θ = (θ1, θ2,…, θr)
T where there are r partial parameters θk, equation 1.14 is expended 

as follows: 

𝐷2𝑙(Θ|𝑋) =
d2𝑙(Θ|𝑋)

dΘ2
=

(

 
 
 
 
 

𝜕2𝑙(Θ|𝑋)

𝜕𝜃1
2

𝜕2𝑙(Θ|𝑋)

𝜕𝜃1𝜕𝜃2
⋯

𝜕2𝑙(Θ|𝑋)

𝜕𝜃1𝜕𝜃𝑟
𝜕2𝑙(Θ|𝑋)

𝜕𝜃2𝜕𝜃1

𝜕2𝑙(Θ|𝑋)

𝜕𝜃2
2 ⋯

𝜕2𝑙(Θ|𝑋)

𝜕𝜃2𝜕𝜃𝑟
⋮ ⋮ ⋱ ⋮

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑟𝜕𝜃1

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑟𝜕𝜃2
⋯

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑟2 )

 
 
 
 
 

 

Where, 

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑖𝜕𝜃𝑗
=

𝜕

𝜕𝜃𝑖
(
𝜕𝑙(Θ|𝑋)

𝜕𝜃𝑗
)

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑖
2 =

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑖𝜕𝜃𝑖

 

The notation l(Θ|X) implies that l(Θ) is determined based on X, according to equation 1.8. The 

notation S(Θ|X) implies S(Θ) is calculated based on X. If sample 𝒳 replaces X then, 

𝑆(Θ) = 𝑆(Θ|𝒳) = 𝐷2𝑙(Θ|𝒳) (1.15) 

Where 𝒳 = {X1, X2,…, XN} be the observed sample of size N in which all Xi (s) are iid. The 

notation l(Θ|𝒳) implies that l(Θ) is determined based on 𝒳, according to equation 1.11. The 

notation S(Θ|𝒳) implies S(Θ) is calculated based on 𝒳. 

The negative expectation of likelihood Hessian matrix is called information matrix or 

Fisher information matrix denoted I(Θ). Please distinguish information matrix I(Θ) from 

identity matrix I. 

𝐼(Θ) = −𝐸(𝑆(Θ)) (1.16) 
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If S(Θ) is calculated by equation 1.14 with observation X then, I(Θ) becomes: 

𝐼(Θ) = 𝐼(Θ|𝑋) = −𝐸(𝑆(Θ|𝑋)) = −∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

 (1.17) 

The notation l(Θ|X) implies that l(Θ) is determined based on X, according to equation 1.8. The 

notation I(Θ|X) implies I(Θ) is calculated based on X. Note, 𝐷2𝑙(Θ|𝑋) is considered as function 

of X in the integral ∫ 𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋
𝑋

. 

If S(Θ) is calculated by equation 1.15 with observation sample 𝒳 = {X1, X2,…, XN} in 

which all Xi (s) are iid then, I(Θ) becomes: 

𝐼(Θ) = 𝐼(Θ|𝒳) = −𝐸(𝑆(Θ|𝒳)) = 𝑁 ∗ 𝐼(Θ|𝑋) = −𝑁∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

 (1.18) 

Where X is random variable representing every Xi. The notation I(Θ|𝒳 ) implies I(Θ) is 

calculated based on 𝒳 . Note, 𝐷2𝑙(Θ|𝑋)  is considered as function of X in the integral 

∫ 𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋
𝑋

. Following is proof of equation 1.18. 

𝐼(Θ) = 𝐼(Θ|𝒳) = −𝐸(𝑆(Θ|𝒳)) = −𝐸(𝐷2𝑙(Θ|𝒳)) 

(The notation l(Θ|𝒳) implies that l(Θ) is determined based on 𝒳) 

= −𝐸 (∑𝐷2𝑙(Θ|𝑋𝑖)

𝑁

𝑖=1

) 

(Due to equation 1.8 and iid Xi (s)) 

= −∑𝐸(𝐷2𝑙(Θ|𝑋𝑖))

𝑁

𝑖=1

= −∑∫𝐷2𝑙(Θ|𝑋𝑖)𝑓(𝑋𝑖|Θ)d𝑋𝑖
𝑋

𝑁

𝑖=1

 

= −∑∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

𝑁

𝑖=1

 

(Let X be random variable representing every Xi) 

= −𝑁∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

= 𝑁 ∗ 𝐼(Θ|𝑋)∎ 

For MLE method, the inverse of estimator information matrix is called Cramer-Rao lower 

bound denoted 𝐶𝑅(Θ̂). 

𝐶𝑅(Θ̂) = 𝐼(Θ)−1 (1.19) 

Where I(Θ) is calculated by equation 1.17 or equation 1.18. Any covariance matrix of a MLE 

estimate Θ̂ has such Cramer-Rao lower bound. Such Cramer-Rao lower bound becomes 𝑉(Θ̂) 

if and only if Θ̂ is unbiased, (Zivot, 2009, p. 11): 

𝑉(Θ̂) ≥ 𝐶𝑅(Θ̂) if Θ̂ biased

𝑉(Θ̂) = 𝐶𝑅(Θ̂) if Θ̂ unbiased
 (1.20) 

Note, equation 1.19 and equation 1.20 are only valid for MLE method. The sign “≥” implies 

lower bound. In other words, Cramer-Rao lower bound is variance of the optimal MLE estimate. 

Moreover, beside the criterion 𝐸(Θ̂) = Θ, equation 1.20 can be used as another criterion to 

check if an estimate is unbiased. However, the criterion 𝐸(Θ̂) = Θ is applied for all estimation 

methods whereas equation 1.20 is only applied for MLE. 

Suppose Θ = (θ1, θ2,…, θr)
T where there are r partial parameter θk, so the estimate is Θ̂ =

(𝜃1, 𝜃2, … , 𝜃𝑟)
𝑇
. Each element on diagonal of the Cramer-Rao lower bound is lower bound of 

a variance of 𝜃𝑘, denoted 𝑉(𝜃𝑘). Let 𝐶𝑅(𝜃𝑘) be lower bound of 𝑉(𝜃𝑘), of course we have: 
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𝑉(𝜃𝑘) ≥ 𝐶𝑅(𝜃𝑘) if 𝜃𝑘 biased

𝑉(𝜃𝑘) = 𝐶𝑅(𝜃𝑘) if 𝜃𝑘 unbiased
 (1.21) 

The sign “≥” implies lower bound. Derived from equation 1.18 and equation 1.19, 𝐶𝑅(𝜃𝑘) is 

specified by equation 1.22. 

𝐼(𝜃𝑘) = −𝑁 ∗ 𝐸 (
𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑘
2 ) = −𝑁∫

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑘
2 𝑓(𝑋|Θ)d𝑋

𝑋

 

𝐶𝑅(𝜃𝑘) = 𝐼(𝜃𝑘)
−1
= −

1

𝑁
(∫

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑘
2 𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

 

(1.22) 

Where N is size of sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid. If there is only one 

observation X then, N = 1. Of course, 𝐼(𝜃𝑘) is information matrix of 𝜃𝑘. If 𝜃𝑘 is univariate, 

𝐼(𝜃𝑘) is scalar, which called information value. 

For example, let 𝒳 = {X1, X2,…, XN} be the observed sample of size N with note that all Xi 

(s) are iid, given multinormal PDF as follows: 

𝑓(𝑋|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Where n is dimension of vector X and Θ = (μ, Σ)T with note that μ is theoretical mean vector 

and Σ is theoretical covariance matrix. Note, Σ is invertible and symmetric. From previous 

example, the MLE estimate Θ̂ = (�̂�, Σ̂)
𝑇
 given 𝒳 is: 

�̂� = �̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

Σ̂ =
1

𝑁
∑(𝑋𝑖 − �̂�)(𝑋𝑖 − �̂�)

𝑇

𝑁

𝑖=1

 

Mean and variance of �̂� from previous example are: 
𝐸(�̂�) = 𝜇

𝑉(�̂�) =
1

𝑁
Σ

 

We knew that �̂� is unbiased estimate with criterion 𝐸(�̂�) = 𝜇. Now we check again if �̂� is 

unbiased estimate with equation 1.21 as another criterion for MLE. Hence, we firstly calculate 

the lower bound 𝐶𝑅(�̂�) and then compare it with the variance 𝑉(�̂�). In fact, according to 

equation 1.8, the log-likelihood function is: 

𝑙(Θ|𝑋) = −
𝑛

2
log(2π) −

1

2
log|Σ| −

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) 

The partial first-order derivative of l(Θ|X) with regard to μ is (Nguyen, 2015, p. 35): 
𝜕𝑙(Θ|𝑋)

𝜕𝜇
= (𝑋 − 𝜇)𝑇Σ−1 

(due to 
𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕𝜇
= −2(𝑋 − 𝜇)𝑇Σ−1 when Σ is symmetric) 

The partial second-order derivative of l(Θ|X) with regard to μ is (Nguyen, 2015, p. 36): 

𝜕2𝑙(Θ|𝑋)

𝜕𝜇2
=
𝜕

𝜕𝜇
(
𝜕𝑙(Θ|𝑋)

𝜕𝜇
) =

𝜕

𝜕𝜇
((𝑋 − 𝜇)𝑇Σ−1) = −(Σ−1)𝑇 = Σ−1 

(Due to Σ is symmetric) 

According to equation 1.22, the lower bound 𝐶𝑅(�̂�) is: 
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𝐶𝑅(�̂�) = −
1

𝑁
(∫

𝜕2𝑙(Θ|𝑋)

𝜕𝜇2
𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

=
1

𝑁
(∫Σ−1𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

=
1

𝑁
(Σ−1∫𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

=
1

𝑁
Σ = 𝑉(�̂�) 

Due to 𝑉(�̂�) = 𝐶𝑅(�̂�), �̂� is unbiased estimate according to the criterion specified by equation 

1.21. 

Mean of Σ̂ from previous example is: 

𝐸(Σ̂) =
𝑁 − 1

𝑁
Σ 

We knew that Σ̂ is biased estimate because 𝐸(Σ̂) ≠ Σ. Now we check again if Σ̂ is biased 

estimate with equation 1.21 as another criterion for MLE. The partial first-order derivative of 

l(Θ|X) with regard to Σ is: 
𝜕𝑙(Θ|𝑋)

𝜕Σ
= −

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

Due to: 
𝜕 log(|Σ|)

𝜕Σ
= Σ−1 

And 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) = tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(𝐴) = ∑ 𝑎𝑖𝑖𝑖 . 

This implies (Nguyen, 2015, p. 45): 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
= −Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

According to equation 1.22, the lower bound 𝐶𝑅(Σ̂) is: 

𝐶𝑅(Σ̂) = −
1

𝑁
(∫

𝜕2𝑙(Θ|𝑋)

𝜕Σ2
𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

= −
1

𝑁
(∫

𝜕

𝜕Σ
(
𝜕𝑙(Θ|𝑋)

𝜕Σ
)𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(∫

𝜕𝑙(Θ|𝑋)

𝜕Σ
𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

(Due to l(Θ|X) is smooth enough) 

= −
1

𝑁
(
𝜕

𝜕Σ
(∫(−

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1∫𝑓(𝑋|Θ)d𝑋

𝑋

+
1

2
∫Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
∫Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1𝑓(𝑋|Θ)d𝑋

𝑋

))

−1
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= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
Σ−1Σ−1∫(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

(Because Σ–1 and (𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 are symmetric matrices) 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
Σ−1Σ−1Σ))

−1

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
Σ−1))

−1

= −
1

𝑁
(
𝜕

𝜕Σ
((𝟎)))

−1

 

Where (0) is zero matrix. This implies the lower bound 𝐶𝑅(Σ̂) is inexistent. Hence, Σ̂ is biased 

estimate. Even there is no unbiased estimate of variance for normal distribution by MLE ■ 

MLE ignores prior PDF f(Θ|ξ) because f(Θ|ξ) is assumed to be fixed but Maximum A 

Posteriori (MAP) method (Wikipedia, Maximum a posteriori estimation, 2017) concerns f(Θ|ξ) 

in maximization task when ∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 is constant with regard to Θ. 

Θ̂ = argmax
Θ

𝑓(Θ|𝑋) = argmax
Θ

𝑓(𝑋|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

= argmax
Θ

𝑓(𝑋|Θ)𝑓(Θ|𝜉) 

Let f(X, Θ | ξ) be the joint PDF of X and Θ where Θ is also random variable too. Note, ξ is 

parameter in the prior PDF f(Θ|ξ). The likelihood function in MAP is also f(X, Θ | ξ). 

𝑓(𝑋, Θ|𝜉) = 𝑓(𝑋|Θ)𝑓(Θ|𝜉) (1.23) 

Theoretical mean and variance of X are based on the joint PDF f(X, Θ | ξ) as follows: 

𝐸(𝑋) = ∫∫𝑋𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.24) 

 

𝑉(𝑋) = ∫∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.25) 

Theoretical mean and variance of Θ are based on f(Θ|ξ) because f(Θ|ξ) is function of only Θ 

when ξ is constant. 

𝐸(Θ) = ∫∫Θ𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫Θ𝑓(Θ|𝜉)dΘ

Θ

 (1.26) 

 

𝑉(Θ) = ∫∫(Θ − 𝐸(Θ))(Θ − 𝐸(Θ))
𝑇
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫(Θ − 𝐸(Θ))(Θ − 𝐸(Θ))
𝑇
𝑓(Θ|𝜉)dΘ

Θ

= 𝐸(ΘΘ𝑇|𝜉) − 𝐸(Θ|𝜉)𝐸(Θ𝑇|𝜉) 

(1.27) 

In general, statistics of Θ are still based on f(Θ|ξ). Given sample 𝒳 = {X1, X2,…, XN} in which 

all Xi (s) are iid, the likelihood function becomes: 

𝑓(𝒳, Θ|𝜉) =∏𝑓(𝑋𝑖, Θ|𝜉)

𝑁

𝑖=1

 (1.28) 

The log-likelihood function ℓ(Θ) in MAP is re-defined with observation X or sample 𝒳 as 

follows: 

ℓ(Θ) = log(𝑓(𝑋, Θ|𝜉)) = 𝑙(Θ) + log(𝑓(Θ|𝜉)) (1.29) 

 

ℓ(Θ) = log(𝑓(𝒳, Θ|𝜉)) = 𝑙(Θ) + log(𝑓(Θ|𝜉)) (1.30) 
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Where l(Θ) is specified by equation 1.8 with observation X or equation 1.10 with sample 𝒳. 

Therefore, the estimate Θ̂ is determined according to MAP as follows: 

Θ̂ = argmax
Θ

(ℓ(Θ)) = argmax
Θ

(𝑙(Θ) + log(𝑓(Θ|𝜉))) (1.31) 

Good information provided by the prior f(Θ|ξ) can improve quality of estimation. Essentially, 

MAP is an improved variant of MLE. Later on, we also recognize that EM algorithm is also a 

variant of MLE. All of them aim to maximize log-likelihood functions. Likelihood Hessian 

matrix 𝑆(Θ̂) , information matrix 𝐼(Θ̂), and Cramer-Rao lower bound 𝐶𝑅(Θ̂) , 𝐶𝑅(𝜃𝑘)  are 

extended in MAP with the new likelihood function ℓ(Θ). 
𝑆(Θ) = 𝐷2ℓ(Θ) 
𝐼(Θ) = −𝐸(𝑆(Θ)) 

𝐶𝑅(Θ̂) = 𝐼(Θ)−1 

𝐼(𝜃𝑘) = −𝑁 ∗ 𝐸 (
𝜕2ℓ(Θ)

𝜕𝜃𝑘
2 ) = −𝑁∫∫

𝜕2ℓ(Θ)

𝜕𝜃𝑘
2 𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 

𝐶𝑅(𝜃𝑘) = 𝐼(𝜃𝑘)
−1

 

Where N is size of sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid. If there is only one 

observation X then, N = 1. 

Mean and variance of the estimate Θ̂ which are used to measure estimation quality are not 

changed except that the joint PDF f(X, Θ | ξ) is used instead. 

𝐸(Θ̂) = ∫∫ Θ̂(𝑋, Θ)𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.32) 

 

𝑉(Θ̂) = ∫∫(Θ̂(𝑋, Θ) − 𝐸(𝑋)) (Θ̂(𝑋, Θ) − 𝐸(𝑋))
𝑇

𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.33) 

The notation Θ̂(𝑋, Θ) implies the formulation to calculate Θ̂, which is considered as function 

of X and Θ in the integral ∫ ∫ Θ̂(𝑋, Θ)𝑓(𝑋, Θ|𝜉)d𝑋dΘ
Θ𝑋

. Recall the Θ̂ is unbiased estimate if 

𝐸(Θ̂) = Θ . Otherwise, if 𝐸(Θ̂) ≠ Θ  then, Θ̂  is biased estimate. Moreover, the smaller the 

variance 𝑉(Θ̂), the better the Θ̂ is. Recall that there are two criteria to check if Θ̂ is unbiased 

estimate. Concretely, Θ̂ is unbiased estimate if one of two following conditions is satisfied: 

𝐸(Θ̂) = Θ

𝑉(Θ̂) = 𝐶𝑅(Θ̂)
 

The criterion 𝑉(Θ̂) = 𝐶𝑅(Θ̂) is expended for MAP. 

It is necessary to have an example for parameter estimation with MAP. Given sample 𝒳 = 

{X1, X2,…, XN} in which all Xi (s) are iid. Each n-dimension Xi has following multinormal PDF: 

𝑓(𝑋𝑖|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋𝑖 − 𝜇)

𝑇Σ−1(𝑋𝑖 − 𝜇)) 

Where μ and Σ are mean vector and covariance matrix of f(X | Θ), respectively with note that 

Θ = (μ, Σ)T. The notation |.| denotes determinant of given matrix and the notation Σ–1 denotes 

inverse of matrix Σ. Note, Σ is invertible and symmetric. 

In Θ = (μ, Σ)T, suppose only μ distributes normally with parameter ξ = (μ0, Σ0) where μ0 and 

Σ0 are theoretical mean and covariance matrix of μ. Thus, Σ is variable but not random variable. 

The second-level parameter ξ is constant. The prior PDF f(Θ|ξ) becomes f(μ|ξ), which specified 

as follows: 

𝑓(Θ|𝜉) = 𝑓(𝜇|𝜇0, Σ0) = (2𝜋)
−
𝑛
2|Σ0|

−
1
2exp (−

1

2
(𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)) 
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Note, μ0 is n-element vector like μ and Σ0 is nxn matrix like Σ. Of course, Σ0 is also invertible 

and symmetric. Suppose μ = (μ1, μ2,…, μn)
T, μ0 = (μ01, μ02,…, μ0n)

T, and 

Σ0 = (

𝛿11 𝛿12 ⋯ 𝛿1𝑛
𝛿21 𝛿22 ⋯ 𝛿2𝑛
⋮ ⋮ ⋱ ⋮
𝛿𝑛1 𝛿𝑛2 ⋯ 𝛿𝑛𝑛

) 

It is deduced that μ0j is theoretical mean of μj whereas δij (i≠j) is covariance of μi and μj. 

Especially, δii is variance of μi. 

Theoretical mean of X is: 

𝐸(𝑋) = ∫∫𝑋𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫∫𝑋𝑓(𝑋|Θ)𝑓(Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫(∫𝑋𝑓(𝑋|Θ)d𝑋

X

)𝑓(Θ|𝜉)dΘ

Θ

= ∫𝜇𝑓(Θ|𝜉)dΘ

Θ

= ∫𝜇𝑓(𝜇|𝜇0, Σ0)d𝜇

𝜇

= 𝐸(𝜇) = 𝜇0 

Theoretical variance of X is: 

𝑉(𝑋) = ∫∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 

= ∫∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋|Θ)𝑓(Θ|𝜉)d𝑋dΘ

Θ𝑋

 

= ∫(∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋|Θ)d𝑋

X

)𝑓(Θ|𝜉)dΘ

Θ

 

= ∫Σ𝑓(Θ|𝜉)dΘ

Θ

= ∫Σ𝑓(𝜇|𝜇0, Σ0)d𝜇

𝜇

= Σ 

The log-likelihood function in MAP is 

ℓ(Θ) = log(𝑓(𝜇|𝜉)) + 𝑙(Θ) = log(𝑓(𝜇|𝜉)) +∑log(𝑓(𝑋𝑖|Θ))

𝑁

𝑖=1

= −
𝑛

2
log(2π) −

1

2
log|Σ0| −

1

2
(𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)

+∑(−
𝑛

2
log(2π) −

1

2
log|Σ| −

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇))

𝑁

𝑖=1

 

Because normal PDF is smooth enough, from equation 1.24, the estimate Θ̂ = (�̂�, Σ̂)
𝑇

 is 

solution of the equation created by setting the first-order of ℓ(Θ) regarding μ and Σ to be zero. 

Due to (Nguyen, 2015, p. 35): 
𝜕

𝜕𝜇
((𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) = −2(𝑋 − 𝜇)𝑇Σ−1 

And (Nguyen, 2015, p. 35) 
𝜕

𝜕𝜇
((𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)) = (𝜇 − 𝜇0)

𝑇(Σ0
−1 + (Σ0

−1)𝑇) = (𝜇 − 𝜇0)
𝑇(Σ0

−1 + Σ0
−1)

= 2(𝜇 − 𝜇0)
𝑇Σ0

−1 

The first-order partial derivative of ℓ(Θ) with respect to μ is: 
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𝜕ℓ(Θ)

𝜕𝜇
= −(𝜇 − 𝜇0)

𝑇Σ0
−1 +∑(𝑋𝑖 − 𝜇)

𝑇Σ−1
𝑁

𝑖=1

= −𝜇𝑇Σ0
−1 + 𝜇0

𝑇Σ0
−1 + (∑𝑋𝑖

𝑇

𝑁

𝑖=1

)Σ−1 − 𝑁𝜇𝑇Σ−1

= −𝜇𝑇(Σ0
−1 + 𝑁Σ−1) + 𝜇0

𝑇Σ0
−1 + (∑𝑋𝑖

𝑇

𝑁

𝑖=1

)Σ−1 

Setting this partial derivative to be zero, we obtain: 

−𝜇𝑇(Σ0
−1 + 𝑁Σ−1) + 𝜇0

𝑇Σ0
−1 + (∑𝑋𝑖

𝑇

𝑁

𝑖=1

)Σ−1 = 0 

⇒ (Σ0
−1 + 𝑁Σ−1)𝑇𝜇 = Σ0

−1𝜇0 + Σ
−1∑𝑋𝑖

𝑁

𝑖=1

 

⇒ (Σ0
−1 + 𝑁Σ−1)𝜇 = Σ0

−1𝜇0 + Σ
−1∑𝑋𝑖

𝑁

𝑖=1

 

⇒ (ΣΣ0
−1 + 𝑁𝐼)𝜇 = ΣΣ0

−1𝜇0 +∑𝑋𝑖

𝑁

𝑖=1

 

Where I is identity matrix. Let, 

�̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

We obtain the following equation to estimate μ and Σ: 

𝜇 = (ΣΣ0
−1 + 𝑁𝐼)−1(ΣΣ0

−1𝜇0 + 𝑁�̅�) 
The first-order partial derivative of l(Θ) with respect to Σ is: 

𝜕ℓ(Θ)

𝜕Σ
=∑(−

1

2
Σ−1 +

1

2
Σ−1(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝑁

𝑖=1

 

Due to: 
𝜕 log(|Σ|)

𝜕Σ
= Σ−1 

And 

𝜕(𝑋𝑖 − 𝜇)
𝑇Σ−1(𝑋𝑖 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝜕Σ
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑋𝑖 − 𝜇)
𝑇Σ−1(𝑋𝑖 − 𝜇) = tr((𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(𝐴) =
∑ 𝑎𝑖𝑖𝑖 . This implies (Nguyen, 2015, p. 45): 

𝜕(𝑋𝑖 − 𝜇)
𝑇Σ−1(𝑋𝑖 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝜕Σ
= −Σ−1(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1 

Where Σ is symmetric and invertible matrix. The estimate Σ̂ is the solution of equation formed 

by setting the first-order partial derivative of l(Θ) regarding Σ to zero matrix. Let (0) denote 

zero matrix. 
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(𝟎) = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

We have: 
𝜕ℓ(Θ)

𝜕Σ
= (𝟎) 

⇔∑(−
1

2
Σ−1 +

1

2
Σ−1(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝑁

𝑖=1

= (𝟎) 

⇒∑(−Σ + (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)
𝑇)

𝑁

𝑖=1

= (𝟎) 

⇒ Σ =
1

𝑁
∑(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇

𝑁

𝑖=1

=
1

𝑁
∑(𝑋𝑖𝑋𝑖

𝑇 − 𝑋𝑖𝜇
𝑇 − 𝜇𝑋𝑖

𝑇 + 𝜇𝜇𝑇)

𝑁

𝑖=1

=
1

𝑁
∑(𝑋𝑖𝑋𝑖

𝑇 − 𝜇𝑋𝑖
𝑇 − 𝜇𝑋𝑖

𝑇 + 𝜇𝜇𝑇)

𝑁

𝑖=1

 

⇒ Σ = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) −
2

𝑁
𝜇∑𝑋𝑖

𝑇

𝑁

𝑖=1

+ 𝜇𝜇𝑇 = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 2𝜇�̅� + 𝜇𝜇𝑇 

MAP results out a system of two equations whose solution is the estimate Θ̂ = (�̂�, Σ̂)
𝑇

as 

follows: 

{

𝜇 = (ΣΣ0
−1 + 𝑁𝐼)−1(ΣΣ0

−1𝜇0 + 𝑁�̅�)

Σ = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 2𝜇�̅� + 𝜇𝜇𝑇
 

Where I is identity matrix and 

�̅� =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

Because Σ is independent from the prior PDF f(μ | μ0, Σ0), it is estimated by MLE as usual, 

Σ̂ = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − �̅��̅�𝑇 

The estimate Σ̂ in MAP here is as same as the one in MLE and so, it is biased. Substituting Σ̂ 

for Σ, we obtain the estimate �̂� in MAP: 

�̂� = (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁�̅�) 

Note, 

𝐸(�̅�) = 𝐸 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁
∑𝐸(𝑋𝑖)

𝑁

𝑖=1

= 𝐸(𝑋) = 𝜇0 

𝑉(�̅�) = 𝑉 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁2
∑𝑉(𝑋𝑖)

𝑁

𝑖=1

=
1

𝑁
𝑉(𝑋) =

1

𝑁
Σ 

Now we check if �̂� is unbiased estimate. In fact, we have: 

𝐸(�̂�) = 𝐸 ((Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁�̅�)) = (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝐸(�̅�)) 
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= (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 +∑𝐸(𝑋𝑖)

𝑁

𝑖=1

) 

= (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝐸(𝑋)) = (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝜇0) 

(Due to E(X) = μ0) 

= (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1 + 𝑁𝐼)𝜇0 = 𝜇0 

Therefore, the estimate �̂� is biased because the variable μ is not always to equal μ0. 

Now we try to check again if �̂� is unbiased estimate with Cramer-Rao lower bound. The 

second-order partial derivative of ℓ(Θ) regarding μ is: 

𝜕2ℓ(Θ)

𝜕𝜇2
=
𝜕

𝜕𝜇
(
𝜕ℓ(Θ)

𝜕𝜇
) =

𝜕

𝜕𝜇
(−𝜇𝑇(Σ0

−1 + 𝑁Σ−1) + 𝜇0
𝑇Σ0

−1 + (∑𝑋𝑖
𝑇

𝑁

𝑖=1

)Σ−1) 

= −(Σ0
−1 +𝑁Σ−1)𝑇 = −(Σ0

−1 + 𝑁Σ−1) 
(Because Σ and Σ0 are symmetric) 

Cramer-Rao lower bound of �̂� is: 

𝐶𝑅(�̂�) = −
1

𝑁
(∫∫

𝜕2ℓ(Θ)

𝜕𝜇2
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

)

−1

=
1

𝑁
(∫∫(Σ0

−1 +𝑁Σ−1)𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

)

−1

 

=
1

𝑁
(∫(Σ0

−1 + 𝑁Σ−1)𝑓(Θ|𝜉)dΘ

Θ

)

−1

=
1

𝑁
(∫(Σ0

−1 + 𝑁Σ−1)𝑓(𝜇|𝜇0, Σ0)dΘ

𝜇

)

−1

 

=
1

𝑁
(Σ0

−1 + 𝑁Σ−1)−1 

Variance of �̂� is: 

𝑉(�̂�) = 𝑉((ΣΣ0
−1 + 𝑁𝐼)−1(ΣΣ0

−1𝜇0 + 𝑁�̅�)) 

= 𝑉((ΣΣ0
−1 + 𝑁𝐼)−1ΣΣ0

−1𝜇0 + 𝑁(ΣΣ0
−1 + 𝑁𝐼)−1�̅�) = 𝑉(𝑁(ΣΣ0

−1 + 𝑁𝐼)−1�̅�) 
= 𝑁2𝑉((ΣΣ0

−1 + 𝑁𝐼)−1�̅�) 
Because it is difficult to calculate 𝑉(�̂�), suppose we fix Σ so that Σ̂ = Σ0 = Σ, we have: 

𝑉(�̂�) = 𝑁2𝑉((ΣΣ0
−1 + 𝑁𝐼)−1�̅�) = 𝑁2𝑉((ΣΣ−1 + 𝑁𝐼)−1�̅�) = 𝑁2𝑉((𝐼 + 𝑁𝐼)−1�̅�) 

= 𝑁2𝑉 (
1

𝑁 + 1
�̅�) =

𝑁2

(𝑁 + 1)2
𝑉(�̅�) =

𝑁

(𝑁 + 1)2
Σ 

(Due to 𝑉(�̅�) =
1

𝑁
Σ) 

The Cramer-Rao lower bound of �̂� is re-written as follows: 

𝐶𝑅(�̂�) =
1

𝑁
(Σ0

−1 + 𝑁Σ−1)−1 =
1

𝑁
(Σ−1 + 𝑁Σ−1)−1 =

1

𝑁
(Σ−1(1 + 𝑁))

−1
=

1

𝑁(𝑁 + 1)
Σ 

Obviously, �̂� is biased estimate due to 𝑉(�̂�) ≠ 𝐶𝑅(�̂�). In general, the estimate Θ̂ in MAP is 

affected by the prior PDF f(Θ|ξ). Even though it is biased, it can be better than the one resulted 

from MLE because of valuable information in f(Θ|ξ). For instance, if fixing Σ, the variance of 

�̂� from MAP (
𝑁

(𝑁+1)2
Σ) is “smaller” (lower bounded) than the one from MLE (

1

𝑁
Σ) ■ 

Now we skim through an introduction of EM algorithm. Suppose there are two spaces X 

and Y, in which X is hidden space whereas Y is observed space. We do not know X but there 

is a mapping from X to Y so that we can survey X by observing Y. The mapping is many-one 

function φ: X → Y and we denote φ–1(Y) = {𝑋 ∈ 𝑿: φ(X) = Y} as all 𝑋 ∈ 𝑿 such that φ(X) = Y. 
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We also denote X(Y) = φ–1(Y). Let f(X | Θ) be the PDF of random variable 𝑋 ∈ 𝑿 and let g(Y | 

Θ) be the PDF of random variable 𝑌 ∈ 𝒀. Note, Y is also called observation. Equation 1.34 

specifies g(Y | Θ) as integral of f(X | Θ) over φ–1(Y). 

𝑔(𝑌|Θ) = ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

 (1.34) 

Where Θ is probabilistic parameter represented as a column vector, Θ = (θ1, θ2,…, θr)
T in which 

each θi is a particular parameter. If X and Y are discrete, equation 1.34 is re-written as follows: 

𝑔(𝑌|Θ) = ∑ 𝑓(𝑋|Θ)

𝑋∈𝜑−1(𝑌)

 

According to viewpoint of Bayesian statistics, Θ is also random variable. As a convention, let 

Ω be the domain of Θ such that Θ ∈ Ω and the dimension of Ω is r. For example, normal 

distribution has two particular parameters such as mean μ and variance σ2 and so we have Θ = 

(μ, σ2)T. Note that, Θ can degrades into a scalar as Θ = θ. The conditional PDF of X given Y, 

denoted k(X | Y, Θ), is specified by equation 1.35. 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 (1.35) 

According to DLR (Dempster, Laird, & Rubin, 1977, p. 1), X is called complete data and the 

term “incomplete data” implies existence of X and Y where X is not observed directly and X is 

only known by the many-one mapping φ: X → Y. In general, we only know Y, f(X | Θ), and 

k(X | Y, Θ) and so our purpose is to estimate Θ based on such Y, f(X | Θ), and k(X | Y, Θ). Like 

MLE approach, EM algorithm also maximizes the likelihood function to estimate Θ but the 

likelihood function in EM concerns Y and there are also some different aspects in EM which 

will be described later. Pioneers in EM algorithm firstly assumed that f(X | Θ) belongs to 

exponential family with note that many popular distributions such as normal, multinomial, and 

Poisson belong to exponential family (please see table 1.1). Although DLR (Dempster, Laird, 

& Rubin, 1977) proposed a generality of EM algorithm in which f(X | Θ) distributes arbitrarily, 

we should concern exponential family a little bit. Exponential family (Wikipedia, Exponential 

family, 2016) refers to a set of probabilistic distributions whose PDF (s) have the same 

exponential form according to equation 1.36 (Dempster, Laird, & Rubin, 1977, p. 3): 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  (1.36) 

Where b(X) is a function of X, which is called base measure and τ(X) is a vector function of X, 

which is sufficient statistic. For example, the sufficient statistic of normal distribution is τ(X) 

= (X, XXT)T. Equation 1.36 expresses the canonical form of exponential family. Recall that Ω 

is the domain of Θ such that Θ ∈ Ω. Suppose that Ω is a convex set. If Θ is restricted only to Ω 

then, f(X | Θ) specifies a regular exponential family. If Θ lies in a curved sub-manifold Ω0 of 

Ω then, f(X | Θ) specifies a curved exponential family. The a(Θ) is partition function for variable 

X, which is used for normalization. 

𝑎(Θ) = ∫𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑋

 

As usual, a PDF is known as a popular form but its exponential family form (canonical form 

of exponential family) specified by equation 1.36 looks unlike popular form although they are 

the same. Therefore, parameter in popular form is different from parameter in exponential 

family form. 

For example, multinormal distribution with theoretical mean μ and covariance matrix Σ of 

random variable X = (x1, x2,…, xn)
T has PDF in popular form is: 

𝑓(𝑋|𝜇, Σ) = (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Hence, parameter in popular form is Θ = (μ, Σ)T. Exponential family form of such PDF is: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


32 

 

𝑓(𝑋|𝜃1, 𝜃2) = (2𝜋)−
𝑛
2 ∗ exp((𝜃1, 𝜃2) (

𝑋
𝑋𝑋𝑇

)) exp (−
1

4
𝜃1
𝑇𝜃2

−1𝜃1 −
1

2
log|−2𝜃2|)⁄  

Where, 

Θ = (
𝜃1
𝜃2
)

𝜃1 = Σ
−1𝜇

𝜃2 = −
1

2
Σ−1

 

𝑏(𝑋) = (2𝜋)−
𝑛
2

𝜏(𝑋) = (
𝑋
𝑋𝑋𝑇

)
 

𝑎(Θ) = exp (−
1

4
𝜃1
𝑇𝜃2

−1𝜃1 −
1

2
log|−2𝜃2|) 

Hence, parameter in exponential family form is Θ = (θ1, θ2)
T. Although, f(X | θ1, θ2) looks unlike 

f(X | μ, Σ) but they are the same, f(X | θ1, θ2) = f(X | μ, Σ). In fact, we have: 

Θ𝑇𝜏(𝑋) = (𝜃1, 𝜃2) (
𝑋
𝑋𝑋𝑇

) = (Σ−1𝜇,−
1

2
Σ−1) (

𝑋
𝑋𝑋𝑇

) = 𝜇𝑇Σ−1𝑋 −
1

2
𝑋𝑇Σ−1𝑋 

We also have: 

𝑎(Θ) = exp (−
1

4
𝜃1
𝑇𝜃2

−1𝜃1 −
1

2
log|−2𝜃2|) = exp (

1

2
𝜇𝑇Σ−1ΣΣ−1𝜇 −

1

2
log|Σ−1|) 

= exp (
1

2
𝜇𝑇Σ−1𝜇 +

1

2
log|Σ|) = |Σ|

1
2 ∗ exp (

1

2
𝜇𝑇Σ−1𝜇) 

(Due to |Σ–1| = |Σ|–1) 

Therefore, 

𝑓(𝑋|𝜃1, 𝜃2) = (2𝜋)
−
𝑛
2|Σ|−

1
2 ∗ exp (𝜇𝑇Σ−1𝑋 −

1

2
𝑋𝑇Σ−1𝑋 −

1

2
𝜇𝑇Σ−1𝜇) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
(𝑋𝑇Σ−1𝑋 − 𝜇𝑇Σ−1𝑋 − 𝜇𝑇Σ−1𝑋 + 𝜇𝑇Σ−1𝜇)) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
(𝑋𝑇Σ−1𝑋 − 𝜇𝑇Σ−1𝑋 − 𝑋𝑇Σ−1𝜇 + 𝜇𝑇Σ−1𝜇)) 

(Because Σ is symmetric, μTΣ–1X = XTΣ–1μ) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
((𝑋𝑇 − 𝜇𝑇)Σ−1𝑋 − (𝑋𝑇 − 𝜇𝑇)Σ−1𝜇)) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
((𝑋𝑇 − 𝜇𝑇)Σ−1(𝑋 − 𝜇))) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) = 𝑓(𝑋|𝜇, Σ)∎ 

The exponential family form is used to represents all distributions belonging to exponential 

family as canonical form. Parameter in exponential family form is called exponential family 

parameter. As a convention, parameter Θ mentioned in EM algorithm is often exponential 

family parameter if PDF belongs to exponential family and there is no additional information. 

Table 1.1 shows some popular distributions belonging to exponential family along with 

their canonical forms (Wikipedia, Exponential family, 2016). In case of multivariate 

distributions, dimension of random variable X = (x1, x2,…, xn)
T is n. 

Distribution Popular 

PDF 

Exponential 

family 

parameter 

Θ 

τ(X) b(X) a(Θ) 
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M
u

ltin
o

rm
al 

𝑓(𝑋|𝜇, Σ)

= |2𝜋Σ|−
1
2

∗ 𝑒−
1
2
(𝑋−𝜇)𝑇Σ−1(𝑋−𝜇)

 

 

 

(
𝜃1 = Σ−1𝜇

𝜃2 = −
1

2
Σ−1

) 
(
𝑋
𝑋𝑋𝑇

) (2𝜋)−
𝑛
2  exp (−

1

4
𝜃1
𝑇𝜃2

−1𝜃1

−
1

2
log|−2𝜃2|) 

M
u

ltin
o

m
ial 

𝑓(𝑋|𝑝1, 𝑝2, … , 𝑝𝑛)

=
𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑗

𝑛

𝑗=1

 

 

Where, ∑ 𝑝𝑗
𝑛
𝑗=1 = 1, 

∑ 𝑥𝑗
𝑛
𝑗=1 = 𝐾, and 𝑥𝑗 ∈

{0,1, … , 𝐾}. 

(

𝜃1 = log(𝑝1)

𝜃2 = log(𝑝2)
⋮

𝜃𝑛 = log(𝑝𝑛)

) (

𝑥1
𝑥2
⋮
𝑥𝑛

) 

𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

 
1 

Table 1.1. Some popular distributions belonging to exponential family 

It is necessary to survey some features of exponential family. The first-order derivative of 

log(a(Θ)) is expectation of transposed τ(X). 

log′(𝑎(Θ)) =
𝑎′(Θ)

𝑎(Θ)
=
dlog(𝑎(Θ))

dΘ
=
d𝑎(Θ) dΘ⁄

𝑎(Θ)
=

1

𝑎(Θ)

d(∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝑋

)

dΘ

=
1

𝑎(Θ)
∫
d (𝑏(𝑋)exp(Θ𝑇𝜏(𝑋)))

dΘ
d𝑋

𝑋

= ∫(𝜏(𝑋))
𝑇
𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑋

= (𝐸(𝜏(𝑋)|Θ))
𝑇
 

The second-order derivative of log(a(Θ)) is (Jebara, 2015): 

log′′(𝑎(Θ)) =
d

dΘ
(
𝑎′(Θ)

𝑎(Θ)
) =

𝑎′′(Θ)

𝑎(Θ)
−
𝑎′(Θ)

𝑎(Θ)

(𝑎′(Θ))
𝑇

𝑎(Θ)

=
𝑎′′(Θ)

𝑎(Θ)
− (𝐸(𝜏(𝑋)|Θ))(𝐸(𝜏(𝑋)|Θ))

𝑇
 

Where, 

𝑎′′(Θ)

𝑎(Θ)
=

1

𝑎(Θ)
∫
d2 (𝑏(𝑋)exp(Θ𝑇𝜏(𝑋)))

dΘ
d𝑋

𝑋

= ∫(𝜏(𝑋))(𝜏(𝑋))
𝑇
𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑋

= 𝐸 ((𝜏(𝑋))(𝜏(𝑋))
𝑇
|Θ) 

Hence (Hardle & Simar, 2013, pp. 125-126), 

log′′(𝑎(Θ)) = 𝐸 ((𝜏(𝑋))(𝜏(𝑋))
𝑇
|Θ) − (𝐸(𝜏(𝑋)|Θ))(𝐸(𝜏(𝑋)|Θ))

𝑇
= 𝑉(𝜏(𝑋)|Θ)

= ∫(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))
𝑇
𝑓(𝑋|Θ)d𝑋

𝑋

 

Where V(τ(X) | Θ) is central covariance matrix of τ(X). Please read the book “Matrix Analysis 

and Calculus” by Nguyen (Nguyen, 2015) for comprehending derivative of vector and matrix. 

Let a(Θ | Y) be a so-called observed partition function for observation Y. 

𝑎(Θ|𝑌) = ∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝜑−1(𝑌)

 

Similarly, we obtain that the first-order derivative of log(a(θ | Y)) is expectation of transposed 

τ(X) based on Y. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


34 

 

log′(𝑎(Θ|𝑌)) =
1

𝑎(Θ)

d (∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝜑−1(𝑌)

)

dΘ
= (𝐸(𝜏(𝑋)|𝑌, Θ))

𝑇
 

If f(X | Θ) follows exponential family, the conditional density k(X | Y, Θ) is determined as 

follows: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 

Indeed, k(X | Y, Θ) is conditional PDF. If f(X | Θ) follows exponential family then, k(X | Y, Θ) 

also follows exponential family. In fact, we have: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
=

𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄

∫ 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋
𝜑−1(𝑌)

=
𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))

∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝜑−1(𝑌)

= 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

Note that k(X | Y, Θ) is determined on 𝑋 ∈ 𝜑−1(𝑌). Of course, we have: 

∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= ∫
𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))

𝑎(Θ|𝑌)
d𝑋

𝜑−1(𝑌)

=
∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝜑−1(𝑌)

𝑎(Θ|𝑌)

=
𝑎(Θ|𝑌)

𝑎(Θ|𝑌)
= 1 

The first-order derivative of log(a(Θ | Y)) is: 

log′(𝑎(Θ|𝑌)) = (𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
= ∫ (𝜏(𝑋))

𝑇
𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

 

The second-order derivative of log(a(Θ) | Y) is: 

log′′(𝑎(Θ|𝑌)) = 𝑉(𝜏(𝑋)|𝑌, Θ)

= ∫ (𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

 

Where V(τ(X) | Y, Θ) is central covariance matrix of τ(X) given observed Y. Table 1.2 is 

summary of f(X | Θ), g(Y | Θ), k(X | Y, Θ), a(Θ), log’(a(Θ)), log’’(a(Θ)), a(Θ | Y), log’(a(Θ | Y)), 

and log’’(a(Θ | Y)) with exponential family. 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  

𝑔(𝑌|Θ) = ∫ 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝜑−1(𝑌)

 

𝑘(𝑋|𝑌, Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= 1 

𝑎(Θ) = ∫𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑋

 

log′(𝑎(Θ)) = (𝐸(𝜏(𝑋)|Θ))
𝑇
= ∫𝑓(𝑋|Θ)(𝜏(𝑋))

𝑇
d𝑋

𝑋

 

log′′(𝑎(Θ)) = 𝑉(𝜏(𝑋)|Θ) = ∫(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))
𝑇
𝑓(𝑋|Θ)d𝑋

𝑋

 

𝑎(Θ|𝑌) = ∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝜑−1(𝑌)
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log′(𝑎(Θ|𝑌)) = (𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
= ∫ 𝑘(𝑋|𝑌, Θ)(𝜏(𝑋))

𝑇
d𝑋

𝜑−1(𝑌)

 

log′′(𝑎(Θ|𝑌)) = 𝑉(𝜏(𝑋)|𝑌, Θ)

= ∫ (𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

 

Table 1.2. Summary of f(X | Θ), g(Y | Θ), k(X | Y, Θ), a(Θ), log’(a(Θ)), a(Θ | Y), and log’(a(Θ 

| Y)) with exponential family 

Simply, EM algorithm is iterative process including many iterations, in which each iteration 

has expectation step (E-step) and maximization step (M-step). E-step aims to estimate 

sufficient statistic given current parameter and observed data Y whereas M-step aims to re-

estimate the parameter based on such sufficient statistic by maximizing likelihood function of 

X related to Y. EM algorithm is described in the next section in detail. As an introduction, DLR 

gave an example for illustrating EM algorithm (Dempster, Laird, & Rubin, 1977, pp. 2-3). 

Example 1.1. Rao (Rao, 1955) presents observed data Y of 197 animals following 

multinomial distribution with four categories, such as Y = (y1, y2, y3, y4) = (125, 18, 20, 34). 

The PDF of Y is: 

𝑔(𝑌|𝜃) =
(∑ 𝑦𝑖

4
𝑖=1 )!

∏ 𝑦𝑖!
4
𝑖=1

∗ (
1

2
+
𝜃

4
)
𝑦1

∗ (
1

4
−
𝜃

4
)
𝑦2

∗ (
1

4
−
𝜃

4
)
𝑦3

∗ (
𝜃

4
)
𝑦4

 

Note, probabilities py1, py2, py3, and py4 in g(Y | θ) are 1/2 + θ/4, 1/4 – θ/4, 1/4 – θ/4, and θ/4, 

respectively as parameters. The expectation of any sufficient statistic yi with regard to g(Y | θ) 

is: 

𝐸(𝑦𝑖|𝑌, 𝜃) = 𝑦𝑖𝑝𝑦𝑖 

Observed data Y is associated with hidden data X following multinomial distribution with five 

categories, such as X = {x1, x2, x3, x4, x5} where y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5. The PDF 

of X is: 

𝑓(𝑋|𝜃) =
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

∗ (
1

2
)
𝑥1

∗ (
𝜃

4
)
𝑥2

∗ (
1

4
−
𝜃

4
)
𝑥3

∗ (
1

4
−
𝜃

4
)
𝑥4

∗ (
𝜃

4
)
𝑥5

 

Note, probabilities px1, px2, px3, px4, and px5 in f(X | θ) are 1/2, θ/4, 1/4 – θ/4, 1/4 – θ/4, and θ/4, 

respectively as parameters. The expectation of any sufficient statistic xi with regard to f(X | θ) 

is: 

𝐸(𝑥𝑖|𝜃) = 𝑥𝑖𝑝𝑥𝑖 

Due to y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5, the mapping function φ between X and Y is y1 = 

φ(x1, x2) = x1 + x2. Therefore g(Y | θ) is sum of f(X | θ) over x1 and x2 such that x1 + x2 = y1 

according to equation 1.34. In other words, g(Y | θ) is resulted from summing f(X | θ) over all 

(x1, x2) pairs such as (0, 125), (1, 124),…, (125, 0) and then substituting (18, 20, 34) for (x3, x4, 

x5) because of y1 = 125 from observed Y. 

𝑔(𝑌|𝜃) = ∑ ( ∑ 𝑓(𝑋|𝜃)

0

𝑥2=125−𝑥1

)

125

𝑥1=0

 

Rao (Rao, 1955) applied EM algorithm into determining the optimal estimate θ*. Note y2 = x3, 

y3 = x4, y4 = x5 are known and so only sufficient statistics x1 and x2 are not known. Given the tth 

iteration, sufficient statistics x1 and x2 are estimated as x1
(t) and x2

(t) based on current parameter 

θ(t) and g(Y | θ) in E-step below: 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝑦1
(𝑡) = 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) 
Given py1 = 1/2 + θ/4, which implies that: 
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𝑦1
(𝑡)
= 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) = 𝑦1𝑝𝑦1 = 𝑦1 (
1

2
+
𝜃(𝑡)

4
) 

When y1 = 125, we have: 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 125 (
1

2
+
𝜃(𝑡)

4
) 

This suggests us to select: 

𝑥1
(𝑡) = 𝐸(𝑥1|𝑌, 𝜃

(𝑡)) = 125
1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 𝐸(𝑥2|𝑌, 𝜃

(𝑡)) = 125
𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

According to M-step, the next estimate θ(t+1) is a maximizer of the log-likelihood function of X 

related to Y. This log-likelihood function is: 

log(𝑓(𝑋|𝜃)) = log (
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

) − (𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 + 2𝑥5)log(2) + (𝑥2 + 𝑥5)log(𝜃)

+ (𝑥3 + 𝑥4)log(1 − 𝜃) 
The first-order derivative of log(f(X | θ) is: 

dlog(𝑓(𝑋|𝜃))

d𝜃
=
𝑥2 + 𝑥5
𝜃

−
𝑥3 + 𝑥4
1 − 𝜃

=
𝑥2 + 𝑥5 − (𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)𝜃

𝜃(1 − 𝜃)
 

Because y2 = x3 = 18, y3 = x4 = 20, y4 = x5 = 34 and x2 is approximated by x2
(t), we have: 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
 

As a maximizer of log(f(X | θ), the next estimate θ(t+1) is solution of the following equation 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
= 0 

So we have: 

𝜃(𝑡+1) =
𝑥2
(𝑡) + 34

𝑥2
(𝑡) + 72

 

Where, 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

For example, given the initial θ(1) = 0.5, at the first iteration, we have: 

𝑥2
(1) = 125

𝜃(1) 4⁄

1 2⁄ + 𝜃(1) 4⁄
=
125 ∗ 0.5/4

0.5 + 0.5/4
= 25 

𝜃(2) =
𝑥2
(1) + 34

𝑥2
(1) + 72

=
25 + 34

25 + 72
= 0.6082 

After five iterations we gets the optimal estimate θ*: 

𝜃∗ = 𝜃(4) = 𝜃(5) = 0.6268 

Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) lists estimates of θ over five iterations (t =1, 

2, 3, 4, 5) with note that θ(1) is initialized arbitrarily and θ* = θ(5) = θ(6) is determined at the 5th 

iteration. The third column gives deviation θ* and θ(t) whereas the fourth column gives the ratio 

of successive deviations. Later on, we will know that such ratio implies convergence rate. 

t θ(t) θ* – θ(t) 
(θ* – θ(t+1)) / 

(θ* – θ(t)) 

1 θ(1) = 0.5 0.1268 0.1465 
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θ(2) = 0.6082 0.0186 0.1346 

2 
θ(2) = 0.6082 0.0186 0.1346 

θ(3) = 0.6243 0.0025 0.1330 

3 
θ(3) = 0.6243 0.0025 0.1330 

θ(4) = 0.6265 0.0003 0.1328 

4 
θ(4) = 0.6265 0.0003 0.1328 

θ(5) = 0.6268 0 0.1328 

5 
θ(5) = 0.6268 0 0.1328 

θ(6) = 0.6268 0 0.1328 

Table 1.3. EM algorithm in simple case 

For example, at the first iteration, we have: 

𝜃∗ − 𝜃(1) = 0.6268 − 0.5 = 0.1268 

𝜃∗ − 𝜃(2)

𝜃∗ − 𝜃(1)
=
𝜃(2) − 𝜃∗

𝜃(1) − 𝜃∗
=
0.6082 − 0.6268

0.5 − 0.6268
= 0.1465 

 

2. EM algorithm 
Expectation maximization (EM) algorithm has many iterations and each iteration has two steps 

in which expectation step (E-step) calculates sufficient statistic of hidden data based on 

observed data and current parameter whereas maximization step (M-step) re-estimates 

parameter. When DLR proposed EM algorithm (Dempster, Laird, & Rubin, 1977), they firstly 

concerned that the PDF f(X | Θ) of hidden space belongs to exponential family. E-step and M-

step at the tth iteration are described in table 2.1 (Dempster, Laird, & Rubin, 1977, p. 4), in 

which the current estimate is Θ(t), with note that f(X | Θ) belongs to regular exponential family. 

E-step: 

We calculate current value τ(t) of the sufficient statistic τ(X) from observed Y and current 

parameter Θ(t) according to equation 2.6: 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) 
M-step: 

Basing on τ(t), we determine the next parameter Θ(t+1) as solution of equation 2.3: 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 
Note, Θ(t+1) will become current parameter at the next iteration ((t+1)th iteration). 

Table 2.1. E-step and M-step of EM algorithm given regular exponential PDF f(X|Θ) 

EM algorithm stops if two successive estimates are equal, Θ* = Θ(t) = Θ(t+1), at some tth iteration. 

At that time we conclude that Θ* is the optimal estimate of EM process. Please see table 1.2 to 

know how to calculate E(τ(X) | Θ(t)) and E(τ(X) | Y, Θ(t)). As a convention, the estimate of 

parameter Θ resulted from EM process is denoted Θ* instead of Θ̂ in order to emphasize that 

Θ* is solution of optimization problem. 

It is necessary to explain E-step and M-step as well as convergence of EM algorithm. 

Essentially, the two steps aim to maximize log-likelihood function of Θ, denoted L(Θ), with 

respect to observation Y. 

Θ∗ = argmax
Θ

𝐿(Θ) 

Where, 

𝐿(Θ) = log(𝑔(𝑌|Θ)) 

Note that log(.) denotes logarithm function. Therefore, EM algorithm is an extension of 

maximum likelihood estimation (MLE) method. In fact, let l(Θ) be log-likelihood function of 

Θ with respect to X. 

𝑙(Θ) = log(𝑓(𝑋|Θ)) = log(𝑏(𝑋)) + Θ𝑇𝜏(𝑋) − log(𝑎(Θ)) (2.1) 

By referring to table 1.2, the first-order derivative of l(Θ) is: 
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d𝑙(Θ)

dΘ
=
dlog(𝑓(𝑌|Θ))

dΘ
= (𝜏(𝑋))

𝑇
− log′(𝑎(Θ)) = (𝜏(𝑋))

𝑇
− (𝐸(𝜏(𝑋)|Θ))

𝑇
 (2.2) 

We set the first-order derivative of l(Θ) to be zero with expectation that l(Θ) will be maximized. 

Therefore, the optimal estimate Θ* is solution of the following equation which is specified in 

M-step. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑋) 
The expression E(τ(X) | Θ) is function of Θ but τ(X) is still dependent on X. Let τ(t) be value of 

τ(X) at the tth iteration of EM process, candidate for the best estimate of Θ is solution of equation 

2.3 according to M-step. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) (2.3) 

Where, 

𝐸(𝜏(𝑋)|Θ) = ∫𝑓(𝑋|Θ)𝜏(𝑋)d𝑋

𝑋

 

Thus, we will calculate τ(t) by maximizing the log-likelihood function L(Θ) given Y. Recall that 

maximizing L(Θ) is the ultimate purpose of EM algorithm. 

Θ∗ = argmax
Θ

𝐿(Θ) 

Where, 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) (2.4) 

Due to: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 

It implies: 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log(𝑓(𝑋|Θ)) − log(𝑘(𝑋|𝑌, Θ)) 

Because f(X | Θ) belongs to exponential family, we have: 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  

𝑘(𝑋|𝑌, Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

The log-likelihood function L(Θ) is reduced as follows: 

𝐿(Θ) = −log(𝑎(Θ)) + log(𝑎(Θ|𝑌)) 

By referring to table 1.2, the first-order derivative of L(Θ) is: 
d𝐿(Θ)

dΘ
= −log′(𝑎(Θ)) + log′(𝑎(Θ|𝑌)) = −(𝐸(𝜏(𝑋)|Θ))

𝑇
+ (𝐸(𝜏(𝑋)|𝑌, Θ))

𝑇
 (2.5) 

We set the first-order derivative of L(Θ) to be zero with expectation that L(Θ) will be 

maximized, as follows: 

−(𝐸(𝜏(𝑋)|Θ))
𝑇
+ (𝐸(𝜏(𝑋)|𝑌, Θ))

𝑇
= 0 

It implies: 

𝐸(𝜏(𝑋)|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) 
Let Θ(t) be the current estimate at some tth iteration of EM process. Derived from the equality 

above, the value τ(t) is calculated as seen in equation 2.6. 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) (2.6) 

Where, 

𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) = ∫ 𝑘(𝑋|𝑌, Θ(𝑡))𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

Equation 2.6 specifies the E-step of EM process. After t iterations we will obtain Θ* = Θ(t+1) = 

Θ(t) such that E(τ(X) | Y, Θ(t)) = E(τ(X) | Y, Θ*) = τ(t) = E(τ(X) | Θ*) = E(τ(X) | Θ(t+1)) when Θ(t+1) 
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is solution of equation 2.3 (Dempster, Laird, & Rubin, 1977, p. 5). This means that Θ* is the 

optimal estimate of EM process because Θ* is solution of the equation: 

𝐸(𝜏(𝑋)|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) 
Thus, we conclude that Θ* is the optimal estimate of EM process. 

Θ∗ = argmax
Θ

𝐿(Θ) 

The EM algorithm shown in table 2.1 is totally exact with assumption that f(X|Θ) belongs to 

regular exponential family. If f(X|Θ) is not regular, the maximal point (maximizer) of the log-

likelihood function l(Θ) is not always the stationary point Θ* so that the first-order derivative 

of l(Θ) is zero, l’(Θ*) = 0. However, if f(X|Θ) belongs to curved exponential family, the M-step 

of the EM algorithm shown in table 2.1 is modified as follows (Dempster, Laird, & Rubin, 

1977, p. 5): 

Θ(𝑡+1) = argmax
Θ∈Ω0

𝑙(Θ) = argmax
Θ∈Ω0

𝑙(Θ|𝜏(𝑡)) = argmax
Θ∈Ω0

(Θ𝑇𝜏(𝑡) − log(𝑎(Θ))) (2.7) 

Where τ(t) is calculated by equation 2.6 in E-step. This means that, in more general manner, the 

maximizer Θ(t+1) will be found by some way. Recall that if Θ lies in a curved sub-manifold Ω0 

of Ω where Ω is the domain of Θ then, f(X | Θ) belongs to curved exponential family. 

In general, given exponential family, within simple EM algorithm, E-step aims to calculate 

the current sufficient statistic τ(t) that the log-likelihood function L(Θ(t)) gets maximal with such 

τ(t) at current Θ(t) given Y whereas M-step aims to maximize the log-likelihood function l(Θ) 

given τ(t), as seem in table 2.2. Note, in table 2.2, f(X|Θ) belongs to curved exponential family 

but it is not necessary to be regular. 

E-step: 

Given observed Y and current Θ(t), current value τ(t) of the sufficient statistic τ(X) is the 

value that the log-likelihood function L(Θ(t)) gets maximal with such τ(t). Concretely, 

suppose Θ* be a maximizer of L(Θ) given Y where L(Θ) is specified by equation 2.4. 

Θ∗ = argmax
Θ

𝐿(Θ) = argmax
Θ

𝐿(Θ|𝑌) 

Suppose Θ* is formulated as function of τ(X), for instance, Θ* = h(τ(X)) with note that Θ* 

is not evaluated because τ(X) is not evaluated. Thus, the equation Θ* = h(τ(X)) is only 

symbolic formula. Let τ(t) be a value of τ(X) such that Θ(t) = h(τ(X)). This means 𝜏(𝑡) ∈

{𝜏(𝑋): Θ(𝑡) = ℎ(𝜏(𝑋))} with note that Θ* is replaced by Θ(t). If h(τ(X)) is invertible, τ(t) = 

h–1(Θ(t)). 

If the PDF f(X|Θ) belongs to regular exponential family, τ(t) is calculated more easily 

according to equation 2.6, given Y and Θ(t). 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) 
Where, 

𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) = ∫ 𝑘(𝑋|𝑌, Θ(𝑡))𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

M-step: 

Basing on τ(t), we determine the next parameter Θ(t+1) by maximizing the log-likelihood 

function l(Θ) given τ(t), where l(Θ) is specified by equation 2.1. Actually, the sufficient 

statistic τ(t) calculated in E-step is substituted for unobserved τ(X) in l(Θ) so that it is 

possible to maximize l(Θ) with subject to Θ. 

Θ(𝑡+1) = argmax
Θ

𝑙(Θ|𝜏(𝑡)) 

If the PDF f(X|Θ) belongs to regular exponential family, Θ(t+1) is solution of equation 2.3 

given τ(t). 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 
Where, 
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𝐸(𝜏(𝑋)|Θ) = ∫𝑓(𝑋|Θ)𝜏(𝑋)d𝑋

𝑋

 

If the PDF f(X|Θ) belongs to curved exponential family, Θ(t+1) is determined by equation 

2.7 given τ(t). 

Θ(𝑡+1) = argmax
Θ∈Ω0

(Θ𝑇𝜏(𝑡) − log(𝑎(Θ))) 

Table 2.2. E-step and M-step of EM algorithm given exponential PDF f(X|Θ) 

EM algorithm stops if two successive estimates are equal, Θ* = Θ(t) = Θ(t+1), at some tth iteration. 

At that time, Θ* is the optimal estimate of EM process, which is an optimizer of L(Θ). 

Θ∗ = argmax
Θ

𝐿(Θ) 

Going back example 1.1, given the tth iteration, sufficient statistics x1 and x2 are estimated as 

x1
(t) and x2

(t) based on current parameter θ(t) in E-step according to equation 2.6. 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝑦1
(𝑡) = 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) 

Given py1 = 1/2 + θ/4, which implies that: 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝐸(𝑦1|𝑌, 𝜃
(𝑡)) = 𝑦1𝑝𝑦1 = 𝑦1 (

1

2
+
𝜃(𝑡)

4
) 

Because the probability of y1 is 1/2 + θ/4 and y1 is sum of x1 and x2, let 𝑝𝑥1|𝑦1 be conditional 

probability of x1 given y1 and let 𝑝𝑥2|𝑦1 be conditional probability of x2 given y1 such that 

𝑝𝑥1|𝑦1 =
𝑃(𝑥1, 𝑦1)

𝑝𝑦1
=

𝑃(𝑥1, 𝑦1)

1 2⁄ + 𝜃 4⁄

𝑝𝑥2|𝑦1 =
𝑃(𝑥2, 𝑦1)

𝑝𝑦1
=

𝑃(𝑥2, 𝑦1)

1 2⁄ + 𝜃 4⁄

𝑝𝑥1|𝑦1 + 𝑝𝑥2|𝑦1 = 1

 

Where P(x1, y1) and P(x2, y1) are joint probabilities of (x1, y1) and (x2, y1), respectively. We can 

select P(x1, y1) = 1/2 and P(x2, y1) = θ/4, which implies: 

𝑥1
(𝑡) = 𝐸(𝑥1|𝑌, 𝜃

(𝑡)) = 𝑦1
(𝑡)𝑝𝑥1|𝑦1 = 𝑦1

(𝑡) 1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 𝐸(𝑥2|𝑌, 𝜃

(𝑡)) = 𝑦1
(𝑡)𝑝𝑥2|𝑦1 = 𝑦1

(𝑡) 𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

Such that 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝑦1
(𝑡)

 

Note, we can select alternately as P(x1, y1) = P(x2, y1) = (1/2 + θ/4) / 2, for example but fixing 

P(x1, y1) as 1/2 is better because the next estimate θ(t+1) known later depends only on x2
(t). 

When y1 is evaluated as y1 = 125, we obtain: 

𝑥1
(𝑡) = 125

1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

The expectation y1
(t) = E(y1 | Y, θ(t)) gets value 125 when y1 is evaluated as y1 = 125 and the 

probability corresponding to y1 gets maximal as 1/2 + θ(t)/4 = 1. 

Essentially, equation 2.3 specifying M-step is result of maximizing the log-likelihood 

function l(Θ). This log-likelihood function is: 
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𝑙(Θ) = log(𝑓(𝑋|𝜃))

= log (
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

) − (𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 + 2𝑥5)log(2)

+ (𝑥2 + 𝑥5)log(𝜃) + (𝑥3 + 𝑥4)log(1 − 𝜃) 
The first-order derivative of log(f(X | θ) is: 

dlog(𝑓(𝑋|𝜃))

d𝜃
=
𝑥2 + 𝑥5
𝜃

−
𝑥3 + 𝑥4
1 − 𝜃

=
𝑥2 + 𝑥5 − (𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)𝜃

𝜃(1 − 𝜃)
 

Because y2 = x3 = 18, y3 = x4 = 20, y4 = x5 = 34 and x2 is approximated by x2
(t), we have: 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
 

As a maximizer of log(f(X | θ), the next estimate θ(t+1) is solution of the following equation 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
= 0 

So we have: 

𝜃(𝑡+1) =
𝑥2
(𝑡) + 34

𝑥2
(𝑡)
+ 72

 

Where, 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

For example, given the initial θ(1) = 0.5, at the first iteration, we have: 

𝑥2
(1) = 125

𝜃(1) 4⁄

1 2⁄ + 𝜃(1) 4⁄
=
125 ∗ 0.5/4

0.5 + 0.5/4
= 25 

𝜃(2) =
𝑥2
(1) + 34

𝑥2
(1) + 72

=
25 + 34

25 + 72
= 0.6082 

After five iterations we gets the optimal estimate θ*: 

𝜃∗ = 𝜃(5) = 𝜃(6) = 0.6268 

Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) show resulted estimation ■ 

For further research, DLR gave a preeminent generality of EM algorithm (Dempster, Laird, 

& Rubin, 1977, pp. 6-11) in which f(X | Θ) specifies arbitrary distribution. In other words, there 

is no requirement of exponential family. They define the conditional expectation Q(Θ’ | Θ) 

according to equation 2.8 (Dempster, Laird, & Rubin, 1977, p. 6). 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

 (2.8) 

If X and Y are discrete, equation 2.8 can be re-written as follows: 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∑ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))

𝑋∈𝜑−1(𝑌)

 

The two steps of generalized EM (GEM) algorithm aim to maximize Q(Θ | Θ(t)) at some tth 

iteration as seen in table 2.3 (Dempster, Laird, & Rubin, 1977, p. 6). 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current parameter Θ(t), according to 

equation 2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) with subject to Θ. Note that Θ(t+1) 

will become current parameter at the next iteration (the (t+1)th iteration). 
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Table 2.3. E-step and M-step of GEM algorithm 

DLR proved that GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) 

is the optimal estimate of EM process, which is an optimizer of L(Θ). 

Θ∗ = argmax
Θ

𝐿(Θ) 

It is deduced from E-step and M-step that Q(Θ | Θ(t)) is increased after every iteration. How to 

maximize Q(Θ|Θ(t)) is the optimization problem which is dependent on applications. For 

example, the estimate Θ(t+1) can be solution of the equation created by setting the first-order 

derivative of Q(Θ|Θ(t)) regarding Θ to be zero, DQ(Θ|Θ(t)) = 0T. If solving such equation is too 

complex or impossible, some popular methods to solve optimization problem are Newton-

Raphson (Burden & Faires, 2011, pp. 67-71), gradient descent (Ta, 2014), and Lagrange duality 

(Wikipedia, Karush–Kuhn–Tucker conditions, 2014). Note, solving the equation DQ(Θ|Θ(t)) = 

0T may be incorrect in some case, for instance, in theory, Θ(t+1) such that DQ(Θ(t+1)|Θ(t)) = 0T 

may be a saddle point (not a maximizer). 

GEM algorithm still aims to maximize the log-likelihood function L(Θ) specified by 

equation 2.4, which is explained here. Following is proof of equation 2.8. Suppose the current 

parameter is Θ after some iteration. Next we must find out the new estimate Θ* that maximizes 

the next log-likelihood function L(Θ’). 

Θ∗ = argmax
Θ′

𝐿(Θ′) = argmax
Θ′

log(𝑔(𝑌|Θ′)) 

The next log-likelihood function L(Θ’) is re-written as follows: 

𝐿(Θ′) = log( ∫ 𝑓(𝑋|Θ′)d𝑋

𝜑−1(𝑌)

) = log( ∫ 𝑘(𝑋|𝑌, Θ)
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
d𝑋

𝜑−1(𝑌)

) 

Due to 

∫ 𝑘(𝑋|𝑌, Θ′)d𝑋

𝜑−1(𝑌)

= 1 

By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function 

log(∫𝑢(𝑥)𝑣(𝑥)d𝑥

𝑥

) ≥ ∫𝑢(𝑥)log(𝑣(𝑥))d𝑥

𝑥

 

where∫𝑢(𝑥)d𝑥

𝑥

= 1 

into L(Θ’), we have (Sean, 2009, p. 6): 

𝐿(Θ′) ≥ ∫ 𝑘(𝑋|𝑌, Θ)log (
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
)d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑓(𝑋|Θ′)) − log(𝑘(𝑋|𝑌, Θ))) d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ))d𝑋

𝜑−1(𝑌)

 

= 𝑄(Θ′|Θ) − 𝐻(Θ|Θ) 
Where, 

𝑄(Θ′|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)
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𝐻(Θ′|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 

The lower-bound of L(Θ’) is defined as follows: 

lb(Θ’ | Θ) = Q(Θ’ | Θ) – H(Θ | Θ) 

Of course, we have: 

L(Θ’) ≥ lb(Θ’ | Θ) 

Suppose at some tth iteration, when the current parameter is Θ(t), the lower-bound of L(Θ) is re-

written: 

lb(Θ | Θ(t)) = Q(Θ | Θ(t)) – H(Θ(t) | Θ(t)) 

Of course, we have: 

L(Θ) ≥ lb(Θ | Θ(t)) 

The lower bound lb(Θ | Θ(t)) has following property (Sean, 2009, p. 7): 

lb(Θ(t) | Θ(t)) = Q(Θ(t) | Θ(t)) – H(Θ(t) | Θ(t)) = L(Θ(t)) 

Indeed, we have: 

𝑙𝑏(Θ(𝑡)|Θ(𝑡)) = 𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐻(Θ(𝑡)|Θ(𝑡)) 

= ∫ 𝑘(𝑋|𝑌, Θ(𝑡))log (𝑓(𝑋|Θ(𝑡))) d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ(𝑡))log (𝑘(𝑋|𝑌, Θ(𝑡))) d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ(𝑡))log (
𝑓(𝑋|Θ(𝑡))

𝑘(𝑋|𝑌, Θ(𝑡))
) d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ(𝑡))log (𝑔(𝑌|Θ(𝑡))) d𝑋

𝜑−1(𝑌)

= log (𝑔(𝑌|Θ(𝑡))) ∫ 𝑘(𝑋|𝑌, Θ(𝑡))d𝑋

𝜑−1(𝑌)

 

= log (𝑔(𝑌|Θ(𝑡))) = 𝐿(Θ(𝑡)) 

Recall that the main purpose of GEM algorithm is to maximize the log-likelihood L(Θ) = 

log(g(Y|Θ)) with observed data Y. However, it is too difficult to maximize log(g(Y | Θ)) because 

g(Y | Θ) is not well-defined when g(Y | Θ) is integral of f(X | Θ) given a general mapping 

function. DLR solved this problem by an iterative process which is an instance of GEM 

algorithm. The lower-bound (Sean, 2009, pp. 7-8) of L(Θ) is maximized over many iterations 

of the iterative process so that L(Θ) is maximized finally. Such lower-bound is determined 

indirectly by the condition expectation Q(Θ | Θ(t)) so that maximizing Q(Θ | Θ(t)) is the same to 

maximizing the lower bound. Suppose Θ(t+1) is a maximizer of Q(Θ | Θ(t)) at tth iteration, which 

is also a maximizer of the lower bound at tth iteration. 

Θ(𝑡+1) = argmax
Θ

𝑙𝑏(Θ|Θ(𝑡)) = argmax
Θ

𝑄(Θ|Θ(𝑡)) 

Note, H(Θ(t) | Θ(t)) is constant with regard to Θ. The lower bound is increased after every 

iteration. As a result, the maximizer Θ* of the final lower-bound after many iterations will be 

expected as a maximizer of L(Θ) in final. 

Therefore, the two steps of GEM is interpreted with regard to the lower bound lb(Θ | Θ(t)) 

as seen in table 2.4. 

E-step: 

The lower bound lb(Θ | Θ(t)) is re-calculated based on Q(Θ | Θ(t)). 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) which is also a maximizer of lb(Θ 

| Θ(t)) because H(Θ(t) | Θ(t)) is constant. 

Θ(𝑡+1) = argmax
Θ

𝑙𝑏(Θ|Θ(𝑡)) = argmax
Θ

𝑄(Θ|Θ(𝑡)) 

Note that Θ(t+1) will become current parameter at the next iteration so that the lower 

bound is increased in the next iteration. 
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Table 2.4. An interpretation of GEM with lower bound 

Because Q(Θ | Θ(t)) is defined fixedly in E-step, most variants of EM algorithm focus on how 

to maximize Q(Θ’ | Θ) in M-step more effectively so that EM is faster or more accurate. Figure 

2.1 (Borman, 2004, p. 7) shows relationship between the log-likelihood function L(Θ) and its 

lower-bound lb(Θ | Θ(t)). 

 
Figure 2.1. Relationship between the log-likelihood function and its lower-bound 

Now ideology of GEM is explained in detail ■ 

The next section focuses on convergence of GEM algorithm proved by DLR (Dempster, 

Laird, & Rubin, 1977, pp. 7-10) but firstly we should discuss some features of Q(Θ’ | Θ). In 

special case of exponential family, Q(Θ’ | Θ) is modified by equation 2.9. 

𝑄(Θ′|Θ) = 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝜏Θ − log(𝑎(Θ
′)) (2.9) 

Where, 

𝐸(log(𝑏(𝑋))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋))d𝑋

𝜑−1(𝑌)

 

𝜏Θ = 𝐸(𝜏(𝑋)|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

Following is a proof of equation 2.9. 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ )d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑏(𝑋)) + (Θ′)𝑇𝜏(𝑋) − log(𝑎(Θ′))) d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋))d𝑋

𝜑−1(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ)(Θ′)𝑇𝜏(𝑋)d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)

𝜑−1(𝑌)

log(𝑎(Θ′))d𝑋 

= 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇 ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

− log(𝑎(Θ′)) 

= 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝐸(𝜏(𝑋)|𝑌, Θ) − log(𝑎(Θ′)) 
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Because k(X | Y, Θ) belongs exponential family, the expectation E(τ(X) | Y, Θ) is function of Θ, 

denoted τΘ. It implies: 

𝑄(Θ′|Θ) = 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝜏Θ − log(𝑎(Θ
′))∎ 

If f(X|Θ) belongs to regular exponential family, Q(Θ’ | Θ) gets maximal at the stationary point 

Θ* so that the first-order derivative of Q(Θ’ | Θ) is zero. By referring to table 1.2, the first-order 

derivative of Q(Θ’ | Θ) with regard to Θ’ is: 
d𝑄(Θ′|Θ)

dΘ′
= (𝜏Θ)

𝑇 − log′(𝑎(Θ)) = (𝜏Θ)
𝑇 − (𝐸(𝜏(𝑋)|Θ))

𝑇
 

Let τ(t) be the value of τΘ at the tth iteration. 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) = ∫ 𝑘(𝑋|𝑌, Θ(𝑡))𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

The equation above is indeed equation 2.6. The next parameter Θ(t+1) is determined at M-step 

as solution of the following equation. 
d𝑄(Θ′|Θ)

dΘ′
= (𝜏(𝑡))

𝑇
− (𝐸(𝜏(𝑋)|Θ))

𝑇
= 𝟎𝑇 

This implies 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 
The equation above is indeed equation 2.3. If f(X|Θ) belongs to curved exponential family, Θ(t+1) 

is determined as follows: 

Θ(𝑡+1) = argmax
Θ′

𝑄(Θ′|Θ) = argmax
Θ′

((Θ′)𝑇𝜏(𝑡) − log(𝑎(Θ′))) 

The equation above is indeed equation 2.7. Therefore, GEM shown in table 2.3 degrades into 

EM shown in table 2.1 and table 2.2 if f(X|Θ) belongs to exponential family. Of course, this 

recognition is trivial. Example 1.1 is also a good example for GEM when multinomial 

distribution belongs to exponential family and then we apply equation 2.7 into maximizing 

Q(Θ’ | Θ). 

In practice, if Y is observed as particular N observations Y1, Y2,…, YN. Let 𝒴 = {Y1, Y2,…, 

YN} be the observed sample of size N with note that all Yi (s) are mutually independent and 

identically distributed (iid). Given an observation Yi, there is an associated random variable Xi. 

All Xi (s) are iid and they are not existent in fact. Each 𝑋𝑖 ∈ 𝑿 is a random variable like X. Of 

course, the domain of each Xi is X. Let 𝒳 = {X1, X2,…, XN} be the set of associated random 

variables. Because all Xi (s) are iid, the joint PDF of 𝒳 is determined as follows: 

𝑓(𝒳|Θ) = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁|Θ) =∏𝑓(𝑋𝑖|Θ)

𝑁

𝑖=1

 

Because all Xi (s) are iid and each Yi is associated with Xi, the conditional joint PDF of 𝒳 given 

𝒴 is determined as follows: 

𝑘(𝒳|𝒴, Θ) = 𝑘(𝑋1, 𝑋2, … , 𝑋𝑁|𝑌1, 𝑌2, … , 𝑌𝑁 , Θ) =∏𝑘(𝑋𝑖|𝑌1, 𝑌2, … , 𝑌𝑁 , Θ)

𝑁

𝑖=1

=∏𝑘(𝑋𝑖|𝑌𝑖 , Θ)

𝑁

𝑖=1

 

The conditional expectation Q(Θ’ | Θ) given samples X and Y is determined as follows: 

𝑄(Θ′|Θ) = ∫ 𝑘(𝒳|𝒴, Θ)log(𝑓(𝒳|Θ′))d𝒳

𝜑−1(𝒴)

 

= ∫ ∫ … ∫ (∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

) ∗ (log (∏𝑓(𝑋𝑖|Θ
′)

𝑁

𝑖=1

))d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)
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= ∫ ∫ … ∫ (∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

) ∗ (∑log(𝑓(𝑋𝑖|Θ
′))

𝑁

𝑖=1

)d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

 

= ∫ ∫ … ∫ ∑(∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

) ∗ log(𝑓(𝑋𝑖|Θ
′))

𝑁

𝑖=1

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

 

=∑ ∫ ∫ … ∫ log(𝑓(𝑋𝑖|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

𝑁

𝑖=1

 

(Suppose f(Xi | Θ) and k(Xj | Yj, Θ) are analytic functions) 

=∑ ∫ ∫ … ∫ ∫𝛿(𝑋, 𝑋𝑖)log(𝑓(𝑋|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋

𝑋

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

𝑁

𝑖=1

 

(

 
 
𝛿(𝑋, 𝑋𝑖) = {

1 if 𝑋 = 𝑋𝑖
0 if 𝑋 ≠ 𝑋𝑖

⇒ ∫𝛿(𝑋, 𝑋𝑖)𝑢(𝑋)d𝑋

𝑋

= 𝑢(𝑋𝑖)

like Riemann integral
with note that the domain of 𝑋 and 𝑋𝑖 is 𝑿 )

 
 

 

=∑∫ ∫ ∫ … ∫ 𝛿(𝑋, 𝑋𝑖)log(𝑓(𝑋|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

𝑑𝑋

𝑋

𝑁

𝑖=1

 

=∑∫ ∫ 𝛿(𝑋, 𝑋𝑖)log(𝑓(𝑋|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁d𝑋2d𝑋1…

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑁)

𝑑𝑋

𝑋

𝑁

𝑖=1

 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ∫ 𝛿(𝑋, 𝑋𝑖) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁d𝑋2d𝑋1…

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑁)

𝑑𝑋

𝑋

𝑁

𝑖=1

 

=∑∫log(𝑓(𝑋|Θ′))

𝑋

𝑁

𝑖=1

∗ ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖 , Θ)

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑁)

∗ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁d𝑋2d𝑋1…𝑑𝑋 

=∑∫log(𝑓(𝑋|Θ′))

𝑋

𝑁

𝑖=1

∗ ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑖−1),

𝜑−1(𝑌𝑖),𝜑
−1(𝑌𝑖+1),…,𝜑

−1(𝑌𝑁)

∗ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁…d𝑋𝑖+1d𝑋𝑖d𝑋𝑖−1…d𝑋2d𝑋1…d𝑋 
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=∑∫log(𝑓(𝑋|Θ′))

𝑋

𝑁

𝑖=1

∗ ∫ ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)

𝜑−1(𝑌𝑖)𝜑−1(𝑌1),𝜑−1(𝑌2),…𝜑−1(𝑌𝑖−1)

∗ ∫ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁…d𝑋𝑖+1
𝜑−1(𝑌𝑖+1),…,𝜑

−1(𝑌𝑁)

d𝑋𝑖 d𝑋𝑖−1…d𝑋2d𝑋1 d𝑋 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ( ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)d𝑋𝑖
𝜑−1(𝑌𝑖)

)

𝑋

𝑁

𝑖=1

∗ ∫ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁…d𝑋𝑖+1d𝑋𝑖−1…d𝑋2d𝑋1
𝜑−1(𝑌1),𝜑−1(𝑌2),…,

𝜑−1(𝑌𝑖−1),𝜑
−1(𝑌𝑖+1),…,𝜑

−1(𝑌𝑁)

d𝑋 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ( ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)d𝑋𝑖
𝜑−1(𝑌𝑖)

)

𝑋

𝑁

𝑖=1

∗ ( ∏ ∫ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)d𝑋𝑗

𝜑−1(𝑌𝑗)

𝑁

𝑗=1,𝑗≠𝑖

)d𝑋 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ( ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)d𝑋𝑖
𝜑−1(𝑌𝑖)

)d𝑋

𝑋

𝑁

𝑖=1

 

(Due to ∫ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)d𝑋𝑗

𝜑−1(𝑌𝑗)

= 1) 

=∑ ∫ ∫𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝑋

d𝑋𝑖
𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 

(Suppose f(Xi | Θ) and k(Xj | Yj, Θ) are analytic functions) 

Like taking Riemann integral on ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝑋
, we have: 

∫ ∫𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝑋

d𝑋𝑖
𝜑−1(𝑌𝑖)

= ∫ 𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋𝑖|Θ
′))d𝑋𝑖

𝜑−1(𝑌𝑖)

 

As a result, the conditional expectation Q(Θ’ | Θ) given an observed sample 𝒴 = {Y1, Y2,…, 

YN} and a set of associated random variables 𝒳 = {X1, X2,…, XN} is specified as follows: 

𝑄(Θ′|Θ) =∑ ∫ 𝑘(𝑋𝑖|𝑌𝑖 , Θ)log(𝑓(𝑋𝑖|Θ
′))d𝑋𝑖

𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 

Note, all Xi (s) are iid and they are not existent in fact. Because all Xi are iid, let X be the random 

variable representing every Xi and the equation of Q(Θ’ | Θ) is re-written according to equation 

2.10. 

𝑄(Θ′|Θ) =∑ ∫ 𝑘(𝑋|𝑌𝑖 , Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 (2.10) 
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The similar proof of equation 2.10 in case that Xi (s) are discrete is found in (Bilmes, 1998, p. 

4). If X and all Yi (s) are discrete, equation 2.10 can be re-written as follows: 

𝑄(Θ′|Θ) =∑ ∑ 𝑘(𝑋|𝑌𝑖 , Θ)log(𝑓(𝑋|Θ
′))

𝑋∈𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 

In case that f(X | Θ) and k(X | Yi, Θ) belong to exponential family, equation 2.10 becomes 

equation 2.11 with an observed sample 𝒴 = {Y1, Y2,…, YN}. 

𝑄(Θ′|Θ) = (∑𝐸(log(𝑏(𝑋))|𝑌𝑖, Θ)

𝑁

𝑖=1

) + ((Θ′)𝑇∑𝜏Θ,𝑌𝑖

𝑁

𝑖=1

) − 𝑁log(𝑎(Θ′)) (2.11) 

Where, 

𝐸(log(𝑏(𝑋))|𝑌𝑖 , Θ) = ∫ 𝑘(𝑋|𝑌𝑖, Θ)log(𝑏(𝑋))d𝑋

𝜑−1(𝑌𝑖)

 

𝜏Θ,𝑌𝑖 = 𝐸(𝜏(𝑋)|𝑌𝑖, Θ) = ∫ 𝑘(𝑋|𝑌𝑖 , Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌𝑖)

 

Please combine equation 2.9 and equation 2.10 to comprehend how to derive equation 2.11. 

Note, 𝜏Θ,𝑌𝑖 is dependent on both Θ and Yi. 

DLR (Dempster, Laird, & Rubin, 1977, p. 1) called X as complete data because the 

mapping φ: X → Y is many-one function. There is another case that the complete space Z 

consists of hidden space X and observed space Y with note that X and Y are separated. There 

is no explicit mapping φ from X and Y but there exists a PDF of 𝑍 ∈ 𝒁 as the joint PDF of 𝑋 ∈
𝑿 and 𝑌 ∈ 𝒀. 

𝑓(𝑍|Θ) = 𝑓(𝑋, 𝑌|Θ) 
In this case, the equation 2.8 is modified with the joint PDF f(X, Y | Θ). The PDF of Y becomes: 

𝑓(𝑌|Θ) = ∫𝑓(𝑋, 𝑌|Θ)d𝑋

𝑋

 

The PDF f(Y|Θ) is equivalent to the PDF g(Y|Θ) mentioned in equation 1.34. Although there is 

no explicit mapping from X to Y, the PDF of Y above implies an implicit mapping from Z to Y. 

The conditional PDF of X given Z is specified according to Bayes’ rule as follows: 

𝑓(𝑍|𝑌, Θ) = 𝑓(𝑋, 𝑌|𝑌, Θ) = 𝑓(𝑋|𝑌)𝑓(𝑌|𝑌) = 𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

𝑓(𝑌|Θ)
=

𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

The conditional PDF f(X|Y, Θ) is equivalent to the conditional PDF k(X|Y, Θ) mentioned in 

equation 1.35. Of course, given Y, we always have: 

∫𝑓(𝑋|𝑌, Θ)d𝑋

𝑋

= 1 

Equation 2.12 specifies the conditional expectation Q(Θ’ | Θ) in case that there is no explicit 

mapping from X to Y but there exists the joint PDF of X and Y. 

𝑄(Θ′|Θ) = ∫𝑓(𝑍|𝑌, Θ)log(𝑓(𝑍|Θ′))d𝑋

𝑋

= ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑋

 (2.12) 

Where, 

𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

𝑓(𝑌|Θ)
=

𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

Note, X is separated from Y and the complete data Z = (X, Y) is composed of X and Y. For 

equation 2.12, the existence of the joint PDF f(X, Y | Θ) can be replaced by the existence of the 

conditional PDF f(Y|X, Θ) and the prior PDF f(X|Θ) due to: 

𝑓(𝑋, 𝑌|Θ) = 𝑓(𝑌|𝑋, Θ)𝑓(𝑋|Θ) 
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In applied statistics, equation 2.8 is often replaced by equation 2.12 because specifying the 

joint PDF f(X, Y | Θ) is more practical than specifying the mapping φ: X → Y. However, 

equation 2.8 is more general equation 2.12 because the requirement of the joint PDF for 

equation 2.12 is stricter than the requirement of the explicit mapping for equation 2.8. In case 

that X and Y are discrete, equation 2.12 becomes: 

𝑄(Θ′|Θ) =∑𝑃(𝑋|𝑌, Θ)log(𝑃(𝑋, 𝑌|Θ′))

𝑋

 

In case that X and Y are discrete, P(X, Y | Θ) is the joint probability of X and Y whereas P(X | Y, 

Θ) is the conditional probability of X given Y. 

Equation 2.12 can be proved alternately without knowledge related to complete data (Sean, 

2009). This proof is like the proof of equation 2.8. In fact, given hidden space X, observed 

space Y, and a joint PDF f(X, Y | Θ), the likelihood function L(Θ’) is re-defined here as log(f(Y 

| Θ’)). The maximizer is: 

Θ∗ = argmax
Θ′

𝐿(Θ′) = argmax
Θ′

log(𝑓(𝑌|Θ′)) 

Suppose the current parameter is Θ after some iteration. Next we must find out the new estimate 

Θ* that maximizes the next log-likelihood function L(Θ’). Suppose the total probability of 

observed data can be determined by marginalizing over hidden data: 

𝑓(𝑌|Θ′) = ∫𝑓(𝑋, 𝑌|Θ′)d𝑋

𝑋

 

The expansion of f(Y | Θ’) is total probability rule. The next log-likelihood function L(Θ’) is 

re-written: 

𝐿(Θ′) = log(𝑓(𝑌|Θ′)) = log (∫𝑓(𝑋, 𝑌|Θ′)d𝑋

𝑋

) = log (∫𝑓(𝑋|𝑌, Θ)
𝑓(𝑋, 𝑌|Θ′)

𝑓(𝑋|𝑌, Θ)
𝑋

d𝑋) 

Because hidden X is the complete set of mutually exclusive variables, the sum of conditional 

probabilities of X is equal to 1 given Y and Θ. 

∫𝑓(𝑋|𝑌, Θ)d𝑋

𝑋

= 1 

Where, 

𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

Applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function 

log(∫𝑢(𝑥)𝑣(𝑥)d𝑥

𝑥

) ≥ ∫𝑢(𝑥)log(𝑣(𝑥))d𝑥

𝑥

 

where∫𝑢(𝑥)d𝑥

𝑥

= 1 

into L(Θ’), we have (Sean, 2009, p. 6): 

𝐿(Θ′) ≥ (∫𝑓(𝑋|𝑌, Θ)log (
𝑓(𝑋, 𝑌|Θ′)

𝑓(𝑋|𝑌, Θ)
)

𝑋

) 

= (∫𝑓(𝑋|𝑌, Θ) (log(𝑓(𝑋, 𝑌|Θ′)) − log(𝑓(𝑋|𝑌, Θ))) d𝑋

𝑋

) 

= (∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑋

) − (∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋|𝑌, Θ))d𝑋

𝑋

) 
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= 𝑄(Θ′|Θ) − 𝐻(Θ|Θ) 
Where, 

𝑄(Θ′|Θ) = ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑋

 

𝐻(Θ′|Θ) = ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋|𝑌, Θ′))d𝑋

𝑋

 

Obviously, the lower-bound of L(Θ’) is: 

𝑙𝑏(Θ′|Θ) = 𝑄(Θ′|Θ) − 𝐻(Θ|Θ) 
As aforementioned, the lower-bound lb(Θ’|Θ) (Sean, 2009, pp. 7-8) is maximized over many 

iterations of the iterative process so that L(Θ’) is maximized finally. Because H(Θ|Θ) is 

constant with regard to Θ’, it is possible to eliminate H(Θ|Θ) so that maximizing Q(Θ’|Θ) is 

the same to maximizing the lower bound. In final, when GEM converges Θ(t) = Θ(t+1) = Θ*, we 

have: 

Θ∗ = argmax
Θ′

𝑙𝑏(Θ′|Θ) = argmax
Θ′

𝑄(Θ′|Θ) 

We have the proof ■ 

Mixture model mentioned in subsection 5.1 is a good example for GEM without explicit 

mapping from X to Y. Another well-known example is three-coin toss example (Collins & 

Barzilay, 2005) which applies GEM into estimating parameters of binomial distributions 

without explicit mapping. 

Example 2.1. There are three coins named coin 1, coin 2 and coin 3. Each coin has two sides 

such as head (H) side and tail (T) side. Let hidden random variable X represent coin 1 where X 

is binary (X = {H, T}). Let θ1 be probability of coin 1 receiving head side. 

θ1 = P(X=H) 

Of course, we have: 

P(X=T) = 1 – θ1 

Let observed random variable Y represent a sequence of tossing coin 2 or coin 3 three times. 

Such sequence depends on first tossing coin 1. For instance, if coin 1 shows head side (X=H), 

the sequence is result of tossing coin 2 three times. Otherwise, if coin 1 shows tail side (X=T), 

the sequence is result of tossing coin 3 three times. For example, suppose first tossing coin 1 

results X=H then, a possible result Y = HHT means that we toss coin 2 three times resulting 

head, head, and tail from coin 2. Obviously, X is hidden and Y is observed. In this example, we 

observe that 

Y=HHT 

Suppose Y conforms binomial distribution as follows: 

𝑃(𝑌|𝑋) = {
𝜃2
ℎ(1 − 𝜃2)

𝑡 if 𝑋 = 𝐻

𝜃3
ℎ(1 − 𝜃3)

𝑡 if 𝑋 = 𝑇
 

Where θ2 and θ3 are probabilities of coin 2 and coin 3 receiving head side, respectively. Note, 

h is the number of head side from trials of tossing coin 2 (if X=H) or coin 3 (if X=T). Similarly, 

t is the number of tail side from trials of tossing coin 2 (if X=H) or coin 3 (if X=T). The joint 

probability P(X, Y) is: 

𝑃(𝑋, 𝑌) = 𝑃(𝑋)𝑃(𝑌|𝑋) = {
𝜃1𝜃2

ℎ(1 − 𝜃2)
𝑡 if 𝑋 = 𝐻

(1 − 𝜃1)𝜃3
ℎ(1 − 𝜃3)

𝑡 if 𝑋 = 𝑇
 

In short, we need to estimate Θ = (θ1, θ2, θ3)
T from the observation Y=HHT by discrete version 

of Q(Θ’ | Θ). Given Y=HHT, we have h=2 and t=1. Thus, the probability P(Y|X) becomes: 

𝑃(𝑌|𝑋) = 𝑃(𝑌 = 𝐻𝐻𝑇|𝑋) = {
𝜃2
2(1 − 𝜃2) if 𝑋 = 𝐻

𝜃3
2(1 − 𝜃3) if 𝑋 = 𝑇

 

The joint probability P(X, Y) becomes: 
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𝑃(𝑋, 𝑌) = {
𝜃1𝜃2

2(1 − 𝜃2) if 𝑋 = 𝐻

(1 − 𝜃1)𝜃3
2(1 − 𝜃3) if 𝑋 = 𝑇

 

The probability of Y is calculated as follows: 

𝑃(𝑌) = 𝑃(𝑌|𝑋 = 𝐻) + 𝑃(𝑌|𝑋 = 𝑇) = 𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3) 
The conditional probability of X given Y is determined as follows: 

𝑃(𝑋|𝑌) =
𝑃(𝑋, 𝑌)

𝑃(𝑌)
=

{
 
 

 
 𝜃1𝜃2

2(1 − 𝜃2)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)
 if 𝑋 = 𝐻

(1 − 𝜃1)𝜃3
2(1 − 𝜃3)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)
 if 𝑋 = 𝑇

 

The discrete version of Q(Θ’ | Θ) is determined as follows: 

𝑄(Θ′|Θ) =∑𝑃(𝑋|𝑌, Θ)log(𝑃(𝑋, 𝑌|Θ′))

𝑋

 

= 𝑃(𝑋 = 𝐻|𝑌, Θ)log(𝑃(𝑋 = 𝐻, 𝑌|Θ′)) + 𝑃(𝑋 = 𝑇|𝑌, Θ)log(𝑃(𝑋 = 𝑇, 𝑌|Θ′)) 

=
𝜃1𝜃2

2(1 − 𝜃2)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)
log(𝜃1

′(𝜃2
′)2(1 − 𝜃2

′))

+
(1 − 𝜃1)𝜃3

2(1 − 𝜃3)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)
log((1 − 𝜃1

′)(𝜃3
′)2(1 − 𝜃3

′)) 

=
𝜃1𝜃2

2(1 − 𝜃2)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)
(log(𝜃1

′) + 2log(𝜃2
′) + log(1 − 𝜃2

′))

+
(1 − 𝜃1)𝜃3

2(1 − 𝜃3)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)
(log(1 − 𝜃1

′) + 2log(𝜃3
′) + log(1 − 𝜃3

′)) 

Note, Q(Θ’|Θ) is function of Θ’ = (θ1’, θ2’, θ3’)
T. The next parameter Θ(t+1) = (θ1

(t+1), θ2
(t+1), 

θ3
(t+1))T is a maximizer of Q(Θ’|Θ) with regard to Θ’, which is solution of the equation created 

by setting the first-order derivative of Q(Θ’|Θ) to be zero with note that the current parameter 

is Θ(t) = Θ. 

The first-order partial derivative of Q(Θ’|Θ) with regard to θ1’ is: 

𝜕𝑄(Θ′|Θ)

𝜕𝜃1
′ =

𝜃1𝜃2
2(1 − 𝜃2)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)

1

𝜃1
′ −

(1 − 𝜃1)𝜃3
2(1 − 𝜃3)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)

1

1 − 𝜃1
′  

=
𝜃1𝜃2

2(1 − 𝜃2) − 𝜃1
′(𝜃1𝜃2

2(1 − 𝜃2) + (1 − 𝜃1)𝜃3
2(1 − 𝜃3))

𝜃1
′(1 − 𝜃1

′)(𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3))
 

Setting this partial derivative 
𝜕𝑄(Θ′|Θ)

𝜕𝜃1
′  to be zero, we obtain: 

𝜃1
′ =

𝜃1𝜃2
2(1 − 𝜃2)

𝜃1𝜃2
2(1 − 𝜃2) + (1 − 𝜃1)𝜃3

2(1 − 𝜃3)
 

Therefore, in M-step, given current parameter Θ(t) = (θ1
(t), θ2

(t), θ3
(t))T, the next partial parameter 

θ1
(t+1) is calculated as follows: 

𝜃1
(𝑡+1) =

𝜃1
(𝑡)(𝜃2

(𝑡))
2

(1 − 𝜃2
(𝑡))

𝜃1
(𝑡)(𝜃2

(𝑡))
2

(1 − 𝜃2
(𝑡)) + (1 − 𝜃1

(𝑡))(𝜃3
(𝑡))

2

(1 − 𝜃3
(𝑡))

 

The first-order partial derivative of Q(Θ’|Θ) with regard to θ2’ is: 

𝜕𝑄(Θ′|Θ)

𝜕𝜃2
′ =

𝜃1𝜃2
2(1 − 𝜃2)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)

2 − 3𝜃2
′

𝜃2
′(1 − 𝜃2

′)
 

Setting this partial derivative 
𝜕𝑄(Θ′|Θ)

𝜕𝜃2
′  to be zero, we obtain: 
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𝜃2
′ =

2

3
 

Therefore, in M-step, given current parameter Θ(t) = (θ1
(t), θ2

(t), θ3
(t))T, the next partial parameter 

θ2
(t+1) is fixed: 

𝜃2
(𝑡+1) =

2

3
 

The first-order partial derivative of Q(Θ’|Θ) with regard to θ3’ is: 

𝜕𝑄(Θ′|Θ)

𝜕𝜃3
′ =

(1 − 𝜃1)𝜃3
2(1 − 𝜃3)

𝜃2
2(1 − 𝜃2) + 𝜃3

2(1 − 𝜃3)

2 − 3𝜃3
′

𝜃3
′(1 − 𝜃3

′)
 

Setting this partial derivative 
𝜕𝑄(Θ′|Θ)

𝜕𝜃3
′  to be zero, we obtain: 

𝜃3
′ =

2

3
 

Therefore, in M-step, given current parameter Θ(t) = (θ1
(t), θ2

(t), θ3
(t))T, the next partial parameter 

θ3
(t+1) is fixed: 

𝜃3
(𝑡+1) =

2

3
 

In short, in M-step of some tth iteration, given current parameter Θ(t) = (θ1
(t), θ2

(t), θ3
(t))T, only 

θ1
(t+1) is updated whereas both θ2

(t+1) and θ3
(t+1) are fixed with observation Y=HHT. 

𝜃1
(𝑡+1) =

𝜃1
(𝑡)(𝜃2

(𝑡))
2

(1 − 𝜃2
(𝑡))

𝜃1
(𝑡)(𝜃2

(𝑡))
2

(1 − 𝜃2
(𝑡)) + (1 − 𝜃1

(𝑡))(𝜃3
(𝑡))

2

(1 − 𝜃3
(𝑡))

𝜃2
(𝑡+1) = 𝜃3

(𝑡+1) =
2

3

 

For instance, let Θ(1) = (θ1
(1), θ2

(1), θ3
(1))T be initialized arbitrarily as θ1

(1) = θ2
(1) = θ3

(1) = 0.5, at 

the first iteration, we obtain: 

𝜃1
(2) =

0.5 ∗ (0.5)2 ∗ (1 − 0.5)

0.5 ∗ (0.5)2 ∗ (1 − 0.5) + (1 − 0.5) ∗ (0.5)2 ∗ (1 − 0.5)
= 0.5 

𝜃2
(2) = 𝜃3

(2) =
2

3
 

At the second iteration with current parameter Θ(2) = (θ1
(2)=0.5, θ2

(2)=2/3, θ3
(2)=2/3)T, we obtain: 

𝜃1
(3) =

0.5 ∗ (
2
3)

2

∗ (1 −
2
3)

0.5 ∗ (
2
3)

2

∗ (1 −
2
3) +

(1 − 0.5) ∗ (
2
3)

2

∗ (1 −
2
3)

= 0.5 

𝜃2
(3) = 𝜃3

(3) =
2

3
 

As a result, GEM inside this example converges at the second iteration with final estimate Θ(2) 

= Θ(3) = Θ* = (θ1
*=0.5, θ2

*=2/3, θ3
*=2/3)T ■ 

In practice, suppose Y is observed as a sample 𝒴 = {Y1, Y2,…, YN} of size N with note that 

all Yi (s) are mutually independent and identically distributed (iid). The observed sample 𝒴 is 

associated with a a hidden set (latent set) 𝒳 = {X1, X2,…, XN} of size N. All Xi (s) are iid and 

they are not existent in fact. Let 𝑋 ∈ 𝑿 be the random variable representing every Xi. Of course, 

the domain of X is X. Equation 2.13 specifies the conditional expectation Q(Θ’ | Θ) given such 

𝒴. 

𝑄(Θ′|Θ) =∑∫𝑓(𝑋|𝑌𝑖, Θ)log(𝑓(𝑋, 𝑌𝑖|Θ
′))d𝑋

𝑋

𝑁

𝑖=1

 (2.13) 
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Equation 2.13 is a variant of equation 2.10 in case that there is no explicit mapping between Xi 

and Yi but there exists the same joint PDF between Xi and Yi. Please see the proof of equation 

2.10 to comprehend how to derive equation 2.13. If both X and Y are discrete, equation 2.13 

becomes: 

𝑄(Θ′|Θ) =∑∑𝑃(𝑋|𝑌𝑖, Θ)log(𝑃(𝑋, 𝑌𝑖|Θ
′))

𝑋

𝑁

𝑖=1

 (2.14) 

If X is discrete and Y is continuous such that f(X, Y | Θ) = P(X|Θ)f(Y | X, Θ) then, according to 

the total probability rule, we have: 

𝑓(𝑌|Θ) =∑𝑃(𝑋|Θ)𝑓(𝑌|𝑋, Θ)

𝑋

 

Note, when only X is discrete, its PDF f(X|Θ) becomes the probability P(X|Θ). Therefore, 

equation 2.15 is a variant of equation 2.13, as follows: 

𝑄(Θ′|Θ) =∑∑𝑃(𝑋|𝑌𝑖 , Θ)log(𝑃(𝑋|Θ
′)𝑓(𝑌𝑖|𝑋, Θ

′))

𝑋

𝑁

𝑖=1

 (2.15) 

Where P(X | Yi, Θ) is determined by Bayes’ rule, as follows: 

𝑃(𝑋|𝑌𝑖, Θ) =
𝑃(𝑋|Θ)𝑓(𝑌𝑖|𝑋, Θ)

∑ 𝑃(𝑋|Θ)𝑓(𝑌𝑖|𝑋, Θ)𝑋
 

Equation 2.15 is the base for estimating the probabilistic mixture model by EM algorithm, 

which will be described later in detail. Some other properties of GEM will be mentioned in 

next section. 

 

3. Properties and convergence of EM algorithm 
Recall that DLR proposed GEM algorithm which aims to maximize the log-likelihood function 

L(Θ) by maximizing Q(Θ’ | Θ) over many iterations. This section focuses on mathematical 

explanation of the convergence of GEM algorithm given by DLR (Dempster, Laird, & Rubin, 

1977, pp. 6-9). Recall that we have: 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log ( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

 

Let H(Θ’ | Θ) be another conditional expectation which has strong relationship with Q(Θ’ | Θ) 

(Dempster, Laird, & Rubin, 1977, p. 6). 

𝐻(Θ′|Θ) = 𝐸(log(𝑘(𝑋|𝑌, Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 (3.1) 

If there is no explicit mapping from X to Y but there exists a joint PDF f(X, Y | Θ) of X and Y, 

equation 3.1 can be re-written as follows: 

𝐻(Θ′|Θ) = 𝐸(log(𝑓(𝑋|𝑌, Θ′))|𝑌, Θ) = ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋|𝑌, Θ′))d𝑋

𝑋

 

Where, 

𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

From equation 2.8 and equation 3.1, we have: 

𝑄(Θ′|Θ) = 𝐿(Θ′) + 𝐻(Θ′|Θ) (3.2) 

Following is a proof of equation 3.2. 
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𝑄(Θ′|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑔(𝑌|Θ′)𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑔(𝑌|Θ′))d𝑋

𝜑−1(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 

= log(𝑔(𝑌|Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

+𝐻(Θ′|Θ) = log(𝑔(𝑌|Θ′)) + 𝐻(Θ′|Θ)

= 𝐿(Θ′) + 𝐻(Θ′|Θ)∎ 

Lemma 3.1 (Dempster, Laird, & Rubin, 1977, p. 6). For any pair (Θ’, Θ) in Ω x Ω, 

𝐻(Θ′|Θ) ≤ 𝐻(Θ|Θ) (3.3) 

The equality occurs if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost everywhere ■ 

Following is a proof of lemma 3.1 as well as equation 3.3. The log-likelihood function L(Θ’) 

is re-written as follows: 

𝐿(Θ′) = log( ∫ 𝑓(𝑋|Θ′)d𝑋

𝜑−1(𝑌)

) = log( ∫ 𝑘(𝑋|𝑌, Θ)
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
d𝑋

𝜑−1(𝑌)

) 

Due to 

∫ 𝑘(𝑋|𝑌, Θ′)d𝑋

𝜑−1(𝑌)

= 1 

By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function 

log(∫𝑢(𝑥)𝑣(𝑥)d𝑥

𝑥

) ≥ ∫𝑢(𝑥)log(𝑣(𝑥))d𝑥

𝑥

 

where∫𝑢(𝑥)d𝑥

𝑥

= 1 

into L(Θ’), we have (Sean, 2009, p. 6): 

𝐿(Θ′) ≥ ∫ 𝑘(𝑋|𝑌, Θ)log (
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
)d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑓(𝑋|Θ′)) − log(𝑘(𝑋|𝑌, Θ))) d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ))d𝑋

𝜑−1(𝑌)

 

= 𝑄(Θ′|Θ) − 𝐻(Θ|Θ) 
= 𝐿(Θ′) + 𝐻(Θ′|Θ) − 𝐻(Θ|Θ) 

(Due to Q(Θ’|Θ) = L(Θ’) + H(Θ’|Θ)) 

It implies: 

𝐻(Θ′|Θ) ≤ 𝐻(Θ|Θ) 
According to Jensen’s inequality (Sean, 2009, pp. 3-4), the equality H(Θ’|Θ) = H(Θ|Θ) occurs 

if and only if k(X | Y, Θ’) is linear or  f(X | Θ’) is constant. In other words, the equality occurs 

if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost everywhere when f(X | Θ) is not constant and k(X 

| Y, Θ’) is a PDF ■ 

We also have the lower-bound of L(Θ’), denoted lb(Θ’|Θ) as follows: 

lb(Θ’|Θ) = Q(Θ’|Θ) – H(Θ|Θ) 

Obviously, we have: 

L(Θ’) ≥ lb(Θ’|Θ) 
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As aforementioned, the lower-bound lb(Θ’|Θ) is maximized over many iterations of the 

iterative process so that L(Θ’) is maximized finally. Such lower-bound is determined indirectly 

by Q(Θ’|Θ) so that maximizing Q(Θ’|Θ) with regard to Θ’ is the same to maximizing lb(Θ’|Θ) 

because H(Θ|Θ) is constant with regard to Θ’. 

Let {Θ(𝑡)}
𝑡=1

+∞
= Θ(1), Θ(2), … , Θ(𝑡), Θ(𝑡+1), … be a sequence of estimates of Θ resulted from 

iterations of EM algorithm. Let Θ → M(Θ) be the mapping such that each estimation Θ(t) → 

Θ(t+1) at any given iteration is defined by equation 3.4 (Dempster, Laird, & Rubin, 1977, p. 7). 

Θ(𝑡+1) = 𝑀(Θ(𝑡)) (3.4) 

Definition 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). An iterative algorithm with mapping 

M(Θ) is a GEM algorithm if 

𝑄(𝑀(Θ)|Θ) ≥ 𝑄(Θ|Θ)∎ (3.5) 

Of course, specification of GEM shown in table 2.3 satisfies the definition 3.1 because Θ(t+1) is 

a maximizer of Q(Θ | Θ(t)) with regard to variable Θ in M-step. 

𝑄(𝑀(Θ(𝑡))|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) ≥ 𝑄(Θ(𝑡)|Θ(𝑡)), ∀𝑡 
Theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). For every GEM algorithm 

𝐿(𝑀(Θ)) ≥ 𝐿(Θ) for all Θ ∈ Ω (3.6) 

Where equality occurs if and only if Q(M(Θ) | Θ) = Q(Θ | Θ) and k(X | Y, M(Θ)) = k(X | Y, Θ) 

almost everywhere ■ 

Following is the proof of theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7): 

𝐿(𝑀(Θ)) − 𝐿(Θ) = (𝑄(𝑀(Θ)|Θ) − 𝐻(𝑀(Θ)|Θ)) − (𝑄(Θ|Θ) − 𝐻(Θ|Θ))

= (𝑄(𝑀(Θ)|Θ) − 𝑄(Θ|Θ)) + (𝐻(Θ|Θ) − 𝐻(𝑀(Θ)|Θ)) ≥ 0∎ 

Because the equality of lemma 3.1 occurs if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost 

everywhere and the equality of the definition 3.1 is Q(M(Θ) | Θ) = Q(Θ | Θ), we deduce that 

the equality of theorem 3.1 occurs if and only if Q(M(Θ) | Θ) = Q(Θ | Θ) and k(X | Y, M(Θ)) = 

k(X | Y, Θ) almost everywhere. It is easy to draw corollary 3.1 and corollary 3.2 from definition 

3.1 and theorem 3.1. 

Corollary 3.1 (Dempster, Laird, & Rubin, 1977). Suppose for some Θ∗ ∈ Ω, L(Θ*) ≥ L(Θ) for 

all Θ ∈ Ω then for every GEM algorithm: 

(1) L(M(Θ*)) = L(Θ*) 

(2) Q(M(Θ*) | Θ*) = Q(Θ* | Θ*) 

(3) k(X | Y, M(Θ*)) = k(X | Y, Θ*) ■ 

Proof. From theorem 3.1 and the assumption of corollary 3.1, we have: 

{
𝐿(𝑀(Θ)) ≥ 𝐿(Θ) for all Θ ∈ Ω

𝐿(Θ∗) ≥ 𝐿(Θ) for all Θ ∈ Ω
 

This implies: 

{
𝐿(𝑀(Θ∗)) ≥ 𝐿(Θ∗)

𝐿(𝑀(Θ∗)) ≤ 𝐿(Θ∗)
 

As a result, 

𝐿(𝑀(Θ∗)) = 𝐿(Θ∗) 
From theorem 3.1, we also have: 

𝑄(𝑀(Θ∗)|Θ∗) = 𝑄(Θ∗|Θ∗)

𝑘(𝑋|𝑌,𝑀(Θ∗)) = 𝑘(𝑋|𝑌, Θ∗)
∎ 

Corollary 3.2 (Dempster, Laird, & Rubin, 1977). If for some Θ∗ ∈ Ω, L(Θ*) > L(Θ) for all Θ ∈
Ω such that Θ ≠ Θ*, then for every GEM algorithm: 

M(Θ*) = Θ* ■ 

Proof. From corollary 3.1 and the assumption of corollary 3.2, we have: 
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{
𝐿(𝑀(Θ∗)) = 𝐿(Θ∗)

𝐿(Θ∗) > 𝐿(Θ) for all Θ ∈ Ω and Θ ≠ Θ∗
 

If M(Θ*) ≠ Θ*, there is a contradiction L(M(Θ*)) = L(Θ*) > L(M(Θ*)). Therefore, we have M(Θ*) 

= Θ* ■ 

Theorem 3.2 (Dempster, Laird, & Rubin, 1977, p. 7). Suppose {Θ(𝑡)}
𝑡=1

+∞
 is the sequence of 

estimates resulted from GEM algorithm such that: 

(1) The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
= 𝐿(Θ(1)), 𝐿(Θ(2)),… , 𝐿(Θ(𝑡)), … is bounded above, and 

(2) Q(Θ(t+1) | Θ(t)) – Q(Θ(t) | Θ(t)) ≥ ξ(Θ(t+1) – Θ(t))T(Θ(t+1) – Θ(t)) for some scalar ξ > 0 and all 

t. 

Then the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of Ω ■ 

Proof. The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is non-decreasing according to theorem 3.1 and is 

bounded above according to the assumption 1 of theorem 3.2 and hence, the sequence 

{𝐿(Θ(𝑡))}
𝑡=1

+∞
 converges to some L* < +∞. According to Cauchy criterion (Dinh, Pham, Nguyen, 

& Ta, 2000, p. 34), for all ε > 0, there exists a t(ε) such that, for all t ≥ t(ε) and all v ≥ 1: 

𝐿(Θ(𝑡+𝑣)) − 𝐿(Θ(𝑡)) =∑(𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

< 휀 

By applying equation 3.2 and equation 3.3, for all i ≥ 1, we obtain: 

𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) 

= 𝐿(Θ(𝑡+𝑖)) + 𝐻(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1))   

≤ 𝐿(Θ(𝑡+𝑖)) + 𝐻(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) 

= 𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)) 
(Due to L(Θ(t+i–1)) = Q(Θ(t+i–1) | Θ(t+i–1)) – H(Θ(t+i–1) | Θ(t+i–1)) according to equation 3.2) 

It implies 

∑(𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

<∑(𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

= 𝐿(Θ(𝑡+𝑣)) − 𝐿(Θ(𝑡)) < 휀 
By applying v times the assumption 2 of theorem 3.2, we obtain: 

휀 >∑(𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

≥ 𝜉∑(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))
𝑇
(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))

𝑣

𝑖=1

 

It means that 

∑|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|
2

𝑣

𝑖=1

< 휀 𝜉⁄  

Where, 

|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|
2
= (Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))

𝑇
(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)) 

Notation |.| denotes length of vector and so |Θ(t+i) – Θ(t+i –1)| is distance between Θ(t+i) and Θ(t+i 

–1). Applying triangular inequality, for any ε > 0, for all t ≥ t(ε) and all v ≥ 1, we have: 

|Θ(𝑡+𝑣) − Θ(𝑡)|
2
≤∑|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|

2
𝑣

𝑖=1

< 휀 𝜉⁄  
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According to Cauchy criterion, the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of 

Ω. 

Theorem 3.1 indicates that L(Θ) is non-decreasing on every iteration of GEM algorithm 

and is strictly increasing on any iteration such that Q(Θ(t+1) | Θ(t)) > Q(Θ(t) | Θ(t)). The corollaries 

3.1 and 3.2 indicate that the optimal estimate is a fixed point of GEM algorithm. Theorem 3.2 

points out convergence condition of GEM algorithm but does not assert the converged point 

Θ* is maximizer of L(Θ). So, we need mathematical tools of derivative and differential to prove 

convergence of GEM to a maximizer Θ*. We assume that Q(Θ’ | Θ), L(Θ), H(Θ’ | Θ), and M(Θ) 

are smooth enough. As a convention for derivatives of bivariate function, let Dij denote as the 

derivative (differential) by taking ith-order partial derivative (differential) with regard to first 

variable and then, taking jth-order partial derivative (differential) with regard to second variable. 

If i = 0 (j = 0) then, there is no partial derivative with regard to first variable (second variable). 

For example, following is an example of how to calculate the derivative D11Q(Θ(t) | Θ(t+1)). 

- Firstly, we determine 𝐷11𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕Θ′𝜕Θ
 

- Secondly, we substitute Θ(t) and Θ(t+1) for such D11Q(Θ’ | Θ) to obtain D11Q(Θ(t) | Θ(t+1)). 

Equation 3.1 shows some derivatives (differentials) of Q(Θ’ | Θ), H(Θ’ | Θ), L(Θ), and M(Θ). 

𝐷10𝑄(Θ′|Θ) =
𝜕𝑄(Θ′|Θ)

𝜕Θ′
 

𝐷11𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕Θ′𝜕Θ
 

𝐷20𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕(Θ′)2
 

𝐷10𝐻(Θ′|Θ) =
𝜕𝐻(Θ′|Θ)

𝜕Θ′
 

𝐷11𝐻(Θ′|Θ) =
𝜕2𝐻(Θ′|Θ)

𝜕Θ′𝜕Θ
 

𝐷20𝐻(Θ′|Θ) =
𝜕2𝐻(Θ′|Θ)

𝜕(Θ′)2
 

𝐷𝐿(Θ) =
d𝐿(Θ)

dΘ
 

𝐷2𝐿(Θ) =
d2𝐿(Θ)

dΘ2
 

𝐷𝑀(Θ) =
d𝑀(Θ)

dΘ
 

Table 3.1. Some differentials of Q(Θ’ | Θ), H(Θ’ | Θ), L(Θ), and M(Θ) 

When Θ’ and Θ are vectors, D10(…) is gradient vector and D20(…) is Hessian matrix. As a 

convention, let 0 = (0, 0,…, 0)T be zero vector. 

Lemma 3.2 (Dempster, Laird, & Rubin, 1977, p. 8). For all Θ in Ω, 

𝐷10𝐻(Θ|Θ) = 𝐸 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) = 𝟎𝑇 (3.7) 

 

𝐷20𝐻(Θ|Θ) = −𝐷11𝐻(Θ|Θ) = −𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) (3.8) 
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𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) = 𝐸 ((

dlog(𝑘(𝑋|𝑌, Θ))
dΘ

)

2

|𝑌, Θ)

= −𝐸 (
𝑑2log(𝑘(𝑋|𝑌, Θ))

d(Θ)2
|𝑌, Θ) 

(3.9) 

 

𝐷10𝑄(Θ|Θ) = 𝐷𝐿(Θ) = 𝐸 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) (3.10) 

 

𝐷20𝑄(Θ|Θ) = 𝐷2𝐿(Θ) + 𝐷20𝐻(Θ|Θ) = 𝐸 (
𝑑2log(𝑓(𝑋|Θ))

d(Θ)2
|𝑌, Θ) (3.11) 

 

𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) = 𝐸 ((

dlog(𝑓(𝑋|Θ))
dΘ

)

2

|𝑌, Θ)

= 𝐷2𝐿(Θ) + (𝐷𝐿(Θ))
2
− 𝐷20𝑄(Θ|Θ)∎ 

(3.12) 

Note, VN(.) denotes non-central variance (non-central covariance matrix). Followings are 

proofs of equation 3.7, equation 3.8, equation 3.9, equation 3.10, equation 3.11, and equation 

3.12. In fact, we have: 

𝐷10𝐻(Θ′|Θ) =
𝜕

𝜕Θ′
𝐸(log(𝑘(𝑋|𝑌, Θ′))|𝑌, Θ) =

𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

= 𝐸 (
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
|𝑌, Θ) =

= ∫
𝑘(𝑋|𝑌, Θ)

𝑘(𝑋|𝑌, Θ′)

d(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

It implies: 

𝐷10𝐻(Θ|Θ) = ∫
𝑘(𝑋|𝑌, Θ)

𝑘(𝑋|𝑌, Θ)

d(𝑘(𝑋|𝑌, Θ))

dΘ
d𝑋

𝜑−1(𝑌)

=
d

dΘ
( ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

) =
d

dΘ
(1)

= 𝟎𝑇 

Thus, equation 3.7 is proved. 

We also have: 

𝐷11𝐻(Θ′|Θ) =
𝜕𝐷10𝐻(Θ′|Θ)

𝜕Θ
= ∫

1

𝑘(𝑋|𝑌, Θ′)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ

d𝑘(𝑋|𝑌, Θ′)

dΘ′
d𝑋

𝜑−1(𝑌)

 

It implies: 

𝐷11𝐻(Θ|Θ) = ∫
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ

d𝑘(𝑋|𝑌, Θ)

dΘ
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ
)

2

d𝑋

𝜑−1(𝑌)

= 𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) 

We also have: 

𝐷20𝐻(Θ′|Θ) =
𝜕𝐷10𝐻(Θ′|Θ)

𝜕Θ′
= 𝐸 (

𝑑2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
|𝑌, Θ) 
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= − ∫
𝑘(𝑋|𝑌, Θ)

(𝑘(𝑋|𝑌, Θ′))
2 (
d𝑘(𝑋|𝑌, Θ′)

dΘ′
)

2

d𝑋

𝜑−1(𝑌)

= −𝐸 ((
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
)

2

|𝑌, Θ) 

It implies: 

𝐷20𝐻(Θ|Θ) = − ∫ 𝑘(𝑋|𝑌, Θ) (
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ
)

2

d𝑋

𝜑−1(𝑌)

= −𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) 

Hence, equation 3.8 and equation 3.9 are proved. 

From equation 3.2, we have: 

𝐷20𝑄(Θ′|Θ) = 𝐷2𝐿(Θ′) + 𝐷20𝐻(Θ′|Θ) 
We also have: 

𝐷10𝑄(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

)

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

= 𝐸 (
dlog(𝑓(𝑋|Θ′))

dΘ′
|𝑌, Θ) 

= ∫
𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ′)

d𝑓(𝑋|Θ′)

dΘ′
d𝑋

𝜑−1(𝑌)

 

It implies: 

𝐷10𝑄(Θ|Θ) = ∫
𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ)

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

= ∫
1

𝑔(𝑌|Θ)

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

 

=
1

𝑔(𝑌|Θ)
∫

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

=
1

𝑔(𝑌|Θ)

d

dΘ
( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) 

=
1

𝑔(𝑌|Θ)

d𝑔(𝑌|Θ)

dΘ
=
dlog(𝑔(𝑌|Θ))

dΘ
= 𝐷𝐿(Θ) 

Thus, equation 3.10 is proved. 

We have: 

𝐷20𝑄(Θ′|Θ) =
𝜕𝐷10𝑄(Θ′|Θ)

𝜕Θ′
=

𝜕

𝜕Θ′
( ∫

𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ′)

d𝑓(𝑋|Θ′)

dΘ′
d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
𝑑

dΘ′
(
d𝑓(𝑋|Θ′) dΘ′⁄

𝑓(𝑋|Θ′)
) d𝑋

𝜑−1(𝑌)

= 𝐸 (
d2log(𝑓(𝑋|Θ′))

d(Θ′)2
|𝑌, Θ) 

(Hence, equation 3.11 is proved) 

= ∫ 𝑘(𝑋|𝑌, Θ) ((d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )𝑓(𝑋|Θ′) − (d𝑓(𝑋|Θ′) dΘ′⁄ )2) (𝑓(𝑋|Θ′))
2

⁄ d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )

𝑓(𝑋|Θ′)
d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ) (
d𝑓(𝑋|Θ′) dΘ′⁄

𝑓(𝑋|Θ′)
)

2

d𝑋

𝜑−1(𝑌)
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= ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )

𝑓(𝑋|Θ′)
d𝑋

𝜑−1(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ′))

dΘ′
|𝑌, Θ) 

It implies: 

𝐷20𝑄(Θ|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ) d(Θ)2⁄ )

𝑓(𝑋|Θ)
d𝑋

𝜑−1(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)
∫

d2𝑓(𝑋|Θ)

d(Θ)2
d𝑋

𝜑−1(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)

d2

d(Θ)2
( ∫

𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

) − 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)

d2𝑔(𝑌|Θ)

d(Θ)2
− 𝑉𝑁 (

dlog(𝑓(𝑋|Θ))
dΘ

|𝑌, Θ) 

Due to: 

𝐷2𝐿(Θ) =
d2log(𝑔(𝑌|Θ))

d(Θ)2
=

1

𝑔(𝑌|Θ)

d2𝑔(𝑌|Θ)

d(Θ)2
− (𝐷𝐿(Θ))

2
 

We have: 

𝐷20𝑄(Θ|Θ) = 𝐷2𝐿(Θ) + (𝐷𝐿(Θ))
2
− 𝑉𝑁 (

dlog(𝑓(𝑋|Θ))
dΘ

|𝑌, Θ) 

Therefore, equation 3.12 is proved ■ 

Lemma 3.3 (Dempster, Laird, & Rubin, 1977, p. 9). If f(X | Θ) and k(X | Y, Θ) belong to 

exponential family, for all Θ in Ω, we have: 

𝐷10𝐻(Θ′|Θ) = (𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
− (𝐸(𝜏(𝑋)|𝑌, Θ′))

𝑇
 (3.13) 

 

𝐷20𝐻(Θ′|Θ) = −𝑉(𝜏(𝑋)|𝑌, Θ′) (3.14) 

 

𝐷10𝑄(Θ′|Θ) = (𝐸(𝜏(𝑋)|Θ))
𝑇
− (𝐸(𝜏(𝑋)|Θ′))

𝑇
 (3.15) 

 

𝐷20𝑄(Θ′|Θ) = −𝑉(𝜏(𝑋)|Θ′)∎ (3.16) 

Proof. If f(X | Θ’) and k(X | Y, Θ’) belong to exponential family, from table 1.2 we have: 

dlog(𝑓(𝑌|Θ′))

dΘ′
=

d

dΘ′
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ ) = (𝜏(𝑋))

𝑇
− log′(𝑎(Θ′))

= (𝜏(𝑋))
𝑇
− (𝐸(𝜏(𝑋)|Θ′))

𝑇
 

And, 

d2log(𝑓(𝑌|Θ′))

d(Θ′)2
=

d

d(Θ′)2
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ ) = −log′′(𝑎(Θ′)) = −𝑉(𝜏(𝑋)|Θ′) 

And, 

dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
=

d

dΘ′
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′|𝑌)⁄ ) = 𝜏(𝑋) − log′(𝑎(Θ′)|𝑌)

= (𝜏(𝑋))
𝑇
− (𝐸(𝜏(𝑋)|𝑌, Θ′))

𝑇
 

And, 

d2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
=

d

d(Θ′)2
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′|𝑌)⁄ ) = −log′′(𝑎(Θ′|𝑌))

= −𝑉(𝜏(𝑋)|𝑌, Θ′) 
Hence, 
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𝐷10𝐻(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)(𝜏(𝑋))
𝑇
d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)(𝐸(𝜏(𝑋)|𝑌, Θ′))
𝑇
d𝑋

𝜑−1(𝑌)

 

= (𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
− (𝐸(𝜏(𝑋)|𝑌, Θ′))

𝑇
∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= (𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
− (𝐸(𝜏(𝑋)|𝑌, Θ′))

𝑇
 

Thus, equation 3.13 is proved. 

We have: 

𝐷20𝐻(Θ′|Θ) =
𝜕2

𝜕(Θ′)2
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
d2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
d𝑋

𝜑−1(𝑌)

= − ∫ 𝑘(𝑋|𝑌, Θ)log′′(𝑎(Θ′)|𝑌)d𝑋

𝜑−1(𝑌)

 

= −log′′(𝑎(Θ′)|𝑌) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= −log′′(𝑎(Θ′)|𝑌) = −𝑉(𝜏(𝑋)|𝑌, Θ′) 

Thus, equation 3.14 is proved. 

We have: 

𝐷10𝑄(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

)

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)(𝜏(𝑋))
𝑇
d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)(𝐸(𝜏(𝑋)|Θ))
𝑇
d𝑋

𝜑−1(𝑌)

 

= (𝐸(𝜏(𝑋)|Θ))
𝑇
− (𝐸(𝜏(𝑋)|Θ′))

𝑇
∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= (𝐸(𝜏(𝑋)|Θ))
𝑇
− (𝐸(𝜏(𝑋)|Θ′))

𝑇
 

Thus, equation 3.15 is proved. 

We have: 

𝐷20𝑄(Θ′|Θ) =
𝜕2

𝜕(Θ′)2
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
d2log(𝑓(𝑋|Θ′))

d(Θ′)2
d𝑋

𝜑−1(𝑌)

= − ∫ 𝑘(𝑋|𝑌, Θ)log′′(𝑎(Θ′))d𝑋

𝜑−1(𝑌)

 

= −log′′(𝑎(Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= −log′′(𝑎(Θ′)) = −𝑉(𝜏(𝑋)|Θ′) 

Thus, equation 3.16 is proved ■ 
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Theorem 3.3 (Dempster, Laird, & Rubin, 1977, p. 8). Suppose the sequence {Θ(𝑡)}
𝑡=1

+∞
 is an 

instance of GEM algorithm such that 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇 

Then for all t, there exists a Θ0
(t+1) on the line segment joining Θ(t) and Θ(t+1) such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

Furthermore, if D20Q(Θ0
(t+1) | Θ(t)) is negative definite, and the sequence {𝐿(Θ(𝑡))}

𝑡=1

+∞
 is 

bounded above then, the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of Ω ■ 

Note, if Θ is a scalar parameter, D20Q(Θ0
(t+1) | Θ(t)) degrades as a scalar and the concept 

“negative definite” becomes “negative” simply. Following is a proof of theorem 3.3. 

Proof. Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ = Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)
|Θ(𝑡))(Θ − Θ(𝑡+1)) 

= 𝑄(Θ(𝑡+1)|Θ(𝑡)) + (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

(due to 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇) 
Where Θ0

(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

If D20Q(Θ(t+1) | Θ(t)) is negative definite then, 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) > 0 

Whereas, 

(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) ≥ 0 

So, for all t, there exists some ξ > 0 such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) ≥ 𝜉(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) 

In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {Θ(𝑡)}
𝑡=1

+∞
 

converges to some Θ* in the closure of Ω if the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above ■ 

Theorem 3.4 (Dempster, Laird, & Rubin, 1977, p. 9). Suppose the sequence {Θ(𝑡)}
𝑡=1

+∞
 is an 

instance of GEM algorithm such that 

(1) The sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to Θ* in the closure of Ω. 

(2) D10Q(Θ(t+1) | Θ(t)) = 0T for all t. 

(3) D20Q(Θ(t+1) | Θ(t)) is negative definite for all t. 

Then DL(Θ*) = 0T, D20Q(Θ* | Θ*) is negative definite, and 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1
∎ (3.17) 

The notation “–1” denotes inverse of matrix. Note, DM(Θ*) is differential of M(Θ) at Θ = Θ*, 

which implies convergence rate of GEM algorithm. Obviously, Θ* is local maximizer due to 

DL(Θ*) = 0T and D20Q(Θ* | Θ*). Followings are proofs of theorem 3.4. 

From equation 3.2, we have: 

𝐷𝐿(Θ(𝑡+1)) = 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) = −𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) 

(Due to 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇) 

When t approaches +∞ such that Θ(t) = Θ(t+1) = Θ* then, D10H(Θ* | Θ*) is zero according to 

equation 3.7 and so we have: 

DL(Θ*) = 0T 

Of course, D20Q(Θ* | Θ*) is negative definite because D20Q(Θ(t+1) | Θ(t)) is negative definite, 

when t approaches +∞ such that Θ(t) = Θ(t+1) = Θ*. 
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By first-order Taylor series expansion for D10Q(Θ2 | Θ1) as a function of Θ1 at Θ1 = Θ* and 

as a function of Θ2 at Θ2 = Θ*, respectively, we have: 

𝐷10𝑄(Θ2|Θ1) = 𝐷
10𝑄(Θ2|Θ

∗) + (Θ1 − Θ
∗)𝑇𝐷11𝑄(Θ2|Θ

∗) + 𝑅1(Θ1) 
𝐷10𝑄(Θ2|Θ1) = 𝐷10𝑄(Θ∗|Θ1) + (Θ2 − Θ

∗)𝑇𝐷20𝑄(Θ∗|Θ1) + 𝑅2(Θ2) 
Where R1(Θ1) and R2(Θ2) are remainders. By summing such two series, we have: 

2𝐷10𝑄(Θ2|Θ1)
= 𝐷10𝑄(Θ2|Θ

∗) + 𝐷10𝑄(Θ∗|Θ1) + (Θ1 − Θ
∗)𝑇𝐷11𝑄(Θ2|Θ

∗)
+ (Θ2 − Θ

∗)𝑇𝐷20𝑄(Θ∗|Θ1) + 𝑅1(Θ1) + 𝑅2(Θ2) 
By substituting Θ1 = Θ(t) and Θ2 = Θ(t+1), we have: 

2𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))

= 𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)) + (Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗)

+ (Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) + 𝑅1(Θ

(𝑡)) + 𝑅2(Θ
(𝑡+1)) 

Due to D10Q(Θ(t+1) | Θ(t)) = 0T, we obtain: 

𝟎𝑇 = 𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)) + (Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗)

+ (Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) + 𝑅1(Θ

(𝑡)) + 𝑅2(Θ
(𝑡+1)) 

It implies: 

(Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) 

= −(Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗) − (𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)))

− (𝑅1(Θ
(𝑡)) + 𝑅2(Θ

(𝑡+1))) 

Multiplying two sides of the equation above by D20Q(Θ* | Θ(t))–1 and letting M(Θ(t)) = Θ(t+1),  

M(Θ*) = Θ*, we obtain: 

(𝑀(Θ(𝑡)) − 𝑀(Θ∗))
𝑇

= (Θ(𝑡+1) − Θ∗)
𝑇
 

= −(Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗) (𝐷20𝑄(Θ∗|Θ(𝑡)))

−1

 

−(𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡))) (𝐷20𝑄(Θ∗|Θ(𝑡)))
−1

 

−(𝑅1(Θ
(𝑡)) + 𝑅2(Θ

(𝑡+1))) (𝐷20𝑄(Θ∗|Θ(𝑡)))
−1

 

Let t approach +∞ such that Θ(t) = Θ(t+1) = Θ*, we obtain DM(Θ*) as differential of M(Θ) at Θ* 

as follows: 

𝐷𝑀(Θ∗) = −𝐷11𝑄(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1

 (3.18) 

Due to, when t approaches +∞, we have: 

𝐷11𝑄(Θ(𝑡+1)|Θ∗) = 𝐷11𝑄(Θ∗|Θ∗)

𝐷20𝑄(Θ∗|Θ(𝑡)) = 𝐷20𝑄(Θ∗|Θ∗)

𝐷10𝑄(Θ(𝑡+1)|Θ∗) = 𝐷10𝑄(Θ∗|Θ∗) = 𝟎𝑇

𝐷10𝑄(Θ∗|Θ(𝑡)) = 𝐷10𝑄(Θ∗|Θ∗) = 𝟎𝑇

lim
𝑡→+∞

𝑅1(Θ
(𝑡)) = lim

Θ(𝑡)→Θ∗
𝑅1(Θ

(𝑡)) = 0

lim
𝑡→+∞

𝑅2(Θ
(𝑡+1)) = lim

Θ(𝑡+1)→Θ∗
𝑅2(Θ

(𝑡+1)) = 0

 

The derivative D11Q(Θ’ | Θ) is expended as follows: 

𝐷11𝑄(Θ′|Θ) = 𝐷𝐿(Θ′) + 𝐷11𝐻(Θ′|Θ) 
It implies: 

𝐷11𝑄(Θ∗|Θ∗) = 𝐷𝐿(Θ∗) + 𝐷11𝐻(Θ∗|Θ∗) 
= 0 + 𝐷11𝐻(Θ∗|Θ∗) 
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(Due to theorem 3.4) 

= −𝐷20𝐻(Θ∗|Θ∗) 
(Due to equation 3.8) 

Therefore, equation 3.18 becomes equation 3.17. 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1
∎ 

Finally, theorem 3.4 is proved. By combination of theorems 3.2 and 3.4, I propose corollary 

3.3 as a convergence criterion to local maximizer of GEM. 

Corollary 3.3. If an algorithm satisfies three following assumptions: 

(1) Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)) for all t. 

(2) The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above. 

(3) D10Q(Θ* | Θ*) = 0T and D20Q(Θ* | Θ*) negative definite with suppose that Θ* is the 

converged point. 

Then, 

(1) Such algorithm is an GEM and converges to a local maximizer Θ* of L(Θ) such that 

DL(Θ*) = 0T and D2L(Θ*) negative definite. 

(2) Equation 3.17 is obtained ■ 

The assumption 1 of corollary 3.3 implies that the given algorithm is a GEM according to 

definition 3.1. From such assumption, we also have: 

{
𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0

(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) ≥ 0

 

So there exists some ξ > 0 such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) ≥ 𝜉(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) 

In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {Θ(𝑡)}
𝑡=1

+∞
 

converges to some Θ* in the closure of Ω when the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above 

according to the assumption 2 of corollary 3.3. From equation 3.2, we have: 

𝐷𝐿(Θ(𝑡+1)) = 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) = −𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) 

When t approaches +∞ such that Θ(t) = Θ(t+1) = Θ* then, 

DL(Θ*) = D10Q(Θ* | Θ*) – D10H(Θ* | Θ*)  

D10H(Θ* | Θ*) is zero according to equation 3.7. Hence, along with the assumption 3 of 

corollary 3.3, we have: 

DL(Θ*) = D10Q(Θ* | Θ*) = 0T 

Due to DL(Θ*) = 0, we only assert here that the given algorithm converges to Θ* as a stationary 

point of L(Θ). Later on, we will prove that Θ* is a local maximizer of L(Θ) when Q(M(Θ(t)) | 

Θ(t)) > Q(Θ(t) | Θ(t)), DL(Θ*) = 0, and D20Q(Θ* | Θ*) negative definite. Due to D10Q(Θ* | Θ*) = 

0T, we obtain equation 3.17. Please see the proof of equation 3.17 ■ 

By default, suppose all GEM algorithms satisfy the assumptions 2 and 3 of corollary 3.3. 

Thus, we only check the assumption 1 to verify whether a given algorithm is a GEM which 

converges to local maximizer Θ*. Note, if the assumption 1 of corollary 3.3 is replaced by 

“Q(M(Θ(t)) | Θ(t)) ≥ Q(Θ(t) | Θ(t)) for all t” then, Θ* is only asserted to be a stationary point of 

L(Θ) such that DL(Θ*) = 0T. Wu (Wu, 1983) gave a deep research on convergence of GEM in 

her/his article “On the Convergence Properties of the EM Algorithm”. Please read this article 

for more details about convergence of GEM. 

Because H(Θ’ | Θ) and Q(Θ’ | Θ) are smooth enough, D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are 

symmetric matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second 

derivatives, 2018). Thus, D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are commutative: 

D20H(Θ* | Θ*)D20Q(Θ* | Θ*) = D20Q(Θ* | Θ*)H20Q(Θ* | Θ*) 
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Suppose both D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are diagonalizable then, they are simultaneously 

diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is an (orthogonal) 

eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange, 

2013): 

𝐷20𝐻(Θ∗|Θ∗) = 𝑈𝐻𝑒
∗𝑈−1

𝐷20𝑄(Θ∗|Θ∗) = 𝑈𝑄𝑒
∗𝑈−1

 

Where He
* and Qe

* are eigenvalue matrices of D20H(Θ* | Θ*) and D20Q(Θ* | Θ*), respectively, 

according to equation 3.19 and equation 3.20. Of course, h1
*, h2

*,…, hr
* are eigenvalues of 

D20H(Θ* | Θ*) whereas q1
*, q2

*,…, qr
* are eigenvalues of D20Q(Θ* | Θ*). 

𝐻𝑒
∗ = (

ℎ1
∗ 0 ⋯ 0
0 ℎ2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑟

∗

) (3.19) 

 

𝑄𝑒
∗ = (

𝑞1
∗ 0 ⋯ 0
0 𝑞2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑟

∗

) (3.20) 

From equation 3.17, DM(Θ*) is decomposed as seen in equation 3.21. 

𝐷𝑀(Θ∗) = (𝑈𝐻𝑒
∗𝑈−1)(𝑈𝑄𝑒

∗𝑈−1)−1 = 𝑈𝐻𝑒
∗𝑈−1𝑈(𝑄𝑒

∗)−1𝑈−1 = 𝑈(𝐻𝑒
∗(𝑄𝑒

∗)−1)𝑈−1 (3.21) 

Let Me
* be eigenvalue matrix of DM(Θ*), specified by equation 3.17. As a convention Me

* is 

called convergence matrix. 

𝑀𝑒
∗ = 𝐻𝑒

∗(𝑄𝑒
∗)−1 =

(

 
 
 
 
 
𝑚1
∗ =

ℎ1
∗

𝑞1
∗ 0 ⋯ 0

0 𝑚2
∗ =

ℎ2
∗

𝑞2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑚𝑟
∗ =

ℎ𝑟
∗

𝑞𝑟∗)

 
 
 
 
 

 (3.22) 

Of course, all mi
* = hi

* / qi
* are eigenvalues of DM(Θ*) with assumption qi

* < 0 for all i. We 

will prove that 0 ≤ mi
* ≤ 1 for all i by contradiction. Conversely, suppose we always have mi

* > 

1 or mi
* < 0 for some i. When Θ degrades into scalar as Θ = θ with note that scalar is 1-element 

vector, equation 3.17 is re-written as equation 3.23: 

𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = 𝑚∗ = lim

𝑡→+∞

𝑀(𝜃(𝑡)) −𝑀(𝜃∗)

𝜃(𝑡) − 𝜃∗
= lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
=

= 𝐷20𝐻(𝜃∗|𝜃∗)(𝐷20𝑄(𝜃∗|𝜃∗))
−1

 

(3.23) 

From equation 3.23, the next estimate θ(t+1) approaches θ* when t → +∞ and so we have: 

𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = 𝑚∗ = lim

𝑡→+∞

𝑀(𝜃(𝑡)) −𝑀(𝜃(𝑡+1))

𝜃(𝑡) − 𝜃(𝑡+1)
= lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃(𝑡+2)

𝜃(𝑡) − 𝜃(𝑡+1)

= lim
𝑡→+∞

𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 

So equation 3.24 is a variant of equation 3.23 (McLachlan & Krishnan, 1997, p. 120). 

𝐷𝑀(𝜃∗) = 𝑀𝑒 = 𝑚∗ = lim
𝑡→+∞

𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 (3.24) 

Because the sequence {𝐿(𝜃(𝑡))}
𝑡=1

+∞
= 𝐿(𝜃(1)), 𝐿(𝜃(2)),… , 𝐿(𝜃(𝑡)), … is non-decreasing, the 

sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is monotonous. This means: 

𝜃1 ≤ 𝜃2 ≤ ⋯ ≤ 𝜃𝑡 ≤ 𝜃𝑡+1 ≤ ⋯ ≤ 𝜃∗ 
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Or 

𝜃1 ≥ 𝜃2 ≥ ⋯ ≥ 𝜃𝑡 ≥ 𝜃𝑡+1 ≥ ⋯ ≥ 𝜃∗ 
It implies 

0 ≤
𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≤ 1, ∀𝑡 

So we have 

0 ≤ 𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≤ 1 

However, this contradicts the converse assumption “there always exists mi
* > 1 or mi

* < 0 for 

some i”. Therefore, we conclude that 0 ≤ mi
* ≤ 1 for all i. In general, if Θ* is stationary point 

of GEM then, D20Q(Θ* | Θ*) and Qe
* are negative definite, D20H(Θ* | Θ*) and He

* are negative 

semi-definite, and DM(Θ*) and Me
* are positive semi-definite, according to equation 3.25. 
𝑞𝑖
∗ < 0, ∀𝑖

ℎ𝑖
∗ ≤ 0, ∀𝑖

0 ≤ 𝑚𝑖
∗ ≤ 1, ∀𝑖

 (3.25) 

As a convention, if GEM algorithm fortunately stops at the first iteration such that Θ(1) = Θ(2) 

= Θ* then, mi
* = 0 for all i. 

Suppose Θ(t) = (θ1
(t), θ2

(t),…, θr
(t)) at current tth iteration and Θ* = (θ1

*, θ2
*,…, θr

*), each mi
* 

measures how much the next θi
(t+1) is near to θi

*. In other words, the smaller the mi
* (s) are, the 

faster the GEM is and so the better the GEM is. This is why DLR (Dempster, Laird, & Rubin, 

1977, p. 10) defined that the convergence rate m* of GEM is the maximum one among all mi
*, 

as seen in equation 3.26. The convergence rate m* implies lowest speed. 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑟

∗}  where 𝑚1
∗ =

ℎ1
∗

𝑞1
∗ (3.26) 

From equation 3.2 and equation 3.17, we have (Dempster, Laird, & Rubin, 1977, p. 10): 

𝐷2𝐿(Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) − 𝐷20𝐻(Θ∗|Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) − 𝐷𝑀(Θ∗)𝐷20𝑄(Θ∗|Θ∗)

= (𝐼 − 𝐷𝑀(Θ∗))𝐷20𝑄(Θ∗|Θ∗) 
Where I is identity matrix: 

𝐼 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 

By the same way to draw convergence matrix Me
* with note that D20H(Θ* | Θ*), D20Q(Θ* | Θ*), 

and DM(Θ*) are symmetric matrices, we have: 

𝐿𝑒 = (𝐼 − 𝑀𝑒)𝑄𝑒 (3.27) 

Where Le
* is eigenvalue matrix of D2L(Θ*). From equation 3.27, each eigenvalue li

* of Le
* is 

proportional to each eigenvalues qi
* of Qe

* with ratio 1–mi
* where mi

* is an eigenvalue of Me
*. 

Equation 3.28 specifies a so-called speed matrix Se
*: 

𝑆𝑒
∗ = (

𝑠1
∗ = 1 −𝑚1

∗ 0 ⋯ 0

0 𝑠2
∗ = 1 −𝑚2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑟

∗ = 1 −𝑚𝑟
∗

) (3.28) 

This implies 

𝐿𝑒
∗ = 𝑆𝑒

∗𝑄𝑒
∗ 

From equation 3.25 and equation 3.28, we have 0 ≤ si
* ≤ 1. Equation 3.29 specifies Le

* which 

is eigenvalue matrix of D2L(Θ*). 
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𝐿𝑒
∗ = (

𝑙1
∗ = 𝑠1

∗𝑞1
∗ 0 ⋯ 0

0 𝑙2
∗ = 𝑠2

∗𝑞2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑙𝑟

∗ = 𝑠𝑟
∗𝑞𝑟
∗

) (3.29) 

From equation 3.28, suppose Θ(t) = (θ1
(t), θ2

(t),…, θr
(t)) at current tth iteration and Θ* = (θ1

*, 

θ2
*,…, θr

*), each si
* = 1–mi

* is really the speed that the next θi
(t+1) moves to θi

*. From equation 

3.26 and equation 3.28, equation 3.30 specifies the speed s* of GEM algorithm. 

𝑠∗ = 1 −𝑚∗ 

Where, 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ , 𝑚2
∗ , … ,𝑚𝑟

∗} 
(3.30) 

As a convention, if GEM algorithm fortunately stops at the first iteration such that Θ(1) = Θ(2) 

= Θ* then, s* = 1. 

For example, when Θ degrades into scalar as Θ = θ, the fourth column of table 1.3 

(Dempster, Laird, & Rubin, 1977, p. 3) gives sequences which approaches Me
* = DM(θ*) 

through many iterations by the following ratio to determine the limit in equation 3.23 with θ* 

= 0.6268. 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
 

In practice, if GEM is run step by step, θ* is not known yet at some tth iteration when GEM 

does not converge yet. Hence, equation 3.24 (McLachlan & Krishnan, 1997, p. 120) is used to 

make approximation of Me
* = DM(θ*) with unknown θ* and θ(t) ≠ θ(t+1). 

𝐷𝑀(𝜃∗) ≈
𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 

It is required only two successive iterations because both θ(t) and θ(t+1) are determined at tth 

iteration whereas θ(t+2) is determined at (t+1)th iteration. For example, in table 1.3, given θ(1) = 

0.5, θ(2) = 0.6082, and θ(3) = 0.6243, at t = 1, we have: 

𝐷𝑀(𝜃∗) ≈
𝜃(3) − 𝜃(2)

𝜃(2) − 𝜃(1)
=
0.6243 − 0.6082

0.6082 − 0.5
= 0.1488 

Whereas the real Me
* = DM(θ*) is 0.1465 shown in the fourth column of table 1.3 at t = 1. 

We will prove by contradiction that if definition 3.1 is satisfied strictly such that Q(M(Θ(t)) 

| Θ(t)) > Q(Θ(t) | Θ(t)) then, li
* < 0 for all i. Conversely, suppose we always have li

* ≥ 0 for some 

i when Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)). Given Θ degrades into scalar as Θ = θ with note that  

scalar is 1-element vector, when Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)), the sequence {𝐿(𝜃(𝑡))}
𝑡=1

+∞
=

𝐿(𝜃(1)), 𝐿(𝜃(2)), … , 𝐿(𝜃(𝑡)),… is strictly increasing, which in turn causes that the sequence 

{𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is strictly monotonous. This means: 

𝜃1 < 𝜃2 < ⋯ < 𝜃𝑡 < 𝜃𝑡+1 < ⋯ < 𝜃∗ 
Or 

𝜃1 > 𝜃2 > ⋯ > 𝜃𝑡 > 𝜃𝑡+1 > ⋯ > 𝜃∗ 
It implies 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
< 1, ∀𝑡 

So we have 

𝑆𝑒
∗ = 1 −𝑀𝑒

∗ = 1 − lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
> 0 

From equation 3.29, we deduce that D2L(θ*) = Le
* = Se

*Qe
* < 0 where Qe

* = D20Q(θ* | θ*) < 0. 

However, this contradicts the converse assumption “there always exists li
* ≥ 0 for some i when 

Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t))”. Therefore, if Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)) then, li
* < 0 for all 
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i. In other words, at that time, D2L(Θ*) = Le
* is negative definite. Recall that we proved that 

DL(Θ*) = 0 for corollary 3.3. Now we have D2L(Θ*) negative definite, which means that Θ* is 

a local maximizer of L(Θ*) in corollary 3.3. In other words, corollary 3.3 is proved. 

Recall that L(Θ) is the log-likelihood function of observed Y according to equation 2.3. 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) 

Both –D20H(Θ* | Θ*) and –D20Q(Θ* | Θ*) are information matrices (Zivot, 2009, pp. 7-9) 

specified by equation 3.31. 

𝐼𝐻(Θ
∗) = −𝐷20𝐻(Θ∗|Θ∗) 

𝐼𝑄(Θ
∗) = −𝐷20𝑄(Θ∗|Θ∗) 

(3.31) 

IH(Θ*) measures information of X about Θ* with support of Y whereas IQ(Θ*) measures 

information of X about Θ*. In other words, IH(Θ*) measures observed information whereas 

IQ(Θ*) measures hidden information. Let VH(Θ*) and VQ(Θ*) be covariance matrices of Θ* with 

regard to IH(Θ*) and IQ(Θ*), respectively. They are inverses of IH(Θ*) and IQ(Θ*) according to 

equation 3.32 when Θ* is unbiased estimate. 

𝑉𝐻(Θ
∗) = (𝐼𝐻(Θ

∗))
−1

𝑉𝑄(Θ
∗) = (𝐼𝑄(Θ

∗))
−1 (3.32) 

Equation 3.33 is a variant of equation 3.17 to calculate DM(Θ*) based on information matrices: 

𝐷𝑀(Θ∗) = 𝐼𝐻(Θ
∗) (𝐼𝑄(Θ

∗))
−1

= (𝑉𝐻(Θ
∗))

−1
𝑉𝑄(Θ

∗) (3.33) 

If f(X | Θ), g(Y | Θ) and k(X | Y, Θ) belong to exponential family, from equation 3.14 and 

equation 3.16, we have: 

𝐷20𝐻(Θ∗|Θ∗) = −𝑉(𝜏(𝑋)|𝑌, Θ∗) 
𝐷20𝑄(Θ∗|Θ∗) = −𝑉(𝜏(𝑋)|Θ∗) 

Hence, equation 3.34 specifies DM(Θ*) in case of exponential family. 

𝐷𝑀(Θ∗) = 𝑉(𝜏(𝑋)|𝑌, Θ∗)(𝑉(𝜏(𝑋)|Θ∗))
−1

 (3.34) 

Equation 3.35 specifies relationships among VH(Θ*), VQ(Θ*), V(τ(X) | Y, Θ*), and V(τ(X) | Θ*) 

in case of exponential family. 

𝑉𝐻(Θ
∗) = (𝑉(𝜏(𝑋)|𝑌, Θ∗))

−1

𝑉𝑄(Θ
∗) = (𝑉(𝜏(𝑋)|Θ∗))

−1  (3.35) 

 

4. Variants of EM algorithm 
The main purpose of EM algorithm (GEM algorithm) is to maximize the log-likelihood L(Θ) 

= log(g(Y | Θ)) with observed data Y by maximizing the condition expectation Q(Θ’ | Θ). Such 

Q(Θ’ | Θ) is defined fixedly in E-step. Therefore, most variants of EM algorithm focus on how 

to maximize Q(Θ’ | Θ) in M-step more effectively so that EM is faster or more accurate. 

 

4.1. EM with prior probability 

DLR (Dempster, Laird, & Rubin, 1977, pp. 6, 11) mentioned that the convergence rate DM(Θ*) 

specified by equation 3.17 can be improved by adding a prior probability π(Θ) in conjugation 

with f(X | Θ), g(Y | Θ) or k(X | Y, Θ) according to maximum a posteriori probability (MAP) 

method (Wikipedia, Maximum a posteriori estimation, 2017). For example, if π(Θ) in 

conjugation with g(Y | Θ) then, the posterior probability π(Θ | Y) is: 

𝜋(Θ|𝑌) =
𝑔(𝑌|Θ)𝜋(Θ)

∫ 𝑔(𝑌|Θ)𝜋(Θ)dΘ
Θ

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


69 

 

Because ∫ 𝑔(𝑌|Θ)𝜋(Θ)dΘ
Θ

 is constant with regard to Θ, the optimal likelihood-maximization 

estimate Θ* is a maximizer of g(Y | Θ)π(Θ). When π(Θ) is conjugate prior of the posterior 

probability π(Θ | X)  (or π(Θ | Y)), both π(Θ) and π(Θ | X) (or π(Θ | Y)) have the same 

distributions (Wikipedia, Conjugate prior, 2018); for example, if π(Θ) is distributed normally, 

π(Θ | X) (or π(Θ | Y)) is also distributed normally. 

For GEM algorithm, the log-likelihood function associated MAP method is ℒ(Θ) specified 

by equation 4.1.1 with note that π(Θ) is non-convex function. 

ℒ(Θ) = log(𝑔(𝑌|Θ)𝜋(Θ)) = 𝐿(Θ) + log(𝜋(Θ)) (4.1.1) 

It implies from equation 3.2 that 

𝑄(Θ′|Θ) + log(𝜋(Θ′)) = 𝐿(Θ′) + log(𝜋(Θ′)) + 𝐻(Θ′|Θ) = ℒ(Θ′) + 𝐻(Θ′|Θ) 
Let, 

𝑄+(Θ
′|Θ) = 𝑄(Θ′|Θ) + log(𝜋(Θ′)) (4.1.2) 

GEM algorithm now aims to maximize Q+(Θ’ | Θ) instead of maximizing Q(Θ’ | Θ). The proof 

of convergence for Q+(Θ’ | Θ) is not changed in manner but determining the convergence 

matrix Me for Q+(Θ’ | Θ) is necessary. Because H(Θ’ | Θ) is kept intact whereas Q(Θ’ | Θ) is 

replaced by Q+(Θ’ | Θ), we expect that the convergence rate m* specified by equation 3.26 is 

smaller so that the convergence speed s* is increased and so GEM algorithm is improved with 

regard to Q+(Θ’ | Θ). Equation 4.1.3 specifies DM(Θ*) for Q+(Θ’ | Θ). 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄+(Θ
∗|Θ∗))

−1
 (4.1.3) 

Where Q+(Θ’ | Θ) is specified by equation 4.1.2 and D20Q+(Θ’ | Θ) is specified by equation 

4.1.4. 

𝐷20𝑄+(Θ
′|Θ) = 𝐷20𝑄(Θ′|Θ) + 𝐷20𝐿(𝜋(Θ′)) (4.1.4) 

Where, 

𝐿(𝜋(Θ′)) = log(𝜋(Θ′)) 
Because Q(Θ’ | Θ) and π(Θ’) are smooth enough, D20Q(Θ* | Θ*) and D20L(π(Θ*)) are symmetric 

matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018). 

Thus, D20Q(Θ* | Θ*) and D20L(π(Θ*)) are commutative: 

D20Q(Θ* | Θ*)D20L(π(Θ*)) = D20L(π(Θ*))D20Q(Θ* | Θ*) 

Suppose both D20Q(Θ* | Θ*) and D20L(π(Θ*)) are diagonalizable then, they are simultaneously 

diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is an (orthogonal) 

eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange, 

2013): 

𝐷20𝑄(Θ∗|Θ∗) = 𝑉𝑄𝑒
∗𝑉−1

𝐷20𝐿(𝜋(Θ∗)) = 𝑉Π𝑒
∗𝑉−1

 

Where Qe
* and Πe

* are eigenvalue matrices of D20Q(Θ* | Θ*) and D20L(π(Θ*)), respectively. 

Note Qe
* and its eigenvalues are mentioned in equation 3.20. Because π(Θ*) is non-convex 

function, eigenvalues π1
*, π2

*,…, πr
* of Πe

* are non-positive. 

Π𝑒
∗ = (

𝜋1
∗ 0 ⋯ 0

0 𝜋2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜋𝑟

∗

) 

From equation 4.1.2, D20Q+(Θ* | Θ*) is decomposed as below: 

𝐷20𝑄+(Θ
∗|Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) + 𝐷20𝐿(𝜋(Θ∗)) = 𝑉𝑄𝑒

∗𝑉−1 + 𝑉Π𝑒
∗𝑉−1 = 𝑉(𝑄𝑒

∗ + Π𝑒
∗)𝑉−1 

So eigenvalue matrix of D20Q+(Θ* | Θ*) is (Qe
* + Πe

*) and eigenvalues of D20Q+(Θ* | Θ*) are 

qi
* + πi

*, as follows: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


70 

 

𝑄𝑒
∗ + Π𝑒

∗ = (

𝑞1
∗ + 𝜋1

∗ 0 ⋯ 0
0 𝑞2

∗ + 𝜋2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑟

∗ + 𝜋𝑟
∗

) 

According to equation 3.19, the eigenvalue matrix of D20H(Θ* | Θ*) is He
* fixed as follows: 

𝐻𝑒
∗ = (

ℎ1
∗ 0 ⋯ 0
0 ℎ2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑟

∗

) 

Due to DM(Θ*) = D20H(Θ* | Θ*)D20Q+(Θ* | Θ*), equation 3.21 is re-calculated: 

𝐷𝑀(Θ∗) = (𝑈𝐻𝑒
∗𝑈−1)(𝑈(𝑄𝑒

∗ + Π𝑒
∗)𝑈−1)−1 = 𝑈𝐻𝑒

∗𝑈−1𝑈(𝑄𝑒
∗ +Π𝑒

∗)−1𝑈−1

= 𝑈(𝐻𝑒
∗(𝑄𝑒

∗ + Π𝑒
∗)−1)𝑈−1 

As a result, the convergence matrix Me
* which is eigenvalue matrix of DM(Θ*) is re-calculated 

by equation 4.1.5. 

𝑀𝑒
∗ = 𝐻𝑒

∗(𝑄𝑒
∗ + Π𝑒

∗)−1 =

(

 
 
 
 
 
𝑚1
∗ =

ℎ1
∗

𝑞1
∗ + 𝜋1

∗ 0 ⋯ 0

0 𝑚2
∗ =

ℎ2
∗

𝑞2
∗ + 𝜋2

∗ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑚𝑟
∗ =

ℎ𝑟
∗

𝑞𝑟∗ + 𝜋𝑟∗)

 
 
 
 
 

 (4.1.5) 

The convergence rate m* of GEM is re-defined by equation 4.1.6. 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑟

∗}  where 𝑚𝑖
∗ =

ℎ𝑖
∗

𝑞𝑖
∗ + 𝜋𝑖

∗ (4.1.6) 

Because all hi
*, qi

*, and πi
* are non-positive, we have: 

ℎ𝑖
∗

𝑞𝑖
∗ + 𝜋𝑖

∗ ≤
ℎ𝑖
∗

𝑞𝑖
∗  , ∀𝑖 

Therefore, by comparing equation 4.1.6 and equation 3.26, we conclude that m* is smaller with 

regard to Q+(Θ’ | Θ). In other words, the convergence rate is improved with support of prior 

probability π(Θ). In literature of EM, the combination of GEM and MAP with support of π(Θ) 

results out a so-called MAP-GEM algorithm. 

 

4.2. EM with Newton-Raphson method 

In the M-step of GEM algorithm, the next estimate Θ(t+1) is a maximizer of Q(Θ | Θ(t)), which 

means that Θ(t+1) is a solution of equation D10Q(Θ | Θ(t)) = 0T where D10Q(Θ | Θ(t)) is the first-

order derivative of Q(Θ | Θ(t)) with regard to variable Θ. Newton-Raphson method (McLachlan 

& Krishnan, 1997, p. 29) is applied into solving the equation D10Q(Θ | Θ(t)) = 0T. As a result, 

M-step is replaced a so-called Newton step (N-step). 

N-step starts with an arbitrary value Θ0 as a solution candidate and also goes through many 

iterations. Suppose the current parameter is Θi, the next value Θi +1 is calculated based on 

equation 4.2.1. 

Θ𝑖+1 = Θ𝑖 − (𝐷
20𝑄(Θ𝑖|Θ

(𝑡)))
−1

(𝐷10𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

 (4.2.1) 

N-step converges after some ith iteration. At that time, Θi+1 is solution of equation D10Q(Θ | Θ(t)) 

= 0 if Θi+1=Θi. So the next parameter of GEM is Θ(t+1) = Θi+1. The equation 4.2.1 is Newton-

Raphson process. Recall that D10Q(Θ | Θ(t)) is gradient vector and D20Q(Θ | Θ(t)) is Hessian 

matrix. Following is a proof of equation 4.2.1. 

According to first-order Taylor series expansion of D10Q(Θ | Θ(t)) at Θ = Θi with very small 

residual, we have: 
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𝐷10𝑄(Θ|Θ(𝑡)) ≅ 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) + (Θ − Θ𝑖)

𝑇 (𝐷20𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

 

Because Q(Θ | Θ(t)) is smooth enough, D20Q(Θ | Θ(t)) is symmetric matrix according to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies: 

D20Q(Θ | Θ(t)) = (D20Q(Θ | Θ(t)))T 

So we have: 

𝐷10𝑄(Θ|Θ(𝑡)) ≅ 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) + (Θ − Θ𝑖)

𝑇𝐷20𝑄(Θ𝑖|Θ
(𝑡)) 

Let Θ = Θi+1 and we expect that D10Q(Θi+1 | Θ
(t)) = 0T so that Θi+1 is a solution. 

𝟎𝑇 = 𝐷10𝑄(Θ𝑖+1|Θ
(𝑡)) ≅ 𝐷10𝑄(Θ𝑖|Θ

(𝑡)) + (Θ𝑖+1 − Θ𝑖)
𝑇𝐷20𝑄(Θ𝑖|Θ

(𝑡)) 
It implies: 

(Θ𝑖+1)
𝑇 ≅ (Θ𝑖)

𝑇 − 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) (𝐷20𝑄(Θ𝑖|Θ

(𝑡)))
−1

 

This means: 

Θ𝑖+1 ≅ Θ𝑖 − (𝐷
20𝑄(Θ𝑖|Θ

(𝑡)))
−1

(𝐷10𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

∎ 

Rai and Matthews (Rai & Matthews, 1993) proposed a so-called EM1 algorithm in which 

Newton-Raphson process is reduced into one iteration, as seen in table 4.2.1 (Rai & Matthews, 

1993, pp. 587-588). Rai and Matthews assumed that f(x) belongs to exponential family but their 

EM1 algorithm is really a variant of GEM in general. In other words, there is no requirement 

of exponential family for EM1. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step: 

The next parameter Θ(t+1) is: 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.2) 
 

Table 4.2.1. E-step and M-step of EM1 algorithm 

Rai and Matthews proved convergence of EM1 algorithm by their proposal of equation 4.2.2. 

Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ = Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

Where Θ0
(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡))

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡))

− (Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

By substituting equation 4.2.2 for Q(Θ(t+1) | Θ(t)) – Q(Θ(t) | Θ(t)) with note that D20Q(Θ | Θ(t)) is 

symmetric matrix, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

(Due to ((𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1
)
𝑇

= ((𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇
)
−1

= (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

) 

Let, 
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𝐴 = (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ 𝐷20(Θ0
(𝑡+1)

|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

 

Because Q(Θ’ | Θ) is smooth enough, D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are symmetric 

matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018). 

Thus, D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are commutative: 

D20Q(Θ(t) | Θ(t))D20Q(Θ0
(t+1) | Θ(t)) = D20Q(Θ0

(t+1) | Θ(t))D20Q(Θ(t) | Θ(t))  

Suppose both D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are diagonalizable then, they are 

simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is an 

(orthogonal) eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) 

(StackExchange, 2013): 

𝐷20𝑄(Θ(𝑡)|Θ(𝑡)) = 𝑊𝑄𝑒
(𝑡)𝑊−1

𝐷20𝑄(Θ0
(𝑡+1)|Θ(𝑡)) = 𝑊𝑄𝑒

(𝑡+1)𝑊−1
 

Where Qe
(t) and Qe

(t+1) are eigenvalue matrices of D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)), 

respectively. Matrix A is decomposed as below: 

𝐴 = (𝑊𝑄𝑒
(𝑡)𝑊−1)

−1

∗ (𝑊𝑄𝑒
(𝑡+1)𝑊−1) ∗ (𝑊𝑄𝑒

(𝑡)𝑊−1)
−1

 

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑊−1𝑊𝑄𝑒
(𝑡+1)𝑊−1𝑊(𝑄𝑒

(𝑡))
−1

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑄𝑒
(𝑡+1)𝑄𝑒

(𝑡)𝑊−1 

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑄𝑒
(𝑡)𝑄𝑒

(𝑡+1)𝑊−1 = 𝑊𝑄𝑒
(𝑡+1)𝑊−1 

(Because Qe
(t) and Qe

(t+1) are commutative) 

Hence, eigenvalue matrix of A is also Qe
(t+1). Suppose D20Q(Θ0

(t+1) | Θ(t)) is negative definite, A 

is negative definite too. We have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐴 ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Because D20Q(Θ(t) | Θ(t)) is negative definite, we have: 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

< 0 

Because A is negative definite, we have: 

𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐴 ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

< 0 

As a result, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0, ∀𝑡∎ 

Hence, EM1 surely converges to a local maximizer Θ* according to corollary 3.3 with 

assumption that D20Q(Θ0
(t+1) | Θ(t)) and D20Q(Θ(t) | Θ(t)) are negative definite for all t where 

Θ0
(t+1) is a point on the line segment joining Θ and Θ(t+1). 

Rai and Matthews made experiment on their EM1 algorithm (Rai & Matthews, 1993, p. 

590). As a result, EM1 algorithm saved a lot of computations in M-step. In fact, by comparing 

GEM (table 2.3) and EM1 (table 4.2.1), we conclude that EM1 increases Q(Θ | Θ(t)) after each 

iteration whereas GEM maximizes Q(Θ | Θ(t)) after each iteration. However, EM1 will 

maximizes Q(Θ | Θ(t)) at the last iteration when it converges. EM1 gains this excellent and 

interesting result because of Newton-Raphson process specified by equation 4.2.2. 

Because equation 3.17 is not changed with regard to EM1, the convergence matrix of EM1 

is not changed. 

𝑀𝑒 = 𝐻𝑒𝑄𝑒
−1 

Therefore, EM1 does not improve convergence rate in theory as MAP-GEM algorithm does 

but EM1 algorithm really speeds up GEM process in practice because it saves computational 

cost in M-step. 
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In equation 4.2.2, the second-order derivative D20Q(Θ(t) | Θ(t)) is re-computed at every 

iteration for each Θ(t). If D20Q(Θ(t) | Θ(t)) is complicated, it can be fixed by D20Q(Θ(1) | Θ(1)) 

over all iterations where Θ(1) is arbitrarily initialized for EM process so as to  save 

computational cost. In other words, equation 4.2.2 is replaced by equation 4.2.3 (Ta, 2014). 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Θ(1)|Θ(1)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.3) 

In equation 4.2.3, only D10Q(Θ(t) | Θ(t)) is re-computed at every iteration whereas D20Q(Θ(1) | 

Θ(1)) is fixed. Equation 4.2.3 implies a pseudo Newton-Raphson process which still converges 

to a local maximizer Θ* but it is slower than Newton-Raphson process specified by equation 

4.2.2 (Ta, 2014). 

Newton-Raphson process specified by equation 4.2.2 has second-order convergence. I 

propose to use equation 4.2.4 for speeding up EM1 algorithm. In other words, equation 4.2.2 

is replaced by equation 4.2.4 (Ta, 2014), in which Newton-Raphson process is improved with 

third-order convergence. Note, equation 4.2.4 is common in literature of Newton-Raphson 

process. 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Φ(𝑡)|Θ(𝑡)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Where, 

Φ(𝑡) = Θ(𝑡) −
1

2
(𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

(4.2.4) 

The convergence of equation 4.2.4 is same as the convergence of equation 4.2.2. Following is 

a proof of equation 4.2.4 by Ta (Ta, 2014). 

Without loss of generality, suppose Θ is scalar such that Θ = θ, let 

𝑞(𝜃) = 𝐷10𝑄(𝜃|𝜃(𝑡)) 

Let r(θ) represents improved Newton-Raphson process. 

𝜂(𝜃) = 𝜃 −
𝑞(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

Suppose ω(θ) has first derivative and we will find ω(θ). According to Ta (Ta, 2014), the first-

order derivative of η(θ) is: 

𝜂′(𝜃) = 1 −
𝑞′(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

+
𝑞(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

According to Ta (Ta, 2014), the second-order derivative of η(θ) is: 

𝜂′′(𝜃) = −
𝑞′′(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

+
2𝑞′(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

−
2𝑞(𝜃) (𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))

2

(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))
2

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
3  

+
𝑞(𝜃)𝑞′′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

2

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


74 

 

+
(𝑞(𝜃))

2
𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))𝜔′′(𝜃)

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

+
𝑞(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(2𝜔′(𝜃)𝑞′(𝜃) + 𝜔(𝜃)𝑞′′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

If �̅� is solution of equation q(θ) = 0, Ta (Ta, 2014) gave: 

𝑞(�̅�) = 0

𝜂(�̅�) = �̅�

𝜂′(�̅�) = 0

𝜂′′(�̅�) =
𝑞′′(�̅�)

𝑞′(�̅�)
(1 + 2𝜔(�̅�)𝑞′(�̅�))

 

In order to achieve 𝜂′′(�̅�) = 0, Ta (Ta, 2014) selected: 

𝜔(𝜃) = −
𝑞(𝜃)

2𝑞′(𝜃)
, ∀𝜃 

According to Ta (Ta, 2014), Newton-Raphson process is improved as follows: 

𝜃(𝑡+1) = 𝜃(𝑡) −
𝑞(𝜃(𝑡))

𝑞′ (𝜃(𝑡) −
𝑞(𝜃(𝑡))

2𝑞′(𝜃(𝑡))
)

 

This means: 

𝜃(𝑡+1) = 𝜃(𝑡) −
𝐷10𝑄(𝜃|𝜃(𝑡))

𝐷20𝑄 (𝜃(𝑡) −
𝐷10𝑄(𝜃|𝜃(𝑡))

2𝐷20𝑄(𝜃|𝜃(𝑡))
|𝜃(𝑡))

 

As a result, equation 4.2.4 is a generality of the equation above when Θ is vector. 

I propose to apply gradient descent method (Ta, 2014) into M-step of GEM so that Newton-

Raphson process is replaced by gradient descent process with expectation that descending 

direction which is the opposite of gradient vector D10Q(Θ | Θ(t)) speeds up convergence of GEM. 

Table 4.2.2 specifies GEM associated with gradient descent method, which is called GD-GEM 

algorithm. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step: 

The next parameter Θ(t+1) is: 

Θ(𝑡+1) = Θ(𝑡) − 𝛾(𝑡) (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.5) 

Where γ(t) > 0 is length of the descending direction. As usual, γ(t) is selected such that 

𝛾(𝑡) = argmax
𝛾

𝑄(Φ(𝑡)|Θ(𝑡)) (4.2.6) 

Where, 

Φ(𝑡) = Θ(𝑡) + 𝛾𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) 

Table 4.2.1. E-step and M-step of GD-GEM algorithm 

Note, gradient descent method is used to solve minimization problem but its use for solving 

maximization problem is the same. Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ 

= Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 
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Where Θ0
(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡))

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡))

− (Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

By substituting equation 4.2.5 for Q(Θ(t+1) | Θ(t)) – Q(Θ(t+1) | Θ(t)), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= 𝛾(𝑡)𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−(𝛾(𝑡))
2
𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐷20(Θ0

(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Due to: 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

≥ 0

Suppose 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) is negative definite

𝛾(𝑡) > 0

 

As a result, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0, ∀𝑡∎ 

Hence, GD-GEM surely converges to a local maximizer Θ* according to corollary 3.3 with 

assumption that D20Q(Θ0
(t+1) | Θ(t)) is negative definite where Θ0

(t+1) is a point on the line 

segment joining Θ and Θ(t+1). 

It is not easy to solve the maximization problem with regard to γ according to equation 

4.2.6. So if Q(Θ | Θ(t)) satisfies Wolfe conditions (Wikipedia, Wolfe conditions, 2017) and 

concavity and D10Q(Θ | Θ(t)) is Lipschitz continuous (Wikipedia, Lipschitz continuity, 2018) 

then, equation 4.2.6 is replaced by equation 4.2.7 (Wikipedia, Gradient descent, 2018). 

𝛾(𝑡) =
(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐷10𝑄(Θ(𝑡)|Θ(𝑡−1))) (Θ(𝑡) − Θ(𝑡−1))

|𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐷10𝑄(Θ(𝑡)|Θ(𝑡−1))|
2  (4.2.7) 

Where |.| denotes length or module of vector. 

 

4.3. EM with Aitken acceleration 

According to Lansky and Casella (Lansky & Casella, 1992), GEM converges faster by 

combination of GEM and Aitken acceleration. Without loss of generality, suppose Θ is scalar 

such that Θ = θ, the sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is monotonous. From equation 

3.23 

𝐷𝑀(𝜃∗) = lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
 

We have the following approximate with t large enough (Lambers, 2009, p. 1): 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≈
𝜃(𝑡+2) − 𝜃∗

𝜃(𝑡+1) − 𝜃∗
 

We establish the following equation from the above approximation, as follows (Lambers, 2009, 

p. 1): 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≈
𝜃(𝑡+2) − 𝜃∗

𝜃(𝑡+1) − 𝜃∗
 

⇒ (𝜃(𝑡+1) − 𝜃∗)
2
≈ (𝜃(𝑡+2) − 𝜃∗)(𝜃(𝑡) − 𝜃∗) 

⇒ (𝜃(𝑡+1))
2
− 2𝜃(𝑡+1)𝜃∗ ≈ 𝜃(𝑡+2)𝜃(𝑡) − 𝜃(𝑡+2)𝜃∗ − 𝜃(𝑡)𝜃∗ 

⇒ (𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡))𝜃∗ ≈ 𝜃(𝑡)(𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)) − (𝜃(𝑡+1) − 𝜃(𝑡))
2
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Hence, θ* is approximated by (Lambers, 2009, p. 1) 

𝜃∗ ≈ 𝜃(𝑡) −
(𝜃(𝑡+1) − 𝜃(𝑡))

2

𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)
 

We construct Aitken sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … such that (Wikipedia, Aitken's 

delta-squared process, 2017) 

𝜃(𝑡) = 𝜃(𝑡) −
(𝜃(𝑡+1) − 𝜃(𝑡))

2

𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)
= 𝜃(𝑡) −

(∆𝜃(𝑡))
2

∆2𝜃(𝑡)
 (4.3.1) 

Where Δ is forward difference operator, 

∆𝜃(𝑡) = 𝜃(𝑡+1) − 𝜃(𝑡) 
And 

∆2𝜃(𝑡) = ∆(∆𝜃(𝑡)) = ∆(𝜃(𝑡+1) − 𝜃(𝑡)) = ∆𝜃(𝑡+1) − ∆𝜃(𝑡)

= (𝜃(𝑡+2) − 𝜃(𝑡+1)) − (𝜃(𝑡+1) − 𝜃(𝑡)) = 𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡) 

When Θ is vector as Θ = (θ1, θ2,…, θr)
T, Aitken sequence {Θ̂(𝑡)}

𝑡=1

+∞
= Θ̂(1), Θ̂(2), … , Θ̂(𝑡), … is 

defined by applying equation 4.3.1 into its components θi (s) according to equation 4.3.2: 

𝜃𝑖
(𝑡) = 𝜃𝑖

(𝑡) −
(∆𝜃𝑖

(𝑡))
2

∆2𝜃𝑖
(𝑡)

, ∀𝑖 = 1,2, … , 𝑟 (4.3.2) 

Where, 

∆𝜃𝑖
(𝑡) = 𝜃𝑖

(𝑡+1) − 𝜃𝑖
(𝑡)

 

∆2𝜃(𝑡) = 𝜃𝑖
(𝑡+2) − 2𝜃𝑖

(𝑡+1) + 𝜃𝑖
(𝑡)

 

According theorem of Aitken acceleration, Aitken sequence {Θ̂(𝑡)}
𝑡=1

+∞
 approaches Θ* faster 

than the sequence {Θ(𝑡)}
𝑡=1

+∞
= Θ(1), Θ(2), … , Θ(𝑡), … with note that the sequence {Θ(𝑡)}

𝑡=1

+∞
 is 

instance of GEM. 

lim
𝑡→+∞

𝜃𝑖
(𝑡) − 𝜃𝑖

∗

𝜃𝑖
(𝑡) − 𝜃𝑖

∗
= 0 

Essentially, the combination of GEM and Aitken acceleration is to replace the sequence 

{Θ(𝑡)}
𝑡=1

+∞
 by Aitken sequence {Θ̂(𝑡)}

𝑡=1

+∞
 as seen in table 4.3.1. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. Note that t = 1, 2, 3,… and Θ(0) 

= Θ(1). 

M-step: 

Let Θ(t+1) = (θ1
(t+1), θ2

(t),…, θr
(t+1))T be a maximizer of Q(Θ | Θ(t)). Note Θ(t+1) will become 

current parameter at the next iteration ((t+1)th iteration). 

Aitken parameter Θ̂(𝑡−1) = (𝜃1
(𝑡−1), 𝜃2

(𝑡−1), … , 𝜃𝑟
(𝑡−1))

𝑇

 is calculated according to 

equation 4.3.2. 

𝜃𝑖
(𝑡−1) = 𝜃𝑖

(𝑡−1) −
(∆𝜃𝑖

(𝑡−1))
2

∆2𝜃𝑖
(𝑡−1)

 

If Θ̂(𝑡−1) = Θ̂(𝑡−2) then, the algorithm stops and we have Θ̂(𝑡−1) = Θ̂(𝑡−2) = Θ∗.  
Table 4.3.1. E-step and M-step of GEM algorithm combined with Aitken acceleration 

Because Aitken sequence {Θ̂(𝑡)}
𝑡=1

+∞
converges to Θ* faster than the sequence {Θ(𝑡)}

𝑡=1

+∞
 does, the 

convergence of GEM is improved with support of Aitken acceleration method. 
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In equation 4.3.2, parametric components θi (s) converges separately. Guo, Li, and Xu (Guo, 

Li, & Xu, 2017) assumed such components converges together with the same rate. So they 

replaced equation 4.3.2 by equation 4.3.3 (Guo, Li, & Xu, 2017, p. 176) for Aitken sequence 

{Θ̂(𝑡)}
𝑡=1

+∞
. 

Θ̂(𝑡) = Θ(𝑡) −
|∆Θ(𝑡)|

2

|∆2Θ(𝑡)|
∆2Θ(𝑡) (4.3.3) 

 

4.4. ECM algorithm 

Because M-step of GEM is complicated, Meng and Rubin (Meng & Rubin, 1993) proposed a 

so-called Expectation Conditional Expectation (ECM) algorithm in which M-step is replaced 

by several computationally simpler Conditional Maximization (CM) steps. Each CM-step 

maximizes Q(Θ | Θ(t)) on given constraint. ECM is very useful in the case that maximization 

of Q(Θ | Θ(t)) with constraints is simpler than maximization of Q(Θ | Θ(t)) without constraints 

as usual. 

Suppose the parameter Θ is partitioned into S sub-parameters Θ = {Θ1, Θ2,…, ΘS} and there 

are S pre-selected vector function gs(Θ): 

𝐺 = {𝑔𝑠(Θ); 𝑠 = 1,2, … , 𝑆} (4.4.1) 

Each function gs(Θ) represents a constraint. Support there is a sufficient enough number of 

derivatives of each gs(Θ). In ECM algorithm (Meng & Rubin, 1993, p. 268), M-step is replaced 

by a sequence of CM-steps. Each CM-step maximizes Q(Θ | Θ(t)) over Θ but with some function 

gs(Θ) fixed at its previous value. Concretely, there are S CM-steps and every sth CM-step finds 

Θ(t+s/S) that maximizes Q(Θ | Θ(t)) over Θ subject to the constraint gs(Θ) = gs(Θ
(t+(s–1)/S)). The 

next parameter Θ(t+1) is the output of the final CM-step such that Θ(t+1) = Θ(t+s/S). Table 4.4.1 

(Meng & Rubin, 1993, p. 272) shows E-step and CM-steps of ECM algorithm. 

E-step: 

As usual, Q(Θ | Θ(t)) is determined based on current Θ(t) according to equation 2.8. 

Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

CM-steps: 

There are S CM-steps. In every sth CM step (s =1, 2,…, S), finding 

Θ(𝑡+
𝑠
𝑆
) = argmax

Θ
{𝑄(Θ|Θ(𝑡)) with subject to 𝑔𝑠(Θ) = 𝑔𝑠 (Θ

(𝑡+
𝑠−1
𝑆
))} (4.4.2) 

The next parameter Θ(t+1) is the output of the final CM-step (Sth CM-step): 

Θ(𝑡+1) = Θ(𝑡+
𝑆
𝑆
)
 (4.4.3) 

Note, Θ(t+1) will become current parameter at the next iteration ((t+1)th iteration). 

Table 4.3.1. E-step and CM-steps of ECM algorithm 

ECM algorithm stops at some tth iteration such that Θ(t) = Θ(t+1) = Θ*. CM-steps depend on how 

to define pre-selected functions in G. For example, if gs(Θ) consists all sub-parameters except 

Θs then, the sth CM-step maximizes Q(Θ | Θ(t)) with regard to Θs whereas other sub-parameters 

are fixed. If gs(Θ) consists only Θs then, the sth CM-step maximizes Q(Θ | Θ(t)) with regard to 

all sub-parameters except Θs. Note, definition of ECM algorithm is specified by equation 4.4.2 

and equation 4.4.3 

From equation 4.4.2 and equation 4.4.3, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝑄(𝑀(Θ(𝑡))|Θ(𝑡)) ≥ 𝑄(Θ(𝑡)|Θ(𝑡)), ∀𝑡 
Hence, the convergence of ECM is asserted according to corollary 3.3. However, Meng and 

Rubin (Meng & Rubin, 1993, pp. 274-276) provided some conditions for convergence of ECM 

to a maximizer of L(Θ). 
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5. Applications of EM 
 

5.1. Mixture model 

As usual, let X be the hidden or latent space and let Y be the observed space. Especially, the 

random variable X in X represents latent class or latent component of random variable Y in Y. 

Suppose X is discrete and ranges in X = {1, 2,…, K}. The so-called probabilistic finite mixture 

model is represented by the PDF of Y, as seen in equation 5.1.1. 

𝑓(𝑌|Θ) = ∑𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)

𝐾

𝑋=1

 (5.1.1) 

Where, 

Θ = (𝛼1, 𝛼2, … , 𝛼𝐾, 𝜃1, 𝜃2, … , 𝜃𝐾)
𝑇

∑𝛼𝑘

𝐾

𝑘=1

= 1
 

Note, Y can be discrete or continuous. Recall that the ultimate purpose of EM algorithm is to 

maximize f(Y|Θ) with subject to Θ. Each fX(Y|θX) is called the Xth partial PDF of Y whose partial 

parameter is θX. Each fX(Y|θX) is also called the Xth observational PDF of Y. It is really the 

conditional PDF of Y given X, as seen in equation 5.1.2. 

𝑓𝑋(𝑌|𝜃𝑋) = 𝑓(𝑌|𝑋, 𝜃𝑋) (5.1.2) 

From equation 5.1.1, the mixture model f(Y|Θ) is the mean of K partial PDFs. The variable X 

implies which partial PDF “generates” Y (Bilmes, 1998, p. 5). 

Each αX is called mixture coefficient. It is really the probability of discrete X, as seen in 

equation 5.1.3. However, in mixture model, each αX is also considered as parameter, which is 

belongs to the compound parameter Θ. 

𝛼𝑋 = 𝑃(𝑋) (5.1.3) 

The joint probabilistic distribution of X and Y, which implies the implicit mapping between X 

and Y, is product of the mixture coefficient αX and the Xth PDF of Y, as seen in equation 5.1.4. 

𝑓(𝑋, 𝑌|Θ) = 𝑃(𝑋)𝑓(𝑌|𝑋, 𝜃𝑋) = 𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋) (5.1.4) 

This implies: 

𝑓(𝑌|Θ) = ∑𝑓(𝑋, 𝑌|Θ)

𝐾

𝑋=1

= ∑𝑃(𝑋)𝑓(𝑌|𝑋, 𝜃𝑋)

𝐾

𝑋=1

= ∑𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)

𝐾

𝑋=1

 (5.1.5) 

Equation 5.1.6 specifies the conditional probability of X given Y. Please pay attention to this 

important probability. 

𝑃(𝑋|𝑌, Θ) =
𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)

∑ 𝛼𝑙𝑓𝑙(𝑌|𝜃𝑙)
𝐾
𝑙=1

 (5.1.6) 

Following is the proof of equation 5.1.6. According to Bayes’ rule, we have: 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦, Θ) =
𝑃(𝑥)𝑓(𝑦|𝑥, 𝜃𝑥)

∑ 𝑃(𝑋)𝑓(𝑌|𝑋, 𝜃𝑋)
𝐾
𝑋=1

 

Applying equation 5.1.3 and equation 5.1.4, we have: 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦, Θ) =
𝛼𝑥𝑓𝑥(𝑦|𝜃𝑥)

∑ 𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)
𝐾
𝑋=1

 

In other words, equation 5.1.6 is established■ 

Now GEM algorithm is applied into mixture model for estimating the parameter Θ. Derived 

from equation 2.12, the conditional expectation Q(Θ’|Θ) of mixture model becomes: 

𝑄(Θ′|Θ) =∑𝑃(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))

𝑋

=∑𝑃(𝑋|𝑌, Θ)log(𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋
′ ))

𝑋

 (5.1.7) 
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In practice, suppose Y is observed as a sample 𝒴 = {Y1, Y2,…, YN} of size N in which all Yi (s) 

are mutually independent and identically distributed (iid). The observed sample 𝒴 is associated 

with a a hidden set (latent set) 𝒳 = {X1, X2,…, XN} of size N. All Xi (s) are iid and they are not 

existent in fact. Let 𝑋 ∈ 𝑿 be the random variable representing every Xi. Of course, the domain 

of X is X. Derived from equation 2.15, equation 5.1.8 specifies Q(Θ’|Θ) given such 𝒴. 

𝑄(Θ′|Θ) =∑∑𝑃(𝑋|𝑌𝑖, Θ)log(𝛼𝑋𝑓𝑋(𝑌𝑖|𝜃𝑋
′ ))

𝑋

𝑁

𝑖=1

 (5.1.8) 

Equation 5.1.8 is the general case of equation 5.1.7. At the tth iteration of GEM, given current 

parameter Θ(t) = (α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, the conditional expectation specified 

by equation 5.1.8 is written as follows: 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑋|𝑌𝑖, Θ
(𝑡))log(𝛼𝑋𝑓𝑋(𝑌𝑖|𝜃𝑋))

𝑋

𝑁

𝑖=1

 

Thus, the unknown of Q(Θ|Θ(t)) is Θ = (α1, α2,…, αK, θ1, θ2,…, θK)T. Because X is discrete and 

ranges in {1, 2,…, K}, the conditional expectation Q(Θ|Θ(t)) is re-written as equation 5.1.9 for 

convenience. 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝛼𝑘𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

 (5.1.9) 

Where the conditional probability P(k | Y, Θ(t)) is determined by equation 5.1.10 which is indeed 

equation 5.1.6. 

𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) = 𝑃(𝑋 = 𝑘|𝑌𝑖, Θ

(𝑡)) =
𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 (5.1.10) 

At M-step of the current tth iteration, Q(Θ|Θ(t)) specified by equation 5.1.9 is maximized with 

subject to Θ. How to maximize Q(Θ|Θ(t)) with subject to Θ is dependent on types of partial 

PDFs fk(Yi|θk). 

Because there is the constraint ∑ 𝜃𝑘
𝑛
𝑘=1 = 1, we use Lagrange duality method to maximize 

to maximize Q(Θ|Θ(t)). The Lagrange function la(Θ, λ | Θ(t)) is sum of Q(Θ|Θ(t)) and the 

constraint ∑ 𝛼𝑘
𝐾
𝑘=1 = 1, which is specified by equation 5.1.11. 

𝑙𝑎(Θ, λ|Θ(𝑡)) = 𝑄(Θ|Θ(𝑡)) + 𝜆 (1 −∑𝛼𝑘

𝐾

𝑘=1

)

=∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝛼𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

+∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

+ 𝜆(1 −∑𝛼𝑘

𝐾

𝑘=1

) 

(5.1.11) 

Note, λ ≥ 0 is called Lagrange multiplier. Of course, la(Θ, λ | Θ(t)) is function of Θ and λ. The 

next parameters αk
(t+1) that maximizes Q(Θ|Θ(t)) is solution of the equation formed by setting 

the first-order partial derivative of Lagrange function regarding αk and λ to be zero with suppose 

that the Lagrange function is first-order smooth function. 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝛼𝑘
= 0  

⇔
𝜕

𝜕𝛼𝑘
(∑∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))log(𝛼𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

+ 𝜆(1 −∑𝛼𝑘

𝐾

𝑘=1

)) = 0 
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⇔∑
1

𝛼𝑘
𝑃(𝑘|𝑌𝑖 , Θ

(𝑡))

𝑁

𝑖=1

− 𝜆 = 0 

This implies: 

∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

− 𝛼𝑘𝜆 = 0 (5.1.12) 

Summing equation 5.1.12 over K classes {1, 2,…, K}, we have (Bilmes, 1998, p. 5): 

∑∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))

𝐾

𝑘=1

𝑁

𝑖=1

− 𝜆∑𝛼𝑘

𝐾

𝑘=1

= 0 

⟺𝑁− 𝜆 = 0 

(due to ∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝐾

𝑘=1

= 1 and ∑𝛼𝑘

𝐾

𝑘=1

= 1) 

⟺ 𝜆 = 𝑁 

Substituting λ = N into equation 5.1.12, the next parameters αk
(t+1) is totally determined by 

equation 5.1.13. 

𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

 (5.1.13) 

Note, the conditional probability P(k | Yi, Θ
(t)) is determined by equation 5.1.10. 

When parameters αk
(t+1) and λ are determined, the Lagrange function la(Θ, λ | Θ(t)) is now 

function of parameters θk as la(θk|θk
(t)). The next parameters θk

(t+1) is solution of the equation 

formed by setting the first-order partial derivative of Lagrange function regarding θk to be zero 

with suppose that the Lagrange function is first-order smooth function. 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝜃𝑘
= 𝟎𝑇 

⇔
𝜕

𝜕𝜃𝑘
(∑∑𝑃(𝑘|𝑌𝑖 , Θ

(𝑡))log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

) = 𝟎𝑇 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 𝟎𝑇 

Thus, the next parameters θk
(t+1) is solution of the equation 5.1.14. 

∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 𝟎𝑇 (5.1.14) 

The two steps of GEM algorithm for constructing mixture model at some tth iteration are shown 

in table 5.1.1. Note, suppose the Lagrange function is first-order smooth function. 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 5.1.10. 

𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (α1
(t+1), α2

(t+1),…, αK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 5.1.13 and equation 

5.1.14. Note, θk
(t+1) is solution of the equation 5.1.14. 
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𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜃𝑘
(𝑡+1):∑𝑃(𝑘|𝑌𝑖 , Θ

(𝑡))
𝜕log (𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡+1)))

𝜕𝜃𝑘

𝑁

𝑖=1

= 𝟎𝑇

 

Table 5.1.1. E-step and M-step of GEM algorithm for constructing mixture model regarding 

first-order smooth Lagrange function 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the optimal 

estimate of mixture model regarding first-order smooth Lagrange function. 

Suppose that each PDF fk(Yi|θk) ) belongs to regular exponential family and then, solving 

equation 5.1.4 is easier as follows: 

∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 𝟎𝑇 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝜕log (𝑏(𝑌𝑖) exp(𝜃𝑘
𝑇𝜏(𝑌𝑖)) 𝑎(𝜃𝑘)⁄ )

𝜕𝜃𝑘

𝑁

𝑖=1

= 𝟎𝑇 

(Due to fk(Yi|θk) ) belongs to exponential family) 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝜏(𝑌𝑖))

𝑇
− log′(𝑎(𝜃𝑘)))

𝑁

𝑖=1

= 𝟎𝑇 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) (𝜏(𝑌𝑖)

𝑇 − (𝐸(𝜏(𝑌)|𝜃𝑘))
𝑇
)

𝑁

𝑖=1

= 𝟎𝑇 

(Due to log’(a(θk)) = (E(τ(Y|θk)))
T, please see table 1.2) 

In general, the next parameters θk
(t+1) is solution of the equation 5.1.15 within regular 

exponential family. 

∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝜏(𝑌𝑖) − 𝐸(𝜏(𝑌)|𝜃𝑘))

𝑁

𝑖=1

= 𝟎 (5.1.15) 

Where Y is the random variable representing all Yi (s) and, 

𝐸(𝜏(𝑌)|𝜃𝑘) = ∫𝜏(𝑌)𝑓𝑘(𝑌|𝜃𝑘)d𝑌

𝑌

 

The two steps of GEM algorithm for constructing mixture model at some tth iteration are shown 

in table 5.1.2 with suppose that each partial PDF fX(Y|θX) is assumed to belong regular 

exponential family. 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 5.1.10. 

𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (α1
(t+1), α2

(t+1),…, αK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 5.1.13 and equation 

5.1.15. Note, θk
(t+1) is solution of the equation 5.1.15. 
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𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜃𝑘
(𝑡+1):∑𝑃(𝑘|𝑌𝑖 , Θ

(𝑡)) (𝜏(𝑌𝑖) − 𝐸(𝜏(𝑌)|𝜃𝑘
(𝑡+1)))

𝑁

𝑖=1

= 𝟎

 

Table 5.1.2. E-step and M-step of GEM algorithm for constructing mixture model regarding 

regular exponential family 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the optimal 

estimate of mixture model regarding regular exponential family. 

There is a special case that each fk(Yi|θk) is normal distribution, which is popular in domain 

of mixture model, with note that normal distribution belongs to regular exponential family. 

Thus, let Y be random variable representing all Yi. Without loss of generality, suppose Y is 

vector so that each fk(Y|θk) is multinormal distribution. Recall that each fk(Y|θk) is called the kth 

partial PDF of Y or the kth observational PDF of Y. In this case, the mixture model is called 

normal mixture model (Gaussian mixture model) and it is easy to solve equation 5.1.14 or 

equation 5.1.15 for θk. Suppose random variable Y is vector of size n. 

𝑓𝑘(𝑌|𝜃𝑘) = (2𝜋)−
𝑛
2|Σ𝑘|

−
1
2exp (−

1

2
(𝑌 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌 − 𝜇𝑘)) (5.1.16) 

Where μk and Σk are mean vector and covariance matrix of fk(Y|θk), respectively. The notation 

|.| denotes determinant of given matrix and the notation Σk
–1 denotes inverse of matrix Σk. Note, 

Σk is invertible and symmetric. Now we find other parameters θk
(t+1) = (μk

(t+1), Σk
(t+1))T by solving 

directly equation 5.1.14 or equation 5.1.15. Recall that each Yi conforms to multinormal 

distribution, according to equation 5.1.16. 

𝑓𝑘(𝑌𝑖|𝜃𝑘) = (2𝜋)
−
𝑛
2|Σ𝑘|

−
1
2exp (−

1

2
(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)) 

Where μk and Σk are mean and covariance matrix of fk(Yi|θk), respectively. The Lagrange 

function is re-written as follows: 

𝑙𝑎(Θ, λ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝛼𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

+∑∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) (−

𝑛

2
log(2π) −

1

2
log|Σ𝑘|

𝐾

𝑘=1

𝑁

𝑖=1

−
1

2
(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)) + 𝜆 (1 −∑𝛼𝑘

𝐾

𝑘=1

) 

Where p is the dimension of Yi; in other words, p is the dimension of space Y. 

The first-order partial derivative of Lagrange function with respect to μk is (Nguyen, 2015, 

p. 35): 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝜇𝑘
=∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))((𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1)

𝑁

𝑖=1

 

(due to 
𝜕(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)

𝜕𝜇𝑘
= −2(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1 when Σ𝑘

−1 is symmetric) 

The next parameter μk
(t+1) that maximizes Q(Θ|Θ(t)) is solution of the equation formed by setting 

the first-order partial derivative of Lagrange function with regard to μk to be 0T. Note that 0 = 

(0, 0,…, 0)T is zero vector. 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝜇𝑘
= 𝟎𝑇 
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⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))((𝑌𝑖 − 𝜇𝑘)

𝑇∑𝑘
−1)

𝑁

𝑖=1

= 𝟎𝑇 

⇔ (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝑌𝑖 − 𝜇𝑘)

𝑇

𝑁

𝑖=1

)∑𝑘
−1 = 𝟎𝑇 

⇒∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝑌𝑖 − 𝜇𝑘)

𝑇

𝑁

𝑖=1

= 𝟎𝑇 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝑌𝑖 − 𝜇𝑘)

𝑁

𝑖=1

= 𝟎 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑌𝑖

𝑁

𝑖=1

− (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)𝜇𝑘 = 𝟎 

⇔ (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)𝜇𝑘 =∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))𝑌𝑖

𝑁

𝑖=1

 

This implies equation 5.1.17 to specify the next parameter μk
(t+1). 

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))𝑌𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

 (5.1.17) 

Note, the conditional probability P(k | Yi, Θ
(t)) is determined by equation 5.1.10. 

The first-order partial derivative of Lagrange function with respect to Σk is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕Σ𝑘
=∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡)) (−
1

2
Σ𝑘
−1 +

1

2
Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1)

𝑁

𝑖=1

 

Due to: 
𝜕 log(|Σ𝑘|)

𝜕Σ𝑘
= Σ𝑘

−1 

And 

𝜕(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘)

𝜕Σ𝑘
=
𝜕tr((𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1)

𝜕Σ𝑘
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘) = tr((𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(𝐴) = ∑ 𝑎𝑖𝑖𝑖 . 

This implies (Nguyen, 2015, p. 45): 

𝜕(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘)

𝜕Σ𝑘
=
𝜕tr((𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1)

𝜕Σ𝑘
= −Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1 

Where Σk is symmetric and invertible matrix. Substituting the next parameter μk
(t+1) specified 

by equation 5.1.16 into the first-order partial derivative of Lagrange function with respect to 

Σk, we have: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕Σ𝑘
=∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡)) (−
1

2
Σ𝑘
−1 +

1

2
Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

Σ𝑘
−1)

𝑁

𝑖=1

 

The next parameter Σk
(t+1) that maximizes Q(Θ|Θ(t)) is the solution of equation formed by setting 

the first-order partial derivative of Lagrange function regarding Σk to zero matrix. Let (0) 

denote zero matrix. 
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(𝟎) = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

We have: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕Σ𝑘
= (𝟎) 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) (−

1

2
Σ𝑘
−1 +

1

2
Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

Σ𝑘
−1)

𝑁

𝑖=1

= (𝟎) 

⇒∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) (−Σ𝑘 + (𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇
)

𝑁

𝑖=1

= (𝟎) 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)

𝑁

𝑖=1

− (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)Σ𝑘 = (𝟎) 

⇔ (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)Σ𝑘 =∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)

𝑁

𝑖=1

 

This implies equation 5.1.18 to specify the next parameter Σk
(t+1). 

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

 
(5.1.18) 

Note, the conditional probability P(k | Yi, Θ
(t)) is determined by equation 5.1.10 and the next 

parameter μk
(t+1) is specified by equation 5.1.17. 

As a result, the solution θk
(t+1) = (μk

(t+1), Σk
(t+1))T of equation 5.1.14 or equation 5.1.15 is 

specified by equation 5.1.17 and equation 5.1.18 when each fk(Y|θk) is multinormal distribution 

within normal mixture model. The two steps of GEM algorithm for constructing normal 

mixture model at some tth iteration are refined in table 5.1.3 (Bilmes, 1998, p. 7). 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 5.1.10. Note, in normal 

mixture model, each observational PDF fk(Y|θk) is (multivariate) normal distribution with 

mean vector μk and covariance matrix Σk such that θk = (μk, Σk)
T. 

𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (α1
(t+1), α2

(t+1),…, αK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 5.1.13, equation 

5.1.17, and equation 5.1.18 with current parameter Θ(t). 
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𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑌𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))𝑁

𝑖=1

 

Table 5.1.3. E-step and M-step of GEM algorithm for constructing normal mixture model 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the optimal 

estimate of normal mixture model. 

An interesting application of finite mixture model is soft clustering. Traditional clustering 

methods assign a fixed cluster to every data point in sample, which means that every data point 

belongs exactly to one cluster. There are some popular (hard) clustering methods such as K-

means and K-medoids (Han & Kamber, 2006, pp. 451-457). Soft clustering is more flexible 

when every data point belongs to more than one cluster and the degree of assignment is 

represented by a probability. Concretely, GEM algorithm for normal mixture model described 

in table 5.1.3 is applied into soft clustering. Given sample 𝒴 = {Y1, Y2,…, YN} of size N in 

which all Yi (s) are iid and each Yi is also called a data point, soft clustering partitions 𝒴 into K 

clusters and each cluster k is considered as hidden variable (X = 1, 2,…, K) and is represented 

by the aforementioned normal PDF fk(Y|θk) 

𝑓𝑘(𝑌𝑖|𝜃𝑘) = (2𝜋)
−
𝑛
2|Σ𝑘|

−
1
2exp (−

1

2
(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)) 

Where θk = (μk, Σk)
T includes mean vector μk and covariance matrix Σk of fk(Y|θk), respectively. 

Especially, μk is considered as centroid of cluster k. Given cluster k, the degree of assignment 

that a data point Y belonging to cluster k is specified by such fk(Y|θk). Therefore, GEM algorithm 

for normal mixture model is used to learn Θ = (α1, α2,…, αK, θ1, θ2,…, θK)T. The parameter αk 

indicates degree of popularity of cluster k, which can be considered as capacity or size of cluster 

k. It can be also considered as coverage ratio of cluster k. The higher the αk is, the larger the 

cluster k is. Essentially, soft clustering is to estimate αk and θk by GEM. Suppose after GEM 

results out the best estimate Θ* = (α1
*, α2

*,…, αK
*, θ1

*, θ2
*,…, θK

*)T, it is required to determine 

to which cluster a new data point Y is more likely to belong. We calculate K joint probabilities 

p1 = α1
*f1(Y|θ1

*), p2 = α2
*f2(Y|θ2

*),…, and pK = αK
*fK(Y|θK

*). Indeed, each pk is the joint 

probability of Y and cluster k that come together. Suppose some pj is maximum then, Y is more 

likely to belong cluster j. 

Of course, the probability of each data point Y within soft clustering for K clusters is 

𝑓(𝑌|Θ) = ∑𝛼𝑘𝑓𝑘(𝑌|𝜃𝑘)

𝐾

𝑘=1

 

But this probability f(Y|Θ) is not important. The most important task of GEM for soft clustering 

is to compute the estimate Θ* = (α1
*, α2

*,…, αK
*, θ1

*, θ2
*,…, θK

*)T from sample 𝒴 in order to 

determine clusters because each cluster k is represented by a pair {αk
*, θk

*}. 

Example 5.1.1. Given sample 𝒴 = {Y1, Y2, Y3, Y4}, we apply GEM for soft clustering 𝒴 into 

K=2 clusters. 

 y1 y2 

Y1 0 0 

Y2 0 1 

Y3 2 0 
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Y4 2 1 

Of course, we have Y1 = (y11=0, y12=0)T, Y2 = (y21=0, y22=1)T, Y3 = (y31=2, y32=0)T, and Y4 = 

(y41=2, y42=1)T. The parameter Θ = (α1, α2, θ1, θ2)
T is initialized as follows: 

𝛼1
(1) = 𝛼2

(1) = 0.5

𝜇1
(1) = 𝜇2

(1) = (0,0)𝑇

Σ1
(1) = Σ2

(1) = (
1 0
0 1

)

 

Note, it is easy to calculate normal PDF fk(Y|θk) with known θk = (μk, Σk)
T. 

At the 1st iteration, E-step we have: 

𝑓1(𝑌1|𝜃1
(1)) ≅ 0.16 

𝑓2(𝑌1|𝜃2
(1)) ≅ 0.16 

𝑓1(𝑌2|𝜃1
(1)) ≅ 0.097 

𝑓2(𝑌2|𝜃2
(1)) ≅ 0.097 

𝑓1(𝑌3|𝜃1
(1)) ≅ 0.022 

𝑓2(𝑌3|𝜃2
(1)) ≅ 0.022 

𝑓1(𝑌4|𝜃1
(1)) ≅ 0.013 

𝑓2(𝑌4|𝜃2
(1)) ≅ 0.013 

 

𝑃(𝑘 = 1|𝑌1, Θ
(1)) =

𝛼1
(1)𝑓1(𝑌1|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌1|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌1|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 2|𝑌1, Θ
(1)) =

𝛼2
(1)𝑓2(𝑌1|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌1|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌1|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 1|𝑌2, Θ
(1)) =

𝛼1
(1)𝑓1(𝑌2|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌2|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌2|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 2|𝑌2, Θ
(1)) =

𝛼2
(1)𝑓2(𝑌2|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌2|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌2|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 1|𝑌3, Θ
(1)) =

𝛼1
(1)𝑓1(𝑌3|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌3|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌3|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 2|𝑌3, Θ
(1)) =

𝛼2
(1)𝑓2(𝑌3|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌3|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌3|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 1|𝑌4, Θ
(1)) =

𝛼1
(1)𝑓1(𝑌4|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌4|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌4|𝜃1

(1))
= 0.5 

𝑃(𝑘 = 2|𝑌4, Θ
(1)) =

𝛼2
(1)𝑓2(𝑌4|𝜃1

(1))

𝛼1
(1)𝑓1(𝑌4|𝜃1

(1)) + 𝛼2
(1)𝑓2(𝑌4|𝜃1

(1))
= 0.5 

At the 1st iteration, M-step we have: 
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𝛼1
(2) =

1

4
∑𝑃(𝑘 = 1|𝑌𝑖, Θ

(1))

4

𝑖=1

= 0.5 

𝜇1
(2) =

∑ 𝑃(𝑘 = 1|𝑌𝑖, Θ
(1))𝑌𝑖

4
𝑖=1

∑ 𝑃(𝑘 = 1|𝑌𝑖 , Θ
(1))4

𝑖=1

= (1,0.5)𝑇 

Σ1
(2) =

∑ 𝑃(𝑘 = 1|𝑌𝑖, Θ
(1)) ((𝑌𝑖 − 𝜇1

(2))(𝑌𝑖 − 𝜇1
(2))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘 = 2|𝑌𝑖 , Θ
(1))4

𝑖=1

= (
1 0
0 0.25

) 

𝛼2
(2) =

1

4
∑𝑃(𝑘 = 2|𝑌𝑖, Θ

(1))

4

𝑖=1

= 0.5 

𝜇2
(2) =

∑ 𝑃(𝑘 = 2|𝑌𝑖 , Θ
(1))𝑌𝑖

4
𝑖=1

∑ 𝑃(𝑘 = 2|𝑌𝑖, Θ
(1))4

𝑖=1

= (1,0.5)𝑇 

Σ2
(2) =

∑ 𝑃(𝑘 = 2|𝑌𝑖, Θ
(1)) ((𝑌𝑖 − 𝜇2

(2))(𝑌𝑖 − 𝜇2
(2))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘 = 2|𝑌𝑖, Θ
(𝑡))4

𝑖=1

= (
1 0
0 0.25

) 

At the 2nd iteration, E-step we have: 

𝑓1(𝑌1|𝜃1
(2)) ≅ 0.1171 

𝑓2(𝑌1|𝜃2
(2)) ≅ 0.1171 

𝑓1(𝑌2|𝜃1
(2)) ≅ 0.1171 

𝑓2(𝑌2|𝜃2
(2)) ≅ 0.1171 

𝑓1(𝑌3|𝜃1
(2)) ≅ 0.1171 

𝑓2(𝑌3|𝜃2
(2)) ≅ 0.1171 

𝑓1(𝑌4|𝜃1
(2)) ≅ 0.1171 

𝑓2(𝑌4|𝜃2
(2)) ≅ 0.1171 

 

𝑃(𝑘 = 1|𝑌1, Θ
(2)) =

𝛼1
(2)𝑓1(𝑌1|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌1|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌1|𝜃1

(2))
= 0.5 

𝑃(𝑘 = 2|𝑌1, Θ
(2)) =

𝛼2
(2)𝑓2(𝑌1|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌1|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌1|𝜃1

(2))
= 0.5 

𝑃(𝑘 = 1|𝑌2, Θ
(2)) =

𝛼1
(2)𝑓1(𝑌2|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌2|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌2|𝜃1

(2))
= 0.5 

𝑃(𝑘 = 2|𝑌2, Θ
(2)) =

𝛼2
(2)𝑓2(𝑌2|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌2|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌2|𝜃1

(2))
= 0.5 

𝑃(𝑘 = 1|𝑌3, Θ
(2)) =

𝛼1
(2)𝑓1(𝑌3|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌3|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌3|𝜃1

(2))
= 0.5 
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𝑃(𝑘 = 2|𝑌3, Θ
(2)) =

𝛼2
(2)𝑓2(𝑌3|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌3|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌3|𝜃1

(2))
= 0.5 

𝑃(𝑘 = 1|𝑌4, Θ
(2)) =

𝛼1
(2)𝑓1(𝑌4|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌4|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌4|𝜃1

(2))
= 0.5 

𝑃(𝑘 = 2|𝑌4, Θ
(2)) =

𝛼2
(2)𝑓2(𝑌4|𝜃1

(2))

𝛼1
(2)𝑓1(𝑌4|𝜃1

(2)) + 𝛼2
(2)𝑓2(𝑌4|𝜃1

(2))
= 0.5 

At the 2nd iteration, M-step we have: 

𝛼1
(3) =

1

4
∑𝑃(𝑘 = 1|𝑌𝑖, Θ

(2))

4

𝑖=1

= 0.5 

𝜇1
(3) =

∑ 𝑃(𝑘 = 1|𝑌𝑖 , Θ
(2))𝑌𝑖

4
𝑖=1

∑ 𝑃(𝑘 = 1|𝑌𝑖, Θ
(2))4

𝑖=1

= (1,0.5)𝑇 

Σ1
(3)
=

∑ 𝑃(𝑘 = 1|𝑌𝑖, Θ
(2)) ((𝑌𝑖 − 𝜇1

(3))(𝑌𝑖 − 𝜇1
(3))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘 = 2|𝑌𝑖 , Θ
(2))4

𝑖=1

= (
1 0
0 0.25

) 

𝛼2
(3) =

1

4
∑𝑃(𝑘 = 2|𝑌𝑖, Θ

(2))

4

𝑖=1

= 0.5 

𝜇2
(3) =

∑ 𝑃(𝑘 = 2|𝑌𝑖 , Θ
(2))𝑌𝑖

4
𝑖=1

∑ 𝑃(𝑘 = 2|𝑌𝑖, Θ
(2))4

𝑖=1

= (1,0.5)𝑇 

Σ2
(3) =

∑ 𝑃(𝑘 = 2|𝑌𝑖, Θ
(2)) ((𝑌𝑖 − 𝜇2

(3))(𝑌𝑖 − 𝜇2
(3))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘 = 2|𝑌𝑖 , Θ
(2))4

𝑖=1

= (
1 0
0 0.25

) 

Therefore, GEM stops at the 2nd iteration with the estimate Θ(2) = Θ(3) = Θ* = (α1
*, α2

*, θ1
*, θ2

*)T. 
𝛼1
∗ = 𝛼2

∗ = 0.5

𝜇1
∗ = 𝜇2

∗ = (1,0.5)𝑇

Σ1
∗ = Σ2

∗ = (
1 0
0 0.25

)

 

Given new data point Y = (0.5, 0.5)T, it is required to determine to which cluster Y is more 

likely to belong. We calculate K joint probabilities as follows: 
𝑝1 = 𝛼1

∗𝑓1(𝑌|𝜃1
∗) ≅ 0.5 ∗ 0.28 = 0.14

𝑝2 = 𝛼2
∗𝑓2(𝑌|𝜃2

∗) ≅ 0.5 ∗ 0.28 = 0.14
 

Due to some p1=p2, the likelihood that Y belongs to such two clusters is equal ■ 

Every observation in ordinary sample is univariate or multivariate but there is a case that 

ordinary sample becomes dyadic sample related to two sets of objects, which causes some 

modifications of mixture model. Dyadic data which is also called co-occurrence data (COD) 

contains co-occurrent events of objects. It is necessary to obtain statistical models to represent 

dyadic data and fortunately, finite mixture model is the one. Recall that EM is applied to learn 

mixture model. Here we focus on EM and mixture model for dyadic data or COD. 

Given two finite sets 𝒳 = {x1, x2,…, xN) and 𝒴 = {y1, y2,…, yM) with note that xi (s) and yj 

(s) represent 𝒳-objects and 𝒴-objects, respectively; exactly, they are names of objects. The 

numbers of 𝒳-objects and 𝒴-objects are |𝒳|=N and |𝒴|=M, respectively. For example, in 

information retrieval, xi (s) are documents and yj (s) are keywords. Hence, xi and yj are not 

evaluated as numbers. An observational pair (xi, yj) ∈ 𝒳 × 𝒴 is called a co-occurrence of xi 
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and yj. Dyadic data or COD 𝒮 contains these co-occurrences with note that a co-occurrence (xi, 

yj) can exist more than one time. So, each co-occurrence (xi, yj) is indexed by an index r. As a 

result, each co-occurrence is denoted by the triple (xi, yj, r) and we have (Hofmann & Puzicha, 

1998, p. 1): 

𝒮 = {(𝑥𝑖 , 𝑦𝑗 , 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (5.1.19) 

Where, 

𝑥𝑖 ∈ 𝒳 = {𝑥1, 𝑥2, … , 𝑥|𝒳|}

𝑦𝑗 ∈ 𝒴 = {𝑦1, 𝑦2, … , 𝑦|𝒴|}
 

Of course, the size of 𝒮 is |𝒮|. As a convention, xi(r) and yj(r) indicate that 𝒳-object and 𝒴-

object at the rth co-occurrence are xi and yj, respectively. Thus, the triplet (xi, yj, r) can be 

denoted as (xi(r), yj(r), r). For example, suppose 𝒳 = {x1, x2, x3) and 𝒴 = {y1, y2), and dyadic 

data of 4 co-occurrences, 𝒮 = {(x1, y1, 1), (x1, y1, 2), (x1, y2, 3), (x1, y1, 4)}, we observe that x1 

and y1 occur together three times at r=1, r=2, and r=4 where as x1 and y2 occur together one 

time at r=3. In the first co-occurrence (x1, y1, 1), the notation x1(1) indicate that the 𝒳-object at 

this co-occurrence is x1. In the third co-occurrence (x1, y2, 3), the notation y2(3) indicate that 

the 𝒴-object at this co-occurrence is y2. 

If each co-occurrence of xi and yj is associated with a value z (Hofmann, Puzicha, & Jordan, 

Learning from Dyadic Data, 1998, p. 1), the triple (xi, yj, r) becomes the quadruplet (xi, yj, z, r) 

which is called valued co-occurrence of xi and yj. The value z is called associative value or co-

occurrent value. If z is value of a variable Z then, Z is called associative variable or co-occurrent 

variable. As a result, the sample 𝒮 is called valued dyadic data or valued COD. Note, Z can be 

univariate or multivariate (vector). 

𝒮 = {(𝑥𝑖, 𝑦𝑗 , 𝑍, 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (5.1.20) 

Where, 

𝑥𝑖 ∈ 𝒳 = {𝑥1, 𝑥2, … , 𝑥|𝒳|}

𝑦𝑗 ∈ 𝒴 = {𝑦1, 𝑦2, … , 𝑦|𝒴|}
 

As a convention, Z(r) or z(r) indicates that the associative value at rth co-occurrence is Z=z. 

Thus, the quadruplet (xi, yj, Z, r) can be denoted as (xi(r), yj(r), Z(r), r). For example, suppose 

𝒳 = {x1, x2, x3) and 𝒴 = {y1, y2), and valued dyadic sample of 4 co-occurrences, 𝒮 = {(x1, y1, 6, 

1), (x1, y1, 8, 2), (x1, y2, 7, 3), (x1, y1, 9, 4)}, we observe that x1 and y1 occur together three times 

at r=1, r=2, and r=4 where as x1 and y2 occur together one time at r=3. Moreover, at r=1, r=2, 

r=3, and r=4, associative values are Z(1)=6, Z(2)=7, Z(3)=8, and Z(4)=9, respectively. Valued 

dyadic data is special case of dyadic data. As a convention, dyadic data is default if there is no 

additional information. 

Given fixed xk, let 𝒮𝑥𝑘  be the 𝒳-partitioned subset of 𝒮  which contains co-occurrences 

whose 𝒳-objects are fixed at xk (Hofmann & Puzicha, Statistical Models for Co-occurrence 

Data, 1998, p. 1). Note, 𝒮𝑥𝑘 can be empty. The size of 𝒮𝑥𝑘  is |𝒮𝑥𝑘|. 

𝒮𝑥𝑘 = {(𝑥𝑖, 𝑦𝑗 , 𝑧, 𝑟): 𝑥𝑖 = 𝑥𝑘} (5.1.21) 

Dyadic data 𝒮 is partitioned into |𝒳| subsets 𝒮𝑥𝑘. 

𝒮 =⋃𝒮𝑥𝑘

|𝒳|

𝑘=1

∀𝑖 ≠ 𝑗, 𝒮𝑥𝑖 ∩ 𝒮𝑥𝑗 = ∅

 

Given fixed yl, let 𝒮𝑦𝑙  be the 𝒴-partitioned subset of 𝒮 which contains co-occurrences whose 

𝒴-objects are fixed at yl. Note, 𝒮𝑦𝑙  can be empty. The size of 𝒮𝑦𝑙 is |𝒮𝑦𝑙|. 

𝒮𝑦𝑙 = {(𝑥𝑖, 𝑦𝑗 , 𝑧, 𝑟): 𝑦𝑗 = 𝑦𝑙} (5.1.22) 

Dyadic data 𝒮 is partitioned into |𝒴| subsets 𝒮𝑦𝑙. 
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𝒮 =⋃𝒮𝑦𝑙

|𝒴|

𝑙=1

∀𝑖 ≠ 𝑗, 𝒮𝑦𝑖 ∩ 𝒮𝑦𝑗 = ∅

 

Given fixed xk and fixed yl, let 𝒮𝑥𝑘𝑦𝑙  be the subset of the 𝒮 which contains co-occurrences 

whose 𝒳-objects and 𝒴-objects are fixed at xk and yl. Note, 𝒮𝑥𝑘𝑦𝑙 can be empty. The size of 

𝒮𝑥𝑘𝑦𝑙 is |𝒮𝑥𝑘𝑦𝑙|. 

𝒮𝑥𝑘𝑦𝑙 = {(𝑥𝑖, 𝑦𝑗 , 𝑧, 𝑟): 𝑥𝑖 = 𝑥𝑘, 𝑦𝑗 = 𝑦𝑙} (5.1.23) 

Let n(xi) and n(yj) denote the number of xi and the number of yj, respectively. 

𝑛(𝑥𝑖) = |𝒮𝑥𝑖|

𝑛(𝑦𝑗) = |𝒮𝑦𝑗|
 (5.1.24) 

Let n(xi, yj) denote the number of xi and yj. 

𝑛(𝑥𝑖 , 𝑦𝑗) = |𝒮𝑥𝑖𝑦𝑗| (5.1.25) 

Let n(xi|yj) and n(yj|xi) denote the frequency of xi given yj and the frequency of yj given xi, 

respectively. 

𝑛(𝑥𝑖|𝑦𝑗) =
𝑛(𝑥𝑖, 𝑦𝑗)

𝑛(𝑦𝑗)

𝑛(𝑦𝑗|𝑥𝑖) =
𝑛(𝑥𝑖, 𝑦𝑗)

𝑛(𝑥𝑖)

 (5.1.26) 

For example, suppose 𝒳 = {x1, x2, x3) and 𝒴 = {y1, y2), and dyadic data of 4 co-occurrences, 𝒮 

= {(x1, y1, 1), (x1, y1, 2), (x1, y2, 3), (x1, y1, 4)}, we have 𝒮𝑥1 = {(x1, y1, 1), (x1, y1, 2), (x1, y2, 3), 

(x1, y1, 4)}, 𝒮𝑥2 = 𝒮𝑥3 = Ø, 𝒮𝑦1 = {(x1, y1, 1), (x1, y1, 2), (x1, y1, 4)}, 𝒮𝑦2 = {(x1, y2, 3)}, 𝒮𝑥1𝑦1 = 

= {(x1, y1, 1), (x1, y1, 2), (x1, y1, 4)}, 𝒮𝑥1𝑦2 = {(x1, y2, 3)}, 𝒮𝑥2𝑦1 = 𝒮𝑥2𝑦2 = 𝒮𝑥3𝑦1 = 𝒮𝑥3𝑦2 = Ø, 

n(x1) = 1, n(x2) = n(x3) = 0, n(y1) = 3, n(y2) = 1, n(x1, y1) = 3, n(x1, y2) = 1, n(x2, y1) = n(x2, y2) 

= n(x3, y1) = n(x3, y2) = 0, n(x1 | y1) = 1, n(x1 | y2) = 1, n(x2 | y1) = n(x2 | y2) = n(x3 | y1) = n(x3 | 

y2) = 0, n(y1 | x1) = 3/4, n(y2 | x1) = 1/4. 

Suppose each co-occurrence (xi, yj) belongs to a latent variable C and C has K values ck (s). 

These values ck (s) are called classes or aspects and thus, mixture model for dyadic data is also 

called aspect model or latent class model which aims to discover the latent variable C. Without 

loss of generality, let ck = k where k = 1, 2,…, K. The random variable C has discrete 

distribution such that every value has an associated probability αk. Of course, there are K 

probabilities αk (s). There are three kinds of dyadic mixture model for dyadic data such as 

symmetric mixture model (SMM), asymmetric mixture model (AMM), and product-space 

mixture model (PMM). These models were introduced by Hofmann and Puzicha (Hofmann & 

Puzicha, Statistical Models for Co-occurrence Data, 1998). 

The mixture model of dyadic data is called symmetric mixture model (SMM) if αk (s) are 

independent from both xi and yj. SMM is defined as follows (Hofmann & Puzicha, Statistical 

Models for Co-occurrence Data, 1998, p. 2): 

𝑃(𝑥𝑖, 𝑦𝑗|Θ) = ∑𝛼𝑘𝑃(𝑥𝑖 , 𝑦𝑗|𝑘)

𝐾

𝑘=1

=∑𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘

𝐾

𝑘=1

 (5.1.27) 

Where αk is the probability of aspect k. Note, P(.) denote probability. 

𝛼𝑘 = 𝑃(𝑘) 
The 𝑝𝑖|𝑘 is the probability of xi given aspect k. 

𝑝𝑖|𝑘 = 𝑃(𝑥𝑖|𝑘) 

The 𝑞𝑗|𝑘 is the probability of yj given aspect k. 
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𝑞𝑗|𝑘 = 𝑃(𝑦𝑗|𝑘) 

This implies that xi and yj are mutually independent in SMM. 

𝑃(𝑥𝑖 , 𝑦𝑗|𝑘) = 𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘) 

The joint probability of xi, yj, and k is: 

𝑃(𝑥𝑖 , 𝑦𝑗 , 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖 , 𝑦𝑗|𝑘) = 𝛼𝑘𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘) = 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘 

The parameter of SMM is Θ = (αk, pi|k, qj|k)
T in which there are K(|𝒳| + |𝒴| + 1) partial 

parameters αk, pi|k, and qj|k. Note, 

∑𝛼𝑘

𝐾

𝑘=1

= 1,∑𝑝𝑖|𝑘

|𝒳|

𝑖=1

= 1,∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

By applying GEM, given dyadic sample 𝒮, at the tth iteration of GEM, given current parameter 

Θ(t) = (αk
(t), pi|k

(t), qj|k
(t))T, the conditional expectation Q(Θ|Θ(t)) is (Nguyen, Learning Dyadic 

Data and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, p. 5): 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡))log(𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘)

𝐾

𝑘=1

|𝒮|

𝑟=1

=∑∑𝑛(𝑥𝑖 , 𝑦𝑗)∑𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) (log(𝛼𝑘) + log(𝑝𝑖|𝑘)

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ log(𝑞𝑗|𝑘)) 

(5.1.28) 

Where, 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑝𝑖|𝑘

(𝑡)𝑞𝑗|𝑘
(𝑡)

∑ 𝛼𝑙
(𝑡)𝑝𝑖|𝑙

(𝑡)𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 (5.1.29) 

Note, n(xi, yj) is the number of co-occurrences (xi, yj) in 𝒮, which is specified by equation 5.1.25. 

Please refer to equation 5.1.6 and equation 5.1.10 to comprehend equation 5.1.29. Because 

there are three constraints 

∑𝛼𝑘

𝐾

𝑘=1

= 1,∑𝑝𝑖|𝑘

|𝒳|

𝑖=1

= 1,∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

We use Lagrange duality method to maximize to maximize Q(Θ|Θ(t)). The Lagrange function 

la(Θ, λ | Θ(t)) is sum of Q(Θ|Θ(t)) and these constraints, as follows (Nguyen, Learning Dyadic 

Data and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, p. 5): 

𝑙𝑎(Θ, λ|Θ(𝑡)) = 𝑄(Θ|Θ(𝑡)) + 𝜆1 (1 −∑𝛼𝑘

𝐾

𝑘=1

) + 𝜆2 (1 −∑𝑝𝑖|𝑘

|𝒳|

𝑖=1

)+ 𝜆3 (1 −∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

)

=∑∑𝑛(𝑥𝑖 , 𝑦𝑗)∑𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) (log(𝛼𝑘) + log(𝑝𝑖|𝑘) + log(𝑞𝑗|𝑘))

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ 𝜆1 (1 −∑𝛼𝑘

𝐾

𝑘=1

) + 𝜆2 (1 −∑𝑝𝑖|𝑘

|𝒳|

𝑖=1

) + 𝜆3 (1 −∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

) 

Note, λ = (λ1, λ2, λ3)
T where λ1≥0, λ2≥0, and λ3≥0 are called Lagrange multipliers. Of course, 

la(Θ, λ | Θ(t)) is function of Θ and λ. The next parameters Θ(t+1) that maximizes Q(Θ|Θ(t)) at M-

step of some tth iteration is solution of the equation formed by setting the first-order partial 

derivatives of Lagrange function regarding Θ and λ to be zero. 

The first-order partial derivative of Lagrange function regarding αk is: 
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𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝛼𝑘
=∑∑𝑛(𝑥𝑖 , 𝑦𝑗)

1

𝛼𝑘
𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ

(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆1 

Setting this partial derivative to be zero, we obtain: 

∑∑𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝛼𝑘𝜆1 = 0 

Summing the equation above over K aspects {1, 2,…, K}, we have: 

∑∑𝑛(𝑥𝑖, 𝑦𝑗)∑𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆1∑𝛼𝑘

𝐾

𝑘=1

= 0 

⇔∑∑𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆1 = 0 ⇔ 𝜆1 =∑∑𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters αk
(t+1) is: 

𝛼𝑘
(𝑡+1) =

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.30) 

The first-order partial derivative of Lagrange function regarding pi|k is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝑝𝑖|𝑘
=∑𝑛(𝑥𝑖 , 𝑦𝑗)

1

𝑝𝑖|𝑘
𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ

(𝑡))

|𝒴|

𝑗=1

− 𝜆2 

Setting this partial derivative to be zero, we obtain: 

∑𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

− 𝑝𝑖|𝑘𝜆2 = 0 

Summing the equation above over 𝒳, we have: 

∑∑𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆2∑𝑝𝑖|𝑘

|𝒳|

𝑖=1

= 0 

⇔ 𝜆2 =∑∑𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters pi|k
(t+1) is: 

𝑝𝑖|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.31) 

Similarly, the next parameters qj|k
(t+1) is: 

𝑞𝑗|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.32) 

The two steps of GEM algorithm for SMM at some tth iteration are shown in table 5.1.4. 

E-step: 

The conditional probability P(k | xi, yj, Θ
(t)) is calculated based on current parameter Θ(t) 

= (αk
(t), pi|k

(t), qj|k
(t))T, according to equation 5.1.29. 

𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑝𝑖|𝑘

(𝑡)𝑞𝑗|𝑘
(𝑡)

∑ 𝛼𝑙
(𝑡)𝑝𝑖|𝑙

(𝑡)𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1
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M-step: 

The next parameter Θ(t+1) = (αk
(t+1), pi|k

(t+1), qj|k
(t+1))T, which is a maximizer of Q(Θ | Θ(t)) 

with subject to Θ, is calculated by equation 5.1.30, equation 5.1.31, and equation 5.1.32. 

𝛼𝑘
(𝑡+1) =

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 

𝑝𝑖|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 

𝑞𝑗|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 

Table 5.1.4. E-step and M-step of GEM algorithm for SMM 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the SMM itself. 

When SMM is applied into soft clustering, dyadic data is clustered according to blocks and 

each αk is coverage ratio of cluster k (aspect k). 

The mixture model of dyadic data is called asymmetric mixture model (AMM) if αk (s) are 

only independent from xi or from yj. Without loss of generality, given αk (s) are only 

independent from yj (of course, it is dependent on xi), AMM is defined as follows (Hofmann & 

Puzicha, Statistical Models for Co-occurrence Data, 1998, p. 3): 

𝑃(𝑥𝑖 , 𝑦𝑗|Θ) = 𝑝𝑖𝑞𝑗|𝑖 = 𝑝𝑖∑𝛼𝑘|𝑖𝑞𝑗|𝑘

𝐾

𝑘=1

 (5.1.33) 

The αk|i is the probability of aspect k given xi. 

𝛼𝑘|𝑖 = 𝑃(𝑘|𝑥𝑖) 

Where pi is the probability of xi. 

𝑝𝑖 = 𝑃(𝑥𝑖) 
The qj|k is the conditional probability of yj given aspect k. Suppose yj is dependent from xi given 

k, we have: 

𝑞𝑗|𝑘 = 𝑃(𝑦𝑗|𝑥𝑖, 𝑘) = 𝑃(𝑦𝑗|𝑘) 

Note, qj|i is the conditional probability of yj given xi, which is defined as follows: 

𝑞𝑗|𝑖 = 𝑃(𝑦𝑗|𝑥𝑖) = ∑𝛼𝑘|𝑖𝑞𝑗|𝑘

𝐾

𝑘=1

 

The joint probability of xi, yj, and k is: 

𝑃(𝑥𝑖, 𝑦𝑗 , 𝑘) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 , 𝑘|𝑥𝑖) = 𝑃(𝑥𝑖)𝑃(𝑘|𝑥𝑖)𝑃(𝑦𝑗|𝑥𝑖 , 𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑞𝑗|𝑘 

The parameter of AMM is Θ = (αk|i, pi, qj|k)
T in which there are K(|𝒳| + |𝒴|) + |𝒳| partial 

parameters αk|i, pi, and qj|k. Note, 

∑𝛼𝑘|𝑖

𝐾

𝑘=1

= 1,∑𝑝𝑖

|𝒳|

𝑖=1

= 1,∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

By applying GEM, given dyadic sample 𝒮, at the tth iteration of GEM, given current parameter 

Θ(t) = (αk
(t), pi|k

(t), qj|k
(t))T, the conditional expectation Q(Θ|Θ(t)) is: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


94 

 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡))log(𝛼𝑘|𝑖𝑝𝑖𝑞𝑗|𝑘)

𝐾

𝑘=1

|𝒮|

𝑟=1

=∑∑𝑛(𝑥𝑖 , 𝑦𝑗)∑𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) (log(𝛼𝑘|𝑖) + log(𝑝𝑖)

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ log(𝑞𝑗|𝑘)) 

(5.1.34) 

Where, 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘|𝑖
(𝑡)𝑝𝑖

(𝑡)𝑞𝑗|𝑘
(𝑡)

∑ 𝛼𝑙|𝑖
(𝑡)𝑝𝑖

(𝑡)𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 (5.1.35) 

Please refer to equation 5.1.6 and equation 5.1.10 to comprehend equation 5.1.35. Because 

there are three constraints 

∑𝛼𝑘|𝑖

𝐾

𝑘=1

= 1,∑𝑝𝑖

|𝒳|

𝑖=1

= 1,∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

We use Lagrange duality method to maximize to maximize Q(Θ|Θ(t)). The Lagrange function 

la(Θ, λ | Θ(t)) is sum of Q(Θ|Θ(t)) and these constraints, as follows: 

𝑙𝑎(Θ, λ|Θ(𝑡)) = 𝑄(Θ|Θ(𝑡)) + 𝜆1 (1 −∑𝛼𝑘|𝑖

𝐾

𝑘=1

) + 𝜆2(1 −∑𝑝𝑖

|𝒳|

𝑖=1

) + 𝜆3(1 −∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

)

=∑∑𝑛(𝑥𝑖 , 𝑦𝑗)∑𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) (log(𝛼𝑘|𝑖) + log(𝑝𝑖) + log(𝑞𝑗|𝑘))

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ 𝜆1 (1 −∑𝛼𝑘|𝑖

𝐾

𝑘=1

) + 𝜆2(1 −∑𝑝𝑖

|𝒳|

𝑖=1

) + 𝜆3 (1 −∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

) 

Note, λ = (λ1, λ2, λ3)
T where λ1≥0, λ2≥0, and λ3≥0 are called Lagrange multipliers. Of course, 

la(Θ, λ | Θ(t)) is function of Θ and λ. The next parameters Θ(t+1) that maximizes Q(Θ|Θ(t)) at M-

step of some tth iteration is solution of the equation formed by setting the first-order partial 

derivatives of Lagrange function regarding Θ and λ to be zero. 

The first-order partial derivative of Lagrange function regarding αk is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝛼𝑘|𝑖
=∑𝑛(𝑥𝑖, 𝑦𝑗)

1

𝛼𝑘|𝑖
𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ

(𝑡))

|𝒴|

𝑗=1

− 𝜆1 

Setting this partial derivative to be zero, we obtain: 

∑𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

− 𝛼𝑘|𝑖𝜆1 = 0 

Summing the equation above over K aspects {1, 2,…, K}, we have: 

∑𝑛(𝑥𝑖 , 𝑦𝑗)∑𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

𝐾

𝑘=1

|𝒴|

𝑗=1

− 𝜆1∑𝛼𝑘

𝐾

𝑘=1

= 0 

⇔∑𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

− 𝜆1 = 0 ⇔ 𝜆1 =∑𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

 

This means the next parameters αk|i
(t+1) is: 
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𝛼𝑘|𝑖
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|

𝑗=1

 (5.1.36) 

The first-order partial derivative of Lagrange function regarding pi is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝑝𝑖
=∑𝑛(𝑥𝑖 , 𝑦𝑗)

1

𝑝𝑖

|𝒴|

𝑗=1

− 𝜆2 

Setting this partial derivative to be zero, we obtain: 

∑𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

− 𝑝𝑖𝜆2 = 0 

Summing the equation above over 𝒳, we have: 

∑∑𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆2∑𝑝𝑖

|𝒳|

𝑖=1

= 0 

⇔ 𝜆2 =∑∑𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters pi|k
(t+1) is: 

𝑝𝑖
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.37) 

The first-order partial derivative of Lagrange function regarding qj|k is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝑞𝑗|𝑘
=∑𝑛(𝑥𝑖 , 𝑦𝑗)

1

𝑞𝑗|𝑘
𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ

(𝑡))

|𝒳|

𝑖=1

− 𝜆3 

Setting this partial derivative to be zero, we obtain: 

∑𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|

𝑖=1

− 𝑞𝑗|𝑘𝜆3 = 0 

Summing the equation above over 𝒴, we have: 

∑∑𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆3∑𝑞𝑗|𝑘

|𝒴|

𝑗=1

 

 

⇔∑∑𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆3 ⇔ 𝜆3 =∑∑𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters qj|k
(t+1) is: 

𝑞𝑗|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.38) 

The two steps of GEM algorithm for AMM at some tth iteration are shown in table 5.1.5. 

E-step: 

The conditional probability P(k | xi, yj, Θ
(t)) is calculated based on current parameter Θ(t) 

= (αk|i
(t), pi

(t), qj|k
(t))T, according to equation 5.1.35. 
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𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘|𝑖
(𝑡)𝑝𝑖

(𝑡)𝑞𝑗|𝑘
(𝑡)

∑ 𝛼𝑙|𝑖
(𝑡)𝑝𝑖

(𝑡)𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (αk|i
(t+1), pi

(t+1), qj|k
(t+1))T, which is a maximizer of Q(Θ | Θ(t)) 

with subject to Θ, is calculated by equation 5.1.36, equation 5.1.37, and equation 5.1.38. 

𝛼𝑘|𝑖
(𝑡+1) =

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|

𝑗=1

 

𝑝𝑖
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 

𝑞𝑗|𝑘
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 

Table 5.1.5. E-step and M-step of GEM algorithm for AMM 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the AMM 

itself. When AMM is applied into soft clustering, dyadic data is clustered vertically 

(horizontally) and each αk|i is coverage ratio of cluster k (aspect k) according to xi. Soft 

clustering with AMM is also called one-side clustering. 

Product-space mixture model (PMM) is derived from SMM with a minor change that the 

aspect set {1, 2,…, K} is Cartesian product of 𝒳-aspect set {1, 2,…, 𝐾𝒳} and 𝒴-aspect set {1, 

2,…, 𝐾𝒴 }. In other words, the aspect space is still symmetric but is checked (stripped) 

according to two directions 𝒳 and 𝒴. 

{1,2, … , 𝐾} = {1,2, … , 𝐾𝒳} × {1,2, … , 𝐾𝒴}

𝐾 = 𝐾𝒳𝐾𝒴
 (5.1.39) 

For every k belongs to {1, 2,…, K}, there always exists a respective pair: 𝑘𝒳 ∈ {1,2, … , 𝐾𝒳} 

and 𝑘𝒴 ∈ {1,2, … , 𝐾𝒴}. However, for each 𝑘𝒳 or each 𝑘𝒴, there are many respective k (Nguyen, 

Learning Dyadic Data and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 

2020, p. 10). 

𝑘 ∼ {𝑘𝒳 , 𝑘𝒴}

𝑘𝒳~many 𝑘
𝑘𝒴~many 𝑘

 (5.1.40) 

The sign “∼” denotes correspondence. For example, given aspect set {1, 2, 3, 4, 5, 6}, 𝒳-aspect 

set {a, b, c} and 𝒴-aspect set {A, B}, we have a set of six correspondences: 1∼{a, A}, 2∼{a, 

B}, 3∼{a, C}, 4∼{b, A}, 5∼{b, B}, 6∼{b, C}. Given a ∈  {a, b, c}, we have three 

correspondences among a and aspect set {1, 2, 3, 4, 5, 6} such as a∼1, a∼2, and a∼3. 

PMM is defined as follows (Hofmann & Puzicha, Statistical Models for Co-occurrence 

Data, 1998, p. 4): 

𝑃(𝑥𝑖, 𝑦𝑗|Θ) = ∑𝛼𝑘𝑝𝑖|𝑘𝒳𝑞𝑗|𝑘𝒴

𝐾

𝑘=1

 (5.1.41) 

As usual, αk is the probability of aspect ck but 𝑝𝑖|𝑘𝒳  is the probability of xi given 𝑘𝒳 of k and 

𝑞𝑗|𝑘𝒴  is the probability of yj given 𝑘𝒴 of k. 

𝑝𝑖|𝑘𝒳 = 𝑃(𝑥𝑖|𝑘𝒳)

𝑞𝑗|𝑘𝒴 = 𝑃(𝑦𝑗|𝑘𝒴)
 

The joint probability of xi, yj, and k is: 
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𝑃(𝑥𝑖 , 𝑦𝑗 , 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖, 𝑦𝑗|𝑘) = 𝛼𝑘𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘) = 𝛼𝑘𝑃(𝑥𝑖|𝑘𝒳)𝑃(𝑦𝑗|𝑘𝒴)

= 𝛼𝑘𝑝𝑖|𝑘𝒳𝑞𝑗|𝑘𝒴  

The parameter of PMM is Θ = (αk, 𝑝𝑖|𝑘𝒳 , 𝑞𝑗|𝑘𝒴)T in which there are K + 𝐾𝒳|𝒳| + 𝐾𝒴|𝒴| partial 

parameters αk, 𝑝𝑖|𝑘𝒳 , and 𝑞𝑗|𝑘𝒴 . Note, 

∑𝛼𝑘

𝐾

𝑘=1

= 1,∑𝑝𝑖|𝑘𝒳

|𝒳|

𝑖=1

= 1,∑𝑞𝑗|𝑘𝒴

|𝒴|

𝑗=1

= 1 

Learning PMM is like learning SMM and so it is not necessary to duplicate the expansion of 

Q(Θ|Θ(t)). The two steps of GEM algorithm for PMM at some tth iteration are shown in table 

5.1.6. 

E-step: 

The conditional probabilities P(k | xi, yj, Θ
(t)), P(𝑘𝒳 | xi, yj, Θ

(t)), and P(𝑘𝒴 | xi, yj, Θ
(t)) are 

calculated based on current parameter Θ(t) = (𝛼𝑘
(𝑡), 𝑝𝑖|𝑘𝒳

(𝑡) , 𝑞
𝑗|𝑘𝒴

(𝑡)
)
𝑇

, according to equation 

5.1.42, equation 5.1.43, and equation 5.1.44 (Nguyen, Learning Dyadic Data and 

Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, p. 10). 

𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑝𝑖|𝑘𝒳

(𝑡) 𝑞
𝑗|𝑘𝒴

(𝑡)

∑ 𝛼𝑙
(𝑡)𝑝𝑖|𝑙𝒳

(𝑡) 𝑞
𝑗|𝑙𝒴

(𝑡)𝐾
𝑙=1

 (5.1.42) 

𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) = ∑ 𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ

(𝑡))

𝑘:𝑘𝒳~𝑘

 (5.1.43) 

𝑃(𝑘𝒴|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡)) = ∑ 𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ

(𝑡))

𝑘:𝑘𝒴~𝑘

 (5.1.44) 

Please refer to equation 5.1.6 and equation 5.1.10 to comprehend equation 5.1.42. 

M-step: 

The next parameter Θ(t+1) = (𝛼𝑘
(𝑡+1), 𝑝𝑖|𝑘𝒳

(𝑡+1), 𝑞
𝑗|𝑘𝒴

(𝑡+1)
)
𝑇

, which is the maximizer of Q(Θ | 

Θ(t)) with subject to Θ, is calculated by equation 5.1.45, equation 5.1.46, and equation 

5.1.47. 

𝛼𝑘
(𝑡+1) =

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.45) 

𝑝𝑖|𝑘𝒳
(𝑡+1) =

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒳|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.46) 

𝑞
𝑗|𝑘𝒴

(𝑡+1)
=

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘𝒴|𝑥𝑖 , 𝑦𝑗 , Θ
(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘𝒴|𝑥𝑖, 𝑦𝑗 , Θ
(𝑡))

|𝒴|

𝑗=1
|𝒳|
𝑖=1

 (5.1.47) 

   

Table 5.1.6. E-step and M-step of GEM algorithm for PMM 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the PMM itself. 

When PMM is applied into soft clustering, dyadic data is clustered in checked (stripped) and 

each αk is coverage ratio of cluster k (aspect k) but such cluster k corresponds to a pair of cluster 

𝑘𝒳 and cluster 𝑘𝒴. Soft clustering with PMM is also called two-side clustering. 

When 𝒮 is valued dyadic data in which every co-occurrence (xi, yj) is associated with value 

z from random variable Z then, SMM is reformed as follows (Nguyen, Learning Dyadic Data 

and Predicting Unaccomplished Co-occurrent Values by Mixture Model, 2020, pp. 11-12): 
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𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑍|Θ) = ∑𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)

𝐾

𝑘=1

 (5.1.48) 

AMM is reformed as follows: 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑍|Θ) = 𝑝𝑖∑𝛼𝑘|𝑖𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)

𝐾

𝑘=1

 (5.1.49) 

PMM is reformed as follows: 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑍|Θ) = ∑𝛼𝑘𝑝𝑖|𝑘𝒳𝑞𝑗|𝑘𝒴𝑓𝑘(𝑍|𝜑𝑘)

𝐾

𝑘=1

 (5.1.50) 

Where fk(Z|φk) is the kth PDF of Z corresponding to the aspect k, in which φk is parameter of 

fk(Z|φk). Of course, the parameter Θ now must include all φk. It is possible to consider that 

𝑓𝑘(𝑍|𝜑𝑘) = 𝑓(𝑍|𝑘, 𝜑𝑘) 
Moreover, Z is only dependent on k. 

𝑓(𝑍|𝑥𝑖, 𝑘, 𝜑𝑘) = 𝑓(𝑍|𝑘, 𝜑𝑘) = 𝑓𝑘(𝑍|𝜑𝑘) 
Note, suppose xi and yj (as well as yj given xi) are independent from Z given aspect k, which is 

the hint to reform these models. 

𝑃(𝑥𝑖, 𝑦𝑗|𝑘, 𝑍) = 𝑃(𝑥𝑖 , 𝑦𝑗|𝑘) 

𝑃(𝑦𝑗|𝑥𝑖 , 𝑍, 𝑘) = 𝑃(𝑦𝑗|𝑥𝑖 , 𝑘) 

For example, within SMM, the joint PDF of xi, yj, Z, and k is: 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑍, 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖 , 𝑦𝑗 , 𝑍|𝑘) = 𝛼𝑘𝑃(𝑥𝑖 , 𝑦𝑗|𝑘, 𝑍)𝑓(𝑍|𝑘, 𝜑𝑘) = 𝛼𝑘𝑃(𝑥𝑖 , 𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘)

= 𝛼𝑘𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘) = 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘) 

Within AMM, the joint PDF of xi, yj, Z, and k is: 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑍, 𝑘) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 , 𝑍, 𝑘|𝑥𝑖) = 𝑝𝑖𝑃(𝑘|𝑥𝑖)𝑃(𝑦𝑗 , 𝑍|𝑥𝑖 , 𝑘)

= 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑥𝑖, 𝑍, 𝑘)𝑓(𝑍|𝑥𝑖 , 𝑘, 𝜑𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑥𝑖, 𝑘)𝑓(𝑍|𝑘, 𝜑𝑘)

= 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘) 

Within PMM, the joint PDF of xi, yj, Z, and k is: 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑍, 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖 , 𝑦𝑗 , 𝑍|𝑘) = 𝛼𝑘𝑃(𝑥𝑖 , 𝑦𝑗|𝑍, 𝑘)𝑓(𝑍|𝑘, 𝜑𝑘) = 𝛼𝑘𝑃(𝑥𝑖 , 𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘)

= 𝛼𝑘𝑃(𝑥𝑖|𝑘𝒳)𝑃(𝑦𝑗|𝑘𝒴)𝑓𝑘(𝑍|𝜑𝑘) = 𝛼𝑘𝑝𝑖|𝑘𝒳𝑞𝑗|𝑘𝒴𝑓𝑘(𝑍|𝜑𝑘)∎ 

Here it is only necessary to estimate φk because how to estimate other partial parameters was 

aforementioned. By reforming the conditional expectation Q(Θ|Θ(t)), it is easy to find out that 

the next parameter φk
(t+1) is solution of following equation: 

∑𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡))

dlog(𝑓𝑘(𝑍(𝑟)|𝜑𝑘))

d𝜑𝑘

|𝒮|

𝑟=1

 (5.1.51) 

Where P(k | xi(r), yj(r), Θ(t)) is specified by equation 5.1.29, equation 5.1.35, and equation 

5.1.42 for SMM, AMM, and PMM, respectively. Especially, if fk(Z|φk) distributed normally, 

the next parameter φk
(t+1) = (μk

(t+1), Σk
(t+1))T containing mean μk

(t+1) and covariance matrix Σk
(t+1) 

is calculated as follows: 

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡))𝑍(𝑟)

|𝒮|
𝑟=1

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡))

|𝒮|
𝑖=1

 

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡)) ((𝑍(𝑟) − 𝜇𝑘

(𝑡+1))(𝑍(𝑟) − 𝜇𝑘
(𝑡+1))

𝑇

)
|𝒮|
𝑟=1

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ
(𝑡))

|𝒮|
𝑟=1

 

(5.1.52) 
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Where P(k | xi(r), yj(r), Θ(t)) is specified by equation 5.1.29, equation 5.1.35, and equation 

5.1.42 for SMM, AMM, and PMM, respectively. Please refer to equation 5.1.17 and equation 

5.1.18 to comprehend equation 5.1.52. 

Example 5.1.2. Suppose 𝒳  = {x1, x2} and 𝒴  = {y1}, and valued dyadic sample of 4 co-

occurrences, 𝒮 = {(x1, y1, 1, 1), (x1, y1, 9, 2) }, we will learn SMM given 𝒮 by GEM shown in 

table 5.1.4. Let Z be associative variable which distributes normally with mean – variance φk = 

(μk, σk
2)T and is learned by equation 5.1.52. Obviously, we have Z(1)=1, Z(2)=9, n(x1, y1) = 2, 

and n(x2, y1) = 0. Suppose the number of aspects is K=2. The parameter Θ = (αk, pi|k, qj|k, φk)
T 

of SMM is initialized as follows: 

𝛼1
(1) = 𝛼2

(1) = 0.5 

𝑝1|1
(1) = 𝑝2|1

(1) = 𝑝1|2
(1) = 𝑝2|2

(1) = 0.5 

𝑞1|1
(1) = 𝑞1|2

(1) = 0.5 

𝜇1
(1)
= 𝜇2

(1)
= 0 

(𝜎1
2)(1) = (𝜎2

2)(1) = 1 

At the 1st iteration, E-step, we have: 

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1)) =

𝛼1
(1)𝑝1|1

(1)𝑞1|1
(1)

𝛼1
(1)𝑝1|1

(1)𝑞1|1
(1) + 𝛼2

(1)𝑝1|2
(1)𝑞1|2

(1)
= 0.5 

𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ
(1)) =

𝛼1
(1)𝑝2|1

(1)𝑞1|1
(1)

𝛼1
(1)𝑝2|1

(1)𝑞1|1
(1) + 𝛼2

(1)𝑝2|2
(1)𝑞1|2

(1)
= 0.5 

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1)) =

𝛼2
(1)𝑝1|2

(1)𝑞1|2
(1)

𝛼1
(1)𝑝1|1

(1)𝑞1|1
(1) + 𝛼2

(1)𝑝1|2
(1)𝑞1|2

(1)
= 0.5 

𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ
(1)) =

𝛼2
(1)𝑝2|2

(1)𝑞1|2
(1)

𝛼1
(1)𝑝2|1

(1)𝑞1|1
(1) + 𝛼2

(1)𝑝2|2
(1)𝑞1|2

(1)
= 0.5 

At the 1st iteration, M-step, we have: 

𝛼1
(2) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)
= 0.5 

𝛼2
(2) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)
= 0.5 

𝑝1|1
(2) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))

= 1 

𝑝2|1
(2) =

𝑛(𝑥2, 𝑦1)𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))

= 0 

𝑝1|2
(2) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))

= 1 

𝑝2|2
(2) =

𝑛(𝑥2, 𝑦1)𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))

= 0 

𝑞1|1
(2) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))

= 1 

𝑞1|2
(2) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))

= 1 
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𝜇1
(2)
=
𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ

(1))1 + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ
(1))9

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1)) + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(1))
= 5 

𝜇2
(2) =

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))1 + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(1))9

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1)) + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(1))
= 5 

(𝜎1
2)(2) =

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1))(1 − 5)2 + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(1))(9 − 5)2

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(1)) + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(1))
= 16 

(𝜎2
2)(2) =

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1))(1 − 5)2 + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(1))(9 − 5)2

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(1)) + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(1))
= 16 

At the 2nd iteration, E-step, we have: 

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2)) =

𝛼1
(2)𝑝1|1

(2)𝑞1|1
(2)

𝛼1
(2)𝑝1|1

(2)𝑞1|1
(2) + 𝛼2

(2)𝑝1|2
(2)𝑞1|2

(2)
= 0.5 

𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ
(2)) =

𝛼1
(2)𝑝2|1

(2)𝑞1|1
(2)

𝛼1
(2)𝑝2|1

(2)𝑞1|1
(2) + 𝛼2

(2)𝑝2|2
(2)𝑞1|2

(2)
≈ 0.5 

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2)) =

𝛼2
(2)𝑝1|2

(2)𝑞1|2
(2)

𝛼1
(2)𝑝1|1

(2)𝑞1|1
(2) + 𝛼2

(2)𝑝1|2
(2)𝑞1|2

(2)
= 0.5 

𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ
(2)) =

𝛼2
(2)𝑝2|2

(2)𝑞1|2
(2)

𝛼1
(2)𝑝2|1

(2)𝑞1|1
(2) + 𝛼2

(2)𝑝2|2
(2)𝑞1|2

(2)
≈ 0.5 

Note, because the probabilities P(k=1 | x2, y1, Θ
(2)) and P(k=2 | x2, y1, Θ

(2)) are arbitrary (0/0), 

they are assigned to be 0.5. 

At the 2nd iteration, M-step, we have: 

𝛼1
(3) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)
= 0.5 

𝛼2
(3) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)
= 0.5 

𝑝1|1
(3) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))

= 1 

𝑝2|1
(3) =

𝑛(𝑥2, 𝑦1)𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))

= 0 

𝑝1|2
(3) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))

= 1 

𝑝2|2
(3) =

𝑛(𝑥2, 𝑦1)𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))

= 0 

𝑞1|1
(3) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))

= 1 

𝑞1|2
(3) =

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))

𝑛(𝑥1, 𝑦1)𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))

= 1 

𝜇1
(3) =

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))1 + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(2))9

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2)) + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(2))
= 5 
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𝜇2
(3)
=
𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ

(2))1 + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ
(2))9

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2)) + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(2))
= 5 

(𝜎1
2)(3) =

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2))(1 − 5)2 + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(2))(9 − 5)2

𝑃(𝑘 = 1|𝑥1, 𝑦1, Θ
(2)) + 𝑃(𝑘 = 1|𝑥2, 𝑦1, Θ

(2))
= 16 

(𝜎2
2)(3) =

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2))(1 − 5)2 + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(2))(9 − 5)2

𝑃(𝑘 = 2|𝑥1, 𝑦1, Θ
(2)) + 𝑃(𝑘 = 2|𝑥2, 𝑦1, Θ

(2))
= 16 

Therefore, GEM stops at the 2nd iteration with the estimate Θ(2) = Θ(3) = Θ* = (αk
*, pi|k

*, qj|k
*, 

φk
*)T. 

𝛼1
∗ = 𝛼2

∗ = 0.5 

𝑝1|1
∗ = 𝑝1|2

∗ = 1, 𝑝2|1
∗ = 𝑝2|2

∗ = 0 

𝑞1|1
(1) = 𝑞1|2

(1) = 1 

𝜇1
∗ = 𝜇2

∗ = 5 

(𝜎1
2)∗ = (𝜎2

2)∗ = 16 

Similarly, it is easy to learn AMM and PMM ■ 

 

5.2. Handling missing data 

The goal of MLE, MAP, and EM is to estimate statistical based on sample. Whereas MLE and 

MAP require complete data, EM accepts hidden data or incomplete data. Therefore, EM is 

appropriate to handle missing data which contains missing values. Indeed, estimating 

parameter with missing data is very natural for EM but it is necessary to have a new viewpoint 

in which missing data is considered as hidden data (X). Moreover, the GEM version with joint 

probability (without mapping function, please see equation 2.12 and equation 2.13) is used and 

some changes are required. Before describing how to apply EM into handling missing data, we 

should skim some concepts related to missing data. 

Let X = (x1, x2,…, xn)
T be n-dimension random variable whose n elements are partial random 

variables xj (s). Suppose X is composed of two parts such as observed part Xobs and missing 

part Xmis such that X = {Xobs, Xmis}. Note, Xobs and Xmis are considered as random variables. 

𝑋 = {𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠} = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 (5.2.1) 

When X is observed, Xobs and Xmis are determined. For example, given X = (x1, x2, x3, x4)
T, when 

X is observed as X = (x1=1, x2=?, x3=4, x4=?, x5=9)T where question mask “?” denotes missing 

value, Xobs and Xmis are determined as Xobs = (x1=1, x3=4, x5=9)T and Xmis = (x2=?, x4=?)T. When 

X is observed as X = (x1=?, x2=3, x3=4, x4=?, x5=?)T then, Xobs and Xmis are determined as Xobs = 

(x2=3, x3=4)T and Xmis = (x1=?, x4=?, x5=?)T. Let M be a set of indices that xj (s) are missing 

when X is observed. M is called missing index set. 

𝑀 = {𝑗: 𝑥𝑗  missing} where 𝑗 = 1, 𝑛̅̅ ̅̅ ̅ (5.2.2) 

Suppose 

𝑀 = {𝑚1, 𝑚2, … ,𝑚|𝑀|} (5.2.3) 

Where, 

𝑚𝑖 = 1, 𝑛̅̅ ̅̅ ̅

𝑚𝑖 ≠ 𝑚𝑗
 

Let �̅� is complementary set of the set M given the set {1, 2,…., n}. �̅� is called existent index 

set. 

�̅� = {𝑗: 𝑥𝑗  existent} where 𝑗 = 1, 𝑛̅̅ ̅̅ ̅ (5.2.4) 

M or �̅� can be empty. They are mutual because �̅� can be defined based on M and vice versa. 

𝑀 ∪ �̅� = {1,2, … , 𝑛}

𝑀 ∩ �̅� = ∅
 

Suppose 
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�̅� = {�̅�1, �̅�2, … , �̅�|�̅�|} (5.2.5) 

Where, 

�̅�𝑖 = 1, 𝑛̅̅ ̅̅ ̅

�̅�𝑖 ≠ �̅�𝑗
|𝑀| + |�̅�| = 𝑛

 

We have: 

𝑋𝑚𝑖𝑠 = (𝑥𝑗: 𝑗 ∈ 𝑀)
𝑇
= (𝑥𝑚1

, 𝑥𝑚2
, … , 𝑥𝑚|𝑀|

)
𝑇

 (5.2.6) 

 

𝑋𝑜𝑏𝑠 = (𝑥𝑗: 𝑗 ∈ �̅�)
𝑇
= (𝑥�̅�1

, 𝑥�̅�2
, … , 𝑥�̅�|�̅̅̅�|

)
𝑇

 (5.2.7) 

Obviously, dimension of Xmis is |M| and dimension of Xobs is |�̅�|  = n–|M|. Note, when 

composing X from Xobs and Xmis as X = {Xobs, Xmis}, it is required a right re-arrangement of 

elements in both Xobs and Xmis. 

Let Z = (z1, z2,…, zn)
T be n-dimension random variable whose each element zj is binary 

random variable indicating if xj is missing. Random variable Z is also called missingness 

variable. 

𝑧𝑗 = {
1 if 𝑥𝑗  missing

0 if 𝑥𝑗  existent
 (5.2.8) 

For example, given X = (x1, x2, x3, x4)
T, when X is observed as X = (x1=1, x2=?, x3=4, x4=?, 

x5=9)T, we have Xobs = (x1=1, x3=4, x5=9)T, Xmis = (x2=?, x4=?)T, and Z = (z1=0, z2=1, z3=0, z4=1, 

z5=0)T. 

Generally, when X is replaced by a sample 𝒳 = {X1, X2,…, XN} whose Xi (s) are iid, let 𝒵 

= {Z1, Z2,…, ZN} be a set of missingness variables associated with 𝒳. All Zi (s) are iid too. 𝒳 

and 𝒵 can be represented as matrices. Given Xi, its associative quantities are Zi, Mi, and �̅�𝑖. Let 

X = {Xobs, Xmis} be random variable representing every Xi. Let Z be random variable 

representing every Zi. As a convention, Xobs(i) and Xmis(i) refer to Xobs part and Xmis part of Xi. 

We have: 

𝑋𝑖 = {𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)} = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛)
𝑇

𝑋𝑚𝑖𝑠(𝑖) = (𝑥𝑖𝑚1
, 𝑥𝑖𝑚2

, … , 𝑥𝑖𝑚|𝑀𝑖|
)
𝑇

𝑋𝑜𝑏𝑠(𝑖) = (𝑥𝑖�̅�𝑖1
, 𝑥𝑖�̅�𝑖2

, … , 𝑥𝑖�̅�𝑖|�̅̅̅�𝑖|
)
𝑇

𝑀𝑖 = {𝑚𝑖1, 𝑚𝑖2, … ,𝑚𝑖|𝑀𝑖|
}

�̅�𝑖 = {�̅�𝑖1, �̅�𝑖2, … , �̅�𝑖|�̅�𝑖|
}

𝑍𝑖 = (𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑛)
𝑇

 (5.2.9) 

For example, given sample of size 4, 𝒳 = {X1, X2, X3, X4} in which X1 = (x11=1, x12=?, x13=3, 

x14=?)T, X2 = (x21=?, x22=2, x23=?, x24=4)T, X3 = (x31=1, x32=2, x33=?, x34=?)T, and X4 = (x41=?, 

x42=?, x43=3, x44=4)T are iid. Therefore, we also have Z1 = (z11=0, z12=1, z13=0, z14=1)T, Z2 = 

(z21=1, z22=0, z23=1, z24=0)T, Z3 = (z31=0, z32=0, z33=1, z34=1)T, and Z4 = (z41=1, z42=1, z43=0, 

z44=0)T. All Zi (s) are iid too. 

 x1 x2 x3 x4   z1 z2 z3 z4 

X1 1 ? 3 ?  Z1 0 1 0 1 

X2 ? 2 ? 4  Z2 1 0 1 0 

X3 1 2 ? ?  Z3 0 0 1 1 

X4 ? ? 3 4  Z4 1 1 0 0 

Of course, we have Xobs(1) = (x11=1, x13=3)T, Xmis(1) = (x12=?, x14=?)T, Xobs(2) = (x22=2, x24=4)T, 

Xmis(2) = (x21=?, x23=?)T, Xobs(3) = (x31=1, x32=2)T, Xmis(3) = (x33=?, x34=?)T, Xobs(4) = (x43=3, 

x44=4)T, and Xmis(4) = (x41=?, x42=?)T. We also have M1 = {m11=2, m12=4}, �̅�1 = {�̅�11=1, 
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�̅�12=3}, M2 = {m21=1, m22=3}, �̅�2 = {�̅�21=2, �̅�22=4}, M3 = {m31=3, m32=4}, �̅�3 = {�̅�31=1, 

�̅�32=2}, M4 = {m41=1, m42=2}, and �̅�4 = {�̅�41=3, �̅�42=4}. 

Both X and Z are associated with their own PDFs, as follows: 
𝑓(𝑋|Θ) = 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ)

𝑓(𝑍|𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠, Φ)
 (5.2.10) 

Where Θ and Φ are parameters of PDFs of X = {Xobs, Xmis} and Z, respectively. The goal of 

handling missing data is to estimate Θ and Φ given X. Sufficient statistic of X = {Xobs, Xmis} is 

composed of sufficient statistic of Xobs and sufficient statistic of Xmis. 

𝜏(𝑋) = 𝜏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) = {𝜏(𝑋𝑜𝑏𝑠), 𝜏(𝑋𝑚𝑖𝑠)} (5.2.11) 

How to compose τ(X) from τ(Xobs) and τ(Xmis) is dependent on distribution type of the PDF 

f(X|Θ). 

The joint PDF of X and Z is main object of handling missing data, which is defined as 

follows: 

𝑓(𝑋, 𝑍|Θ,Φ) = 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠, 𝑍|Θ,Φ) = 𝑓(𝑍|𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠, Φ)𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ) (5.2.12) 

The PDF of Xobs is defined as integral of f(X|Θ) over Xmis: 

𝑓(𝑋𝑜𝑏𝑠|Θ) = ∫ 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ)d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

 (5.2.13) 

The PDF of Xmis is conditional PDF of Xmis given Xobs is: 

𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ𝑀) = 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ) =
𝑓(𝑋|Θ)

𝑓(𝑋𝑜𝑏𝑠|Θ)
=
𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ)

𝑓(𝑋𝑜𝑏𝑠|Θ)
 (5.2.14) 

The notation ΘM implies that the parameter ΘM of the PDF f(Xmis | Xobs, ΘM) is derived from the 

parameter Θ of the PDF f(X|Θ), which is function of Θ and Xobs as ΘM = u(Θ, Xobs). Thus, ΘM 

is not a new parameter and it is dependent on distribution type. 

Θ𝑀 = 𝑢(Θ, 𝑋𝑜𝑏𝑠) (5.2.15) 

How to determine u(Θ, Xobs) is dependent on distribution type of the PDF f(X|Θ). 

There are three types of missing data, which depends on relationship between Xobs, Xmis, 

and Z (Josse, Jiang, Sportisse, & Robin, 2018): 

- Missing data (X or 𝒳) is Missing Completely At Random (MCAR) if the probability of 

Z depends on both Xobs and Xmis such that f(Z | Xobs, Xmis, Φ) = f(Z | Φ). 

- Missing data (X or 𝒳) is Missing At Random (MAR) if the probability of Z depends on 

only Xobs such that f(Z | Xobs, Xmis, Φ) = f(Z | Xobs, Φ). 

- Missing data (X or 𝒳) is Missing Not At Random (MNAR) in all other cases. 

There are two main approaches for handling missing data (Josse, Jiang, Sportisse, & Robin, 

2018): 

- Using some statistical models such as EM to estimate parameter with missing data. 

- Inputting plausible values for missing values to obtain some complete samples (copies) 

from the missing data. Later on, every complete sample is used to produce an estimate 

of parameter by some estimation methods, for example, MLE and MAP. Finally, all 

estimates are synthesized to produce the best estimate. 

Here we focus on the first approach with EM to estimate parameter with missing data. Without 

loss of generality, given sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid, by applying 

equation 2.13 for GEM with the joint PDF f(Xobs, Xmis, Z | Θ, Φ), we consider {Xobs, Z} as 

observed part and Xmis as hidden part. Let X = {Xobs, Xmis} be random variable representing all 

Xi (s). Let Xobs(i) denote observed part Xobs of Xi and let Zi be missingness variable 

corresponding to Xi, by following equation 2.13, the expectation Q(Θ’, Φ’ | Θ, Φ) becomes: 

𝑄(Θ′, Φ′|Θ,Φ) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), 𝑍𝑖, Θ,Φ) ∗ log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, 𝑍𝑖|Θ
′, Φ′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1
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=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ) ∗ log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, 𝑍𝑖|Θ
′, Φ′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
) ∗ log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, 𝑍𝑖|Θ

′, Φ′))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

∗ log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠|Θ
′, Φ′) ∗ 𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Θ

′, Φ′))d𝑋𝑚𝑖𝑠 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
) ∗ log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠|Θ

′) ∗ 𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ
′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

∗ (log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠|Θ
′)) + log(𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ

′))) d𝑋𝑚𝑖𝑠 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠|Θ

′))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ

′))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

In short, Q(Θ’, Φ’ | Θ, Φ) is specified as follows: 

𝑄(Θ′, Φ′|Θ, Φ) = 𝑄1(Θ
′|Θ) + 𝑄2(Φ

′|Θ) (5.2.16) 

Where, 

𝑄1(Θ
′|Θ) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

)log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠|Θ
′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

𝑄2(Φ
′|Θ) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

)log(𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ
′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

Note, unknowns of Q(Θ’, Φ’ | Θ, Φ) are Θ’ and Φ’. Because it is not easy to maximize Q(Θ’, 

Φ’ | Θ, Φ) with regard to Θ’ and Φ’, we assume that the PDF f(X|Θ) belongs to exponential 

family. 

𝑓(𝑋|Θ) = 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ) = 𝑏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) ∗ exp((Θ)
𝑇𝜏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠)) 𝑎(Θ)⁄  (5.2.17) 

Note,  

𝑏(𝑋) = 𝑏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) 
𝜏(𝑋) = 𝜏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) = {𝜏(𝑋𝑜𝑏𝑠), 𝜏(𝑋𝑚𝑖𝑠)} 

It is easy to deduce that 

𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ𝑀) = 𝑏(𝑋𝑚𝑖𝑠) exp((Θ𝑀)
𝑇𝜏(𝑋𝑚𝑖𝑠)) 𝑎(Θ𝑀)⁄  (5.2.18) 

Therefore, 

𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
) = 𝑏(𝑋𝑚𝑖𝑠) exp ((Θ𝑀𝑖

)
𝑇
𝜏(𝑋𝑚𝑖𝑠)) 𝑎(Θ𝑀𝑖

)⁄  

We have: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


105 

 

𝑄1(Θ
′|Θ) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

)log(𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠|Θ
′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

∗ log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠) exp((Θ
′)𝑇𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)) 𝑎(Θ

′)⁄ )d𝑋𝑚𝑖𝑠 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

∗ (log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)) + (Θ
′)𝑇𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠) − log(𝑎(Θ

′))) d𝑋𝑚𝑖𝑠 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)(Θ′)𝑇𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

−∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑎(Θ′))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+ (Θ′)𝑇∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

− log(𝑎(Θ′))∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+ (Θ′)𝑇∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+ (Θ′)𝑇∑

{
 
 

 
 ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

)𝜏(𝑋𝑜𝑏𝑠(𝑖))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

,

∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠 }
 
 

 
 

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) 
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=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+ (Θ′)𝑇∑

{
 
 

 
 𝜏(𝑋𝑜𝑏𝑠(𝑖)) ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

)d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

,

∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠 }
 
 

 
 

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

𝑁

𝑖=1

+ (Θ′)𝑇∑{

𝜏(𝑋𝑜𝑏𝑠(𝑖)),

∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

}

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) 

Therefore, equation 5.2.19 specifies Q1(Θ’|Θ) given f(X|Θ) belongs to exponential family. 

𝑄1(Θ
′|Θ) =∑𝐸(log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))|Θ𝑀𝑖

)

𝑁

𝑖=1

+ (Θ′)𝑇∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖
)}

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) 

(5.2.19) 

Where, 

𝐸(log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))|Θ𝑀𝑖
)

= ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

 (5.2.20) 

 

𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖
) = ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

)𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

 (5.2.21) 

At M-step of some tth iteration, the next parameter Θ(t+1) is solution of the equation created by 

setting the first-order derivative of Q1(Θ’|Θ) to be zero. The first-order derivative of Q1(Θ’|Θ) 

is: 

𝜕𝑄1(Θ
′|Θ)

𝜕Θ′
=∑(𝐸(𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

))
𝑇

𝑁

𝑖=1

− 𝑁log′(𝑎(Θ′))

=∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖
)}
𝑇

𝑁

𝑖=1

− 𝑁log′(𝑎(Θ′)) 

By referring table 1.2, we have: 

log′(𝑎(Θ′)) = (𝐸(𝜏(𝑋)|Θ′))
𝑇
= ∫𝑓(𝑋|Θ)(𝜏(𝑋))

𝑇
d𝑋

𝑋

 

Where, 

𝑓(𝑋|Θ) = 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ) = 𝑏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) ∗ exp((Θ)
𝑇𝜏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠)) 𝑎(Θ)⁄  

𝑏(𝑋) = 𝑏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) 
𝜏(𝑋) = 𝜏(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠) = {𝜏(𝑋𝑜𝑏𝑠), 𝜏(𝑋𝑚𝑖𝑠)} 

Thus, the next parameter Θ(t+1) is solution of the following equation: 
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𝜕𝑄1(Θ
′|Θ)

𝜕Θ′
=∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

)}
𝑇

𝑁

𝑖=1

− 𝑁(𝐸(𝜏(𝑋)|Θ′))
𝑇
= 𝟎𝑇 

This implies the next parameter Θ(t+1) is solution of the following equation: 

𝐸(𝜏(𝑋)|Θ′) =
1

𝑁
∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

)}

𝑁

𝑖=1

 

As a result, at E-step of some tth iteration, given current parameter Θ(t), the sufficient statistic 

of X is calculated as follows: 

𝜏(𝑡) =
1

𝑁
∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡))}

𝑁

𝑖=1

 (5.2.22) 

Where, 

Θ𝑀𝑖

(𝑡) = 𝑢(Θ(𝑡),𝑀𝑖) 

𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡)) = ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

(𝑡))𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

 

Equation 5.2.22 is variant of equation 5.2.11 when f(X|Θ) belongs to exponential family but 

how to compose τ(X) from τ(Xobs) and τ(Xmis) is not determined exactly yet. 

As a result, at M-step of some tth iteration, given τ(t) and Θ(t), the next parameter Θ(t+1) is a 

solution of the following equation: 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) (5.2.23) 

Moreover, at M-step of some tth iteration, the next parameter Φ(t+1) is a maximizer of Q2(Φ | 

Θ(t)) given Θ(t) as follows: 

Φ(𝑡+1) = argmin
Φ

𝑄2(Φ|Θ
(𝑡)) (5.2.24) 

Where, 

𝑄2(Φ|Θ
(𝑡)) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

(𝑡))log(𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 (5.2.25) 

How to maximize Q2(Φ | Θ(t)) depends on distribution type of Zi which is also formulation of 

the PDF f(Z | Xobs, Xmis, Φ). For some reasons, such as accelerating estimation speed or ignoring 

missingness variable Z then, the next parameter Φ(t+1) will not be estimated. 

In general, the two steps of GEM algorithm for handling missing data at some tth iteration 

are summarized in table 5.2.1 with assumption that the PDF of missing data f(X|Θ) belongs to 

exponential family. 

E-step: 

Given current parameter Θ(t), the sufficient statistic τ(t) is calculated according to equation 

5.2.22. 

𝜏(𝑡) =
1

𝑁
∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡))}

𝑁

𝑖=1

 

Where, 

Θ𝑀𝑖

(𝑡) = 𝑢(Θ(𝑡),𝑀𝑖) 

𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡)) = ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

(𝑡))𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

 

M-step: 

Given τ(t) and Θ(t), the next parameter Θ(t+1) is a solution of equation 5.2.23. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


108 

 

Given Θ(t), the next parameter Φ(t+1) is a maximizer of Q2(Φ | Θ(t)) according to equation 

5.2.24. 

Φ(𝑡+1) = argmin
Φ

𝑄2(Φ|Θ
(𝑡)) 

Where, 

𝑄2(Φ|Θ
(𝑡)) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

(𝑡))log(𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

Table 5.2.1. E-step and M-step of GEM algorithm for handling missing data given 

exponential PDF 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) and Φ* = Φ(t+1) 

= Φ(t) are optimal estimates. If missingness variable Z is ignored for some reasons, parameter 

Φ is not estimated. Because Xmis is a part of X and f(Xmis | Xobs, ΘM) is derived directly from 

f(X|Θ), in practice we can stop GEM after its first iteration was done, which is reasonable 

enough to handle missing data. 

An interesting application of handling missing data is to fill in or predict missing values. 

For instance, suppose the estimate resulted from GEM is Θ*, missing values represented by 

τ(Xmis) are fulfilled by expectation of τ(Xmis) as follows: 

𝜏(𝑋𝑚𝑖𝑠) = 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀
∗ ) (5.2.26) 

Where, 

Θ𝑀
∗ = 𝑢(Θ∗, 𝑋𝑜𝑏𝑠) 

Now we survey a popular case that sample 𝒳 = {X1, X2,…, XN} whose Xi (s) are iid is MCAR 

data and f(X|Θ) is multinormal PDF whereas missingness variable Z follows binomial 

distribution of n trials. Let X = {Xobs, Xmis} be random variable representing every Xi. Suppose 

dimension of X is n. Let Z be random variable representing every Zi. According to equation 

5.2.9, recall that 

𝑋𝑖 = {𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)} = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛)
𝑇

𝑋𝑚𝑖𝑠(𝑖) = (𝑥𝑖𝑚1
, 𝑥𝑖𝑚2

, … , 𝑥𝑖𝑚|𝑀𝑖|
)
𝑇

𝑋𝑜𝑏𝑠(𝑖) = (𝑥𝑖�̅�𝑖1
, 𝑥𝑖�̅�𝑖2

, … , 𝑥𝑖�̅�𝑖|�̅̅̅�𝑖|
)
𝑇

𝑀𝑖 = {𝑚𝑖1, 𝑚𝑖2, … ,𝑚𝑖|𝑀𝑖|
}

�̅�𝑖 = {�̅�𝑖1, �̅�𝑖2, … , �̅�𝑖|�̅�𝑖|
}

𝑍𝑖 = (𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑛)
𝑇

 

The PDF of X is: 

𝑓(𝑋|Θ) = 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ) = (2𝜋)
−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) (5.2.27) 

Therefore, 

𝑓(𝑋𝑖|Θ) = 𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋𝑖 − 𝜇)

𝑇Σ−1(𝑋𝑖 − 𝜇)) 

The PDF of Z is: 

 

𝑓(𝑍|Φ) = 𝑝𝑐(𝑍)(1 − 𝑝)𝑛−𝑐(𝑍) (5.2.28) 

Therefore, 

𝑓(𝑍𝑖|Φ) = 𝑝𝑐(𝑍𝑖)(1 − 𝑝)𝑛−𝑐(𝑍𝑖) 
Where Θ = (μ, Σ)T and Φ = p. 
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𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛)
𝑇

Σ = (

𝜎11 𝜎12 ⋯ 𝜎1𝑛
𝜎21 𝜎22 ⋯ 𝜎2𝑛
⋮ ⋮ ⋱ ⋮
𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

)
 (5.2.29) 

Suppose the probability of missingness at every partial random variable xj is p and it is 

independent from Xobs and Xmis. The quantity c(Z) is the number of zj (s) in Z that equal 1. For 

example, if Z = (1, 0, 1, 0)T then, c(Z) = 2. The most important task here is to define equation 

5.2.11 and equation 5.2.15 in order to compose τ(X) from τ(Xobs), τ(Xmis) and to extract ΘM from 

Θ when f(X|Θ) distributes normally. 

The conditional PDF of Xmis given Xobs is also multinormal PDF. 

𝑓(𝑋𝑚𝑖𝑠|Θ𝑀) = 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ𝑀) = 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ)

= (2𝜋)−
|𝑀|
2 |Σ𝑀|

−
1
2exp (−

1

2
(𝑋𝑚𝑖𝑠 − 𝜇𝑀)

𝑇Σ𝑀
−1(𝑋𝑚𝑖𝑠 − 𝜇𝑀)) 

(5.2.30) 

Therefore, 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|Θ𝑀𝑖
) = 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

) = 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ)

= (2𝜋)−
|𝑀𝑖|
2 |Σ𝑀𝑖

|
−
1
2exp (−

1

2
(𝑋𝑚𝑖𝑠(𝑖) − 𝜇𝑀𝑖

)
𝑇
Σ𝑀𝑖

−1(𝑋𝑚𝑖𝑠(𝑖) − 𝜇𝑀𝑖
)) 

Where Θ𝑀𝑖
= (𝜇𝑀𝑖

, Σ𝑀𝑖
)
𝑇
. We denote 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|Θ𝑀𝑖
) = 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

) 

Because 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
)  only depends on Θ𝑀𝑖

 within normal PDF whereas Θ𝑀𝑖
 

depends on Xobs(i). Determining the function Θ𝑀𝑖
 = u(Θ, Xobs(i)) is now necessary to extract the 

parameter Θ𝑀𝑖
 from Θ given Xobs(i) when f(Xi|Θ) is normal distribution. 

Let Θmis = (μmis, Σmis)
T be parameter of marginal PDF of Xmis, we have: 

𝑓(𝑋𝑚𝑖𝑠|Θ𝑚𝑖𝑠) = (2𝜋)−
|𝑀|
2 |Σ𝑚𝑖𝑠|

−
1
2exp (−

1

2
(𝑋𝑚𝑖𝑠 − 𝜇𝑚𝑖𝑠)

𝑇(Σ𝑚𝑖𝑠)
−1(𝑋𝑚𝑖𝑠

− 𝜇𝑚𝑖𝑠)) 

(5.2.31) 

Therefore, 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|Θ𝑚𝑖𝑠(𝑖))

= (2𝜋)−
|𝑀𝑖|
2 |Σ𝑚𝑖𝑠(𝑖)|

−
1
2exp (−

1

2
(𝑋𝑚𝑖𝑠(𝑖) − 𝜇𝑚𝑖𝑠(𝑖))

𝑇
(Σ𝑚𝑖𝑠(𝑖))

−1
(𝑋𝑚𝑖𝑠(𝑖)

− 𝜇𝑚𝑖𝑠(𝑖))) 

Where, 

𝜇𝑚𝑖𝑠(𝑖) = (𝜇𝑚𝑖1
, 𝜇𝑚𝑖2

, … , 𝜇𝑚𝑖|𝑀𝑖|
)
𝑇

Σ𝑚𝑖𝑠(𝑖) =

(

 
 

𝜎𝑚𝑖1𝑚𝑖1
𝜎𝑚𝑖1𝑚𝑖2

⋯ 𝜎𝑚𝑖1𝑚𝑖|𝑀𝑖|

𝜎𝑚𝑖2𝑚𝑖1
𝜎𝑚𝑖2𝑚𝑖2

⋯ 𝜎𝑚𝑖2𝑚𝑖|𝑀𝑖|

⋮ ⋮ ⋱ ⋮
𝜎𝑚𝑖|𝑀𝑖|

𝑚𝑖1
𝜎𝑚𝑖|𝑀𝑖|

𝑚𝑖2
⋯ 𝜎𝑚𝑖|𝑀𝑖|

𝑚𝑖|𝑀𝑖|)

 
  (5.2.32) 

Obviously, Θmis(i) is extracted from Θ given indicator Mi. 

Let Θobs = (μobs, Σobs)
T be parameter of marginal PDF of Xobs, we have: 

𝑓(𝑋𝑜𝑏𝑠|Θ𝑜𝑏𝑠) = (2𝜋)−
|�̅�|
2 |Σ𝑜𝑏𝑠|

−
1
2exp (−

1

2
(𝑋𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠)

𝑇(Σ𝑜𝑏𝑠)
−1(𝑋𝑜𝑏𝑠

− 𝜇𝑜𝑏𝑠)) 

(5.2.33) 

Therefore, 
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𝑓(𝑋𝑜𝑏𝑠(𝑖)|Θ𝑜𝑏𝑠(𝑖))

= (2𝜋)−
|�̅�𝑖|
2 |Σ𝑜𝑏𝑠(𝑖)|

−
1
2exp (−

1

2
(𝑋𝑜𝑏𝑠(𝑖) − 𝜇𝑜𝑏𝑠(𝑖))

𝑇
(Σ𝑜𝑏𝑠(𝑖))

−1
(𝑋𝑜𝑏𝑠(𝑖)

− 𝜇𝑜𝑏𝑠(𝑖))) 

Where, 

𝜇𝑜𝑏𝑠(𝑖) = (𝜇�̅�𝑖1
, 𝜇�̅�𝑖2

, … , 𝜇�̅�𝑖|�̅̅̅�𝑖|
)
𝑇

Σ𝑜𝑏𝑠(𝑖) =

(

 
 

𝜎�̅�𝑖1�̅�𝑖1
𝜎�̅�𝑖1�̅�𝑖2

⋯ 𝜎�̅�𝑖1�̅�𝑖|�̅̅̅�𝑖|

𝜎�̅�𝑖2�̅�𝑖1
𝜎�̅�𝑖2�̅�𝑖2

⋯ 𝜎�̅�𝑖2�̅�𝑖|�̅̅̅�𝑖|

⋮ ⋮ ⋱ ⋮
𝜎�̅�𝑖|�̅̅̅�𝑖|

�̅�𝑖1
𝜎�̅�𝑖|�̅̅̅�𝑖|

�̅�𝑖2
⋯ 𝜎�̅�𝑖|�̅̅̅�𝑖|

�̅�𝑖|�̅̅̅�𝑖|)

 
  (5.2.34) 

Obviously, Θobs(i) is extracted from Θ given indicator �̅�𝑖 or Mi. We have: 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|Θ𝑚𝑖𝑠(𝑖)) = ∫ 𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)|Θ)d𝑋𝑜𝑏𝑠(𝑖)

𝑋𝑜𝑏𝑠(𝑖)

 

𝑓(𝑋𝑜𝑏𝑠(𝑖)|Θ𝑜𝑏𝑠(𝑖)) = ∫ 𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)|Θ)d𝑋𝑚𝑖𝑠(𝑖)

𝑋𝑚𝑖𝑠(𝑖)

 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|Θ𝑀𝑖
) = 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ) =

𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)|Θ)

𝑓(𝑋𝑜𝑏𝑠(𝑖)|Θ𝑜𝑏𝑠(𝑖))
 

Therefore, it is easy to form the parameter Θ𝑀𝑖
= (𝜇𝑀𝑖

, Σ𝑀𝑖
)
𝑇
 from Θmis(i) = (μmis(i), Σmis(i))

T 

and Θobs(i) = (μobs(i), Σobs(i))
T as follows (Hardle & Simar, 2013, pp. 156-157): 

Θ𝑀𝑖
= 𝑢(Θ, 𝑋𝑜𝑏𝑠(𝑖))

= {
𝜇𝑀𝑖

= 𝜇𝑚𝑖𝑠(𝑖) + (𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(𝑖)) (Σ𝑜𝑏𝑠(𝑖))

−1
(𝑋𝑜𝑏𝑠(𝑖) − 𝜇𝑜𝑏𝑠(𝑖))

Σ𝑀𝑖
= Σ𝑚𝑖𝑠(𝑖) − (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(𝑖)) (Σ𝑜𝑏𝑠(𝑖))
−1
(𝑉𝑚𝑖𝑠

𝑜𝑏𝑠)
 

(5.2.35) 

Where from Θmis(i) = (μmis(i), Σmis(i))
T and Θobs(i) = (μobs(i), Σobs(i))

T are specified by equation 

5.2.32 and equation 5.2.34. Moreover the kxl matrix 𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(𝑖) which implies correlation between 

Xmis and Xobs is defined as follows: 

𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(𝑖) =

(

 
 

𝜎𝑚𝑖1�̅�𝑖1
𝜎𝑚𝑖1�̅�𝑖2

⋯ 𝜎𝑚𝑖1�̅�𝑖|�̅̅̅�𝑖|

𝜎𝑚𝑖2�̅�𝑖1
𝜎𝑚𝑖2�̅�𝑖2

⋯ 𝜎𝑚𝑖2�̅�𝑖|�̅̅̅�𝑖|

⋮ ⋮ ⋱ ⋮
𝜎𝑚𝑖|𝑀𝑖|

�̅�𝑖1
𝜎𝑚𝑖|𝑀𝑖|

�̅�𝑖2
⋯ 𝜎𝑚𝑖|𝑀𝑖|

�̅�𝑖|�̅̅̅�𝑖|)

 
 

 (5.2.36) 

The kxl matrix 𝑉𝑚𝑖𝑠
𝑜𝑏𝑠(𝑖) which implies correlation between Xobs and Xmis is defined as follows: 

𝑉𝑚𝑖𝑠
𝑜𝑏𝑠(𝑖) =

(

 
 

𝜎�̅�𝑖1𝑚𝑖1
𝜎�̅�𝑖1𝑚𝑖2

⋯ 𝜎�̅�𝑖1𝑚𝑖|𝑀𝑖|

𝜎�̅�𝑖2𝑚𝑖1
𝜎�̅�𝑖2𝑚𝑖2

⋯ 𝜎�̅�𝑖2𝑚𝑖|𝑀𝑖|

⋮ ⋮ ⋱ ⋮
𝜎�̅�𝑖|�̅̅̅�𝑖|

𝑚𝑖1
𝜎�̅�𝑖|�̅̅̅�𝑖|

𝑚𝑖2
⋯ 𝜎�̅�𝑖|�̅̅̅�𝑖|

𝑚𝑖|𝑀𝑖|)

 
 

 (5.2.37) 

Therefore, equation 5.2.35 to extract Θ𝑀𝑖
 from Θ given Xobs(i) is an instance of equation 5.2.15. 

For convenience let, 

𝜇𝑀𝑖
= (𝜇𝑀𝑖

(𝑚𝑖1), 𝜇𝑀𝑖
(𝑚𝑖2),… , 𝜇𝑀𝑖

(𝑚𝑖|𝑀𝑖|
))
𝑇
 (5.2.38) 
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Σ𝑀𝑖
=

(

 
 

Σ𝑀𝑖
(𝑚𝑖1,𝑚𝑖1) Σ𝑀𝑖

(𝑚𝑖1,𝑚𝑖2) ⋯ Σ𝑀𝑖
(𝑚𝑖1, 𝑚𝑖|𝑀𝑖|

)

Σ𝑀𝑖
(𝑚𝑖2,𝑚𝑖1) Σ𝑀𝑖

(𝑚𝑖2,𝑚𝑖2) ⋯ Σ𝑀𝑖
(𝑚𝑖2, 𝑚𝑖|𝑀𝑖|

)

⋮ ⋮ ⋱ ⋮
Σ𝑀𝑖

(𝑚𝑖|𝑀𝑖|
,𝑚𝑖1) Σ𝑀𝑖

(𝑚𝑖|𝑀𝑖|
,𝑚𝑖2) ⋯ Σ𝑀𝑖

(𝑚𝑖|𝑀𝑖|
, 𝑚𝑖|𝑀𝑖|

))

 
 

 

Equation 5.2.38 is result of equation 5.2.35. Given 𝑋𝑚𝑖𝑠(𝑖) = (𝑥𝑚𝑖1
, 𝑥𝑚𝑖2

, … , 𝑥𝑚𝑖|𝑀𝑖|
)
𝑇

 

then,  𝜇𝑀𝑖
(𝑚𝑖𝑗)  is estimated partial mean of 𝑥𝑚𝑖𝑗

 and Σ𝑀𝑖
(𝑚𝑖𝑢, 𝑚𝑖𝑣)  is estimated partial 

covariance of 𝑥𝑚𝑖𝑢
 and 𝑥𝑚𝑖𝑣

 given the conditional PDF f(Xmis | Θ𝑀𝑖
). 

At E-step of some tth iteration, given current parameter Θ(t), the sufficient statistic of X is 

calculated according to equation 5.2.22. Let, 

𝜏(𝑡) = (𝜏1
(𝑡), 𝜏2

(𝑡))
𝑇

=
1

𝑁
∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡))}

𝑁

𝑖=1

 

It is necessary to calculate the sufficient with normal PDF f(Xi|Θ), which means that we need 

to define what τ1
(t) and τ2

(t) are. The sufficient statistic of Xobs(i) is: 

𝜏(𝑋𝑜𝑏𝑠(𝑖)) = (𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑜𝑏𝑠(𝑖)(𝑋𝑜𝑏𝑠(𝑖))
𝑇
)
𝑇

 

The sufficient statistic of Xmis(i) is: 

𝜏(𝑋𝑚𝑖𝑠(𝑖)) = (𝑋𝑚𝑖𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)(𝑋𝑚𝑖𝑠(𝑖))
𝑇
)
𝑇

 

We also have: 

𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡)) = ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

= (
𝜇𝑀𝑖

(𝑡)

Σ𝑀𝑖

(𝑡) + 𝜇𝑀𝑖

(𝑡)(𝜇𝑀𝑖

(𝑡))
𝑇) 

Due to 

𝐸 (𝑋𝑚𝑖𝑠(𝑖)(𝑋𝑚𝑖𝑠(𝑖))
𝑇
|Θ𝑀𝑖

(𝑡)
) = Σ𝑀𝑖

(𝑡)
+ 𝜇𝑀𝑖

(𝑡)
(𝜇𝑀𝑖

(𝑡)
)
𝑇

 

Where 𝜇𝑀𝑖

(𝑡)
 and Σ𝑀𝑖

(𝑡)
 are 𝜇𝑀𝑖

 and Σ𝑀𝑖
 at current iteration, respectively. By referring to equation 

5.2.38, we have 

𝜇𝑀𝑖

(𝑡) = (𝜇𝑀𝑖

(𝑡)(𝑚𝑖1), 𝜇𝑀𝑖

(𝑡)(𝑚𝑖2),… , 𝜇𝑀𝑖

(𝑡)(𝑚𝑖|𝑀𝑖|
))
𝑇

 

And 

Σ𝑀𝑖

(𝑡) + 𝜇𝑀𝑖

(𝑡)(𝜇𝑀𝑖

(𝑡))
𝑇

=

(

  
 

�̃�11
(𝑡)(𝑖) �̃�12

(𝑡)(𝑖) ⋯ �̃�1|𝑀𝑖|
(𝑡) (𝑖)

�̃�21
(𝑡)(𝑖) �̃�22

(𝑡)(𝑖) ⋯ �̃�2|𝑀𝑖|
(𝑡) (𝑖)

⋮ ⋮ ⋱ ⋮

�̃�|𝑀𝑖|1
(𝑡) (𝑖) �̃�|𝑀𝑖|2

(𝑡) (𝑖) ⋯ �̃�|𝑀𝑖||𝑀𝑖|
(𝑡) (𝑖))

  
 

 

Where, 

�̃�𝑢𝑣
(𝑡)(𝑖) = Σ𝑀𝑖

(𝑡)(𝑚𝑖𝑢, 𝑚𝑖𝑣) + 𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣) 

Therefore, τ1
(t) is vector and τ2

(t) is matrix and then, the sufficient statistic of X at E-step of some 

tth iteration, given current parameter Θ(t) is defined as follows: 
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𝜏(𝑡) = (𝜏1
(𝑡)
, 𝜏2
(𝑡)
)
𝑇

𝜏1
(𝑡) = (�̅�1

(𝑡), �̅�2
(𝑡), … , �̅�𝑛

(𝑡))
𝑇

𝜏2
(𝑡) =

(

 
 

𝑠11
(𝑡) 𝑠12

(𝑡) ⋯ 𝑠1𝑛
(𝑡)

𝑠21
(𝑡) 𝑠22

(𝑡) ⋯ 𝑠2𝑛
(𝑡)

⋮ ⋮ ⋱ ⋮

𝑠𝑛1
(𝑡) 𝑠𝑛2

(𝑡) ⋯ 𝑠𝑛𝑛
(𝑡)
)

 
 

 (5.2.39) 

Each �̅�𝑗
(𝑡)

 is calculated as follows: 

�̅�𝑗
(𝑡) =

1

𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝜇𝑀𝑖

(𝑡)(𝑗) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

 (5.2.40) 

Please see equation 5.2.35 and equation 5.2.38 to know 𝜇𝑀𝑖

(𝑡)(𝑗). Each 𝑠𝑢𝑣
(𝑡)

 is calculated as 

follows: 

𝑠𝑢𝑣
(𝑡) = 𝑠𝑣𝑢

(𝑡) =
1

𝑁
∑

{
 
 
 
 
 

 
 
 
 
 

𝑥𝑖𝑢𝑥𝑖𝑣
if 𝑢 ∉ 𝑀𝑖 and 𝑣 ∉ 𝑀𝑖

 

𝑥𝑖𝑢𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣)

if 𝑢 ∉ 𝑀𝑖 and 𝑣 ∈ 𝑀𝑖

 

𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝑥𝑖𝑣

if 𝑢 ∈ 𝑀𝑖 and 𝑣 ∉ 𝑀𝑖

 

Σ𝑀𝑖

(𝑡)(𝑚𝑖𝑢, 𝑚𝑖𝑣) + 𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣)

if 𝑢 ∈ 𝑀𝑖 and 𝑣 ∈ 𝑀𝑖

𝑁

𝑖=1

 (5.2.41) 

Equation 5.2.39 is an instance of equation 5.2.11, which compose τ(X) from τ(Xobs) and τ(Xmis) 

when f(X|Θ) distributes normally. Following is the proof of equation 5.2.41. 

If 𝑢 ∉ 𝑀𝑖 and 𝑣 ∉ 𝑀𝑖 then, the partial statistic xiuxiv is kept intact because xiu and xiv are in 

Xobs are constant with regard to f(Xmis | Θ𝑀𝑖

(𝑡)
) If 𝑢 ∉ 𝑀𝑖 and 𝑣 ∈ 𝑀𝑖 then, the partial statistic xiuxiv 

is replaced by the expectation 𝐸(𝑥𝑖𝑢𝑥𝑖𝑣|Θ𝑀𝑖

(𝑡)) as follows: 

𝐸(𝑥𝑖𝑢𝑥𝑖𝑣|Θ𝑀𝑖

(𝑡)) = ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))𝑥𝑖𝑢𝑥𝑖𝑣d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

= 𝑥𝑖𝑢 ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))𝑥𝑖𝑣d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

= 𝑥𝑖𝑢𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣) 

If 𝑢 ∈ 𝑀𝑖  and 𝑣 ∉ 𝑀𝑖  then, the partial statistic xiuxiv is replaced by the expectation 

𝐸(𝑥𝑖𝑢𝑥𝑖𝑣|Θ𝑀𝑖

(𝑡)) as follows: 

𝐸(𝑥𝑖𝑢𝑥𝑖𝑣|Θ𝑀𝑖

(𝑡)) = ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))𝑥𝑖𝑢𝑥𝑖𝑣d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

= 𝑥𝑖𝑣 ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))𝑥𝑖𝑢d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

= 𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝑥𝑖𝑣 

If 𝑢 ∈ 𝑀𝑖  and 𝑣 ∉ 𝑀𝑖  then, the partial statistic xiuxiv is replaced by the expectation 

𝐸(𝑥𝑖𝑢𝑥𝑖𝑣|Θ𝑀𝑖

(𝑡)) as follows: 

𝐸(𝑥𝑖𝑢𝑥𝑖𝑣|Θ𝑀𝑖

(𝑡)) = ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))𝑥𝑖𝑢𝑥𝑖𝑣d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

= Σ𝑀𝑖

(𝑡)(𝑚𝑖𝑢,𝑚𝑖𝑣) + 𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣)∎ 
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At M-step of some tth iteration, given τ(t) and Θ(t), the next parameter Θ(t+1) = (μ(t+1), Σ(t+1))T is a 

solution of equation 5.2.23. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 
Due to 

𝐸(𝜏(𝑋)|Θ) = (
𝜇
Σ
) 

Equation 5.2.23 becomes: 

{
𝜇 = 𝜏1

(𝑡)

Σ = 𝜏2
(𝑡)

 

Which means that 

{
𝜇𝑗
(𝑡+1) = �̅�𝑗

(𝑡)

𝜎𝑢𝑣
(𝑡+1) = 𝜎𝑣𝑢

(𝑡+1) = 𝑠𝑢𝑣
(𝑡) − �̅�𝑢

(𝑡)�̅�𝑣
(𝑡)
∀𝑗, 𝑢, 𝑣 (5.2.42) 

Please see equation 5.2.40 and equation 5.2.41 to know �̅�𝑗
(𝑡)

 and 𝑠𝑢𝑣
(𝑡)

. 

Moreover, at M-step of some tth iteration, the next parameter Φ(t+1) = p(t+1) is a maximizer 

of Q2(Φ | Θ(t)) given Θ(t) according to equation 5.2.24. 

Φ(𝑡+1) = argmin
Φ

𝑄2(Φ|Θ
(𝑡)) 

Because the PDF of Zi is: 

𝑓(𝑍𝑖|Φ) = 𝑝𝑐(𝑍𝑖)(1 − 𝑝)𝑛−𝑐(𝑍𝑖) 
The Q2(Φ|Θ(t)) becomes: 

𝑄2(Φ|Θ
(𝑡)) =∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))log(𝑓(𝑍𝑖|𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠, Φ))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑ ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))log(𝑓(𝑍𝑖|Φ))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑log(𝑓(𝑍𝑖|Φ)) ∫ 𝑓(𝑋𝑚𝑖𝑠|Θ𝑀𝑖

(𝑡))d𝑋𝑚𝑖𝑠
𝑋𝑚𝑖𝑠

𝑁

𝑖=1

 

=∑log(𝑓(𝑍𝑖|Φ))

𝑁

𝑖=1

=∑log(𝑝𝑐(𝑍𝑖)(1 − 𝑝)𝑛−𝑐(𝑍𝑖))

𝑁

𝑖=1

 

=∑(𝑐(𝑍𝑖)log(𝑝) + (𝑛 − 𝑐(𝑍𝑖))log(1 − 𝑝))

𝑁

𝑖=1

 

The next parameter Φ(t+1) = p(t+1) is solution of the equation created by setting the first-order 

derivative of Q2(Φ|Θ(t)) to be zero, which means that: 

𝜕𝑄2(Φ|Θ
(𝑡))

𝜕𝑝
=∑(

𝑐(𝑍𝑖)

𝑝
−
𝑛 − 𝑐(𝑍𝑖)

1 − 𝑝
)

𝑁

𝑖=1

=
1

𝑝(1 − 𝑝)
((∑𝑐(𝑍𝑖)

𝑁

𝑖=1

) − 𝑛𝑝𝑁) = 0 

It is easy to deduce that the next parameter p(t+1) is: 

𝑝(𝑡+1) =
∑ 𝑐(𝑍𝑖)
𝑁
𝑖=1

𝑛𝑁
 (5.2.43) 

In general, given sample 𝒳 = {X1, X2,…, XN} whose Xi (s) are iid is MCAR data and f(X|Θ) is 

multinormal PDF whereas missingness variable Z follows binomial distribution of n trials, 

GEM for handling missing data is summarized in table 5.2.2. 

E-step: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2020                   doi:10.20944/preprints201802.0131.v9

https://doi.org/10.20944/preprints201802.0131.v9


114 

 

Given current parameter Θ(t) = (μ(t), Σ(t))T, the sufficient statistic τ(t) is calculated according 

to equation 5.2.39, equation 5.2.40, and equation 5.2.41. 

𝜏(𝑡) = (𝜏1
(𝑡), 𝜏2

(𝑡))
𝑇

𝜏1
(𝑡) = (�̅�1

(𝑡), �̅�2
(𝑡), … , �̅�𝑛

(𝑡))
𝑇

𝜏2
(𝑡) =

(

 
 

𝑠11
(𝑡) 𝑠12

(𝑡) ⋯ 𝑠1𝑛
(𝑡)

𝑠21
(𝑡) 𝑠22

(𝑡) ⋯ 𝑠2𝑛
(𝑡)

⋮ ⋮ ⋱ ⋮

𝑠𝑛1
(𝑡) 𝑠𝑛2

(𝑡) ⋯ 𝑠𝑛𝑛
(𝑡)
)

 
 

 

�̅�𝑗
(𝑡) =

1

𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝜇𝑀𝑖

(𝑡)(𝑗) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

 

𝑠𝑢𝑣
(𝑡) = 𝑠𝑣𝑢

(𝑡) =
1

𝑁
∑

{
 
 
 
 
 

 
 
 
 
 

𝑥𝑖𝑢𝑥𝑖𝑣
if 𝑢 ∉ 𝑀𝑖  and 𝑣 ∉ 𝑀𝑖

 

𝑥𝑖𝑢𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣)

if 𝑢 ∉ 𝑀𝑖  and 𝑣 ∈ 𝑀𝑖

 

𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝑥𝑖𝑣

if 𝑢 ∈ 𝑀𝑖  and 𝑣 ∉ 𝑀𝑖

 

Σ𝑀𝑖

(𝑡)(𝑚𝑖𝑢,𝑚𝑖𝑣) + 𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑢)𝜇𝑀𝑖

(𝑡)(𝑚𝑖𝑣)

if 𝑢 ∈ 𝑀𝑖  and 𝑣 ∈ 𝑀𝑖

𝑁

𝑖=1

 

Where 𝜇𝑀𝑖
 and Σ𝑀𝑖

 are specified in equation 5.2.35 and equation 5.2.38. 

M-step: 

Given τ(t) and Θ(t), the next parameter Θ(t+1) = (μ(t+1), Σ(t+1))T is specified by equation 

5.2.42. 

{
𝜇𝑗
(𝑡+1) = �̅�𝑗

(𝑡)

𝜎𝑢𝑣
(𝑡+1) = 𝜎𝑣𝑢

(𝑡+1) = 𝑠𝑢𝑣
(𝑡) − 𝑥𝑢

(𝑡)𝑥𝑣
(𝑡)
∀𝑗, 𝑢, 𝑣 

Given Θ(t), the next parameter Φ(t+1) = p(t+1) is specified by equation 5.2.43. 

𝑝(𝑡+1) =
∑ 𝑐(𝑍𝑖)
𝑁
𝑖=1

𝑛𝑁
 

Where c(Zi) is the number of zij (s) in Zi that equal 1. 

Table 5.2.2. E-step and M-step of GEM algorithm for handling missing data given normal 

PDF 

As aforementioned, an interesting application of handling missing data is to fill in or predict 

missing values. For instance, suppose the estimate resulted from GEM is Θ* = (μ*, Σ*)T, missing 

part 𝑋𝑚𝑖𝑠 = (𝑥𝑚1
, 𝑥𝑚2

, … , 𝑥𝑚|𝑀𝑖|
)
𝑇

 is replaced by 𝜇𝑀
∗  as follows: 

𝑥𝑚𝑗
= 𝜇𝑀

∗ (𝑚𝑗), ∀𝑚𝑗 ∈ 𝑀 (5.2.44) 

Note, 𝜇𝑀
∗  which is extracted from μ* is estimated mean of the conditional PDF of Xmis (given 

Xobs) according to equation 5.2.35. Moreover, 𝜇𝑀
∗ (𝑚𝑗) is estimated partial mean of 𝑥𝑚𝑗

 given 

the conditional PDF f(Xmis | Θ𝑀
∗ ), please see equation 5.2.38 for more details about 𝜇𝑀

∗ . As 

aforementioned, in practice we can stop GEM after its first iteration was done, which is 

reasonable enough to handle missing data. 
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It is necessary to have an example for illustrating how to handle missing data with 

multinormal PDF. 

Example 5.2.1. Given sample of size two, 𝒳 = {X1, X2 } in which X1 = (x11=1, x12=?, x13=3, 

x14=?)T and X2 = (x21=?, x22=2, x23=?, x24=4)T are iid. Therefore, we also have Z1 = (z11=0, z12=1, 

z13=0, z14=1)T and Z2 = (z21=1, z22=0, z23=1, z24=0)T. All Zi (s) are iid too. 

 x1 x2 x3 x4   z1 z2 z3 z4 

X1 1 ? 3 ?  Z1 0 1 0 1 

X2 ? 2 ? 4  Z2 1 0 1 0 

Of course, we have Xobs(1) = (x11=1, x13=3)T, Xmis(1) = (x12=?, x14=?)T, Xobs(2) = (x22=2, x24=4)T 

and Xmis(2) = (x21=?, x23=?)T. We also have M1 = {m11=2, m12=4}, �̅�1 = {�̅�11=1, �̅�12=3}, M2 

= {m21=1, m22=3}, and �̅�2 = {�̅�21=2, �̅�22=4}. Let X and Z be random variables representing 

every Xi and every Zi, respectively. Suppose f(X|Θ) is multinormal PDF and missingness 

variable Z follows binomial distribution of 4 trials according to equation 5.2.26 and equation 

5.2.27. Dimension of X is 4. We will estimate Θ = (μ, Σ)T and Φ = p based on 𝒳. 

𝜇 = (𝜇1, 𝜇2, 𝜇3, 𝜇4)
𝑇 

Σ = (

𝜎11 𝜎12 𝜎13 𝜎14
𝜎21 𝜎22 𝜎23 𝜎24
𝜎31 𝜎32 𝜎33 𝜎34
𝜎41 𝜎42 𝜎43 𝜎44

) 

The parameters μ and Σ are initialized arbitrarily as zero vector and identity vector whereas p 

is initialized 0.5 as follows: 

𝜇(1) = (𝜇1
(1) = 0, 𝜇2

(1) = 0, 𝜇3
(1) = 0, 𝜇4

(1) = 0)
𝑇

 

Σ(1) =

(

  
 

𝜎11
(1) = 1 𝜎12

(1) = 0 𝜎13
(1) = 0 𝜎14

(1) = 0

𝜎21
(1) = 0 𝜎22

(1) = 1 𝜎23
(1) = 0 𝜎24

(1) = 0

𝜎31
(1) = 0 𝜎32

(1) = 0 𝜎33
(1) = 1 𝜎34

(1) = 0

𝜎41
(1) = 0 𝜎42

(1) = 0 𝜎43
(1) = 0 𝜎44

(1) = 1)

  
 

 

𝑝(1) = 0.5 

At 1st iteration, E-step, we have: 

𝑋𝑜𝑏𝑠(1) = (𝑥1 = 1, 𝑥3 = 3)
𝑇 

𝜇𝑚𝑖𝑠(1) = (𝜇2
(1) = 0, 𝜇4

(1) = 0)
𝑇

 

Σ𝑚𝑖𝑠(1) = (
𝜎22
(1) = 1 𝜎24

(1) = 0

𝜎42
(1) = 0 𝜎44

(1) = 1
) 

𝜇𝑜𝑏𝑠(1) = (𝜇1
(1) = 0, 𝜇3

(1) = 0)
𝑇

 

Σ𝑜𝑏𝑠(1) = (
𝜎11
(1) = 1 𝜎13

(1) = 0

𝜎31
(1)
= 0 𝜎33

(1)
= 1

) 

𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(1) = (

𝜎21
(1) = 0 𝜎23

(1) = 0

𝜎41
(1) = 0 𝜎43

(1) = 0
) 

𝑉𝑚𝑖𝑠
𝑜𝑏𝑠(1) = (

𝜎12
(1) = 0 𝜎14

(1) = 0

𝜎32
(1) = 0 𝜎34

(1) = 0
) 

𝜇𝑀1
(1) = 𝜇𝑚𝑖𝑠(1) + (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(1)) (Σ𝑜𝑏𝑠(1))
−1
(𝑋𝑜𝑏𝑠(1) − 𝜇𝑜𝑏𝑠(1))

= (𝜇𝑀1
(1)(2) = 0, 𝜇𝑀1

(1)(4) = 0)
𝑇
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Σ𝑀1
(1) = Σ𝑚𝑖𝑠(1) − (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(1)) (Σ𝑜𝑏𝑠(1))
−1
(𝑉𝑚𝑖𝑠

𝑜𝑏𝑠) = (
Σ𝑀1
(1)(2,2) = 1 Σ𝑀1

(1)(2,4) = 0

Σ𝑀1
(1)(4,2) = 0 Σ𝑀1

(1)(4,4) = 1
) 

 

𝑋𝑜𝑏𝑠(2) = (𝑥2 = 2, 𝑥4 = 4)𝑇 

𝜇𝑚𝑖𝑠(2) = (𝜇1
(1) = 0, 𝜇3

(1) = 0)
𝑇

 

Σ𝑚𝑖𝑠(2) = (
𝜎11
(1) = 1 𝜎13

(1) = 0

𝜎31
(1) = 0 𝜎33

(1) = 1
) 

𝜇𝑜𝑏𝑠(2) = (𝜇2
(1) = 0, 𝜇4

(1) = 0)
𝑇

 

Σ𝑜𝑏𝑠(2) = (
𝜎22
(1) = 1 𝜎24

(1) = 0

𝜎42
(1) = 0 𝜎44

(1) = 1
) 

𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(2) = (

𝜎12
(1) = 0 𝜎14

(1) = 0

𝜎32
(1) = 0 𝜎34

(1) = 0
) 

𝑉𝑚𝑖𝑠
𝑜𝑏𝑠(2) = (

𝜎21
(1) = 0 𝜎23

(1) = 0

𝜎41
(1)
= 0 𝜎43

(1)
= 0

) 

𝜇𝑀2
(1) = 𝜇𝑚𝑖𝑠(2) + (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(2)) (Σ𝑜𝑏𝑠(2))
−1
(𝑋𝑜𝑏𝑠(2) − 𝜇𝑜𝑏𝑠(2))

= (𝜇𝑀2
(1)(1) = 0, 𝜇𝑀2

(1)(3) = 0)
𝑇

 

Σ𝑀2
(1) = Σ𝑚𝑖𝑠(2) − (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(2)) (Σ𝑜𝑏𝑠(2))
−1
(𝑉𝑚𝑖𝑠

𝑜𝑏𝑠) = (
Σ𝑀2
(1)(1,1) = 1 Σ𝑀2

(1)(1,3) = 0

Σ𝑀2
(1)(3,1) = 0 Σ𝑀2

(1)(3,3) = 1
) 

 

�̅�1
(1) =

1

2
(𝑥11 + 𝜇𝑀2

(1)(1)) = 0.5 

�̅�2
(1) =

1

2
(𝜇𝑀1

(1)(2) + 𝑥22) = 1 

�̅�3
(1) =

1

2
(𝑥13 + 𝜇𝑀2

(1)(3)) = 1.5 

�̅�4
(1) =

1

2
(𝜇𝑀1

(1)(4) + 𝑥24) = 2 

 

𝑠11
(1) =

1

2
((𝑥11)

2 + (Σ𝑀2
(1)(1,1) + (𝜇𝑀2

(1)(1))
2
)) = 1 

𝑠12
(1) = 𝑠21

(1) =
1

2
(𝑥11𝜇𝑀1

(1)(2) + 𝜇𝑀2
(1)(1)𝑥22) = 0 

𝑠13
(1) = 𝑠31

(1) =
1

2
(𝑥11𝑥13 + (Σ𝑀2

(1)(1,3) + 𝜇𝑀2
(1)(1)𝜇𝑀2

(1)(3))) = 1.5 

𝑠14
(1) = 𝑠41

(1) =
1

2
(𝑥11𝜇𝑀1

(1)(4) + 𝜇𝑀2
(1)(1)𝑥24) = 0 

𝑠22
(1) =

1

2
((Σ𝑀1

(1)(2,2) + (𝜇𝑀1
(1)(2))

2
) + (𝑥22)

2) = 2.5 

𝑠23
(1) = 𝑠32

(1) =
1

2
(𝜇𝑀1

(1)(2)𝑥13 + 𝑥22𝜇𝑀2
(1)(3)) = 0 

𝑠24
(1) = 𝑠42

(1) =
1

2
((Σ𝑀1

(1)(2,4) + 𝜇𝑀1
(1)(2)𝜇𝑀1

(1)(4)) + 𝑥22𝑥24) = 4 
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𝑠33
(1)
=
1

2
((𝑥13)

2 + (Σ𝑀2
(1)(3,3) + (𝜇𝑀2

(1)(3))
2
)) = 5 

𝑠34
(1) = 𝑠43

(1) =
1

2
(𝑥13𝜇𝑀1

(1)(4) + 𝜇𝑀2
(1)(3)𝑥24) = 0 

𝑠44
(1) =

1

2
((Σ𝑀1

(1)(4,4) + (𝜇𝑀1
(1)(4))

2
) + (𝑥24)

2) = 8.5 

At 1st iteration, M-step, we have: 

𝜇1
(2) = �̅�1

(1) = 0.5 

𝜇2
(2) = �̅�2

(1) = 1 

𝜇3
(2) = �̅�3

(1) = 1.5 

𝜇4
(2) = �̅�4

(1) = 2 

 

𝜎11
(2) = 𝑠11

(1) − (�̅�1
(1))

2

= 0.75 

𝜎12
(2) = 𝜎21

(2) = 𝑠12
(1) − �̅�1

(1)�̅�2
(1) = −0.5 

𝜎13
(2) = 𝜎31

(2) = 𝑠13
(1) − �̅�1

(1)�̅�3
(1) = 0.75 

𝜎14
(2) = 𝜎41

(2) = 𝑠14
(1) − �̅�1

(1)�̅�4
(1) = −1 

𝜎22
(2) = 𝑠22

(1) − (�̅�2
(1))

2

= 1.5 

𝜎23
(2) = 𝜎32

(2) = 𝑠23
(1) − �̅�2

(1)�̅�3
(1) = −1.5 

𝜎24
(2) = 𝜎42

(2) = 𝑠24
(1) − �̅�2

(1)�̅�4
(1) = 2 

𝜎33
(2) = 𝑠33

(1) − (�̅�3
(1))

2

= 2.75 

𝜎34
(2) = 𝜎43

(2) = 𝑠34
(1) − �̅�3

(1)�̅�4
(1) = −3 

𝜎44
(2) = 𝑠44

(1) − (�̅�4
(1))

2

= 4.5 

 

𝑝(2) =
𝑐(𝑍1) + 𝑐(𝑍2)

4 ∗ 2
=
2 + 2

4 ∗ 2
= 0.5 

At 2nd iteration, E-step, we have: 

𝑋𝑜𝑏𝑠(1) = (𝑥1 = 1, 𝑥3 = 3)𝑇 

𝜇𝑚𝑖𝑠(1) = (𝜇2
(2) = 1, 𝜇4

(2) = 2)
𝑇

 

Σ𝑚𝑖𝑠(1) = (
𝜎22
(2) = 1.5 𝜎24

(2) = 2

𝜎42
(2) = 2 𝜎44

(2) = 4.5
) 

𝜇𝑜𝑏𝑠(1) = (𝜇1
(2) = 0.5, 𝜇3

(2) = 1.5)
𝑇

 

Σ𝑜𝑏𝑠(1) = (
𝜎11
(2) = 0.75 𝜎13

(2) = 0.75

𝜎31
(2) = 0.75 𝜎33

(2) = 2.75
) 

𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(1) = (

𝜎21
(2) = −0.5 𝜎23

(2) = −1.5

𝜎41
(2) = −1 𝜎43

(2) = −3
) 

𝑉𝑚𝑖𝑠
𝑜𝑏𝑠(1) = (

𝜎12
(2) = −0.5 𝜎14

(2) = −1

𝜎32
(2) = −1.5 𝜎34

(2) = −3
) 
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𝜇𝑀1
(2) = 𝜇𝑚𝑖𝑠(1) + (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(1)) (Σ𝑜𝑏𝑠(1))
−1
(𝑋𝑜𝑏𝑠(1) − 𝜇𝑜𝑏𝑠(1))

= (𝜇𝑀1
(2)(2) ≅ 0.17, 𝜇𝑀1

(2)(4) ≅ 0.33)
𝑇

 

Σ𝑀1
(2) = Σ𝑚𝑖𝑠(1) − (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(1)) (Σ𝑜𝑏𝑠(1))
−1
(𝑉𝑚𝑖𝑠

𝑜𝑏𝑠) = (
Σ𝑀1
(2)(2,2) ≅ 0,67 Σ𝑀1

(2)(2,4) ≅ 0.33

Σ𝑀1
(2)(4,2) ≅ 0.33 Σ𝑀1

(2)(4,4) ≅ 1.17
) 

 

𝑋𝑜𝑏𝑠(2) = (𝑥2 = 2, 𝑥4 = 4)
𝑇 

𝜇𝑚𝑖𝑠(2) = (𝜇1
(2) = 0.5, 𝜇3

(2) = 1.5)
𝑇

 

Σ𝑚𝑖𝑠(2) = (
𝜎11
(2) = 0.75 𝜎13

(2) = 0.75

𝜎31
(2) = 0.75 𝜎33

(2) = 2.75
) 

𝜇𝑜𝑏𝑠(2) = (𝜇2
(2) = 1, 𝜇4

(2) = 2)
𝑇

 

Σ𝑜𝑏𝑠(2) = (
𝜎22
(2) = 1.5 𝜎24

(2) = 2

𝜎42
(2) = 2 𝜎44

(2) = 4.5
) 

𝑉𝑜𝑏𝑠
𝑚𝑖𝑠(2) = (

𝜎12
(2) = −0.5 𝜎14

(2) = −1

𝜎32
(2) = −1.5 𝜎34

(2) = −3
) 

𝑉𝑚𝑖𝑠
𝑜𝑏𝑠(2) = (

𝜎21
(2) = −0.5 𝜎23

(2) = −1.5

𝜎41
(2) = −1 𝜎43

(2) = −3
) 

𝜇𝑀2
(2) = 𝜇𝑚𝑖𝑠(2) + (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(2)) (Σ𝑜𝑏𝑠(2))
−1
(𝑋𝑜𝑏𝑠(2) − 𝜇𝑜𝑏𝑠(2))

= (𝜇𝑀2
(2)(1) ≅ 0.05, 𝜇𝑀2

(2)(3) = 0.14)
𝑇

 

Σ𝑀2
(2) = Σ𝑚𝑖𝑠(2) − (𝑉𝑜𝑏𝑠

𝑚𝑖𝑠(2)) (Σ𝑜𝑏𝑠(2))
−1
(𝑉𝑚𝑖𝑠

𝑜𝑏𝑠) = (
Σ𝑀2
(2)(1,1) ≅ 0.52 Σ𝑀2

(2)(1,3) ≅ 0.07

Σ𝑀2
(2)(3,1) ≅ 0.07 Σ𝑀2

(2)(3,3) ≅ 0.7
) 

 

�̅�1
(2) =

1

2
(𝑥11 + 𝜇𝑀2

(2)(1)) ≅ 0.52 

�̅�2
(2) =

1

2
(𝜇𝑀1

(2)(2) + 𝑥22) ≅ 1.1 

�̅�3
(2) =

1

2
(𝑥13 + 𝜇𝑀2

(2)(3)) ≅ 1.57 

�̅�4
(2) =

1

2
(𝜇𝑀1

(2)(4) + 𝑥24) ≅ 2.17 

 

𝑠11
(2)
=
1

2
((𝑥11)

2 + (Σ𝑀2
(2)(1,1) + (𝜇𝑀2

(2)(1))
2
)) ≅ 0.76 

𝑠12
(2) = 𝑠21

(2) =
1

2
(𝑥11𝜇𝑀1

(2)(2) + 𝜇𝑀2
(2)(1)𝑥22) ≅ 0.13 

𝑠13
(2) = 𝑠31

(2) =
1

2
(𝑥11𝑥13 + (Σ𝑀2

(2)(1,3) + 𝜇𝑀2
(2)(1)𝜇𝑀2

(2)(3))) ≅ 1.54 

𝑠14
(2) = 𝑠41

(2) =
1

2
(𝑥11𝜇𝑀1

(2)(4) + 𝜇𝑀2
(2)(1)𝑥24) ≅ 0.17 

𝑠22
(2) =

1

2
((Σ𝑀1

(2)(2,2) + (𝜇𝑀1
(2)(2))

2
) + (𝑥22)

2) ≅ 2.35 
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𝑠23
(2)
= 𝑠32

(2)
=
1

2
(𝜇𝑀1

(2)(2)𝑥13 + 𝑥22𝜇𝑀2
(2)(3)) ≅ 0.39 

𝑠24
(2) = 𝑠42

(2) =
1

2
((Σ𝑀1

(2)(2,4) + 𝜇𝑀1
(2)(2)𝜇𝑀1

(2)(4)) + 𝑥22𝑥24) ≅ 4.19 

𝑠33
(2) =

1

2
((𝑥13)

2 + (Σ𝑀2
(2)(3,3) + (𝜇𝑀2

(2)(3))
2
)) ≅ 4.86 

𝑠34
(2) = 𝑠43

(2) =
1

2
(𝑥13𝜇𝑀1

(1)(4) + 𝜇𝑀2
(2)(3)𝑥24) ≅ 0.77 

𝑠44
(2) =

1

2
((Σ𝑀1

(2)(4,4) + (𝜇𝑀1
(2)(4))

2
) + (𝑥24)

2) ≅ 8.64 

At 2nd iteration, M-step, we have: 

𝜇1
(3) = �̅�1

(2) ≅ 0.52 

𝜇2
(3) = �̅�2

(2) ≅ 1.1 

𝜇3
(3) = �̅�3

(2) ≅ 1.57 

𝜇4
(3) = �̅�4

(2) ≅ 2.17 

 

𝜎11
(3) = 𝑠11

(2) − (�̅�1
(2))

2

≅ 0.49 

𝜎12
(3) = 𝜎21

(3) = 𝑠12
(2) − �̅�1

(2)�̅�2
(2) ≅ −0.44 

𝜎13
(3) = 𝜎31

(3) = 𝑠13
(2) − �̅�1

(2)�̅�3
(2) ≅ 0.72 

𝜎14
(3) = 𝜎41

(3) = 𝑠14
(2) − �̅�1

(2)�̅�4
(2) ≅ −0.96 

𝜎22
(3) = 𝑠22

(2) − (�̅�2
(2))

2

≅ 1.17 

𝜎23
(3) = 𝜎32

(3) = 𝑠23
(2) − �̅�2

(2)�̅�3
(2) ≅ −1.31 

𝜎24
(3)
= 𝜎42

(3)
= 𝑠24

(2)
− �̅�2

(2)
�̅�4
(2)
≅ 1.85 

𝜎33
(3) = 𝑠33

(2) − (�̅�3
(2))

2

≅ 2.4 

𝜎34
(3) = 𝜎43

(3) = 𝑠34
(2) − �̅�3

(2)�̅�4
(2) ≅ −2.63 

𝜎44
(3) = 𝑠44

(2) − (�̅�4
(2))

2

≅ 3.94 

 

𝑝(3) =
𝑐(𝑍1) + 𝑐(𝑍2)

4 ∗ 2
=
2 + 2

4 ∗ 2
= 0.5 

Because the sample is too small for GEM to converge to an exact maximizer with small enough 

number of iterations, we can stop GEM at the second iteration with Θ(3) = Θ* = (μ*, Σ*)T and 

Φ(3) = Φ* = p* when difference between Θ(2) and Θ(3) is insignificant. 

𝜇∗ = (𝜇1
∗ = 0.52, 𝜇2

∗ = 1.1, 𝜇3
∗ = 1.57, 𝜇4

∗ = 2.17)𝑇 

Σ∗ = (

𝜎11
∗ = 0.49 𝜎12

∗ = −0.44 𝜎13
∗ = 0.72 𝜎14

∗ = −0.96
𝜎21
∗ = −0.44 𝜎22

∗ = 1.17 𝜎23
∗ = −1.31 𝜎24

∗ = 1.85

𝜎31
∗ = 0.72 𝜎32

∗ = −1.31 𝜎33
∗ = 2.4 𝜎34

∗ = −2.63
𝜎41
∗ = −0.96 𝜎42

∗ = 1.85 𝜎43
∗ = −2.63 𝜎44

∗ = 3.94

) 

𝑝∗ = 0.5 

As aforementioned, because Xmis is a part of X and f(Xmis | ΘM) is derived directly from f(X|Θ), 

in practice we can stop GEM after its first iteration was done, which is reasonable enough to 

handle missing data. 
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As aforementioned, an interesting application of handling missing data is to fill in or predict 

missing values. For instance, the missing part Xmis(1) of X1 = (x11=1, x12=?, x13=3, x14=?)T is 

fulfilled by 𝜇𝑀1
∗  according to equation 5.2.44 as follows: 

𝑥12 = 𝜇2
∗ = 1.1

𝑥14 = 𝜇4
∗ = 2.17

 

Now we survey another interesting case that sample 𝒳 = {X1, X2,…, XN} whose Xi (s) are iid 

is MCAR data and f(X|Θ) is multinomial PDF of K trials. We ignore missingness variable Z 

here because it is included in the case of multinormal PDF. Let X = {Xobs, Xmis} be random 

variable representing every Xi. Suppose dimension of X is n. According to equation 5.2.9, recall 

that  

𝑋𝑖 = {𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)} = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛)
𝑇

𝑋𝑚𝑖𝑠(𝑖) = (𝑥𝑖𝑚1
, 𝑥𝑖𝑚2

, … , 𝑥𝑖𝑚|𝑀𝑖|
)
𝑇

𝑋𝑜𝑏𝑠(𝑖) = (𝑥𝑖�̅�𝑖1
, 𝑥𝑖�̅�𝑖2

, … , 𝑥𝑖�̅�𝑖|�̅̅̅�𝑖|
)
𝑇

𝑀𝑖 = {𝑚𝑖1, 𝑚𝑖2, … ,𝑚𝑖|𝑀𝑖|
}

�̅�𝑖 = {�̅�𝑖1, �̅�𝑖2, … , �̅�𝑖|�̅�𝑖|
}

 

The PDF of X is: 

𝑓(𝑋|Θ) = 𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ) =
𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑗

𝑛

𝑗=1

 (5.2.45) 

Where xj are integers and Θ = (p1, p2,…, pn)
T is the set of probabilities such that 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑗

𝑛

𝑗=1

= 𝐾

𝑥𝑗 ∈ {0,1, … , 𝐾}

 

Note, xj is the number of trials generating nominal value j. Therefore, 

𝑓(𝑋𝑖|Θ) = 𝑓(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠(𝑖)|Θ) =
𝐾!

∏ (𝑥𝑖𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑖𝑗

𝑛

𝑗=1

 

Where, 

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝐾

𝑥𝑖𝑗 ∈ {0,1, … , 𝐾}

 

The most important task here is to define equation 5.2.11 and equation 5.2.15 in order to 

compose τ(X) from τ(Xobs), τ(Xmis) and to extract ΘM from Θ when f(X|Θ) is multinomial PDF. 

Let Θmis be parameter of marginal PDF of Xmis, we have: 

𝑓(𝑋𝑚𝑖𝑠|Θ𝑚𝑖𝑠) =
𝐾𝑚𝑖𝑠!

∏ (𝑥𝑚𝑗
!)𝑚𝑗∈𝑀

∏(
𝑝𝑚𝑗

𝑃𝑚𝑖𝑠
)
𝑥𝑚𝑗

|𝑀|

𝑗=1

 (5.2.46) 

Therefore, 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|Θ𝑚𝑖𝑠(𝑖)) =
𝐾𝑚𝑖𝑠(𝑖)!

∏ (𝑥𝑖𝑚𝑗
!)𝑚𝑗∈𝑀𝑖

∏(
𝑝𝑚𝑖𝑗

𝑃𝑚𝑖𝑠(𝑖)
)
𝑥𝑖𝑚𝑗

|𝑀𝑖|

𝑗=1
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Where, 

Θ𝑚𝑖𝑠(𝑖) = (
𝑝𝑚𝑖1

𝑃𝑚𝑖𝑠(𝑖)
,
𝑝𝑚𝑖2

𝑃𝑚𝑖𝑠(𝑖)
, … ,

𝑝𝑚𝑖|𝑀𝑖|

𝑃𝑚𝑖𝑠(𝑖)
)

𝑇

𝑃𝑚𝑖𝑠(𝑖) =∑𝑝𝑚𝑖𝑗

|𝑀𝑖|

𝑗=1

𝐾𝑚𝑖𝑠(𝑖) =∑𝑥𝑚𝑖𝑗

|𝑀𝑖|

𝑗=1

 (5.2.47) 

Obviously, Θmis(i) is extracted from Θ given indicator Mi. 

Let Θobs be parameter of marginal PDF of Xobs, we have: 

𝑓(𝑋𝑜𝑏𝑠|Θ𝑜𝑏𝑠) =
𝐾𝑜𝑏𝑠!

∏ (𝑥�̅�𝑗
!)�̅�𝑗∈�̅�

∏(
𝑝�̅�𝑗

𝑃𝑜𝑏𝑠
)
𝑥�̅̅̅�𝑗

|�̅�|

𝑗=1

 (5.2.48) 

Therefore, 

𝑓(𝑋𝑜𝑏𝑠(𝑖)|Θ𝑜𝑏𝑠(𝑖)) =
𝐾𝑜𝑏𝑠(𝑖)!

∏ (𝑥𝑖�̅�𝑗
!)�̅�𝑗∈�̅�𝑖

∏(
𝑝�̅�𝑖𝑗

𝑃𝑜𝑏𝑠(𝑖)
)
𝑥𝑖�̅̅̅�𝑗

|�̅�𝑖|

𝑗=1

 

Where, 

Θ𝑜𝑏𝑠(𝑖) = (
𝑝�̅�𝑖1

𝑃𝑜𝑏𝑠(𝑖)
,
𝑝�̅�𝑖2

𝑃𝑜𝑏𝑠(𝑖)
, … ,

𝑝�̅�𝑖|�̅̅̅�𝑖|

𝑃𝑜𝑏𝑠(𝑖)
)

𝑇

𝑃𝑜𝑏𝑠(𝑖) =∑𝑝�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1

𝐾𝑜𝑏𝑠(𝑖) =∑𝑥�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1

 (5.2.49) 

Obviously, Θobs(i) is extracted from Θ given indicator �̅�𝑖 or Mi. 

The conditional PDF of Xmis given Xobs is calculated based on the PDF of X and the marginal 

PDF of Xobs as follows: 

𝑓(𝑋𝑚𝑖𝑠|Θ𝑀) = 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ) =
𝑓(𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠|Θ)

𝑓(𝑋𝑜𝑏𝑠|Θ𝑜𝑏𝑠)
 

=

𝐾!
∏ (𝑥𝑗!)
𝑛
𝑗=1

∏ 𝑝
𝑗

𝑥𝑗𝑛
𝑗=1

𝐾𝑜𝑏𝑠!

∏ 𝑥�̅�𝑗
!

|�̅�|
𝑗=1

∏ (
𝑝�̅�𝑗

𝑃𝑜𝑏𝑠
)
𝑥�̅̅̅�𝑗|�̅�|

𝑗=1

 

=
𝐾!

𝐾𝑜𝑏𝑠!

∏ 𝑥�̅�𝑗
!

|�̅�|
𝑗=1

∏ (𝑥𝑗!)
𝑛
𝑗=1

∗
∏ 𝑝

𝑗

𝑥𝑗𝑛
𝑗=1

∏ (
𝑝�̅�𝑗

𝑃𝑜𝑏𝑠
)
𝑥�̅̅̅�𝑗|�̅�|

𝑗=1

 

=
𝐾!

𝐾𝑜𝑏𝑠! ∏ (𝑥𝑚𝑗
!)

|𝑀|
𝑗=1

∗ (∏𝑝𝑚𝑗

𝑥𝑚𝑗

|𝑀|

𝑗=1

) ∗ (∏𝑝�̅�𝑗

𝑥�̅̅̅�𝑗 (
𝑃𝑜𝑏𝑠
𝑝�̅�𝑗

)

𝑥�̅̅̅�𝑗
|�̅�|

𝑗=1

) 
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=
𝐾!

𝐾𝑜𝑏𝑠! ∏ (𝑥𝑚𝑗
!)

|𝑀|
𝑗=1

∗ (∏𝑝𝑚𝑗

𝑥𝑚𝑗

|𝑀|

𝑗=1

) ∗ (∏(𝑃𝑜𝑏𝑠)
𝑥�̅̅̅�𝑗

|�̅�|

𝑗=1

) 

=
𝐾!

𝐾𝑜𝑏𝑠! ∏ (𝑥𝑚𝑗
!)

|𝑀|
𝑗=1

∗ (∏𝑝𝑚𝑗

𝑥𝑚𝑗

|𝑀|

𝑗=1

) ∗ ((𝑃𝑜𝑏𝑠)
𝐾𝑜𝑏𝑠) 

This implies that the conditional PDF of Xmis given Xobs is multinomial PDF of K trials. 

𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ𝑀) = 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ)

=
𝐾!

𝐾𝑜𝑏𝑠!∏ (𝑥𝑚𝑗
!)

|𝑀|
𝑗=1

∗ (∏𝑝𝑚𝑗

𝑥𝑚𝑗

|𝑀|

𝑗=1

) ∗ ((𝑃𝑜𝑏𝑠)
𝐾𝑜𝑏𝑠) 

(5.2.50) 

Therefore, 

𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
) = 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ)

=
𝐾!

𝐾𝑜𝑏𝑠(𝑖)!∏ (𝑥𝑖𝑚𝑗
!)

|𝑀𝑖|

𝑗=1

∗ (∏𝑝𝑚𝑖𝑗

𝑥𝑖𝑚𝑗

|𝑀𝑖|

𝑗=1

) ∗ ((𝑃𝑜𝑏𝑠(𝑖))
𝐾𝑜𝑏𝑠(𝑖)

) 

Where 

𝑃𝑜𝑏𝑠(𝑖) =∑𝑝�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1

𝐾𝑜𝑏𝑠(𝑖) =∑𝑥�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1

 

Obviously, the parameter Θ𝑀𝑖
 of the conditional PDF 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖

) is: 

Θ𝑀𝑖
= 𝑢(Θ, 𝑋𝑜𝑏𝑠(𝑖)) =

(

 
 
 
 
 

𝑝𝑚1

𝑝𝑚2

⋮
𝑝𝑚𝑘

𝑃𝑜𝑏𝑠(𝑖) = ∑𝑝�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1 )

 
 
 
 
 

 (5.2.51) 

Therefore, equation 5.2.51 to extract Θ𝑀𝑖
 from Θ given Xobs(i) is an instance of equation 5.2.15. 

It is easy to check that 

∑𝑥𝑚𝑖𝑗

|𝑀𝑖|

𝑗=1

+ 𝐾𝑜𝑏𝑠(𝑖) = 𝐾𝑚𝑖𝑠(𝑖) + 𝐾𝑜𝑏𝑠(𝑖) = 𝐾 

∑𝑝𝑚𝑖𝑗

|𝑀𝑖|

𝑗=1

+ 𝑃𝑜𝑏𝑠(𝑖) =∑𝑝𝑚𝑖𝑗

|𝑀𝑖|

𝑗=1

+∑𝑝�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1

=∑𝑝𝑗

𝑛

𝑗=1

= 1 

At E-step of some tth iteration, given current parameter Θ(t) = (p1
(t), p2

(t),…, pn
(t))T, the sufficient 

statistic of X is calculated according to equation 5.2.22. Let, 

𝜏(𝑡) =
1

𝑁
∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡))}

𝑁

𝑖=1

 

The sufficient statistic of Xobs(i) is: 

𝜏(𝑋𝑜𝑏𝑠(𝑖)) = (𝑥𝑖�̅�1
, 𝑥𝑖�̅�2

, … , 𝑥𝑖�̅�|�̅̅̅�𝑖|
)
𝑇
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The sufficient statistic of Xmis(i) with regard to 𝑓(𝑋𝑚𝑖𝑠(𝑖)|𝑋𝑜𝑏𝑠(𝑖), Θ𝑀𝑖
) is: 

𝜏(𝑋𝑚𝑖𝑠(𝑖)) =

(

 
 
 
 
 

𝑥𝑖𝑚1

𝑥𝑖𝑚2

⋮
𝑥𝑖𝑚|𝑀𝑖|

∑𝑥�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1 )

 
 
 
 
 

 

We also have: 

𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡)
) = ∫ 𝑓(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, Θ𝑀𝑖

(𝑡)
)𝜏(𝑋𝑚𝑖𝑠)d𝑋𝑚𝑖𝑠

𝑋𝑚𝑖𝑠

=

(

 
 
 
 
 

𝐾𝑝𝑚1

𝐾𝑝𝑚2

⋮
𝐾𝑝𝑚|𝑀𝑖|

∑𝐾𝑝�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1 )

 
 
 
 
 

 

Therefore, the sufficient statistic of X at E-step of some tth iteration given current parameter Θ(t) 

= (p1
(t), p2

(t),…, pn
(t))T is defined as follows: 

𝜏(𝑡) = (�̅�1
(𝑡), �̅�2

(𝑡), … , �̅�𝑛
(𝑡))

𝑇

�̅�𝑗
(𝑡) =

1

𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

∀𝑗
 (5.2.52) 

Equation 5.2.52 is an instance of equation 5.2.11, which compose τ(X) from τ(Xobs) and τ(Xmis) 

when f(X|Θ) is multinomial PDF. 

At M-step of some tth iteration, we need to maximize Q1(Θ’|Θ) with following constraint 

∑𝑝𝑗

𝑛

𝑗=1

= 1 

According to equation 5.2.19, we have: 

𝑄1(Θ
′|Θ) =∑𝐸(log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))|Θ𝑀𝑖

)

𝑁

𝑖=1

+ (Θ′)𝑇∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖
)}

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) 
Where quantities b(Xobs(i), Xmis) and a(Θ’) belongs to the PDF f(X|Θ) of X. Because there is the 

constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1, we use Lagrange duality method to maximize Q1(Θ’|Θ). The Lagrange 

function la(Θ’, λ | Θ) is sum of Q1(Θ’|Θ) and the constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1, as follows: 

𝑙𝑎(Θ′, λ|Θ) = 𝑄1(Θ
′|Θ) + 𝜆(1 −∑𝑝𝑗

′

𝑛

𝑗=1

)

=∑𝐸(log(𝑏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠))|Θ𝑀𝑖
)

𝑁

𝑖=1

+ (Θ′)𝑇∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖
)}

𝑁

𝑖=1

− 𝑁log(𝑎(Θ′)) + 𝜆 (1 −∑𝑝𝑗
′

𝑛

𝑗=1

) 
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Where Θ’ = (p1’, p2’,…, pn’)
T. Note, λ ≥ 0 is called Lagrange multiplier. Of course, la(Θ’, λ | 

Θ) is function of Θ’ and λ. The next parameter Θ(t+1) that maximizes Q1(Θ’|Θ) is solution of 

the equation formed by setting the first-order derivative of Lagrange function regarding Θ’ and 

λ to be zero. 

The first-order partial derivative of la(Θ’, λ | Θ) with regard to Θ’ is: 

𝜕𝑙𝑎(Θ′, λ|Θ)

𝜕Θ′
=∑(𝐸(𝜏(𝑋𝑜𝑏𝑠(𝑖), 𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

))
𝑇

𝑁

𝑖=1

− 𝑁log′(𝑎(Θ′))

=∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖
)}
𝑇

𝑁

𝑖=1

− 𝑁log′(𝑎(Θ′)) − (𝜆, 𝜆, … , 𝜆)𝑇 

By referring table 1.2, we have: 

log′(𝑎(Θ′)) = (𝐸(𝜏(𝑋)|Θ′))
𝑇
= ∫𝑓(𝑋|Θ)(𝜏(𝑋))

𝑇
d𝑋

𝑋

 

Thus, 

𝜕𝑙𝑎(Θ′, λ|Θ)

𝜕Θ′
=∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

)}
𝑇

𝑁

𝑖=1

− 𝑁(𝐸(𝜏(𝑋)|Θ′))
𝑇
− (𝜆, 𝜆, … , 𝜆)𝑇 

The first-order partial derivative of la(Θ’, λ | Θ) with regard to λ is: 

𝜕𝑙𝑎(Θ′, λ|Θ)

𝜕λ
= 1 −∑𝑝𝑗

′

𝑛

𝑗=1

 

Therefore, at M-step of some tth iteration, given current parameter Θ(t) = (p1
(t), p2

(t),…, pn
(t))T, 

the next parameter Θ(t+1) is solution of the following equation: 

{
 
 
 

 
 
 ∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡))}
𝑇

𝑁

𝑖=1

−𝑁(𝐸(𝜏(𝑋)|Θ))
𝑇
− (𝜆, 𝜆, … , 𝜆) = 𝟎𝑇

 

1 −∑𝑝𝑗

𝑛

𝑗=1

= 0

 

This implies: 

{
  
 

  
 
𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) − (

𝜆 𝑁⁄

𝜆 𝑁⁄

𝜆 𝑁⁄

𝜆 𝑁⁄

)

∑𝑝𝑗

𝑛

𝑗=1

= 1

 

Where, 

𝜏(𝑡) =
1

𝑁
∑{𝜏(𝑋𝑜𝑏𝑠(𝑖)), 𝐸(𝜏(𝑋𝑚𝑖𝑠)|Θ𝑀𝑖

(𝑡))}

𝑁

𝑖=1

 

Due to 

𝐸(𝜏(𝑋)|Θ) = ∫𝜏(𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

= (𝐾𝑝1, 𝐾𝑝2, … , 𝐾𝑝𝑛)
𝑇 
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𝜏(𝑡) = (�̅�1
(𝑡)
, �̅�2
(𝑡)
, … , �̅�𝑛

(𝑡)
)
𝑇

�̅�𝑗
(𝑡) =

1

𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

∀𝑗
 

We obtain n equations Kpj = –λ/N + �̅�𝑗
(𝑡)

 and 1 constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1. Therefore, we have: 

𝑝𝑗 = −
𝜆

𝐾𝑁
+

1

𝐾𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

∀𝑗 

Summing n equations above, we have: 

1 =∑𝑝𝑗

𝑛

𝑗=1

= −
𝜆

𝐾𝑁
+

1

𝐾𝑁
∑(∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

)

𝑛

𝑗=1

= −
𝜆

𝐾𝑁
+

1

𝐾𝑁
∑(∑𝑥𝑖�̅�𝑗

|�̅�𝑖|

𝑗=1

+∑𝐾𝑝𝑚𝑗

(𝑡)

|𝑀𝑖|

𝑗=1

)

𝑁

𝑖=1

 

Suppose every missing value 𝑥𝑖𝑚𝑗
 is estimated by 𝐾𝑝𝑚𝑗

 such that: 

∑𝑥�̅�𝑖𝑗

|�̅�𝑖|

𝑗=1

=∑𝐾𝑝𝑚𝑗

(𝑡)

|𝑀𝑖|

𝑗=1

 

We obtain: 

1 = −
𝜆

𝐾𝑁
+

1

𝐾𝑁
∑(∑𝑥𝑖�̅�𝑗

|�̅�𝑖|

𝑗=1

+∑𝑥𝑖𝑚𝑗

|𝑀𝑖|

𝑗=1

)

𝑁

𝑖=1

= −
𝜆

𝐾𝑁
+

1

𝐾𝑁
∑𝐾

𝑁

𝑖=1

= −
𝜆

𝐾𝑁
+ 1 

This implies 

𝜆 = 0 

Such that 

𝑝𝑗 =
1

𝐾𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

∀𝑗 

Therefore, at M-step of some tth iteration, given current parameter Θ(t) = (p1
(t), p2

(t),…, pn
(t))T, 

the next parameter Θ(t+1) is specified by following equation. 

𝑝𝑗
(𝑡+1) =

1

𝐾𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

∀𝑗 (5.2.53) 

In general, given sample 𝒳 = {X1, X2,…, XN} whose Xi (s) are iid is MCAR data and f(X|Θ) is 

multinomial PDF of K trials, GEM for handling missing data is summarized in table 5.2.3. 

M-step: 

Given τ(t) and Θ(t) = (p1
(t), p2

(t),…, pn
(t))T, the next parameter Θ(t+1) is specified by equation 

5.2.53. 

𝑝𝑗
(𝑡+1) =

1

𝐾𝑁
∑{

𝑥𝑖𝑗  if 𝑗 ∉ 𝑀𝑖

𝐾𝑝𝑗
(𝑡) if 𝑗 ∈ 𝑀𝑖

𝑁

𝑖=1

∀𝑗 

Table 5.2.3. E-step and M-step of GEM algorithm for handling missing data given 

multinomial PDF 

In table 5.2.3, E-step is implied in how to perform M-step. As aforementioned, in practice we 

can stop GEM after its first iteration was done, which is reasonable enough to handle missing 

data. 
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Example 5.2.2. Given sample of size two, 𝒳 = {X1, X2 } in which X1 = (x11=1, x12=?, x13=3, 

x14=?)T and X2 = (x21=?, x22=2, x23=?, x24=4)T are iid.  

 x1 x2 x3 x4 

X1 1 ? 3 ? 

X2 ? 2 ? 4 

Of course, we have Xobs(1) = (x11=1, x13=3)T, Xmis(1) = (x12=?, x14=?)T, Xobs(2) = (x22=2, x24=4)T 

and Xmis(2) = (x21=?, x23=?)T. We also have M1 = {m11=2, m12=4}, �̅�1 = {�̅�11=1, �̅�12=3}, M2 

= {m21=1, m22=3}, and �̅�2 = {�̅�21=2, �̅�22=4}. Let X be random variable representing every 

Xi. Suppose f(X|Θ) is multinomial PDF of 10 trials. We will estimate Θ = (p1, p2, p3, p4)
T. The 

parameters p1, p2, p3, and p2 are initialized arbitrarily as 0.25 as follows: 

Θ(1) = (𝑝1
(1) = 0.25, 𝑝2

(1) = 0.25, 𝑝3
(1) = 0.25, 𝑝4

(1) = 0.25)
𝑇

 

At 1st iteration, M-step, we have: 

𝑝1
(2)
=

1

10 ∗ 2
(1 + 10 ∗ 0.25) = 0.175 

𝑝2
(2) =

1

10 ∗ 2
(10 ∗ 0.25 + 2) = 0.225 

𝑝3
(2) =

1

10 ∗ 2
(3 + 10 ∗ 0.25) = 0.275 

𝑝4
(2) =

1

10 ∗ 2
(10 ∗ 0.25 + 4) = 0.325 

We stop GEM after the first iteration was done, which results the estimate Θ(2) = Θ* = (p1
*, p2

*, 

p3
*, p4

*)T as follows: 

𝑝1
∗ = 0.175 

𝑝2
∗ = 0.225 

𝑝3
∗ = 0.275 

𝑝4
∗ = 0.325 

In general, GEM is a powerful tool to handle missing data, which is not so difficult except that 

how to extract the parameter ΘM of the conditional PDF f(Xmis | Xobs, ΘM) from the whole 

parameter Θ of the PDF f(X|ΘM) is most important with note that only f(X|Θ) is defined firstly 

and then f(Xmis | Xobs, ΘM) is derived from f(X|Θ). Therefore, equation 5.2.15 is cornerstone of 

this method. Note, equation 5.2.35 and 5.2.51 are instances of equation 5.2.15 when f(X|Θ) is 

multinormal PDF or multinomial PDF. 

 

6. Discussions 
The convergence of GEM is based on the assumption that Q(Θ’ | Θ) is smooth enough but Q(Θ’ 

| Θ) may not be smooth in practice when f(X | Θ) may be discrete probability function. For 

example, when f(X | Θ) and k(X | Y, Θ) are discrete, equation 2.8 becomes 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∑ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))

𝑋∈𝜑−1(𝑌)

 

This discussion section goes beyond traditional variants of GEM algorithm when Q(Θ’ | Θ) is 

not smooth. Therefore, heuristic optimization methods which simulate social behavior, such as 

particle swarm optimization (PSO) algorithm (Poli, Kennedy, & Blackwell, 2007) and artificial 

bee colony (ABC) algorithm, are useful in case that there is no requirement of existence of 

derivative. Moreover, these heuristic methods aim to find global optimizer. I propose an 

association of GEM and PSO which produces a so-called quasi-PSO-GEM algorithm in which 

M-step is implemented by one-time PSO (Wikipedia, Particle swarm optimization, 2017). 

Given current tth iteration, Θ(t) is modeled as swarm’s best position. Suppose there are n 

particles and each particle i has current velocity Vi
(t), current positions Ψi

(t), and best position 

Φi
(t). At each iteration, it is expected that these particles move to swarm’s new best position 
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which is the next parameter Θ(t+1). The swarm’s best position at the final iteration is expected 

as Θ*. Table 6.2 is the proposal of quasi-PSO-GEM algorithm. 

E-step: 

As usual, Q(Θ | Θ(t)) is determined based on current Θ(t) according to equation 2.8. 

Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step includes four sub-steps: 

1. Calculating the next velocity Vi
(t+1) of each particle based on its current velocity Vi

(t), 

its current positions Ψi
(t), its best positions Φi

(t), and the swarm’s best position Θ(t): 

𝑉𝑖
(𝑡+1) = 𝜔𝑉𝑖

(𝑡) + 𝑟𝜙1(Φ𝑖
(𝑡) −Ψ𝑖

(𝑡)) + 𝑟𝜙2(Θ
(𝑡) −Ψ𝑖

(𝑡)) (6.1) 

Where ω, ϕ1, and ϕ2 are particular parameters of PSO (Poli, Kennedy, & Blackwell, 

2007, pp. 3-4) whereas r is a random number such that 0 < r < 1 (Wikipedia, Particle 

swarm optimization, 2017). 

2. Calculating the next position Ψi
(t+1) of each particle based on its current position Ψi

(t) 

and its current velocity Vi
(t): 

Ψ𝑖
(𝑡+1) = Ψ𝑖

(𝑡) + 𝑉𝑖
(𝑡)

 (6.2) 

3. If Q(Φi
(t) | Θ(t)) < Q(Ψi

(t+1) | Θ(t)) then, the next best position of each particle i is re-

assigned as Φi
(t+1) = Ψi

(t+1). Otherwise, such next best position is kept intact as Φi
(t+1) 

= Φi
(t). 

4. The next parameter Θ(t+1) is the swarm’s new best position over the best positions of 

all particles: 

Θ(𝑡+1) = argmax
Φ𝑖
(𝑡)

{𝑄(Φ1
(𝑡)|Θ(𝑡)), 𝑄(Φ2

(𝑡)|Θ(𝑡)), … , 𝑄(Φ𝑛
(𝑡)|Θ(𝑡))} (6.3) 

If the bias |Θ(t+1) – Θ(t)| is small enough, the algorithm stops. Otherwise, Θ(t+1) and all 

Vi
(t+1), Ψi

(t+1), Φi
(t+1) become current parameters in the next iteration. 

Table 6.1. E-step and M-step of the proposed quasi-PSO-GEM 

At the first iteration, each particle is initialized with Ψi
(1) = Φi

(1) = Θ(1) and uniformly distributed 

velocity Vi
(1). Note, Θ(1) is initialized arbitrarily. Other termination criteria can be used, for 

example, Q(Θ | Θ(t)) is large enough or the number of iterations is large enough. 

We cannot prove mathematically convergence of quasi-PSO-GEM but we expect that Θ(t+1) 

resulted from equation 6.3 is an approximation of Θ* at the last iteration after a large enough 

number of iterations. However, quasi-PSO-GEM tendentiously approaches global maximizer 

of L(Θ), regardless of whether L(Θ) is concave. Hence, it is necessary to make experiment on 

quasi-PSO-GEM. 

There are many other researches which combine EM and PSO but the proposed quasi-PSO-

GEM algorithm has different ideology when it one-time PSO is embed into M-step to maximize 

Q(Θ | Θ(t)) and so the ideology of quasi-PSO-GEM is near to the ideology of Newton-Raphson 

process. With different viewpoint, some other researches combine EM and PSO in order to 

solving better a particular problem instead of improving EM itself. For example, Ari and Aksoy 

(Ari & Aksoy, 2010) used PSO to solve optimization problem of the clustering algorithm based 

on mixture model and EM. Rajeswari and Gunasundari (Rajeswari & Gunasundari, 2016) 

proposed EM for PSO based weighted clustering. Zhang, Zhuang, Gao, Luo, Ran, and Du 

(Zhang, et al., 2014) proposed a so-called PSO-EM algorithm to make optimum use of PSO in 

partial E-step in order solve the difficulty of integrals in normal compositional model. 

Golubovic, Olcan, and Kolundzija (Golubovic, Olcan, & Kolundzija, 2007) proposed a few 

modifications of the PSO algorithm which are applied to EM optimization of a broadside 

antenna array. Tang, Song, and Liu (Tang, Song, & Liu, 2014) proposed a hybrid clustering 

method based on improved PSO and EM clustering algorithm to overcome drawbacks of EM 

clustering algorithm. Tran, Vo, and Lee (Tran, Vo, & Lee, 2013) proposed a novel clustering 
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algorithm for image segmentation by employing the arbitrary covariance matrices that uses 

PSO for the estimation of Gaussian mixture models. 
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