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Abstract 
Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both 

applied probability and statistics but MLE cannot solve the problem of incomplete data or 

hidden data because it is impossible to maximize likelihood function from hidden data. 

Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this 

problem if there is a relationship between hidden data and observed data. Such hinting 

relationship is specified by a mapping from hidden data to observed data or by a joint 

probability between hidden data and observed data. In other words, the relationship helps us 

know hidden data by surveying observed data. The essential ideology of EM is to maximize 

the expectation of likelihood function over observed data based on the hinting relationship 

instead of maximizing directly the likelihood function of hidden data. Pioneers in EM 

algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as 

well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help 

researchers comprehend it. Moreover some improvements of EM algorithm are also proposed 

in the tutorial such as combination of EM and third-order convergence Newton-Raphson 

process, combination of EM and gradient descent method, and combination of EM and particle 

swarm optimization (PSO) algorithm. 

Keywords: expectation maximization, EM, generalized expectation maximization, GEM, EM 

convergence. 

 

1. Introduction 
Literature of expectation maximization (EM) algorithm in this tutorial is mainly extracted from 

the preeminent article “Maximum Likelihood from Incomplete Data via the EM Algorithm” 

by Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (Dempster, Laird, & Rubin, 1977). 

For convenience, let DLR be reference to such three authors. 

We begin a review of EM algorithm with some basic concepts. Before discussing main 

subjects, there are some conventions. For example, if there is no additional explanation, 

variables are often denoted by letters such as x, y, z, X, Y, and Z whereas values and constants 

are often denoted by letters such as a, b, c, A, B, and C. Parameters are often denoted as Greek 

letters such as α, β, γ, Θ, Φ, and Ψ. Uppercase letters often denote vectors and matrices 

(multivariate quantities) whereas lowercase letters often denote scalars (univariate quantities). 

Script letters such as 𝒳 and 𝒴 often denote data samples. Bold and uppercase letters such as X 

and R often denote algebraic structures such as spaces, fields, and domains. Moreover, bold 

and lowercase letters such as x, y, z, a, b, and c may denote vectors. Bold and uppercase letters 

such as X, Y, Z, A, B, and C may denote matrices. 

By default, vectors are column vectors although a vector can be column vector or row 

vector. For example, given two vectors X and Y and two matrices A and B: 
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𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑟

) 𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑟

)

𝐴 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) 𝐵 = (

𝑏11 𝑏12 ⋯ 𝑏1𝑘
𝑏21 𝑏22 ⋯ 𝑏2𝑘
⋮ ⋮ ⋱ ⋮
𝑏𝑛1 𝑏𝑛2 ⋯ 𝑎𝑛𝑘

)

 

X and Y above are column vectors. A row vector is represented as follows: 

𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑟) 
The number of elements in vector is its dimension. Zero vector is denoted as 0 whose dimension 

depends on context. 

𝟎 = (

0
0
⋮
0

) 

If considering rows and columns, mxn matrix A can be denoted Amxn or (aij)mxn. Vector is 1-row 

matrix or 1-column matrix such as A1xn or Anx1. Scalar is 1-element vector or 1x1 matrix. A 

matrix can be considered as a vector whose elements are vectors. 

Let (0) denote zero matrix whose numbers of rows and columns depend on context. If 

considering rows and columns, zero matrix can be denoted (0)mxn. 

(𝟎) = (0)𝑚x𝑛 = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

Matrix A is square if m = n, which can be denoted An or (aij)n. Matrix Λ is diagonal if it is square 

and its elements outside the main diagonal are zero: 

Λ = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑟

) 

Let I be identity matrix or unit matrix, as follows: 

𝐼 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 

Note, I is diagonal and its diagonal elements are 1. The row (column) number of identity matrix 

depends on context, but it can be denoted explicitly as In. 

Vector addition and matrix addition are defined like numerical addition: 

𝑋 ± 𝑌 = (

𝑥1 ± 𝑦1
𝑥2 ± 𝑦2

⋮
𝑥𝑟 ± 𝑦𝑟

) 

𝐴 ± 𝐵 = (

𝑎11 ± 𝑏11 𝑎12 ± 𝑏12 ⋯ 𝑎1𝑛 ± 𝑏1𝑛
𝑎21 ± 𝑏21 𝑎22 ± 𝑏22 ⋯ 𝑎2𝑛 ± 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 ± 𝑏𝑚1 𝑎𝑚2 ± 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 ± 𝑏𝑚𝑛

) 

(if n = k) 

Vector and matrix can be multiplied with a scalar. 
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𝑘𝑋 = (

𝑘𝑥1
𝑘𝑥2
⋮
𝑘𝑥𝑟

) 

𝑘𝐴 = (

𝑘𝑎11 𝑘𝑎12 ⋯ 𝑘𝑎1𝑛
𝑘𝑎21 𝑘𝑎22 ⋯ 𝑘𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑘𝑎𝑚1 𝑘𝑎𝑚2 ⋯ 𝑘𝑎𝑚𝑛

) 

Let superscript “T” denote transposition operator for vector and matrix, as follows: 

𝑋𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑟)

𝐴𝑇 = (

𝑎11 𝑎21 ⋯ 𝑎𝑟1
𝑎12 𝑎22 ⋯ 𝑎𝑟2
⋮ ⋮ ⋱ ⋮
𝑎1𝑝 𝑎2𝑝 ⋯ 𝑎𝑟𝑝

)
 

Transposition operator is linear with addition operator as follows: 

(𝑋 + 𝑌)𝑇 = 𝑋𝑇 + 𝑌𝑇

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇
 

Dot product or scalar product of two vectors can be written with transposition operator, as 

follows: 

𝑋𝑇𝑌 =∑𝑥𝑖𝑦𝑖

𝑟

𝑖=1

 

However, the product XYT results out a symmetric matrix as follows: 

𝑋𝑌𝑇 = 𝑌𝑋𝑇 = (

𝑥1𝑦1 𝑥1𝑦2 ⋯ 𝑥1𝑦𝑟
𝑥2𝑦1 𝑥2𝑦2 ⋯ 𝑥2𝑦𝑟
⋮ ⋮ ⋱ ⋮

𝑥𝑟𝑦1 𝑥𝑟𝑦2 ⋯ 𝑥𝑟𝑦𝑟

) 

The length of module of vector X in Euclidean space is: 

|𝑋| = √𝑋𝑇𝑋 = √∑𝑥𝑖
2

𝑟

𝑖=1

 

The notation |.| also denotes absolute value of scalar and determinant of square matrix; for 

example, we have |–1| = 1 and |A| which is determinant of given square matrix A. Note, 

determinant is only defined for square matrix. If A has nonzero determinant (≠0), there exists 

its inverse denoted A–1 such that: 

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 
Where I is identity matrix. If matrix A has its inverse, A is called invertible or non-singular. In 

general, square matrix A is invertible is equivalent to the event that its determinant is nonzero 

(≠0). There are many documents which guide to calculate inverse of invertible matrix. 

Given invertible matrix A, it is called orthogonal matrix if A–1 = AT, which means AA–1 = 

A–1A = AAT = ATA = I. 

Product (multiplication operator) of two matrices Amxn and Bnxk is:  

𝐴𝐵 = 𝐶 = (

𝑐11 𝑐12 ⋯ 𝑐1𝑘
𝑐21 𝑐22 ⋯ 𝑐2𝑘
⋮ ⋮ ⋱ ⋮
𝑐𝑚1 𝑐𝑚2 ⋯ 𝑐𝑚𝑘

)

𝑐𝑖𝑗 =∑𝑎𝑖𝑣𝑏𝑣𝑗

𝑛

𝑣=1
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Square matrix A is symmetric if aij = aji for all i and j. If A is symmetric then, AT = A. If both A 

and B are symmetric with the same rows and column then, they are commutative such that AB 

= BA with note that the product AB and BA produces a symmetric matrix. Given invertible 

matrix A, if it is symmetric, its inverse A–1 is symmetric too. 

Given N matrices Ai such that their product (multiplication operator) is valid, we have: 

(∏𝐴𝑖

𝑁

𝑖=1

)

𝑇

= (𝐴1𝐴2…𝐴𝑁)
𝑇 =∏𝐴𝑖

𝑇

1

𝑖=𝑁

= 𝐴𝑁
𝑇𝐴𝑁−1

𝑇 …𝐴1
𝑇 

Product of matrix and vector is similar to product of matrix and matrix when vector is 

considered as 1-column matrix or 1-row matrix, which results a vector. 

𝐴𝑋 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

)(

𝑥1
𝑥2
⋮
𝑥𝑛

) = 𝐶 = (

𝑐1
𝑐2
⋮
𝑐𝑚

) 

Where 𝑐𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 . 

𝑍𝑇𝐴 = (𝑧1, 𝑧2, … , 𝑧𝑚)(

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) = 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝑛) 

Where 𝑐𝑗 = ∑ 𝑧𝑖𝑎𝑖𝑗
𝑛
𝑖=1 . 

Given square matrix A, tr(A) is trace operator which takes sum of diagonal its elements. 

tr(𝐴) =∑𝑎𝑖𝑖
𝑖

 

Given invertible matrix A (n rows and n columns), Jordan decomposition theorem (Hardle & 

Simar, 2013, p. 63) stated that A is always decomposed as follows: 

𝐴 = 𝑈Λ𝑈−1 = 𝑈Λ𝑈𝑇 

Where U is orthogonal matrix composed of eigenvectors. Hence, U is called eigenvector matrix. 

𝑈 = (

𝑢11 𝑢21
𝑢12 𝑢22

… 𝑢𝑛1
… 𝑢𝑛2

⋮ ⋮
𝑢1𝑛 𝑢2𝑛

⋮ ⋮
… 𝑢𝑛𝑛

) 

There are n column eigenvectors ui = (u11, u12,…, u1n) in U and they are mutually orthogonal, 

ui
Tuj = 0. Where Λ is diagonal matrix composed of eigenvalues. Hence, Λ is called eigenvalue 

matrix. 

Λ = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑟

) 

Where λi are eigenvalues. When invertible matrix A is decomposed according to Jordan 

decomposition, we call A is diagonalized. If A can be diagonalized, it is called diagonalizable 

matrix. Of course, if A is invertible, A is diagonalizable. There are many documents for matrix 

diagonalization. 

Given symmetric matrix A, it is positive (negative) definite if and only if XTAX > 0 (XTAX 

< 0) for all vector X≠0T. It is positive (negative) semi-definite if and only if XTAX ≥ 0 (XTAX ≤ 

0) for all vector X. When diagonalizable A is diagonalized into UΛUT, it is positive (negative) 

definite if and only if all eigenvalues in Λ are positive (negative). Similarly, it is positive 

(negative) semi-definite if and only if all eigenvalues in Λ are non-negative (non-positive). If 

A is degraded as a scalar, concepts “positive definite”, “positive semi-definite”, “negative 

definite”, and “negative semi-definite” becomes concepts “positive”, “non-negative”, 

“negative”, and “non-positive”, respectively. 
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Suppose f(X) is scalar-by-vector function, for instance, f: Rr → R where Rr is r-dimensional 

real vector space. The first-order derivative of f(X) is gradient vector as follows: 

𝑓′(𝑋) = ∇𝑓(𝑋) =
d𝑓(𝑋)

d𝑋
= 𝐷𝑓(𝑋) = (

𝜕𝑓(𝑋)

𝜕𝑥1
,
𝜕𝑓(𝑋)

𝜕𝑥2
, … ,

𝜕𝑓(𝑋)

𝜕𝑥𝑟
) 

Where 
𝜕𝑓(𝑋)

𝜕𝑥𝑖
 is partial first-order derivative of f with regard to xi. So gradient is row vector. The 

second-order derivative of f(X) is called Hessian matrix as follows: 

𝑓′′(𝑋) =
d2𝑓(𝑋)

d𝑋2
= 𝐷2𝑓(𝑋) =

(

 
 
 
 
 

𝜕2𝑓(𝑋)

𝜕𝑥1
2

𝜕2𝑓(𝑋)

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓(𝑋)

𝜕𝑥1𝜕𝑥𝑟
𝜕2𝑓(𝑋)

𝜕𝑥2𝜕𝑥1

𝜕2𝑓(𝑋)

𝜕𝑥2
2 ⋯

𝜕2𝑓(𝑋)

𝜕𝑥2𝜕𝑥𝑟
⋮ ⋮ ⋱ ⋮

𝜕2𝑓(𝑋)

𝜕𝑥𝑟𝜕𝑥1

𝜕2𝑓(𝑋)

𝜕𝑥𝑟𝜕𝑥2
⋯

𝜕2𝑓(𝑋)

𝜕𝑥𝑟2 )

 
 
 
 
 

 

Where 

𝜕2𝑓(𝑋)

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑖
(
𝜕𝑓(𝑋)

𝜕𝑥𝑗
)

𝜕2𝑓(𝑋)

𝜕𝑥𝑖
2 =

𝜕2𝑓(𝑋)

𝜕𝑥𝑖𝜕𝑥𝑖

 

Hence, second-order partial derivatives of xi (s) are on diagonal of the Hessian matrix. 

Hessian matrix is square matrix. Function f(X) is called nth-order analytic function or nth-

order smooth function if there is existence and continuity of kth-order derivatives of f(X) where 

k = 1, 2,…, n. Function f(X) is called smooth enough function if n is large enough. According 

to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), if f(X) is second-

order smooth function then, its Hessian matrix is symmetric. 

𝜕2𝑓(𝑋)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(𝑋)

𝜕𝑥𝑗𝜕𝑥𝑖
 

When X is univariate, gradient vector and Hessian matrix are degraded as scalar values. 

Without loss of generality, by default, variable X in this research is multivariate as vector if 

there is no additional explanation. 

Given f(X) being second-order smooth function, f(X) is convex (strictly convex) in domain 

X if and only if its Hessian matrix is semi-positive definite (positive definite) in X. Similarly, 

f(X) is concave (strictly concave) in domain X if and only if its Hessian matrix is semi-negative 

definite (negative definite) in X. Extreme point, optimized point, optimal point, or optimizer 

X* is minimum point (minimizer) of convex function and is maximum point (maximizer) of 

concave function. 
𝑋∗ = argmin

𝑋
𝑓(𝑋)  if 𝑓 convex

𝑋∗ = argmax
𝑋

𝑓(𝑋)  if 𝑓 concave
 

Given second-order smooth function f(X), function f(X) has stationary point X* if its gradient 

vector at X* is zero, Df(X*) = 0T. The stationary point X* is local minimum point if Hessian 

matrix at X* that is D2f(X*) is positive definite. Otherwise, the stationary point X* is local 

maximum point if Hessian matrix at X* that is D2f(X*) is negative definite. If a stationary point 

X* is neither minimum point nor maximum point, it is saddle point in which Df(X*) = 0T and 

D2f(X*) = (0) where (0) denotes zero matrix whose all elements are zero. Finding extreme point 

(minimum point or maximum point) is optimization problem. Therefore, if f(X) is second-order 

smooth function and its gradient vector Df(X) and Hessian matrix D2f(X) and are both 

determined, the optimization problem is processed by solving the equation created from setting 
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the gradient Df(X) to be zero (Df(X)=0T) and then checking if the Hessian matrix Df(X*) is 

positive definite or negative definite where X* is solution of equation Df(X)=0T. If such equation 

cannot be solved due to its complexity, there are some popular methods to solve optimization 

problem such as Newton-Raphson (Burden & Faires, 2011, pp. 67-71) and gradient descent 

(Ta, 2014). 

A short description of Newton-Raphson method is necessary because it is helpful to solve 

the equation Df(X)=0T for optimization problem in practice, especially in case that there is no 

algebraic formula for solution of such equation. Suppose f(X) is second-order smooth function, 

according to first-order Taylor series expansion of Df(X) at X=X0 with very small residual, we 

have: 

𝐷𝑓(𝑋) ≈ 𝐷𝑓(𝑋0) + (𝑋 − 𝑋0)
𝑇(𝐷2𝑓(𝑋0))

𝑇
 

Because f(X) is second-order smooth function, D2f(X0) is symmetric matrix according to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies: 

D2f(X0) = (D2f(X0))
T 

So, we have: 

𝐷𝑓(𝑋) ≈ 𝐷𝑓(𝑋0) + (𝑋 − 𝑋0)
𝑇𝐷2𝑓(𝑋0) 

We expect that Df(X) = 0T so that X is a solution. 

𝟎𝑇 = 𝐷𝑓(𝑋) ≈ 𝐷𝑓(𝑋0) + (𝑋 − 𝑋0)
𝑇𝐷2𝑓(𝑋0) 

It implies: 

𝑋𝑇 ≈ 𝑋0
𝑇 − 𝐷𝑓(𝑋0)(𝐷

2𝑓(𝑋0))
−1

 

This means: 

𝑋 ≈ 𝑋0 − (𝐷
2𝑓(𝑋0))

−1
(𝐷𝑓(𝑋0))

𝑇
 

Therefore, Newton-Raphson method starts with an arbitrary value of X0 as a solution candidate 

and then goes through some iterations. Suppose at kth iteration, the current value is Xk and the 

next value Xk+1 is calculated based on following equation: 

𝑋𝑘+1 ≈ 𝑋𝑘 − (𝐷
2𝑓(𝑋𝑘))

−1
(𝐷𝑓(𝑋𝑘))

𝑇
 

The value Xk is solution of Df(X)=0T if Df(Xk)=0T which means that Xk+1=Xk after some 

iterations. At that time Xk+1 = Xk = X* is the local optimized point (local extreme point). So, the 

terminated condition of Newton-Raphson method is Df(Xk)=0T. Note, the X* resulted from 

Newton-Raphson method is local minimum point (local maximum point) if f(X) is convex 

function (concave function) in current domain. 

Newton-Raphson method computes second-order derivative D2f(X) but gradient descent 

method (Ta, 2014) does not. This difference is not significant but a short description of gradient 

descent method is necessary because it is also an important method to solve the optimization 

problem in case that solving directly the equation Df(X)=0T is too complicated. Gradient 

descent method is also iterative method starting with an arbitrary value of X0 as a solution 

candidate. Suppose at kth iteration, the next candidate point Xk+1 is computed based on the 

current Xk as follows (Ta, 2014): 

𝑋𝑘+1 = 𝑋𝑘 + 𝑡𝑘𝒅𝑘 

The direction dk is called descending direction, which is the opposite of gradient of f(X). Hence, 

we have dk = –Df(Xk). The value tk is the length of the descending direction dk. The value tk is 

often selected an minimizer (maximizer) of function g(t) = f(Xk + tdk) for minimization 

(maximization) where Xk and dk are known at kth iteration. Alternately, tk is selected by some 

advanced condition such as Barzilai–Borwein condition (Wikipedia, Gradient descent, 2018). 

After some iterations, point Xk converges to the local optimizer X* when dk = 0T. At that time 

is we have Xk+1 = Xk = X*. So, the terminated condition of Newton-Raphson method is dk=0T. 

Note, the X* resulted from gradient descent method is local minimum point (local maximum 

point) if f(X) is convex function (concave function) in current domain. 
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In the case that the optimization problem has some constraints, Lagrange duality (Jia, 2013) 

is applied to solve this problem. Given first-order smooth function f(X) and constraints gi(X) ≤ 

0 and hj(X) = 0, the optimization problem is stated as follows: 
Optimize 𝑓(𝑋)

𝑔𝑖(𝑋) ≤ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

ℎ𝑗(𝑋) = 0 for 𝑗 =  1, 𝑛̅̅ ̅̅ ̅
 

A so-called Lagrange function la(X, λ, μ) is established as sum of f(X) and constraints 

multiplied by Lagrange multipliers λ and μ. In case of minimization problem, la(X, λ, μ) is 

𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝑓(𝑋) +∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

+∑𝜇𝑗ℎ(𝑋)

𝑛

𝑗=1

 

In case of maximization problem, la(X, λ, μ) is 

𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝑓(𝑋) −∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

−∑𝜇𝑗ℎ(𝑋)

𝑛

𝑗=1

 

Where all λi ≥ 0. Note, λ = (λ1, λ2,…, λm)T and μ = (μ1, μ2,…, μm)T are called Lagrange multipliers 

and la(X, λ, μ) is function of X, λ, and μ. Thus, optimizing f(X) with subject to constraints gi(X) 

≤ 0 and hj(X) = 0 is equivalent to optimize la(X, λ, μ), which is the reason that this method is 

called Lagrange duality. Suppose la(X, λ, μ) is also first-order smooth function. In case of 

minimization problem, the gradient of la(X, λ, μ) with regard to X is 

𝐷𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝐷𝑓(𝑋) +∑𝜆𝑖𝐷𝑔(𝑋)

𝑚

𝑖=1

+∑𝜇𝑗𝐷ℎ(𝑋)

𝑛

𝑗=1

 

In case of maximization problem, the gradient of la(X, λ, μ) with regard to X is 

𝐷𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝐷𝑓(𝑋) −∑𝜆𝑖𝐷𝑔(𝑋)

𝑚

𝑖=1

−∑𝜇𝑗𝐷ℎ(𝑋)

𝑛

𝑗=1

 

According to KKT condition (Wikipedia, Karush–Kuhn–Tucker conditions, 2014), a local 

optimized point (local extreme point) X* is solution of the following equation system: 

{
 
 
 

 
 
 
𝐷𝑙𝑎(𝑋, 𝜆, 𝜇) = 𝟎𝑇

𝑔𝑖(𝑋) ≤ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

ℎ𝑗(𝑋) = 0 for 𝑗 =  1, 𝑛̅̅ ̅̅ ̅

𝜆𝑖 ≥ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

= 0

 

The last equation in the KKT system above is called complementary slackness. The main task 

of KKT problem is to solve the first equation Dla(X, λ, μ) = 0T. Again some practical methods 

such as Newton-Raphson method can be used to solve the equation Dla(X, λ, μ) = 0T. 

Alternately, gradient descent method can be used to optimize la(X, λ, μ) with constraints 

specified in KKT system. 

{
  
 

  
 
𝑔𝑖(𝑋) ≤ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

ℎ𝑗(𝑋) = 0 for 𝑗 =  1, 𝑛̅̅ ̅̅ ̅

𝜆𝑖 ≥ 0 for 𝑖 =  1,𝑚̅̅ ̅̅ ̅̅

∑𝜆𝑖𝑔(𝑋)

𝑚

𝑖=1

= 0

 

Let P(.) denote probability, 

0 ≤ 𝑃(. ) ≤ 1 
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We need to skim some essential probabilistic rules such as additional rule, multiplication rule, 

total probability rule, and Bayes’ rule. Given two random events (or random variables) X and 

Y, additional rule (Montgomery & Runger, 2003, p. 33) and multiplication rule (Montgomery 

& Runger, 2003, p. 44) are expressed as follows: 

𝑃(𝑋 ∪ 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) − 𝑃(𝑋 ∩ 𝑌) 
𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) = 𝑃(𝑌|𝑋)𝑃(𝑋) 

Where notations ∪  and ∩  denote union operator and intersection operator in set theory 

(Wikipedia, Set (mathematics), 2014). Your attention please, when X and Y are numerical 

variables, notations ∪ and ∩ also denote operators “or” and “and” in theory logic (Rosen, 2012, 

pp. 1-12). The probability P(X, Y) is known as joint probability. The probability P(X|Y) is called 

conditional probability of X given Y: 

𝑃(𝑋|𝑌) =
𝑃(𝑋, 𝑌)

𝑃(𝑌)
=
𝑃(𝑋 ∩ 𝑌)

𝑃(𝑌)
=
𝑃(𝑌|𝑋)𝑃(𝑋)

𝑃(𝑌)
 

Conditional probability is base of Bayes’ rule mentioned later. 

If X and Y are mutually exclusive (𝑋 ∩ 𝑌 = ∅) then, 𝑋 ∪ 𝑌 is often denoted as X+Y and we 

have: 

𝑃(𝑋 + 𝑌) = 𝑃(𝑋) + 𝑃(𝑌) 
(Due to P(Ø) = 0) 

X and Y are mutually independent if and only if one of three following conditions is satisfied: 
𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋)𝑃(𝑌)

𝑃(𝑋|𝑌) = 𝑃(𝑋)

𝑃(𝑌|𝑋) = 𝑃(𝑌)
 

When X and Y are mutually independent, 𝑋 ∩ 𝑌 are often denoted as XY and we have: 

𝑃(𝑋𝑌) = 𝑃(𝑋, 𝑌) = 𝑃(𝑋 ∩ 𝑌) = 𝑃(𝑋)𝑃(𝑌) 
Given a complete set of mutually exclusive events X1, X2,…, Xn such that 

𝑋1 ∪ 𝑋2 ∪ …∪ 𝑋𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = Ω where Ω is probability space 

𝑋𝑖 ∩ 𝑋𝑗 = ∅, ∀𝑖, 𝑗 

The total probability rule (Montgomery & Runger, 2003, p. 44) is specified as follows: 

𝑃(𝑌) = 𝑃(𝑌|𝑋1)𝑃(𝑋1) + 𝑃(𝑌|𝑋2)𝑃(𝑋2) + ⋯+ 𝑃(𝑌|𝑋𝑛)𝑃(𝑋𝑛) =∑𝑃(𝑌|𝑋𝑖)𝑃(𝑋𝑖)

𝑛

𝑖=1

 

Where 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = Ω and 𝑋𝑖 ∩ 𝑋𝑗 = ∅, ∀𝑖, 𝑗 

If X and Y are continuous variables, the total probability rule is re-written in integral form as 

follows: 

𝑃(𝑌) = ∫𝑃(𝑌|𝑋)𝑃(𝑋)d𝑋

𝑋

 

Note, P(Y|X) and P(X) are continuous functions known as probability density functions 

mentioned later. The important Bayes’ rule will also be mentioned later. 

A variable X is called random variable if it conforms a probabilistic distribution which is 

specified by a probability density function (PDF) or a cumulative distribution function (CDF) 

(Montgomery & Runger, 2003, p. 64) (Montgomery & Runger, 2003, p. 102) but CDF and 

PDF have the same meaning and they share interchangeable property when PDF is derivative 

of CDF; in other words, CDF is integral of PDF. In practical statistics, PDF is used more 

common than CDF is used and so, PDF is mentioned over the whole report. When X is discrete, 

PDF is degraded as probability of X. Note, notation P(.) often denotes probability and it can be 

used to denote PDF but we prefer to use lower case letters such as f and g to denote PDF. Given 

a random variable having PDF f, we often state that “such variable has distribution f or such 

variable has density function f”. Let F(X) and f(X) be CDF and PDF, respectively, equation 1.1 

is definition of CDF and PDF. 
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Continuous case:

{
  
 

  
 
𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = ∫ 𝑓(𝑋)𝑑𝑋

𝑋0

−∞

∫ 𝑓(𝑋)d𝑋

+∞

−∞

= 1

Discrete case:

{
 
 

 
 𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = ∑ 𝑃(𝑋)

𝑋≤𝑋0

𝑓(𝑋) = 𝑃(𝑋) and∑𝑃(𝑋)

𝑋

= 1

 (1.1) 

In discrete case, probability at a single point X0 is determined as P(X0) = f(X0) but in continuous 

case, probability is determined in an interval [a, b], (a, b), [a, b), or (a, b] where a, b, and X are 

real as integral of the PDF in such interval as follows: 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫𝑓(𝑋)𝑑𝑋

𝑏

𝑎

 

Hence, in continuous case, probability at a single point is 0. 

Equation 1.1 defines CDF and PDF for univariate random variable and so it is easy to 

expend it for multivariate variable when X is vector. Let X = (x1, x2,…, xn)
T be n-dimension 

random vector, its CDF and PDF are re-defined as follows: 

Continuous case: 

𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = 𝑃(𝑥1 ≤ 𝑥01, 𝑥2 ≤ 𝑥02, … , 𝑥𝑛 ≤ 𝑥0𝑛) = ∫ 𝑓(𝑋)𝑑𝑋

𝑋0

−∞

= ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1d𝑥2…d𝑥𝑛

𝑋0

−∞

𝑋0

−∞

𝑋0

−∞

 

∫ 𝑓(𝑋)𝑑𝑋

+∞

−∞

= ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1d𝑥2…d𝑥𝑛

+∞

−∞

+∞

−∞

+∞

−∞

= 1 

Discrete case: 

𝐹(𝑋0) = 𝑃(𝑋 ≤ 𝑋0) = 𝑃(𝑥1 ≤ 𝑥01, 𝑥2 ≤ 𝑥02, … , 𝑥𝑛 ≤ 𝑥0𝑛) = ∑ 𝑃(𝑋)

𝑋≤𝑋0

= ∑ ∑ … ∑ 𝑃(𝑋)

𝑥𝑛≤𝑥0𝑛𝑥2≤𝑥02𝑥1≤𝑥01

 

𝑓(𝑋) = 𝑃(𝑋) 

 ∑𝑃(𝑋)

𝑋

= ∑ ∑ … ∑ 𝑃(𝑋)

𝑥𝑛≤𝑥0𝑛𝑥2≤𝑥02𝑥1≤𝑥01

= 1 

(1.2) 

Marginal PDF of partial variable xi where xi is a component of X is the integral of f(X) over all 

xj except xi. 

𝑓𝑥𝑖(𝑥𝑖) = ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1…d𝑥𝑖−1d𝑥𝑖+1…d𝑥𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

Where, 
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∫ 𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖

+∞

−∞

= 1 

Joint PDF of xi and xj is defined as the integral of f(X) over all xk except xi and xj. 

𝑓𝑥𝑖𝑥𝑗(𝑥𝑖 , 𝑥𝑗) = ∫ ∫ … ∫ 𝑓(𝑋)d𝑥1…d𝑥𝑖−1d𝑥𝑖+1…d𝑥𝑗−1d𝑥𝑗+1…d𝑥𝑛

+∞

−∞

+∞

−∞

+∞

−∞

 

Where, 

∫ ∫ 𝑓𝑥𝑖𝑥𝑗(𝑥𝑖, 𝑥𝑗)

+∞

−∞

d𝑥𝑖d𝑥𝑗

+∞

−∞

= 1 

Conditional PDF of xi given xj is defined as follows: 

𝑓𝑥𝑖|𝑥𝑗(𝑥𝑖) =
𝑓𝑥𝑖𝑥𝑗(𝑥𝑖, 𝑥𝑗)

𝑓𝑥𝑗(𝑥𝑗)
 

Indeed, conditional PDF implies conditional probability. 

Given random variable X and its PDF f(X), theoretical expectation E(X) and theoretical 

variance V(X) of X are: 

𝐸(𝑋) = ∫𝑋𝑓(𝑋)d𝑋

𝑋

 (1.3) 

 

𝑉(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
= ∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))

𝑇
𝑓(𝑋)d𝑋

𝑋

= 𝐸(𝑋𝑋𝑇) − 𝐸(𝑋)𝐸(𝑋)𝑇 

(1.4) 

Given two random variables X and Y along with a joint PDF f(X, Y), theoretical covariance of 

X and Y is defined as follows: 

𝑉(𝑋, 𝑌) = 𝐸(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))
𝑇

= ∫∫(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))
𝑇
𝑓(𝑋, 𝑌)d𝑋d𝑌

𝑌𝑋

 
(1.5) 

If the random variables X and Y are mutually independent given the joint PDF f(X, Y), its 

covariance is zero, V(X, Y)=0. Note, joint PDF is the PDF having two or more random variables. 

When X and Y are multivariate vectors, V(X, Y) is covariance matrix of X and Y given the joint 

PDF f(X, Y). 

The expectation E(X) of X is often called theoretical mean. When X is multivariate vector, 

E(X) is mean vector and V(X) is covariance matrix. Note, covariance matrix is always 

symmetric and invertible. As usual, E(X) and V(X) are often denoted as μ and Σ, respectively 

if they are parameters of PDF. When X is univariate, E(X) and V(X) are scalars and V(X) is 

often denoted σ2 (if it is parameter of PDF). For example, if X is univariate and follows normal 

distribution, its PDF is: 

𝑓(𝑋) =
1

√2𝜋𝜎2
exp (−

1

2

(𝑋 − 𝜇)2

𝜎2
) 

If X is multivariate and follows multivariate normal distribution, its PDF is: 

𝑓(𝑋) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

When X = (x1, x2,…, xn)
T is multivariate, μ and Σ have following forms: 
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𝜇 = (

𝜇1
𝜇2
⋮
𝜇𝑛

)

Σ = (

𝜎11 𝜎12 ⋯ 𝜎1𝑛
𝜎21 𝜎22 ⋯ 𝜎2𝑛
⋮ ⋮ ⋱ ⋮
𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

)

 

Of course, μ and Σ are determined by equation 1.3 and equation 1.4, respectively. However, 

theoretical means and variances of partial variables xi can be determined separately. For 

instance, each μj is theoretical mean of partial variable xj given marginal PDF 𝑓𝑥𝑗(𝑥𝑗). 

𝜇𝑖 = 𝐸(𝑥𝑖) = ∫𝑥𝑖𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖
𝑥𝑖

 

Each σij where i≠j is theoretical covariance of partial variables xi and xj given joint PDF 

𝑓𝑥𝑖𝑥𝑗(𝑥𝑖, 𝑥𝑗). 

𝜎𝑖𝑗 = 𝑉(𝑥𝑖 , 𝑥𝑗) = 𝐸(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗) = ∫ ∫(𝑥𝑖 − 𝜇𝑖)(𝑥𝑗 − 𝜇𝑗)𝑓𝑥𝑖𝑥𝑗(𝑥𝑖 , 𝑥𝑗)d𝑥𝑖d𝑥𝑗
𝑥𝑗𝑥𝑖

 

Each σii on diagonal of Σ is theoretical variance of partial variable xi given marginal PDF 

𝑓𝑥𝑗(𝑥𝑗). 

𝜎𝑖𝑖 = 𝜎𝑖
2 = 𝑉(𝑥𝑖) = 𝐸(𝑥𝑖 − 𝜇𝑖)

2 = ∫(𝑥𝑖 − 𝜇𝑖)
2𝑓𝑥𝑖(𝑥𝑖)d𝑥𝑖

𝑥𝑖

 

Without loss of generality, by default, random variable X in this research is multivariate as 

vector if there is no additional explanation. Followings are some formulas related to 

expectation (X) and variance V(X). 

Let a and A be scalar constant and vector constant, respectively, we have: 
𝐸(𝑎𝑋 + 𝐴) = 𝑎𝐸(𝑋) + 𝐴

𝑉(𝑎𝑋 + 𝐴) = 𝑎2𝑉(𝑋)
 

Given a set of random variables 𝒳 = {X1, X2,…, XN) and N scalar constants ci (s), we have: 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖𝐸(𝑋𝑖)

𝑁

𝑖=1

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖
2𝑉(𝑋𝑖)

𝑁

𝑖=1

+ 2∑ ∑ 𝑐𝑖𝑐𝑗𝑉(𝑋𝑖, 𝑋𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

Where V(Xi, Xj) is covariance of Xi and Xj. 

If all Xi (s) are mutually independent, then 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖𝐸(𝑋𝑖)

𝑁

𝑖=1

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) =∑𝑐𝑖
2𝑉(𝑋𝑖)

𝑁

𝑖=1

 

If all Xi (s) are identically distributed, which implies that all Xi (s) are represented by the same 

random variable X, then 
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𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖

𝑁

𝑖=1

)𝐸(𝑋)

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖
2

𝑁

𝑖=1

)𝑉(𝑋) + 2(∑ ∑ 𝑐𝑖𝑐𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

)𝑉(𝑋)

 

If all Xi (s) are mutually independent and identically distributed (iid), then 

𝐸 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖

𝑁

𝑖=1

)𝐸(𝑋)

𝑉 (∑𝑐𝑖𝑋𝑖

𝑁

𝑖=1

) = (∑𝑐𝑖
2

𝑁

𝑖=1

)𝑉(𝑋)

 

Because EM algorithm is essential an advanced version of maximum likelihood estimation 

(MLE) method, it is necessary to describe MLE in short. Suppose random variable X conforms 

to a distribution specified by the PDF denoted f(X | Θ) with parameter Θ. For example, if X is 

vector and follows normal distribution then, 

𝑓(𝑋|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Where μ and Σ are theoretical mean vector and covariance matrix, respectively with note that 

Θ = (μ, Σ)T. The notation |.| denotes determinant of given matrix and the notation Σ–1 denotes 

inverse of matrix Σ. Note, Σ is invertible and symmetric. Parameter of normal distribution is 

theoretical mean and theoretical variance, 
𝜇 = 𝐸(𝑋)

Σ = 𝑉(𝑋) = 𝐸(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇
 

But parameters of different distributions may be different from such mean and variance. 

Anyhow theoretical mean and theoretical variance are always determined based on parameter 

Θ. 

For example, suppose X = (x1, x2,…, xn)
T follows multinomial distribution of K trials, its 

PDF is: 

𝑓(𝑋|Θ) =
𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑗

𝑛

𝑘=1

 

Where xj are integers and Θ = (p1, p2,…, pn)
T is the set of probabilities such that 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑗

𝑛

𝑗=1

= 𝐾

𝑥𝑗 ∈ {0,1, … , 𝐾}

 

Obviously, the parameter Θ = (p1, p2,…, pn)
T does not include theoretical mean E(X) and 

theoretical variance V(X) but E(X) and V(X) of multinomial distribution is determined based on 

Θ as follows: 

𝐸(𝑥𝑗) = 𝐾𝑝𝑗

𝑉(𝑥𝑗) = 𝐾𝑝𝑗(1 − 𝑝𝑗)
∎ 

A statistic is function of random variable X except the PDF f(X) itself where X can be 

considered as an observation. For instance, E(X) and V(X) are statistics because they are 

functions of X, as follows: 
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𝐸(𝑋) = ∫𝑋𝑓(𝑋|Θ)d𝑋

𝑋

 

𝑉(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
= ∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))

𝑇
𝑓(𝑋|Θ)d𝑋

𝑋

=

= 𝐸(𝑋𝑋𝑇) − 𝐸(𝑋)𝐸(𝑋)𝑇 

In practice, if X is replaced by sample 𝒳 = {X1, X2,…, XN} including N observation Xi where 

all Xi (s) are mutually independent and identically distributed (iid). The concept “iid” implies 

that all Xi (s) are represented the same random variable X. A statistic is function of Xi (s) for 

instance, quantities 𝑋̅ and S defined below are statistics: 

𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

𝑆 =
1

𝑁
∑(𝑋𝑖 − 𝑋̅)(𝑋𝑖 − 𝑋̅)

𝑇

𝑁

𝑖=1

= (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 𝑋̅𝑋̅𝑇 

For multivariate normal distribution, 𝑋̅ and S are estimates of theoretical mean μ and theoretical 

covariance matrix Σ. They are called sample mean and sample variance, respectively. 

Sufficient statistic denoted τ(X) is the statistic that it has all and only information to estimate 

parameter Θ. For example, sufficient statistic of the normal PDF above is τ(X) = (X, XXT)T. In 

fact, its parameter Θ = (μ, Σ)T including theoretical mean μ and theoretical covariance matrix 

Σ is totally determined based on all and only X and XXT (there is no redundant information in 

τ(X)) where X is observation considered as random variable, as follows: 

𝜇 = 𝐸(𝑋) = ∫𝑋𝑓(𝑋|Θ)d𝑋

𝑋

 

Σ = 𝐸(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 = 𝐸(𝑋𝑋𝑇) − 𝜇𝜇𝑇 

Similarly, given X = (x1, x2,…, xn)
T, sufficient statistic of multinomial PDF of K trials above is 

τ(X) = (x1, x2,…, xn)
T due to: 

𝑝𝑗 =
𝐸(𝑥𝑗)

𝐾
, ∀𝑗 = 1, 𝑛̅̅ ̅̅ ̅ 

Given a sample containing observations, purpose of point estimation is to estimate unknown 

parameter Θ based on such sample. The result of estimation process is the estimate Θ̂ as 

approximation of unknown Θ. Formula to calculate Θ̂ based on sample is called estimator of 

Θ. As a convention, estimator of Θ is denoted Θ̂(𝑋) or Θ̂(𝒳) where X is an observation and 𝒳 

is sample including many observations. Actually, Θ̂(𝑋) or Θ̂(𝒳) is the same to Θ̂  but the 

notation Θ̂(𝑋) or Θ̂(𝒳) implies that Θ̂ is calculated based on observations. For example, given 

sample 𝒳 = {X1, X2,…, XN} including N observations iid Xi, estimator of theoretical mean μ of 

normal distribution is: 

𝜇̂ = 𝜇̂(𝑋) = 𝜇̂(𝒳) = 𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

As usual, estimator of Θ is determined based on sufficient statistics which in turn are functions 

of observations where observations are considered as random variables. Estimation methods 

mentioned in this research are MLE, Maximum A Posteriori (MAP), and EM in which MAP 

and EM are variants of MLE. 

According to viewpoint of Bayesian statistics, parameter Θ is also random variable. 

Equation 1.6 specifies Bayes’ rule in which f(Θ|ξ) is called prior PDF (prior distribution) of Θ 

whereas f(Θ|X) is called posterior PDF (posterior distribution) of Θ given observation X. Note, 

ξ is parameter of the prior f(Θ|ξ), which is known as second-level parameter. For instance, if 
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the prior f(Θ|ξ) is multivariate normal PDF, we have ξ = (μ0, Σ0
2)T which are theoretical mean 

and theoretical covariance matrix of random variable Θ. Because ξ is constant, the prior PDF 

f(Θ|ξ) can be denoted f(Θ). Please pay attention that the posterior PDF f(Θ|X) is independent 

from ξ. 

𝑓(Θ|𝑋) =
𝑓(𝑋|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 (1.6) 

In Bayes’ rule, the PDF f(X | Θ) is called likelihood function. If posterior distribution f(Θ|X) 

has the same form of prior distribution f(Θ|ξ), such posterior distribution and prior distribution 

are called conjugate distributions (conjugate probabilities) and f(Θ|ξ) is called conjugate prior 

(Wikipedia, Conjugate prior, 2018) for likelihood function f(X|Θ). For example, if prior 

distribution f(Θ|ξ) is beta distribution and likelihood function P(X|Θ) follows binomial 

distribution then, posterior distribution f(Θ|X) is beta distribution too and hence, f(Θ|ξ) and 

f(Θ|X) are conjugate distributions. Shortly, whether posterior distribution and prior distribution 

are conjugate distributions depends on prior distribution and likelihood function. In some 

research, Θ is also called hypothesis. 

When X is evaluated as observation, let Θ̂ be estimate of Θ. It is calculated as a maximizer 

of the posterior PDF f(Θ|X) given X. Here data sample 𝒳 has only one observation X as 𝒳 = 

{X}. 

Θ̂ = argmax
Θ

𝑓(Θ|𝑋) = argmax
Θ

𝑓(𝑋|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 

Because the prior PDF f(Θ|ξ) is assumed to be fixed and the value ∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 is constant 

with regard to Θ, we have: 

Θ̂ = argmax
Θ

𝑓(Θ|𝑋) = argmax
Θ

𝑓(𝑋|Θ) 

Obviously, MLE method determines Θ̂ as a maximizer of the likelihood function f(X | Θ) with 

regard to Θ when X is evaluated as observation. It is interesting that the likelihood function 

f(X|Θ) is the PDF of X with parameter Θ. For convenience, MLE maximizes the natural 

logarithm of the likelihood function denoted l(Θ) instead of maximizing the likelihood function. 

Θ̂ = argmax
Θ

𝑙(Θ) = argmax
Θ

log(𝑓(𝑋|Θ)) (1.7) 

Where l(Θ) = log(f(X | Θ)) is called log-likelihood function of Θ. Recall that equation 1.7 

implies the optimization problem. Note, l(Θ) is function of Θ if X is evaluated as observation. 

𝑙(Θ) = 𝑙(Θ|𝑋) = log(𝑓(𝑋|Θ)) (1.8) 

Equation 1.7 is the simple result of MLE for estimating parameter based on observed sample. 

The notation l(Θ|X) implies that l(Θ) is determined based on X. If the log-likelihood function 

l(Θ) is first-order smooth function then, from equation 1.7, the estimate Θ̂ can be solution of 

the equation created by setting the first-order derivative of l(Θ) regarding Θ to be zero. If 

solving such equation is too complex, some popular methods to solve optimization problem 

are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient descent (Ta, 2014), and 

Lagrange duality (Wikipedia, Karush–Kuhn–Tucker conditions, 2014). 

For example, suppose X = (x1, x2,…, xn)
T is vector and follows multivariate normal 

distribution, 

𝑓(𝑋|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Then the log-likelihood function is 

𝑙(Θ) = −
𝑛

2
log(2π) −

1

2
log|Σ| −

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) 

Where μ and Σ are mean vector and covariance matrix of f(X | Θ), respectively with note that 

Θ = (μ, Σ)T. The notation |.| denotes determinant of given matrix and the notation Σ–1 denotes 
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inverse of matrix Σ. Note, Σ is invertible and symmetric. Because normal PDF is smooth 

enough function, from equation 1.7, the estimate Θ̂ = (𝜇̂, Σ̂)
𝑇

 is solution of the equation 

created by setting the first-order of l(Θ) regarding μ and Σ to be zero. The first-order partial 

derivative of l(Θ) with respect to μ is (Nguyen, 2015, p. 35): 
𝜕𝑙(Θ)

𝜕𝜇
= (𝑋 − 𝜇)𝑇Σ−1 

Setting this partial derivative to be zero, we obtain: 

(𝑋 − 𝜇)𝑇Σ−1 = 0 ⇒ 𝑋 − 𝜇 ⇒ 𝜇̂ = 𝑋 

The first-order partial derivative of l(Θ) with respect to Σ is: 
𝜕𝑙(Θ)

𝜕Σ
= −

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

Due to: 
𝜕 log(|Σ|)

𝜕Σ
= Σ−1 

And 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) = tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(𝐴) =
∑ 𝑎𝑖𝑖𝑖 . This implies (Nguyen, 2015, p. 45): 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
= −Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

Where Σ is symmetric and invertible matrix. Substituting the estimate 𝜇̂ into the first-order 

partial derivative of l(Θ) with respect to Σ, we have: 
𝜕𝑙(Θ)

𝜕Σ
= −

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇̂)(𝑋 − 𝜇̂)𝑇Σ−1 

The estimate Σ̂ is the solution of equation formed by setting the first-order partial derivative of 

l(Θ) regarding Σ to zero matrix. Let (0) denote zero matrix. 

(𝟎) = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

We have: 
𝜕𝑙(Θ)

𝜕Σ
= (𝟎) 

⇔ −
1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇̂)(𝑋 − 𝜇̂)𝑇Σ−1 = (𝟎) 

⇒ −Σ + (𝑋 − 𝜇̂)(𝑋 − 𝜇̂)𝑇 = (𝟎) 
⇒ Σ̂ = (𝑋 − 𝜇̂)(𝑋 − 𝜇̂)𝑇 

Finally, MLE results out the estimate Θ̂ for normal distribution given observation X as follows: 

Θ̂ = (𝜇̂ = 𝑋, Σ̂ = (𝑋 − 𝜇̂)(𝑋 − 𝜇̂)𝑇)
𝑇
 

When 𝜇̂ = 𝑋 then Σ̂ = (𝟎), which implies that the estimate Σ̂ of covariance matrix is arbitrary 

with constraint that it is symmetric and invertible. This is reasonable because the sample is too 

small with only one observation X. When X is replaced by a sample 𝒳 = {X1, X2,…, XN} in 

which all Xi (s) are iid, it is easy to draw the following result by the similar way with equation 

1.11. 
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𝜇̂ = 𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

Σ̂ = 𝑆 =
1

𝑁
∑(𝑋𝑖 − 𝜇̂)(𝑋𝑖 − 𝜇̂)

𝑇

𝑁

𝑖=1

= (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 𝜇̂𝜇̂𝑇

 

Here, 𝜇̂ and Σ̂ are sample mean and sample variance ■ 

In practice, if X is observed as particular N observations X1, X2,…, XN. Let 𝒳 = {X1, X2,…, 

XN} be the observed sample of size N with note that all Xi (s) are mutually independent and 

identically distributed (iid). The Bayes’ rule specified by equation 1.6 is re-written as follows: 

𝑓(Θ|𝒳) =
𝑓(𝒳|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝒳|Θ)𝑓(Θ|𝜉)
Θ

 

However, the meaning of Bayes’ rule does not change. Because all Xi (s) are iid, the likelihood 

function becomes product of partial likelihood functions as follows: 

𝑓(𝒳|Θ) =∏𝑓(𝑋𝑖|Θ)

𝑁

𝑖=1

 (1.9) 

The log-likelihood function of Θ becomes: 

𝑙(Θ) = 𝑙(Θ|𝒳) = log(𝑓(𝒳|Θ)) = log (∏𝑓(𝑋𝑖|Θ)

𝑁

𝑖=1

) =∑log(𝑓(𝑋𝑖|Θ))

𝑁

𝑖=1

 (1.10) 

The notation l(Θ|𝒳) implies that l(Θ) is determined based on 𝒳. We have: 

Θ̂ = argmax
Θ

𝑙(Θ) = argmax
Θ

∑log(𝑓(𝑋𝑖|Θ))

𝑁

𝑖=1

 (1.11) 

Equation 1.11 is the main result of MLE for estimating parameter based on observed sample. 

If the log-likelihood function l(Θ) is first-order smooth function then, from equation 1.11, the 

estimate Θ̂ can be solution of the equation created by setting the first-order derivative of l(Θ) 

regarding Θ to be zero. If solving such equation is too complex, some popular methods to solve 

optimization problem are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient 

descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush–Kuhn–Tucker conditions, 2014). 

For example, suppose each Xi = (xi1, xi2,…, xin)
T is vector and follows multinomial 

distribution of K trials, 

𝑓(𝑋𝑖|Θ) =
𝐾!

∏ (𝑥𝑖𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑖𝑗

𝑛

𝑘=1

 

Where xik are integers and Θ = (p1, p2,…, pn)
T is the set of probabilities such that 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝐾

𝑥𝑖𝑗 ∈ {0,1, … , 𝐾}

 

Given sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid, according to equation 1.10, the 

log-likelihood function is 

𝑙(Θ) = 𝑙(Θ|𝒳) =∑log(
𝐾!

∏ (𝑥𝑖𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑖𝑗

𝑛

𝑗=1

)

𝑛

𝑖=1
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=∑(log(𝐾!) −∑log(𝑥𝑖𝑗!)

𝑛

𝑗=1

+∑𝑥𝑖𝑗log(𝑝𝑗)

𝑛

𝑗=1

)

𝑁

𝑖=1

 

Because there is the constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1, we use Lagrange duality method to maximize l(Θ). 

The Lagrange function la(Θ, λ) is sum of l(Θ) and the constraint ∑ 𝑝𝑗
𝑛
𝑗=1 = 1 as follows: 

𝑙𝑎(Θ, λ) = 𝑙(Θ) + 𝜆(1 −∑𝑝𝑗

𝑛

𝑗=1

)

=∑(log(𝐾!) −∑log(𝑥𝑖𝑗!)

𝑛

𝑗=1

+∑𝑥𝑖𝑗log(𝑝𝑗)

𝑛

𝑗=1

)

𝑁

𝑖=1

+ 𝜆(1 −∑𝑝𝑗

𝑛

𝑗=1

) 

Note, λ is called Lagrange multiplier. Of course, la(Θ, λ) is function of Θ and λ. Because 

multinomial PDF is smooth enough, the estimate Θ̂ = (𝑝̂1, 𝑝̂2, … , 𝑝̂𝑛)
𝑇  is solution of the 

equation created by setting the first-order of la(Θ) regarding pj and λ to be zero. The first-order 

partial derivative of la(Θ) with respect to pj is: 

𝜕𝑙𝑎(Θ)

𝜕𝑝𝑗
=
∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝑝𝑗
− 𝜆 

Setting this partial derivative to be zero, we obtain following equation: 

∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝑝𝑗
− 𝜆 = 0 ⇒ (∑𝑥𝑖𝑗

𝑁

𝑖=1

) − 𝜆𝑝𝑗 = 0 

Summing this equation over n variables pj, we obtain: 

∑((∑𝑥𝑖𝑗

𝑁

𝑖=1

) − 𝜆𝑝𝑗)

𝑛

𝑗=1

= (∑∑𝑥𝑖𝑗

𝑛

𝑗=1

𝑁

𝑖=1

) − 𝜆∑𝑝𝑗

𝑛

𝑗=1

= 0 

Due to 

∑𝑝𝑗

𝑛

𝑗=1

= 1

∑𝑥𝑖𝑗

𝑛

𝑗=1

= 𝐾

 

We have 

𝐾𝑁 − 𝜆 = 0 ⇒ 𝜆 = 𝐾𝑁 

Substitute λ = nN into equation 

(∑𝑥𝑖𝑗

𝑁

𝑖=1

) − 𝜆𝑝𝑗 = 0 

We get the estimate Θ̂ = (𝑝̂1, 𝑝̂2, … , 𝑝̂𝑛)
𝑇 as follows: 

𝑝̂𝑗 =
∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝐾𝑁
∎ 

Quality of estimation is measured by mean and variance of the estimate Θ̂. The mean of Θ̂ is: 

𝐸(Θ̂) = ∫ Θ̂(𝑋)

𝑋

𝑓(𝑋|Θ)d𝑋 (1.12) 

The notation Θ̂(𝑋) implies the formulation to calculate Θ̂, which is resulted from MLE, MAP, 

or EM. Hence, Θ̂(𝑋) is considered as function of X in the integral ∫ Θ̂(𝑋)
𝑋

𝑓(𝑋|Θ)d𝑋. The Θ̂ 

is unbiased estimate if 𝐸(Θ̂) = Θ. Otherwise, if 𝐸(Θ̂) ≠ Θ then, Θ̂ is biased estimate. As usual, 
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unbiased estimate is better than biased estimate. The condition 𝐸(Θ̂) = Θ is the criterion to 

check if an estimate is unbiased, which is applied for all estimation methods. 

The variance of Θ̂ is: 

𝑉(Θ̂) = ∫(Θ̂(𝑋) − 𝐸(𝑋)) (Θ̂(𝑋) − 𝐸(𝑋))
𝑇

𝑋

𝑓(𝑋|Θ)d𝑋 (1.13) 

The smaller the variance 𝑉(Θ̂), the better the Θ̂ is. 

For example, given multivariate normal distribution and given sample 𝒳 = {X1, X2,…, XN} 

where all Xi (s) are iid, the estimate Θ̂ = (𝜇̂, Σ̂)
𝑇
 from MLE is: 

𝜇̂ = 𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

Σ̂ =
1

𝑁
∑(𝑋𝑖 − 𝜇̂)(𝑋𝑖 − 𝜇̂)

𝑇

𝑁

𝑖=1

 

Due to: 

𝐸(𝜇̂) = 𝐸 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁
∑𝐸(𝑋𝑖)

𝑁

𝑖=1

=
1

𝑁
∑𝐸(𝑋)

𝑁

𝑖=1

= 𝜇 

Then 𝜇̂ is unbiased estimate. We also have: 

𝐸(Σ̂) = 𝐸 (
1

𝑁
∑(𝑋𝑖 − 𝜇̂)(𝑋𝑖 − 𝜇̂)

𝑇

𝑁

𝑖=1

) =
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

−∑𝑋𝑖𝜇̂
𝑇

𝑁

𝑖=1

−∑𝜇̂𝑋𝑖
𝑇

𝑁

𝑖=1

+∑𝜇̂𝜇̂𝑇
𝑁

𝑖=1

) 

=
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 2∑𝜇̂𝑋𝑖
𝑇

𝑁

𝑖=1

+∑𝜇̂𝜇̂𝑇
𝑁

𝑖=1

) =
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 2𝜇̂∑𝑋𝑖
𝑇

𝑁

𝑖=1

+𝑁𝜇̂𝜇̂𝑇) 

(Due to 𝑋𝑖𝜇̂
𝑇 = 𝜇̂𝑋𝑖

𝑇) 

=
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 2𝑁𝜇̂𝜇̂𝑇 + 𝑁𝜇̂𝜇̂𝑇) =
1

𝑁
𝐸 (∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

− 𝑁𝜇̂𝜇̂𝑇) 

(Due to 𝜇̂ =
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1 ) 

=
1

𝑁
∑𝐸(𝑋𝑖𝑋𝑖

𝑇)

𝑁

𝑖=1

− 𝐸(𝜇̂𝜇̂𝑇) =
1

𝑁
∑𝐸(𝑋𝑋𝑇)

𝑁

𝑖=1

− 𝐸(𝜇̂𝜇̂𝑇) = 𝐸(𝑋𝑋𝑇) − 𝐸(𝜇̂𝜇̂𝑇) 

(Let X be random variable representing all iid Xi (s)) 

= (Σ + 𝜇𝜇𝑇) − (𝑉(𝜇̂) + 𝐸(𝜇̂)𝐸(𝜇̂)𝑇) 
(Due to Σ = 𝐸(𝑋𝑋𝑇) − 𝜇𝜇𝑇 and the variance 𝑉(𝜇̂) = 𝐸(𝜇̂𝜇̂𝑇) − 𝐸(𝜇̂)𝐸(𝜇̂)𝑇) 

= (Σ + 𝜇𝜇𝑇) − (𝑉(𝜇̂) + 𝜇𝜇𝑇) = Σ − 𝑉(𝜇̂) 
It is necessary to calculate the variance 𝑉(𝜇̂). In fact, we have: 

𝑉(𝜇̂) = 𝑉 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁2
∑𝑉(𝑋𝑖) =

𝑁

𝑖=1

1

𝑁2
∑𝑉(𝑋) =

𝑁

𝑖=1

1

𝑁
𝑉(𝑋) =

1

𝑁
Σ 

Therefore, we have: 

𝐸(Σ̂) = Σ −
1

𝑁
Σ =

𝑁 − 1

𝑁
Σ 

Hence, we conclude that Σ̂ is biased estimate because of 𝐸(Σ̂) ≠ Σ ■ 

Without loss of generality, suppose parameter Θ is vector, the second-order derivative of 

the log-likelihood function l(Θ) is called likelihood Hessian matrix (Zivot, 2009, p. 7) denoted 

S(Θ). 
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𝑆(Θ) = 𝑆(Θ|𝑋) = 𝐷2𝑙(Θ|𝑋) (1.14) 

Suppose Θ = (θ1, θ2,…, θr)
T where there are r partial parameters θk, equation 1.14 is expended 

as follows: 

𝐷2𝑙(Θ|𝑋) =
d2𝑙(Θ|𝑋)

dΘ2
=

(

 
 
 
 
 

𝜕2𝑙(Θ|𝑋)

𝜕𝜃1
2

𝜕2𝑙(Θ|𝑋)

𝜕𝜃1𝜕𝜃2
⋯

𝜕2𝑙(Θ|𝑋)

𝜕𝜃1𝜕𝜃𝑟
𝜕2𝑙(Θ|𝑋)

𝜕𝜃2𝜕𝜃1

𝜕2𝑙(Θ|𝑋)

𝜕𝜃2
2 ⋯

𝜕2𝑙(Θ|𝑋)

𝜕𝜃2𝜕𝜃𝑟
⋮ ⋮ ⋱ ⋮

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑟𝜕𝜃1

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑟𝜕𝜃2
⋯

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑟2 )

 
 
 
 
 

 

Where, 

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑖𝜕𝜃𝑗
=

𝜕

𝜕𝜃𝑖
(
𝜕𝑙(Θ|𝑋)

𝜕𝜃𝑗
)

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑖
2 =

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑖𝜕𝜃𝑖

 

The notation l(Θ|X) implies that l(Θ) is determined based on X, according to equation 1.8. The 

notation S(Θ|X) implies S(Θ) is calculated based on X. If sample 𝒳 replaces X then, 

𝑆(Θ) = 𝑆(Θ|𝒳) = 𝐷2𝑙(Θ|𝒳) (1.15) 

Where 𝒳 = {X1, X2,…, XN} be the observed sample of size N in which all Xi (s) are iid. The 

notation l(Θ|𝒳) implies that l(Θ) is determined based on 𝒳, according to equation 1.11. The 

notation S(Θ|𝒳) implies S(Θ) is calculated based on 𝒳. 

The negative expectation of likelihood Hessian matrix is called information matrix or 

Fisher information matrix denoted I(Θ). 

𝐼(Θ) = −𝐸(𝑆(Θ)) (1.16) 

If S(Θ) is calculated by equation 1.14 with observation X then, I(Θ) becomes: 

𝐼(Θ) = 𝐼(Θ|𝑋) = −𝐸(𝑆(Θ|𝑋)) = −∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

 (1.17) 

The notation l(Θ|X) implies that l(Θ) is determined based on X, according to equation 1.8. The 

notation I(Θ|X) implies I(Θ) is calculated based on X. Note, 𝐷2𝑙(Θ|𝑋) is considered as function 

of X in the integral ∫ 𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋
𝑋

. 

If S(Θ) is calculated by equation 1.15 with observation sample 𝒳 = {X1, X2,…, XN} in 

which all Xi (s) are iid then, I(Θ) becomes: 

𝐼(Θ) = 𝐼(Θ|𝒳) = −𝐸(𝑆(Θ|𝒳)) = 𝑁 ∗ 𝐼(Θ|𝑋) = −𝑁∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

 (1.18) 

Where X is random variable representing every Xi. The notation I(Θ|𝒳 ) implies I(Θ) is 

calculated based on 𝒳 . Note, 𝐷2𝑙(Θ|𝑋)  is considered as function of X in the integral 

∫ 𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋
𝑋

. Following is proof of equation 1.18. 

𝐼(Θ) = 𝐼(Θ|𝒳) = −𝐸(𝑆(Θ|𝒳)) = −𝐸(𝐷2𝑙(Θ|𝒳)) 

(The notation l(Θ|𝒳) implies that l(Θ) is determined based on 𝒳) 

= −𝐸 (∑𝐷2𝑙(Θ|𝑋𝑖)

𝑁

𝑖=1

) 

(Due to equation 1.8 and iid Xi (s)) 

= −∑𝐸(𝐷2𝑙(Θ|𝑋𝑖))

𝑁

𝑖=1

= −∑∫𝐷2𝑙(Θ|𝑋𝑖)𝑓(𝑋𝑖|Θ)d𝑋𝑖
𝑋

𝑁

𝑖=1
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= −∑∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

𝑁

𝑖=1

 

(Let X be random variable representing every Xi) 

= −𝑁∫𝐷2𝑙(Θ|𝑋)𝑓(𝑋|Θ)d𝑋

𝑋

= 𝑁 ∗ 𝐼(Θ|𝑋)∎ 

For MLE method, the inverse of estimator information matrix is called Cramer-Rao lower 

bound denoted 𝐶𝑅(Θ̂). 

𝐶𝑅(Θ̂) = 𝐼(Θ)−1 (1.19) 

Where I(Θ) is calculated by equation 1.17 or equation 1.18. Any covariance matrix of a MLE 

estimate Θ̂ has such Cramer-Rao lower bound. Such Cramer-Rao lower bound becomes 𝑉(Θ̂) 

if and only if Θ̂ is unbiased, (Zivot, 2009, p. 11): 

𝑉(Θ̂) ≥ 𝐶𝑅(Θ̂) if Θ̂ biased

𝑉(Θ̂) = 𝐶𝑅(Θ̂) if Θ̂ unbiased
 (1.20) 

Note, equation 1.19 and equation 1.20 are only valid for MLE method. The sign “≥” implies 

lower bound. In other words, Cramer-Rao lower bound is variance of the optimal MLE estimate. 

Moreover, beside the criterion 𝐸(Θ̂) = Θ, equation 1.20 can be used as another criterion to 

check if an estimate is unbiased. However, the criterion 𝐸(Θ̂) = Θ is applied for all estimation 

methods whereas equation 1.20 is only applied for MLE. 

Suppose Θ = (θ1, θ2,…, θr)
T where there are r partial parameter θk, so the estimate is Θ̂ =

(𝜃1, 𝜃2, … , 𝜃𝑟)
𝑇
. Each element on diagonal of the Cramer-Rao lower bound is lower bound of 

a variance of 𝜃𝑘, denoted 𝑉(𝜃𝑘). Let 𝐶𝑅(𝜃𝑘) be lower bound of 𝑉(𝜃𝑘), of course we have: 

𝑉(𝜃𝑘) ≥ 𝐶𝑅(𝜃𝑘) if 𝜃𝑘 biased

𝑉(𝜃𝑘) = 𝐶𝑅(𝜃𝑘) if 𝜃𝑘 unbiased
 (1.21) 

The sign “≥” implies lower bound. Derived from equation 1.18 and equation 1.19, 𝐶𝑅(𝜃𝑘) is 

specified by equation 1.22. 

𝐼(𝜃𝑘) = −𝑁 ∗ 𝐸 (
𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑘
2 ) = −𝑁∫

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑘
2 𝑓(𝑋|Θ)d𝑋

𝑋

 

𝐶𝑅(𝜃𝑘) = 𝐼(𝜃𝑘)
−1
= −

1

𝑁
(∫

𝜕2𝑙(Θ|𝑋)

𝜕𝜃𝑘
2 𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

 

(1.22) 

Where N is size of sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid. If there is only one 

observation X then, N = 1. Of course, 𝐼(𝜃𝑘) is information matrix of 𝜃𝑘. If 𝜃𝑘 is univariate, 

𝐼(𝜃𝑘) is scalar, which called information value. 

For example, let 𝒳 = {X1, X2,…, XN} be the observed sample of size N with note that all Xi 

(s) are iid, given multivariate normal PDF as follows: 

𝑓(𝑋|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Where n is dimension of vector X and Θ = (μ, Σ)T with note that μ is theoretical mean vector 

and Σ is theoretical covariance matrix. Note, Σ is invertible and symmetric. From previous 

example, the MLE estimate Θ̂ = (𝜇̂, Σ̂)
𝑇
 given 𝒳 is: 
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𝜇̂ = 𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

Σ̂ =
1

𝑁
∑(𝑋𝑖 − 𝜇̂)(𝑋𝑖 − 𝜇̂)

𝑇

𝑁

𝑖=1

 

Mean and variance of 𝜇̂ from previous example are: 
𝐸(𝜇̂) = 𝜇

𝑉(𝜇̂) =
1

𝑁
Σ

 

We knew that 𝜇̂ is unbiased estimate with criterion 𝐸(𝜇̂) = 𝜇. Now we check again if 𝜇̂ is 

unbiased estimate with equation 1.21 as another criterion for MLE. Hence, we firstly calculate 

the lower bound 𝐶𝑅(𝜇̂) and then compare it with the variance 𝑉(𝜇̂). In fact, according to 

equation 1.8, the log-likelihood function is: 

𝑙(Θ|𝑋) = −
𝑛

2
log(2π) −

1

2
log|Σ| −

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) 

The partial first-order derivative of l(Θ|X) with regard to μ is (Nguyen, 2015, p. 35): 
𝜕𝑙(Θ|𝑋)

𝜕𝜇
= (𝑋 − 𝜇)𝑇Σ−1 

(due to 
𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕𝜇
= −2(𝑋 − 𝜇)𝑇Σ−1 when Σ is symmetric) 

The partial second-order derivative of l(Θ|X) with regard to μ is (Nguyen, 2015, p. 36): 

𝜕2𝑙(Θ|𝑋)

𝜕𝜇2
=
𝜕

𝜕𝜇
(
𝜕𝑙(Θ|𝑋)

𝜕𝜇
) =

𝜕

𝜕𝜇
((𝑋 − 𝜇)𝑇Σ−1) = −(Σ−1)𝑇 = Σ−1 

(Due to Σ is symmetric) 

According to equation 1.22, the lower bound 𝐶𝑅(𝜇̂) is: 

𝐶𝑅(𝜇̂) = −
1

𝑁
(∫

𝜕2𝑙(Θ|𝑋)

𝜕𝜇2
𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

=
1

𝑁
(∫Σ−1𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

=
1

𝑁
(Σ−1∫𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

=
1

𝑁
Σ = 𝑉(𝜇̂) 

Due to 𝑉(𝜇̂) = 𝐶𝑅(𝜇̂), 𝜇̂ is unbiased estimate according to the criterion specified by equation 

1.21. 

Mean of Σ̂ from previous example is: 

𝐸(Σ̂) =
𝑁 − 1

𝑁
Σ 

We knew that Σ̂ is biased estimate because 𝐸(Σ̂) ≠ Σ. Now we check again if Σ̂ is biased 

estimate with equation 1.21 as another criterion for MLE. The partial first-order derivative of 

l(Θ|X) with regard to Σ is: 
𝜕𝑙(Θ|𝑋)

𝜕Σ
= −

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

Due to: 
𝜕 log(|Σ|)

𝜕Σ
= Σ−1 

And 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 
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(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) = tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(𝐴) = ∑ 𝑎𝑖𝑖𝑖 . 

This implies (Nguyen, 2015, p. 45): 

𝜕(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)

𝜕Σ
= −Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1 

According to equation 1.22, the lower bound 𝐶𝑅(Σ̂) is: 

𝐶𝑅(Σ̂) = −
1

𝑁
(∫

𝜕2𝑙(Θ|𝑋)

𝜕Σ2
𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

= −
1

𝑁
(∫

𝜕

𝜕Σ
(
𝜕𝑙(Θ|𝑋)

𝜕Σ
)𝑓(𝑋|Θ)d𝑋

𝑋

)

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(∫

𝜕𝑙(Θ|𝑋)

𝜕Σ
𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

(Due to l(Θ|X) is smooth enough) 

= −
1

𝑁
(
𝜕

𝜕Σ
(∫(−

1

2
Σ−1 +

1

2
Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1)𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1∫𝑓(𝑋|Θ)d𝑋

𝑋

+
1

2
∫Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
∫Σ−1(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇Σ−1𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
Σ−1Σ−1∫(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇𝑓(𝑋|Θ)d𝑋

𝑋

))

−1

 

(Because Σ–1 and (𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 are symmetric matrices) 

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
Σ−1Σ−1Σ))

−1

= −
1

𝑁
(
𝜕

𝜕Σ
(−

1

2
Σ−1 +

1

2
Σ−1))

−1

= −
1

𝑁
(
𝜕

𝜕Σ
((𝟎)))

−1

 

Where (0) is zero matrix. This implies the lower bound 𝐶𝑅(Σ̂) is inexistent. Hence, Σ̂ is biased 

estimate. Even there is no unbiased estimate of variance for normal distribution by MLE ■ 

MLE ignores prior PDF f(Θ|ξ) because f(Θ|ξ) is assumed to be fixed but Maximum A 

Posteriori (MAP) method (Wikipedia, Maximum a posteriori estimation, 2017) concerns f(Θ|ξ) 

in maximization task when ∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

 is constant with regard to Θ. 

Θ̂ = argmax
Θ

𝑓(Θ|𝑋) = argmax
Θ

𝑓(𝑋|Θ)𝑓(Θ|𝜉)

∫ 𝑓(𝑋|Θ)𝑓(Θ|𝜉)
Θ

= argmax
Θ

𝑓(𝑋|Θ)𝑓(Θ|𝜉) 

Let f(X, Θ | ξ) be the joint PDF of X and Θ where Θ is also random variable too. Note, ξ is 

parameter in the prior PDF f(Θ|ξ). The likelihood function in MAP is also f(X, Θ | ξ). 

𝑓(𝑋, Θ|𝜉) = 𝑓(𝑋|Θ)𝑓(Θ|𝜉) (1.23) 

Theoretical mean and variance of X are based on the joint PDF f(X, Θ | ξ) as follows: 

𝐸(𝑋) = ∫∫𝑋𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.24) 
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𝑉(𝑋) = ∫∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.25) 

Theoretical mean and variance of Θ are based on f(Θ|ξ) because f(Θ|ξ) is function of only Θ 

when ξ is constant. 

𝐸(Θ) = ∫∫Θ𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫Θ𝑓(Θ|𝜉)dΘ

Θ

 (1.26) 

 

𝑉(Θ) = ∫∫(Θ − 𝐸(Θ))(Θ − 𝐸(Θ))
𝑇
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫(Θ − 𝐸(Θ))(Θ − 𝐸(Θ))
𝑇
𝑓(Θ|𝜉)dΘ

Θ

= 𝐸(ΘΘ𝑇|𝜉) − 𝐸(Θ|𝜉)𝐸(Θ𝑇|𝜉) 

(1.27) 

In general, statistics of Θ are still based on f(Θ|ξ). Given sample 𝒳 = {X1, X2,…, XN} in which 

all Xi (s) are iid, the likelihood function becomes: 

𝑓(𝒳, Θ|𝜉) =∏𝑓(𝑋𝑖, Θ|𝜉)

𝑁

𝑖=1

 (1.28) 

The log-likelihood function ℓ(Θ) in MAP is re-defined with observation X or sample 𝒳 as 

follows: 

ℓ(Θ) = log(𝑓(𝑋, Θ|𝜉)) = 𝑙(Θ) + log(𝑓(Θ|𝜉)) (1.29) 

 

ℓ(Θ) = log(𝑓(𝒳, Θ|𝜉)) = 𝑙(Θ) + log(𝑓(Θ|𝜉)) (1.30) 

Where l(Θ) is specified by equation 1.8 with observation X or equation 1.10 with sample 𝒳. 

Therefore, the estimate Θ̂ is determined according to MAP as follows: 

Θ̂ = argmax
Θ

(ℓ(Θ)) = argmax
Θ

(𝑙(Θ) + log(𝑓(Θ|𝜉))) (1.31) 

Good information provided by the prior f(Θ|ξ) can improve quality of estimation. Essentially, 

MAP is an improved variant of MLE. Later on, we also recognize that EM algorithm is also a 

variant of MLE. All of them aim to maximize log-likelihood functions. Likelihood Hessian 

matrix 𝑆(Θ̂) , information matrix 𝐼(Θ̂), and Cramer-Rao lower bound 𝐶𝑅(Θ̂) , 𝐶𝑅(𝜃𝑘)  are 

extended in MAP with the new likelihood function ℓ(Θ). 
𝑆(Θ) = 𝐷2ℓ(Θ) 
𝐼(Θ) = −𝐸(𝑆(Θ)) 

𝐶𝑅(Θ̂) = 𝐼(Θ)−1 

𝐼(𝜃𝑘) = −𝑁 ∗ 𝐸 (
𝜕2ℓ(Θ)

𝜕𝜃𝑘
2 ) = −𝑁∫∫

𝜕2ℓ(Θ)

𝜕𝜃𝑘
2 𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 

𝐶𝑅(𝜃𝑘) = 𝐼(𝜃𝑘)
−1

 

Where N is size of sample 𝒳 = {X1, X2,…, XN} in which all Xi (s) are iid. If there is only one 

observation X then, N = 1. 

Mean and variance of the estimate Θ̂ which are used to measure estimation quality are not 

changed except that the joint PDF f(X, Θ | ξ) is used instead. 

𝐸(Θ̂) = ∫∫ Θ̂(𝑋, Θ)𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.32) 
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𝑉(Θ̂) = ∫∫(Θ̂(𝑋, Θ) − 𝐸(𝑋)) (Θ̂(𝑋, Θ) − 𝐸(𝑋))
𝑇

𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 (1.33) 

The notation Θ̂(𝑋, Θ) implies the formulation to calculate Θ̂, which is considered as function 

of X and Θ in the integral ∫ ∫ Θ̂(𝑋, Θ)𝑓(𝑋, Θ|𝜉)d𝑋dΘ
Θ𝑋

. Recall the Θ̂ is unbiased estimate if 

𝐸(Θ̂) = Θ . Otherwise, if 𝐸(Θ̂) ≠ Θ  then, Θ̂  is biased estimate. Moreover, the smaller the 

variance 𝑉(Θ̂), the better the Θ̂ is. Recall that there are two criteria to check if Θ̂ is unbiased 

estimate. Concretely, Θ̂ is unbiased estimate if one of two following conditions is satisfied: 

𝐸(Θ̂) = Θ

𝑉(Θ̂) = 𝐶𝑅(Θ̂)
 

The criterion 𝑉(Θ̂) = 𝐶𝑅(Θ̂) is expended for MAP. 

It is necessary to have an example for parameter estimation with MAP. Given sample 𝒳 = 

{X1, X2,…, XN} in which all Xi (s) are iid. Each n-dimension Xi has following multivariate 

normal PDF: 

𝑓(𝑋𝑖|Θ) = (2𝜋)−
𝑛
2|Σ|−

1
2exp (−

1

2
(𝑋𝑖 − 𝜇)

𝑇Σ−1(𝑋𝑖 − 𝜇)) 

Where μ and Σ are mean vector and covariance matrix of f(X | Θ), respectively with note that 

Θ = (μ, Σ)T. The notation |.| denotes determinant of given matrix and the notation Σ–1 denotes 

inverse of matrix Σ. Note, Σ is invertible and symmetric. 

In Θ = (μ, Σ)T, suppose only μ distributes normally with parameter ξ = (μ0, Σ0) where μ0 and 

Σ0 are theoretical mean and covariance matrix of μ. Thus, Σ is variable but not random variable. 

The second-level parameter ξ is constant. The prior PDF f(Θ|ξ) becomes f(μ|ξ), which specified 

as follows: 

𝑓(Θ|𝜉) = 𝑓(𝜇|𝜇0, Σ0) = (2𝜋)
−
𝑛
2|Σ0|

−
1
2exp (−

1

2
(𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)) 

Note, μ0 is n-element vector like μ and Σ0 is nxn matrix like Σ. Of course, Σ0 is also invertible 

and symmetric. Suppose μ = (μ1, μ2,…, μn)
T, μ0 = (μ01, μ02,…, μ0n)

T, and 

Σ0 = (

𝛿11 𝛿12 ⋯ 𝛿1𝑛
𝛿21 𝛿22 ⋯ 𝛿2𝑛
⋮ ⋮ ⋱ ⋮
𝛿𝑛1 𝛿𝑛2 ⋯ 𝛿𝑛𝑛

) 

It is deduced that μ0j is theoretical mean of μj whereas δij (i≠j) is covariance of μi and μj. 

Especially, δii is variance of μi. 

Mean of X is: 

𝐸(𝑋) = ∫∫𝑋𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫∫𝑋𝑓(𝑋|Θ)𝑓(Θ|𝜉)d𝑋dΘ

Θ𝑋

= ∫(∫𝑋𝑓(𝑋|Θ)d𝑋

X

)𝑓(Θ|𝜉)dΘ

Θ

= ∫𝜇𝑓(Θ|𝜉)dΘ

Θ

= ∫𝜇𝑓(𝜇|𝜇0, Σ0)d𝜇

𝜇

= 𝐸(𝜇) = 𝜇0 

Variance of X is: 

𝑉(𝑋) = ∫∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

 

= ∫∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋|Θ)𝑓(Θ|𝜉)d𝑋dΘ

Θ𝑋

 

= ∫(∫(𝑋 − 𝐸(𝑋))(𝑋 − 𝐸(𝑋))
𝑇
𝑓(𝑋|Θ)d𝑋

X

)𝑓(Θ|𝜉)dΘ

Θ
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= ∫Σ𝑓(Θ|𝜉)dΘ

Θ

= ∫Σ𝑓(𝜇|𝜇0, Σ0)d𝜇

𝜇

= Σ 

The log-likelihood function in MAP is 

ℓ(Θ) = log(𝑓(𝜇|𝜉)) + 𝑙(Θ) = log(𝑓(𝜇|𝜉)) +∑log(𝑓(𝑋𝑖|Θ))

𝑁

𝑖=1

= −
𝑛

2
log(2π) −

1

2
log|Σ0| −

1

2
(𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)

+∑(−
𝑛

2
log(2π) −

1

2
log|Σ| −

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇))

𝑁

𝑖=1

 

Because normal PDF is smooth enough, from equation 1.24, the estimate Θ̂ = (𝜇̂, Σ̂)
𝑇

 is 

solution of the equation created by setting the first-order of ℓ(Θ) regarding μ and Σ to be zero. 

Due to (Nguyen, 2015, p. 35): 
𝜕

𝜕𝜇
((𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) = −2(𝑋 − 𝜇)𝑇Σ−1 

And (Nguyen, 2015, p. 35) 
𝜕

𝜕𝜇
((𝜇 − 𝜇0)

𝑇Σ0
−1(𝜇 − 𝜇0)) = (𝜇 − 𝜇0)

𝑇(Σ0
−1 + (Σ0

−1)𝑇) = (𝜇 − 𝜇0)
𝑇(Σ0

−1 + Σ0
−1)

= 2(𝜇 − 𝜇0)
𝑇Σ0

−1 

The first-order partial derivative of ℓ(Θ) with respect to μ is: 

𝜕ℓ(Θ)

𝜕𝜇
= −(𝜇 − 𝜇0)

𝑇Σ0
−1 +∑(𝑋𝑖 − 𝜇)

𝑇Σ−1
𝑁

𝑖=1

= −𝜇𝑇Σ0
−1 + 𝜇0

𝑇Σ0
−1 + (∑𝑋𝑖

𝑇

𝑁

𝑖=1

)Σ−1 − 𝑁𝜇𝑇Σ−1

= −𝜇𝑇(Σ0
−1 + 𝑁Σ−1) + 𝜇0

𝑇Σ0
−1 + (∑𝑋𝑖

𝑇

𝑁

𝑖=1

)Σ−1 

Setting this partial derivative to be zero, we obtain: 

−𝜇𝑇(Σ0
−1 + 𝑁Σ−1) + 𝜇0

𝑇Σ0
−1 + (∑𝑋𝑖

𝑇

𝑁

𝑖=1

)Σ−1 = 0 

⇒ (Σ0
−1 + 𝑁Σ−1)𝑇𝜇 = Σ0

−1𝜇0 + Σ
−1∑𝑋𝑖

𝑁

𝑖=1

 

⇒ (Σ0
−1 + 𝑁Σ−1)𝜇 = Σ0

−1𝜇0 + Σ
−1∑𝑋𝑖

𝑁

𝑖=1

 

⇒ (ΣΣ0
−1 + 𝑁𝐼)𝜇 = ΣΣ0

−1𝜇0 +∑𝑋𝑖

𝑁

𝑖=1

 

Where I is identity matrix. Let, 

𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

We obtain the following equation to estimate μ and Σ: 

𝜇 = (ΣΣ0
−1 + 𝑁𝐼)−1(ΣΣ0

−1𝜇0 + 𝑁𝑋̅) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


26 

 

The first-order partial derivative of l(Θ) with respect to Σ is: 

𝜕ℓ(Θ)

𝜕Σ
=∑(−

1

2
Σ−1 +

1

2
Σ−1(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝑁

𝑖=1

 

Due to: 
𝜕 log(|Σ|)

𝜕Σ
= Σ−1 

And 

𝜕(𝑋𝑖 − 𝜇)
𝑇Σ−1(𝑋𝑖 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝜕Σ
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑋𝑖 − 𝜇)
𝑇Σ−1(𝑋𝑖 − 𝜇) = tr((𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(𝐴) =
∑ 𝑎𝑖𝑖𝑖 . This implies (Nguyen, 2015, p. 45): 

𝜕(𝑋𝑖 − 𝜇)
𝑇Σ−1(𝑋𝑖 − 𝜇)

𝜕Σ
=
𝜕tr((𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝜕Σ
= −Σ−1(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1 

Where Σ is symmetric and invertible matrix. The estimate Σ̂ is the solution of equation formed 

by setting the first-order partial derivative of l(Θ) regarding Σ to zero matrix. Let (0) denote 

zero matrix. 

(𝟎) = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

We have: 
𝜕ℓ(Θ)

𝜕Σ
= (𝟎) 

⇔∑(−
1

2
Σ−1 +

1

2
Σ−1(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇Σ−1)

𝑁

𝑖=1

= (𝟎) 

⇒∑(−Σ + (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)
𝑇)

𝑁

𝑖=1

= (𝟎) 

⇒ Σ =
1

𝑁
∑(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)

𝑇

𝑁

𝑖=1

=
1

𝑁
∑(𝑋𝑖𝑋𝑖

𝑇 − 𝑋𝑖𝜇
𝑇 − 𝜇𝑋𝑖

𝑇 + 𝜇𝜇𝑇)

𝑁

𝑖=1

=
1

𝑁
∑(𝑋𝑖𝑋𝑖

𝑇 − 𝜇𝑋𝑖
𝑇 − 𝜇𝑋𝑖

𝑇 + 𝜇𝜇𝑇)

𝑁

𝑖=1

 

⇒ Σ = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) −
2

𝑁
𝜇∑𝑋𝑖

𝑇

𝑁

𝑖=1

+ 𝜇𝜇𝑇 = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 2𝜇𝑋̅ + 𝜇𝜇𝑇 

MAP results out a system of two equations whose solution is the estimate Θ̂ = (𝜇̂, Σ̂)
𝑇

as 

follows: 

{

𝜇 = (ΣΣ0
−1 + 𝑁𝐼)−1(ΣΣ0

−1𝜇0 + 𝑁𝑋̅)

Σ = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 2𝜇𝑋̅ + 𝜇𝜇𝑇
 

Where I is identity matrix and 
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𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

Because Σ is independent from the prior PDF f(μ | μ0, Σ0), it is estimated by MLE as usual, 

Σ̂ = (
1

𝑁
∑𝑋𝑖𝑋𝑖

𝑇

𝑁

𝑖=1

) − 𝑋̅𝑋̅𝑇 

The estimate Σ̂ in MAP here is as same as the one in MLE and so, it is biased. Substituting Σ̂ 

for Σ, we obtain the estimate 𝜇̂ in MAP: 

𝜇̂ = (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝑋̅) 
Note, 

𝐸(𝑋̅) = 𝐸 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁
∑𝐸(𝑋𝑖)

𝑁

𝑖=1

= 𝐸(𝑋) = 𝜇0 

𝑉(𝑋̅) = 𝑉 (
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

) =
1

𝑁2
∑𝑉(𝑋𝑖)

𝑁

𝑖=1

=
1

𝑁
𝑉(𝑋) =

1

𝑁
Σ 

Now we check if 𝜇̂ is unbiased estimate. In fact, we have: 

𝐸(𝜇̂) = 𝐸 ((Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝑋̅)) = (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝐸(𝑋̅)) 

= (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 +∑𝐸(𝑋𝑖)

𝑁

𝑖=1

) 

= (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝐸(𝑋)) = (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1𝜇0 + 𝑁𝜇0) 

(Due to E(X) = μ0) 

= (Σ̂Σ0
−1 + 𝑁𝐼)

−1
(Σ̂Σ0

−1 + 𝑁𝐼)𝜇0 = 𝜇0 

Therefore, the estimate 𝜇̂ is biased because the variable μ is not always to equal μ0. 

Now we try to check again if 𝜇̂ is unbiased estimate with Cramer-Rao lower bound. The 

second-order partial derivative of ℓ(Θ) regarding μ is: 

𝜕2ℓ(Θ)

𝜕𝜇2
=
𝜕

𝜕𝜇
(
𝜕ℓ(Θ)

𝜕𝜇
) =

𝜕

𝜕𝜇
(−𝜇𝑇(Σ0

−1 + 𝑁Σ−1) + 𝜇0
𝑇Σ0

−1 + (∑𝑋𝑖
𝑇

𝑁

𝑖=1

)Σ−1) 

= −(Σ0
−1 +𝑁Σ−1)𝑇 = −(Σ0

−1 + 𝑁Σ−1) 
(Because Σ and Σ0 are symmetric) 

Cramer-Rao lower bound of 𝜇̂ is: 

𝐶𝑅(𝜇̂) = −
1

𝑁
(∫∫

𝜕2ℓ(Θ)

𝜕𝜇2
𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

)

−1

=
1

𝑁
(∫∫(Σ0

−1 +𝑁Σ−1)𝑓(𝑋, Θ|𝜉)d𝑋dΘ

Θ𝑋

)

−1

 

=
1

𝑁
(∫(Σ0

−1 + 𝑁Σ−1)𝑓(Θ|𝜉)dΘ

Θ

)

−1

=
1

𝑁
(∫(Σ0

−1 + 𝑁Σ−1)𝑓(𝜇|𝜇0, Σ0)dΘ

𝜇

)

−1

 

=
1

𝑁
(Σ0

−1 + 𝑁Σ−1)−1 

Variance of 𝜇̂ is: 
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𝑉(𝜇̂) = 𝑉((ΣΣ0
−1 + 𝑁𝐼)−1(ΣΣ0

−1𝜇0 + 𝑁𝑋̅)) 

= 𝑉((ΣΣ0
−1 + 𝑁𝐼)−1ΣΣ0

−1𝜇0 + 𝑁(ΣΣ0
−1 + 𝑁𝐼)−1𝑋̅) = 𝑉(𝑁(ΣΣ0

−1 + 𝑁𝐼)−1𝑋̅) 
= 𝑁2𝑉((ΣΣ0

−1 + 𝑁𝐼)−1𝑋̅) 
Because it is difficult to calculate 𝑉(𝜇̂), suppose we fix Σ so that Σ̂ = Σ0 = Σ, we have: 

𝑉(𝜇̂) = 𝑁2𝑉((ΣΣ0
−1 + 𝑁𝐼)−1𝑋̅) = 𝑁2𝑉((ΣΣ−1 + 𝑁𝐼)−1𝑋̅) = 𝑁2𝑉((𝐼 + 𝑁𝐼)−1𝑋̅) 

= 𝑁2𝑉 (
1

𝑁 + 1
𝑋̅) =

𝑁2

(𝑁 + 1)2
𝑉(𝑋̅) =

𝑁

(𝑁 + 1)2
Σ 

(Due to 𝑉(𝑋̅) =
1

𝑁
Σ) 

The Cramer-Rao lower bound of 𝜇̂ is re-written as follows: 

𝐶𝑅(𝜇̂) =
1

𝑁
(Σ0

−1 + 𝑁Σ−1)−1 =
1

𝑁
(Σ−1 + 𝑁Σ−1)−1 =

1

𝑁
(Σ−1(1 + 𝑁))

−1
=

1

𝑁(𝑁 + 1)
Σ 

Obviously, 𝜇̂ is biased estimate due to 𝑉(𝜇̂) ≠ 𝐶𝑅(𝜇̂). In general, the estimate Θ̂ in MAP is 

affected by the prior PDF f(Θ|ξ). Even though it is biased, it can be better than the one resulted 

from MLE because of valuable information in f(Θ|ξ). For instance, if fixing Σ, the variance of 

𝜇̂ from MAP (
𝑁

(𝑁+1)2
Σ) is “smaller” (lower bounded) than the one from MLE (

1

𝑁
Σ) ■ 

Now we skim through an introduction of EM algorithm. Suppose there are two spaces X 

and Y, in which X is hidden space (missing space) whereas Y is observed space. We do not 

know X but there is a mapping from X to Y so that we can survey X by observing Y. The 

mapping is many-one function φ: X → Y and we denote φ–1(Y) = {𝑋 ∈ 𝑿: φ(X) = Y} as all 𝑋 ∈
𝑿 such that φ(X) = Y. We also denote X(Y) = φ–1(Y). Let f(X | Θ) be the PDF of random variable 

𝑋 ∈ 𝑿 and let g(Y | Θ) be the PDF of random variable 𝑌 ∈ 𝒀. Note, Y is also called observation. 

Equation 1.34 specifies g(Y | Θ) as integral of f(X | Θ) over φ–1(Y). 

𝑔(𝑌|Θ) = ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

 (1.34) 

Where Θ is probabilistic parameter represented as a column vector, Θ = (θ1, θ2,…, θr)
T in which 

each θi is a particular parameter. According to viewpoint of Bayesian statistics, Θ is also 

random variable. As a convention, let Ω be the domain of Θ such that Θ ∈ Ω and the dimension 

of Ω is r. For example, normal distribution has two particular parameters such as mean μ and 

variance σ2 and so we have Θ = (μ, σ2)T. Note that, Θ can degrades into a scalar as Θ = θ. The 

conditional PDF of X given Y, denoted k(X | Y, Θ), is specified by equation 1.35. 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 (1.35) 

According to DLR (Dempster, Laird, & Rubin, 1977, p. 1), X is called complete data and the 

term “incomplete data” implies existence of X and Y where X is not observed directly and X is 

only known by the many-one mapping φ: X → Y. In general, we only know Y, f(X | Θ), and 

k(X | Y, Θ) and so our purpose is to estimate Θ based on such Y, f(X | Θ), and k(X | Y, Θ). Like 

MLE approach, EM algorithm also maximizes the likelihood function to estimate Θ but the 

likelihood function in EM concerns Y and there are also some different aspects in EM which 

will be described later. Pioneers in EM algorithm firstly assumed that f(X | Θ) belongs to 

exponential family with note that many popular distributions such as normal, multinomial, and 

Poisson belong to exponential family (please see table 1.1). Although DLR (Dempster, Laird, 

& Rubin, 1977) proposed a generality of EM algorithm in which f(X | Θ) distributes arbitrarily, 

we should concern exponential family a little bit. Exponential family (Wikipedia, Exponential 

family, 2016) refers to a set of probabilistic distributions whose PDF (s) have the same 

exponential form according to equation 1.36 (Dempster, Laird, & Rubin, 1977, p. 3): 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  (1.36) 
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Where b(X) is a function of X, which is called base measure and τ(X) is a vector function of X, 

which is sufficient statistic. For example, the sufficient statistic of normal distribution is τ(X) 

= (X, XXT)T. Equation 1.36 expresses the canonical form of exponential family. Recall that Ω 

is the domain of Θ such that Θ ∈ Ω. Suppose that Ω is a convex set. If Θ is restricted only to Ω 

then, f(X | Θ) specifies a regular exponential family. If Θ lies in a curved sub-manifold Ω0 of 

Ω then, f(X | Θ) specifies a curved exponential family. The a(Θ) is partition function for variable 

X, which is used for normalization. 

𝑎(Θ) = ∫𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑋

 

As usual, a PDF is known as a popular form but its exponential family form (canonical form 

of exponential family) specified by equation 1.36 looks unlike popular form although they are 

the same. Therefore, parameter in popular form is different from parameter in exponential 

family form. 

For example, multivariate normal distribution with theoretical mean μ and covariance 

matrix Σ of random variable X = (x1, x2,…, xn)
T has PDF in popular form is: 

𝑓(𝑋|𝜇, Σ) = (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp (−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) 

Hence, parameter in popular form is Θ = (μ, Σ)T. Exponential family form of such PDF is: 

𝑓(𝑋|𝜃1, 𝜃2) = (2𝜋)−
𝑛
2 ∗ exp((𝜃1, 𝜃2) (

𝑋
𝑋𝑋𝑇

)) exp (−
1

4
𝜃1
𝑇𝜃2

−1𝜃1 −
1

2
log|−2𝜃2|)⁄  

Where, 

Θ = (
𝜃1
𝜃2
)

𝜃1 = Σ
−1𝜇

𝜃2 = −
1

2
Σ−1

 

𝑏(𝑋) = (2𝜋)−
𝑛
2

𝜏(𝑋) = (
𝑋
𝑋𝑋𝑇

)
 

𝑎(Θ) = exp (−
1

4
𝜃1
𝑇𝜃2

−1𝜃1 −
1

2
log|−2𝜃2|) 

Hence, parameter in exponential family form is Θ = (θ1, θ2)
T. Although, f(X | θ1, θ2) looks unlike 

f(X | μ, Σ) but they are the same, f(X | θ1, θ2) = f(X | μ, Σ). In fact, we have: 

Θ𝑇𝜏(𝑋) = (𝜃1, 𝜃2) (
𝑋
𝑋𝑋𝑇

) = (Σ−1𝜇,−
1

2
Σ−1) (

𝑋
𝑋𝑋𝑇

) = 𝜇𝑇Σ−1𝑋 −
1

2
𝑋𝑇Σ−1𝑋 

We also have: 

𝑎(Θ) = exp (−
1

4
𝜃1
𝑇𝜃2

−1𝜃1 −
1

2
log|−2𝜃2|) = exp (

1

2
𝜇𝑇Σ−1ΣΣ−1𝜇 −

1

2
log|Σ−1|) 

= exp (
1

2
𝜇𝑇Σ−1𝜇 +

1

2
log|Σ|) = |Σ|

1
2 ∗ exp (

1

2
𝜇𝑇Σ−1𝜇) 

(Due to |Σ–1| = |Σ|–1) 

Therefore, 

𝑓(𝑋|𝜃1, 𝜃2) = (2𝜋)
−
𝑛
2|Σ|−

1
2 ∗ exp (𝜇𝑇Σ−1𝑋 −

1

2
𝑋𝑇Σ−1𝑋 −

1

2
𝜇𝑇Σ−1𝜇) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
(𝑋𝑇Σ−1𝑋 − 𝜇𝑇Σ−1𝑋 − 𝜇𝑇Σ−1𝑋 + 𝜇𝑇Σ−1𝜇)) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
(𝑋𝑇Σ−1𝑋 − 𝜇𝑇Σ−1𝑋 − 𝑋𝑇Σ−1𝜇 + 𝜇𝑇Σ−1𝜇)) 
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(Because Σ is symmetric, μTΣ–1X = XTΣ–1μ) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
((𝑋𝑇 − 𝜇𝑇)Σ−1𝑋 − (𝑋𝑇 − 𝜇𝑇)Σ−1𝜇)) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
((𝑋𝑇 − 𝜇𝑇)Σ−1(𝑋 − 𝜇))) 

= (2𝜋)−
𝑛
2|Σ|−

1
2 ∗ exp(−

1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) = 𝑓(𝑋|𝜇, Σ)∎ 

The exponential family form is used to represents all distributions belonging to exponential 

family as canonical form. Parameter in exponential family form is called exponential family 

parameter. As a convention, parameter Θ mentioned in EM algorithm is exponential family 

parameter if PDF belongs to exponential family and there is no additional information. 

Table 1.1 shows some popular distributions belonging to exponential family along with 

their canonical forms (Wikipedia, Exponential family, 2016). In case of multivariate 

distributions, dimension of random variable X = (x1, x2,…, xn)
T is n. 

Distribution Popular 

PDF 

Exponential 

family 

parameter 

Θ 

τ(X) b(X) a(Θ) 

Multivariate 

normal 

𝑓(𝑋|𝜇, Σ)

= |2𝜋Σ|−
1
2

∗ 𝑒−
1
2
(𝑋−𝜇)𝑇Σ−1(𝑋−𝜇)

 

(
𝜃1 = Σ−1𝜇

𝜃2 = −
1

2
Σ−1

) 
(
𝑋
𝑋𝑋𝑇

) (2𝜋)−
𝑛
2  exp (−

1

4
𝜃1
𝑇𝜃2

−1𝜃1

−
1

2
log|−2𝜃2|) 

Multinomial 

𝑓(𝑋|𝑝1, 𝑝2, … , 𝑝𝑛)

=
𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

∏𝑝
𝑗

𝑥𝑗

𝑛

𝑘=1

 

 

Where, ∑ 𝑝𝑗
𝑛
𝑗=1 = 1, 

∑ 𝑥𝑗
𝑛
𝑗=1 = 𝐾, and 𝑥𝑗 ∈

{0,1, … , 𝐾}. 

(

𝜃1 = log(𝑝1)

𝜃2 = log(𝑝2)
⋮

𝜃𝑛 = log(𝑝𝑛)

) (

𝑥1
𝑥2
⋮
𝑥𝑛

) 

𝐾!

∏ (𝑥𝑗!)
𝑛
𝑗=1

 
1 

Table 1.1. Some popular distributions belonging to exponential family 

It is necessary to survey some features of exponential family. The first-order derivative of 

log(a(Θ)) is expectation of τ(X). 

log′(𝑎(Θ)) =
𝑎′(Θ)

𝑎(Θ)
=
dlog(𝑎(Θ))

dΘ
=
d𝑎(Θ) dΘ⁄

𝑎(Θ)
=

1

𝑎(Θ)

d(∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝑿

)

dΘ

=
1

𝑎(Θ)
∫
d (𝑏(𝑋)exp(Θ𝑇𝜏(𝑋)))

dΘ
d𝑋

𝑿

= ∫𝜏(𝑋)𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑿

= 𝐸(𝜏(𝑋)|Θ) 
The second-order derivative of log(a(Θ)) is (Jebara, 2015): 

log′′(𝑎(Θ)) =
d

dΘ
(
𝑎′(Θ)

𝑎(Θ)
) =

𝑎′′(Θ)

𝑎(Θ)
−
𝑎′(Θ)

𝑎(Θ)

(𝑎′(Θ))
𝑇

𝑎(Θ)

=
𝑎′′(Θ)

𝑎(Θ)
− (𝐸(𝜏(𝑋)|Θ))(𝐸(𝜏(𝑋)|Θ))

𝑇
 

Where, 
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𝑎′′(Θ)

𝑎(Θ)
=

1

𝑎(Θ)
∫
d2 (𝑏(𝑋)exp(Θ𝑇𝜏(𝑋)))

dΘ
d𝑋

𝑿

= ∫(𝜏(𝑋))(𝜏(𝑋))
𝑇
𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑿

= 𝐸 ((𝜏(𝑋))(𝜏(𝑋))
𝑇
|Θ) 

Hence (Hardle & Simar, 2013, pp. 125-126), 

log′′(𝑎(Θ)) = 𝐸 ((𝜏(𝑋))(𝜏(𝑋))
𝑇
|Θ) − (𝐸(𝜏(𝑋)|Θ))(𝐸(𝜏(𝑋)|Θ))

𝑇
= 𝑉(𝜏(𝑋)|Θ)

= ∫(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))
𝑇
𝑓(𝑋|Θ)d𝑋

𝑿

 

Where V(τ(X) | Θ) is central covariance matrix of τ(X). Please read the book “Matrix Analysis 

and Calculus” by Nguyen (Nguyen, 2015) for comprehending derivative of vector and matrix. 

Let a(Θ | Y) be a so-called observed partition function for observation Y. 

𝑎(Θ|𝑌) = ∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝜑−1(𝑌)

 

Similarly, we obtain that the first-order derivative of log(a(θ | Y)) is expectation of τ(X) based 

on Y. 

log′(𝑎(Θ|𝑌)) =
1

𝑎(Θ)

d (∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝜑−1(𝑌)

)

dΘ
= 𝐸(𝜏(𝑋)|𝑌, Θ) 

If f(X | Θ) follows exponential family, the conditional density k(X | Y, Θ) is determined as 

follows: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 

Indeed, k(X | Y, Θ) is conditional PDF. If f(X | Θ) follows exponential family then, k(X | Y, Θ) 

also follows exponential family. In fact, we have: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
=

𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄

∫ 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋
𝜑−1(𝑌)

=
𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))

∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝜑−1(𝑌)

= 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

Note that k(X | Y, Θ) is determined on 𝑋 ∈ 𝜑−1(𝑌). Of course, we have: 

∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= ∫
𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))

𝑎(Θ|𝑌)
d𝑋

𝜑−1(𝑌)

=
∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝜑−1(𝑌)

𝑎(Θ|𝑌)

=
𝑎(Θ|𝑌)

𝑎(Θ|𝑌)
= 1 

The first-order derivative of log(a(Θ | Y)) is: 

log′(𝑎(Θ|𝑌)) = 𝐸(𝜏(𝑋)|𝑌, Θ) = ∫ 𝜏(𝑋)𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

 

The second-order derivative of log(a(Θ) | Y) is: 

log′′(𝑎(Θ|𝑌)) = 𝑉(𝜏(𝑋)|𝑌, Θ)

= ∫ (𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

 

Where V(τ(X) | Y, Θ) is central covariance matrix of τ(X) given observed Y. Table 1.2 is 

summary of f(X | Θ), g(Y | Θ), k(X | Y, Θ), a(Θ), log’(a(Θ)), a(Θ | Y), and log’(a(Θ | Y)) with 

exponential family. 
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𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  

𝑔(𝑌|Θ) = ∫ 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝜑−1(𝑌)

 

𝑘(𝑋|𝑌, Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= 1 

𝑎(Θ) = ∫𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑿

 

log′(𝑎(Θ)) = 𝐸(𝜏(𝑋)|Θ) = ∫𝑓(𝑋|Θ)𝜏(𝑋)d𝑋

𝑿

 

log′′(𝑎(Θ)) = 𝑉(𝜏(𝑋)|Θ) = ∫(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))
𝑇
𝑓(𝑋|Θ)d𝑋

𝑿

 

𝑎(Θ|𝑌) = ∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝜑−1(𝑌)

 

log′(𝑎(Θ|𝑌)) = 𝐸(𝜏(𝑋)|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

log′′(𝑎(Θ|𝑌)) = 𝑉(𝜏(𝑋)|𝑌, Θ)

= ∫ (𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

 

Table 1.2. Summary of f(X | Θ), g(Y | Θ), k(X | Y, Θ), a(Θ), log’(a(Θ)), a(Θ | Y), and log’(a(Θ 

| Y)) with exponential family 

Simply, EM algorithm is iterative process including many iterations, in which each iteration 

has expectation step (E-step) and maximization step (M-step). E-step aims to estimate 

sufficient statistic given current parameter and observed data Y whereas M-step aims to re-

estimate the parameter based on such sufficient statistic by maximizing likelihood function 

related to X. EM algorithm is described in the next section in detail. As an introduction, DLR 

gave an example for illustrating EM algorithm (Dempster, Laird, & Rubin, 1977, pp. 2-3). 

Example 1.1. Rao (Rao, 1955) presents observed data Y of 197 animals following 

multinomial distribution with four categories, such as Y = (y1, y2, y3, y4) = (125, 18, 20, 34). 

The PDF of Y is: 

𝑔(𝑌|𝜃) =
(∑ 𝑦𝑖

4
𝑖=1 )!

∏ 𝑦𝑖!
4
𝑖=1

∗ (
1

2
+
𝜃

4
)
𝑦1

∗ (
1

4
−
𝜃

4
)
𝑦2

∗ (
1

4
−
𝜃

4
)
𝑦3

∗ (
𝜃

4
)
𝑦4

 

Note, probabilities py1, py2, py3, and py4 in g(Y | θ) are 1/2 + θ/4, 1/4 – θ/4, 1/4 – θ/4, and θ/4, 

respectively as parameters. The expectation of any sufficient statistic yi with regard to g(Y | θ) 

is: 

𝐸(𝑦𝑖|𝑌, 𝜃) = 𝑦𝑖𝑝𝑦𝑖 

Observed data Y is associated with hidden data X following multinomial distribution with five 

categories, such as X = {x1, x2, x3, x4, x5} where y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5. The PDF 

of X is: 

𝑓(𝑋|𝜃) =
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

∗ (
1

2
)
𝑥1

∗ (
𝜃

4
)
𝑥2

∗ (
1

4
−
𝜃

4
)
𝑥3

∗ (
1

4
−
𝜃

4
)
𝑥4

∗ (
𝜃

4
)
𝑥5

 

Note, probabilities px1, px2, px3, px4, and px5 in f(X | θ) are 1/2, θ/4, 1/4 – θ/4, 1/4 – θ/4, and θ/4, 

respectively as parameters. The expectation of any sufficient statistic xi with regard to f(X | θ) 

is: 
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𝐸(𝑥𝑖|𝜃) = 𝑥𝑖𝑝𝑥𝑖 

Due to y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5, the mapping function φ between X and Y is y1 = 

φ(x1, x2) = x1 + x2. Therefore g(Y | θ) is sum of f(X | θ) over x1 and x2 such that x1 + x2 = y1 

according to equation 1.34. In other words, g(Y | θ) is resulted from summing f(X | θ) over all 

(x1, x2) pairs such as (0, 125), (1, 124),…, (125, 0) and then substituting (18, 20, 34) for (x3, x4, 

x5) because of y1 = 125 from observed Y. 

𝑔(𝑌|𝜃) = ∑ ( ∑ 𝑓(𝑋|𝜃)

0

𝑥2=125−𝑥1

)

125

𝑥1=0

 

Rao (Rao, 1955) applied EM algorithm into determining the optimal estimate θ*. Note y2 = x3, 

y3 = x4, y4 = x5 are known and so only sufficient statistics x1 and x2 are not known. Given the tth 

iteration, sufficient statistics x1 and x2 are estimated as x1
(t) and x2

(t) based on current parameter 

θ(t) and g(Y | θ) in E-step below: 

𝑥1
(𝑡)
+ 𝑥2

(𝑡)
= 𝑦1

(𝑡)
= 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) 
Given py1 = 1/2 + θ/4, which implies that: 

𝑦1
(𝑡) = 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) = 𝑦1𝑝𝑦1 = 𝑦1 (
1

2
+
𝜃(𝑡)

4
) 

Because the probability of y1 is 1/2 + θ/4 and y1 is sum of x1 and x2, let 𝑝𝑥1|𝑦1 be conditional 

probability of x1 given y1 and let 𝑝𝑥2|𝑦1 be conditional probability of x2 given y1 such that 

𝑝𝑥1|𝑦1 =
𝑃(𝑥1, 𝑦1)

𝑝𝑦1
=

𝑃(𝑥1, 𝑦1)

1 2⁄ + 𝜃 4⁄

𝑝𝑥2|𝑦1 =
𝑃(𝑥2, 𝑦1)

𝑝𝑦1
=

𝑃(𝑥2, 𝑦1)

1 2⁄ + 𝜃 4⁄

𝑝𝑥1|𝑦1 + 𝑝𝑥2|𝑦1 = 1

 

Where P(x1, y1) and P(x2, y1) are joint probabilities of (x1, y1) and (x2, y1), respectively. We can 

select P(x1, y1) = 1/2 and P(x2, y1) = θ/4, which implies: 

𝑥1
(𝑡) = 𝐸(𝑥1|𝑌, 𝜃

(𝑡)) = 𝑦1
(𝑡)𝑝𝑥1|𝑦1 = 𝑦1

(𝑡) 1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 𝐸(𝑥2|𝑌, 𝜃

(𝑡)) = 𝑦1
(𝑡)𝑝𝑥2|𝑦1 = 𝑦1

(𝑡) 𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

Such that 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝑦1
(𝑡)

 

Note, we can select alternately as P(x1, y1) = P(x2, y1) = (1/2 + θ/4) / 2, for example but fixing 

P(x1, y1) as 1/2 is better because the next estimate θ(t+1) known later depends only on x2
(t). 

When y1 is evaluated as y1 = 125, we obtain: 

𝑥1
(𝑡) = 125

1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

Please pay attention that the expectation y1
(t) = E(y1 | Y, θ(t)) gets value 125 when y1 is evaluated 

as y1 = 125 and the probability corresponding to y1 gets maximal as 1/2 + θ(t)/4 = 1. 

According to M-step, the next estimate θ(t+1) is a maximizer of the log-likelihood function 

related to X. This log-likelihood function is: 

log(𝑓(𝑋|𝜃)) = log (
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

) − (𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 + 2𝑥5)log(2) + (𝑥2 + 𝑥5)log(𝜃)

+ (𝑥3 + 𝑥4)log(1 − 𝜃) 
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The first-order derivative of log(f(X | θ) is: 

dlog(𝑓(𝑋|𝜃))

d𝜃
=
𝑥2 + 𝑥5
𝜃

−
𝑥3 + 𝑥4
1 − 𝜃

=
𝑥2 + 𝑥5 − (𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)𝜃

𝜃(1 − 𝜃)
 

Because y2 = x3 = 18, y3 = x4 = 20, y4 = x5 = 34 and x2 is approximated by x2
(t), we have: 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
 

As a maximizer of log(f(X | θ), the next estimate θ(t+1) is solution of the following equation 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
= 0 

So we have: 

𝜃(𝑡+1) =
𝑥2
(𝑡) + 34

𝑥2
(𝑡)
+ 72

 

Where, 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

For example, given the initial θ(1) = 0.5, at the first iteration, we have: 

𝑥2
(1) = 125

𝜃(1) 4⁄

1 2⁄ + 𝜃(1) 4⁄
=
125 ∗ 0.5/4

0.5 + 0.5/4
= 25 

𝜃(2) =
𝑥2
(1) + 34

𝑥2
(1) + 72

=
25 + 34

25 + 72
= 0.6082 

After five iterations we gets the optimal estimate θ*: 

𝜃∗ = 𝜃(4) = 𝜃(5) = 0.6268 

Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) lists estimates of θ over five iterations (t =1, 

2, 3, 4, 5) with note that θ(1) is initialized arbitrarily and θ* = θ(5) = θ(6) is determined at the 5th 

iteration. The third column gives deviation θ* and θ(t) whereas the fourth column gives the ratio 

of successive deviations. Later on, we will know that such ratio implies convergence rate. 

t θ(t) θ* – θ(t) 
(θ* – θ(t+1)) / 

(θ* – θ(t)) 

1 
θ(1) = 0.5 0.1268 0.1465 

θ(2) = 0.6082 0.0186 0.1346 

2 
θ(2) = 0.6082 0.0186 0.1346 

θ(3) = 0.6243 0.0025 0.1330 

3 
θ(3) = 0.6243 0.0025 0.1330 

θ(4) = 0.6265 0.0003 0.1328 

4 
θ(4) = 0.6265 0.0003 0.1328 

θ(5) = 0.6268 0 0.1328 

5 
θ(5) = 0.6268 0 0.1328 

θ(6) = 0.6268 0 0.1328 

Table 1.3. EM algorithm in simple case 

For example, at the first iteration, we have: 

𝜃∗ − 𝜃(1) = 0.6268 − 0.5 = 0.1268 

𝜃∗ − 𝜃(2)

𝜃∗ − 𝜃(1)
=
𝜃(2) − 𝜃∗

𝜃(1) − 𝜃∗
=
0.6082 − 0.6268

0.5 − 0.6268
= 0.1465 
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2. EM algorithm 
Expectation maximization (EM) algorithm has many iterations and each iteration has two steps 

in which expectation step (E-step) calculates sufficient statistic of hidden data based on 

observed data and current parameter whereas maximization step (M-step) re-estimates 

parameter. When DLR proposed EM algorithm (Dempster, Laird, & Rubin, 1977), they firstly 

concerned that the PDF f(X | Θ) of hidden space belongs to exponential family. E-step and M-

step at the tth iteration are described in table 2.1 (Dempster, Laird, & Rubin, 1977, p. 4), in 

which the current estimate is Θ(t), with note that f(X | Θ) belongs to regular exponential family. 

E-step: 

We calculate current value τ(t) of the sufficient statistic τ(X) from observed Y and current 

parameter Θ(t) according to equation 2.6: 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) 
M-step: 

Basing on τ(t), we determine the next parameter Θ(t+1) as solution of equation 2.3: 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 
Note, Θ(t+1) will become current parameter at the next iteration ((t+1)th iteration). 

Table 2.1. E-step and M-step of EM algorithm given regular exponential PDF f(X|Θ) 

EM algorithm stops if two successive estimates are equal, Θ* = Θ(t) = Θ(t+1), at some tth iteration. 

At that time we conclude that Θ* is the optimal estimate of EM process. Please see table 1.2 to 

know how to calculate E(τ(X) | Θ(t)) and E(τ(X) | Y, Θ(t)). As a convention, the estimate of 

parameter Θ resulted from EM process is denoted Θ* instead of Θ̂ in order to emphasize that 

Θ* is solution of optimization problem. 

It is necessary to explain E-step and M-step as well as convergence of EM algorithm. 

Essentially, the two steps aim to maximize log-likelihood function of Θ, denoted L(Θ), with 

respect to observation Y. 

Θ∗ = argmax
Θ

𝐿(Θ) 

Where, 

𝐿(Θ) = log(𝑔(𝑌|Θ)) 

Note that log(.) denotes logarithm function. Therefore, EM algorithm is an extension of 

maximum likelihood estimation (MLE) method. In fact, let l(Θ) be log-likelihood function of 

Θ with respect to X. 

𝑙(Θ) = log(𝑓(𝑋|Θ)) = log(𝑏(𝑋)) + Θ𝑇𝜏(𝑋) − log(𝑎(Θ)) (2.1) 

By referring to table 1.2, the first-order derivative of l(Θ) is: 

d𝑙(Θ)

dΘ
=
dlog(𝑓(𝑌|Θ))

dΘ
= 𝜏(𝑋) − log′(𝑎(Θ)) = 𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ) (2.2) 

We set the first-order derivative of l(Θ) to be zero with expectation that l(Θ) will be maximized. 

Therefore, the optimal estimate Θ* is solution of the following equation which is specified in 

M-step. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑋) 
The expression E(τ(X) | Θ) is function of Θ but τ(X) is still dependent on X. Let τ(t) be value of 

τ(X) at the tth iteration of EM process, candidate for the best estimate of Θ is solution of equation 

2.3 according to M-step. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) (2.3) 

Where, 

𝐸(𝜏(𝑋)|Θ) = ∫𝑓(𝑋|Θ)𝜏(𝑋)d𝑋

𝑿

 

Thus, we will calculate τ(t) by maximizing the log-likelihood function L(Θ) given Y. Recall that 

maximizing L(Θ) is the ultimate purpose of EM algorithm. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


36 

 

Θ∗ = argmax
Θ

𝐿(Θ) 

Where, 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) (2.4) 

Due to: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 

It implies: 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log(𝑓(𝑋|Θ)) − log(𝑘(𝑋|𝑌, Θ)) 

Because f(X | Θ) belongs to exponential family, we have: 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  

𝑘(𝑋|𝑌, Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

The log-likelihood function L(Θ) is reduced as follows: 

𝐿(Θ) = −log(𝑎(Θ)) + log(𝑎(Θ|𝑌)) 
By referring to table 1.2, the first-order derivative of L(Θ) is: 

d𝐿(Θ)

dΘ
= −log′(𝑎(Θ)) + log′(𝑎(Θ|𝑌)) = −𝐸(𝜏(𝑋)|Θ) + 𝐸(𝜏(𝑋)|𝑌, Θ) (2.5) 

We set the first-order derivative of L(Θ) to be zero with expectation that L(Θ) will be 

maximized, as follows: 

−𝐸(𝜏(𝑋)|Θ) + 𝐸(𝜏(𝑋)|𝑌, Θ) = 0 

It implies: 

𝐸(𝜏(𝑋)|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) 
Let Θ(t) be the current estimate at some tth iteration of EM process. Derived from the equality 

above, the value τ(t) is calculated as seen in equation 2.6. 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) (2.6) 

Where, 

𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) = ∫ 𝑘(𝑋|𝑌, Θ(𝑡))𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

Equation 2.6 specifies the E-step of EM process. After t iterations we will obtain Θ* = Θ(t+1) = 

Θ(t) such that E(τ(X) | Y, Θ(t)) = E(τ(X) | Y, Θ*) = τ(t) = E(τ(X) | Θ*) = E(τ(X) | Θ(t+1)) when Θ(t+1) 

is solution of equation 2.3 (Dempster, Laird, & Rubin, 1977, p. 5). This means that Θ* is the 

optimal estimate of EM process because Θ* is solution of the equation: 

𝐸(𝜏(𝑋)|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) 
Thus, we conclude that Θ* is the optimal estimate of EM process. 

Θ∗ = argmax
Θ

𝐿(Θ) 

The EM algorithm shown in table 2.1 is totally exact with assumption that f(X|Θ) belongs to 

regular exponential family. If f(X|Θ) is not regular, the maximal point (maximizer) of the log-

likelihood function l(Θ) is not always the stationary point Θ* so that the first-order derivative 

of l(Θ) is zero, l’(Θ*) = 0. However, if f(X|Θ) belongs to curved exponential family, the M-step 

of the EM algorithm shown in table 2.1 is modified as follows (Dempster, Laird, & Rubin, 

1977, p. 5): 

Θ(𝑡+1) = argmax
Θ∈Ω0

𝑙(Θ) = argmax
Θ∈Ω0

𝑙(Θ|𝜏(𝑡)) = argmax
Θ∈Ω0

(Θ𝑇𝜏(𝑡) − log(𝑎(Θ))) (2.7) 

Where τ(t) is calculated by equation 2.6 in E-step. This means that, in more general manner, the 

maximizer Θ(t+1) will be found by some way. Recall that if Θ lies in a curved sub-manifold Ω0 

of Ω where Ω is the domain of Θ then, f(X | Θ) belongs to curved exponential family. 
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In general, given exponential family, within simple EM algorithm, E-step aims to calculate 

the current sufficient statistic τ(t) that maximizes the log-likelihood function L(Θ) given Y at 

current Θ(t) whereas M-step aims to maximize the log-likelihood function l(Θ) given τ(t), as 

seem in table 2.2. Note, in table 2.2, f(X|Θ) belongs to curved exponential family but it is not 

necessary to be regular. 

E-step: 

We calculate current value τ(t) of the sufficient statistic τ(X) from observed Y according 

to equation 2.6. 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) 
Where, 

𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) = ∫ 𝑘(𝑋|𝑌, Θ(𝑡))𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

The log-likelihood function L(Θ(t)) given Y at current Θ(t) gets maximal with such τ(t). 

Note, L(Θ) is specified by equation 2.4. 

M-step: 

Basing on τ(t), we determine the next parameter Θ(t+1) by maximizing the log-likelihood 

function l(Θ) given τ(t), where l(Θ) is specified by equation 2.1. Actually, the sufficient 

statistic τ(t) calculated in E-step is substituted for unobserved X in l(Θ) so that it is possible 

to maximize l(Θ) with subject to Θ. 

Θ(𝑡+1) = argmax
Θ

𝑙(Θ|𝜏(𝑡)) 

Table 2.2. E-step and M-step of EM algorithm given exponential PDF f(X|Θ) 

EM algorithm stops if two successive estimates are equal, Θ* = Θ(t) = Θ(t+1), at some tth iteration. 

At that time, Θ* is the optimal estimate of EM process, which is an optimizer of L(Θ). 

Θ∗ = argmax
Θ

𝐿(Θ) 

Going back example 1.1, given the tth iteration, sufficient statistics x1 and x2 are estimated as 

x1
(t) and x2

(t) based on current parameter θ(t) in E-step according to equation 2.6. 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝑦1
(𝑡) = 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) 

Given py1 = 1/2 + θ/4, which implies that: 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝐸(𝑦1|𝑌, 𝜃
(𝑡)) = 𝑦1𝑝𝑦1 = 𝑦1 (

1

2
+
𝜃(𝑡)

4
) 

This suggests us to select: 

𝑥1
(𝑡) = 125

1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

Essentially, equation 2.3 specifying M-step is result of maximizing the log-likelihood function 

l(Θ). 

𝑙(Θ) = log(𝑓(𝑋|𝜃))

= log (
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

) − (𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 + 2𝑥5)log(2)

+ (𝑥2 + 𝑥5)log(𝜃) + (𝑥3 + 𝑥4)log(1 − 𝜃) 
Hence, the next estimate θ(t+1) is a maximizer of such log-likelihood function l(Θ). 

𝜃(𝑡+1) =
𝑥2
(𝑡) + 34

𝑥2
(𝑡) + 72

 

Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) show resulted estimation ■ 
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For further research, DLR gave a preeminent generality of EM algorithm (Dempster, Laird, 

& Rubin, 1977, pp. 6-11) in which f(X | Θ) specifies arbitrary distribution. In other words, there 

is no requirement of exponential family. They define the conditional expectation Q(Θ’ | Θ) 

according to equation 2.8 (Dempster, Laird, & Rubin, 1977, p. 6). 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

 (2.8) 

The two steps of generalized EM (GEM) algorithm aim to maximize Q(Θ | Θ(t)) at some tth 

iteration as seen in table 2.3 (Dempster, Laird, & Rubin, 1977, p. 6). 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current parameter Θ(t), according to 

equation 2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) with subject to Θ. Note that Θ(t+1) 

will become current parameter at the next iteration (the (t+1)th iteration). 

Table 2.3. E-step and M-step of GEM algorithm 

DLR proved that GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) 

is the optimal estimate of EM process, which is an optimizer of L(Θ). 

Θ∗ = argmax
Θ

𝐿(Θ) 

It is deduced from E-step and M-step that Q(Θ | Θ(t)) is increased after every iteration. How to 

maximize Q(Θ | Θ(t)) is the optimization problem which is dependent on applications. For 

example, the estimate Θ(t+1) can be solution of the equation created by setting the first-order 

derivative of Q(Θ | Θ(t)) regarding Θ to be zero. If solving such equation is too complex, some 

popular methods to solve optimization problem are Newton-Raphson (Burden & Faires, 2011, 

pp. 67-71), gradient descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush–Kuhn–

Tucker conditions, 2014). 

GEM algorithm still aims to maximize the log-likelihood function L(Θ) specified by 

equation 2.4, which will be explained in next section. The next section also focuses on 

convergence of GEM algorithm proved by DLR (Dempster, Laird, & Rubin, 1977, pp. 7-10) 

but firstly we should discuss some features of Q(Θ’ | Θ). In special case of exponential family, 

Q(Θ’ | Θ) is modified by equation 2.9. 

𝑄(Θ′|Θ) = 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝜏Θ − log(𝑎(Θ
′)) (2.9) 

Where, 

𝐸(log(𝑏(𝑋))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋))d𝑋

𝜑−1(𝑌)

 

𝜏Θ = ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

 

Following is a proof of equation 2.9. 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ )d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑏(𝑋)) + (Θ′)𝑇𝜏(𝑋) − log(𝑎(Θ′))) d𝑋

𝜑−1(𝑌)
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= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋))d𝑋

𝜑−1(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ)(Θ′)𝑇𝜏(𝑋)d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)

𝜑−1(𝑌)

log(𝑎(Θ′))d𝑋 

= 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇 ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

− log(𝑎(Θ′)) 

= 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝐸(𝜏(𝑋)|𝑌, Θ) − log(𝑎(Θ′)) 
Because k(X | Y, Θ) belongs exponential family, the expectation E(τ(X) | Y, Θ) is function of Θ, 

denoted τΘ. It implies: 

𝑄(Θ′|Θ) = 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝜏Θ − log(𝑎(Θ
′))∎ 

If f(X|Θ) belongs to regular exponential family, Q(Θ’ | Θ) gets maximal at the stationary point 

Θ* so that the first-order derivative of Q(Θ’ | Θ) is zero. By referring to table 1.2, the first-order 

derivative of Q(Θ’ | Θ) with regard to Θ’ is: 
d𝑄(Θ′|Θ)

dΘ′
= 𝜏Θ − log

′(𝑎(Θ)) = 𝜏Θ − 𝐸(𝜏(𝑋)|Θ) 

Let τ(t) be the value of τΘ at the tth iteration. The next parameter Θ(t+1) is determined at M-step 

as solution of the following equation. 
d𝑄(Θ′|Θ)

dΘ′
= 𝜏(𝑡) − 𝐸(𝜏(𝑋)|Θ) = 0 

The equation above is indeed equation 2.3. If f(X|Θ) belongs to curved exponential family, Θ(t+1) 

is determined as follows: 

Θ(𝑡+1) = argmax
Θ′

𝑄(Θ′|Θ) = argmax
Θ′

((Θ′)𝑇𝜏(𝑡) − log(𝑎(Θ′))) 

The equation above is indeed equation 2.7. Therefore, GEM shown in table 2.3 degrades into 

EM shown in table 2.1 if f(X|Θ) belongs to exponential family. Of course, this recognition is 

trivial. Example 1.1 is also a good example for GEM when multinomial distribution belongs 

to exponential family and then we apply equation 2.7 into maximizing Q(Θ’ | Θ). 

In practice, if Y is observed as particular N observations Y1, Y2,…, YN. Let 𝒴 = {Y1, Y2,…, 

YN} be the observed sample of size N with note that all Yi (s) are mutually independent and 

identically distributed (iid). Given an observation Yi, there is an associated random variable Xi. 

All Xi (s) are iid and they are not existent in fact. Each 𝑋𝑖 ∈ 𝑿 is a random variable like X. Of 

course, the domain of each Xi is X. Let 𝒳 = {X1, X2,…, XN} be the set of associated random 

variables. Because all Xi (s) are iid, the joint PDF of 𝒳 is determined as follows: 

𝑓(𝒳|Θ) = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁|Θ) =∏𝑓(𝑋𝑖|Θ)

𝑁

𝑖=1

 

Because all Xi (s) are iid and each Yi is associated with Xi, the conditional joint PDF of 𝒳 given 

𝒴 is determined as follows: 

𝑘(𝒳|𝒴, Θ) = 𝑘(𝑋1, 𝑋2, … , 𝑋𝑁|𝑌1, 𝑌2, … , 𝑌𝑁 , Θ) =∏𝑘(𝑋𝑖|𝑌1, 𝑌2, … , 𝑌𝑁 , Θ)

𝑁

𝑖=1

=∏𝑘(𝑋𝑖|𝑌𝑖 , Θ)

𝑁

𝑖=1

 

The conditional expectation Q(Θ’ | Θ) given samples X and Y is determined as follows: 

𝑄(Θ′|Θ) = ∫ 𝑘(𝒳|𝒴, Θ)log(𝑓(𝒳|Θ′))d𝒳

𝜑−1(𝒴)

 

= ∫ ∫ … ∫ (∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

) ∗ (log (∏𝑓(𝑋𝑖|Θ
′)

𝑁

𝑖=1

))d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)
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= ∫ ∫ … ∫ (∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

) ∗ (∑log(𝑓(𝑋𝑖|Θ
′))

𝑁

𝑖=1

)d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

 

= ∫ ∫ … ∫ ∑(∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

) ∗ log(𝑓(𝑋𝑖|Θ
′))

𝑁

𝑖=1

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

 

=∑ ∫ ∫ … ∫ log(𝑓(𝑋𝑖|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

𝑁

𝑖=1

 

(Suppose f(Xi | Θ) and k(Xj | Yj, Θ) are analytic functions) 

=∑ ∫ ∫ … ∫ ∫𝛿(𝑋, 𝑋𝑖)log(𝑓(𝑋|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋

𝑋

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

𝑁

𝑖=1

 

(

 
 
𝛿(𝑋, 𝑋𝑖) = {

1 if 𝑋 = 𝑋𝑖
0 if 𝑋 ≠ 𝑋𝑖

⇒ ∫𝛿(𝑋, 𝑋𝑖)𝑢(𝑋)d𝑋

𝑋

= 𝑢(𝑋𝑖)

according to Riemann integral
with note that the domain of 𝑋 and 𝑋𝑖 is 𝑿 )

 
 

 

=∑∫ ∫ ∫ … ∫ 𝛿(𝑋, 𝑋𝑖)log(𝑓(𝑋|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁
𝜑−1(𝑌𝑁)

…d𝑋2
𝜑−1(𝑌2)

d𝑋1
𝜑−1(𝑌1)

𝑑𝑋

𝑋

𝑁

𝑖=1

 

=∑∫ ∫ 𝛿(𝑋, 𝑋𝑖)log(𝑓(𝑋|Θ
′)) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁d𝑋2d𝑋1…

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑁)

𝑑𝑋

𝑋

𝑁

𝑖=1

 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ∫ 𝛿(𝑋, 𝑋𝑖) ∗∏𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1

d𝑋𝑁d𝑋2d𝑋1…

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑁)

𝑑𝑋

𝑋

𝑁

𝑖=1

 

=∑∫log(𝑓(𝑋|Θ′))

𝑋

𝑁

𝑖=1

∗ ∫ 𝛿(𝑋, 𝑋𝑖)𝑓(𝑋𝑖|𝑌𝑖, Θ)

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑁)

∗ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁d𝑋2d𝑋1…𝑑𝑋 

=∑∫log(𝑓(𝑋|Θ′))

𝑋

𝑁

𝑖=1

∗ ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)

𝜑−1(𝑌1),𝜑−1(𝑌2),…,𝜑−1(𝑌𝑖−1),

𝜑−1(𝑌𝑖),𝜑
−1(𝑌𝑖+1),…,𝜑

−1(𝑌𝑁)

∗ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁…d𝑋𝑖+1d𝑋𝑖d𝑋𝑖−1…d𝑋2d𝑋1…d𝑋 
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=∑∫log(𝑓(𝑋|Θ′))

𝑋

𝑁

𝑖=1

∗ ∫ ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)

𝜑−1(𝑌𝑖)𝜑−1(𝑌1),𝜑−1(𝑌2),…𝜑−1(𝑌𝑖−1)

∗ ∫ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁…d𝑋𝑖+1
𝜑−1(𝑌𝑖+1),…,𝜑

−1(𝑌𝑁)

d𝑋𝑖 d𝑋𝑖−1…d𝑋2d𝑋1 d𝑋 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ( ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)d𝑋𝑖
𝜑−1(𝑌𝑖)

)

𝑋

𝑁

𝑖=1

∗ ∫ ∏ 𝑘(𝑋𝑗|𝑌𝑗 , Θ)

𝑁

𝑗=1,𝑗≠𝑖

d𝑋𝑁…d𝑋𝑖+1d𝑋𝑖−1…d𝑋2d𝑋1
𝜑−1(𝑌1),𝜑−1(𝑌2),…,

𝜑−1(𝑌𝑖−1),𝜑
−1(𝑌𝑖+1),…,𝜑

−1(𝑌𝑁)

d𝑋 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ( ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)d𝑋𝑖
𝜑−1(𝑌𝑖)

) ∗ ( ∏ ∫𝑘(𝑋𝑗|𝑌𝑗 , Θ)d𝑋𝑗
𝑋𝑗

𝑁

𝑗=1,𝑗≠𝑖

)d𝑋

𝑋

𝑁

𝑖=1

 

=∑∫log(𝑓(𝑋|Θ′)) ∗ ( ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)d𝑋𝑖
𝜑−1(𝑌𝑖)

)d𝑋

𝑋

𝑁

𝑖=1

 

(Due to ∫𝑘(𝑋𝑗|𝑌𝑗 , Θ)d𝑋𝑗
𝑋𝑗

= 1) 

=∑ ∫ ∫𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝑋

d𝑋𝑖
𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 

(Suppose f(Xi | Θ) and k(Xj | Yj, Θ) are analytic functions) 

By taking Riemann integral on ∫ 𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝑋
, we have: 

∫ ∫𝛿(𝑋, 𝑋𝑖)𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝑋

d𝑋𝑖
𝜑−1(𝑌𝑖)

= ∫ 𝑘(𝑋𝑖|𝑌𝑖, Θ)log(𝑓(𝑋𝑖|Θ
′))d𝑋𝑖

𝜑−1(𝑌𝑖)

 

As a result, the conditional expectation Q(Θ’ | Θ) given an observed sample 𝒴 = {Y1, Y2,…, 

YN} and a set of associated random variables 𝒳 = {X1, X2,…, XN} is specified as follows: 

𝑄(Θ′|Θ) =∑ ∫ 𝑘(𝑋𝑖|𝑌𝑖 , Θ)log(𝑓(𝑋𝑖|Θ
′))d𝑋𝑖

𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 

Note, all Xi (s) are iid and they are not existent in fact. Because all Xi are iid, let X be the random 

variable representing every Xi and the equation of Q(Θ’ | Θ) is re-written according to equation 

2.10. 

𝑄(Θ′|Θ) =∑ ∫ 𝑘(𝑋|𝑌𝑖 , Θ)log(𝑓(𝑋|Θ
′))d𝑋

𝜑−1(𝑌𝑖)

𝑁

𝑖=1

 (2.10) 

The similar proof of equation 2.10 in case that Xi (s) are discrete is found in (Bilmes, 1998, p. 

4). In case that f(X | Θ) and k(X | Yi, Θ) belong to exponential family, equation 2.10 becomes 

equation 2.11 with an observed sample 𝒴 = {Y1, Y2,…, YN}. 
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𝑄(Θ′|Θ) = (∑𝐸(log(𝑏(𝑋))|𝑌𝑖, Θ)

𝑁

𝑖=1

) + ((Θ′)𝑇∑𝜏Θ,𝑌𝑖

𝑁

𝑖=1

) − 𝑁log(𝑎(Θ′)) (2.11) 

Where, 

𝐸(log(𝑏(𝑋))|𝑌𝑖 , Θ) = ∫ 𝑘(𝑋|𝑌𝑖, Θ)log(𝑏(𝑋))d𝑋

𝜑−1(𝑌𝑖)

 

𝜏Θ,𝑌𝑖 = ∫ 𝑘(𝑋|𝑌𝑖 , Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌𝑖)

 

Please combine equation 2.9 and equation 2.10 to comprehend how to derive equation 2.11. 

Note, 𝜏Θ,𝑌𝑖 is dependent on both Θ and Yi. 

DLR (Dempster, Laird, & Rubin, 1977, p. 1) called X as complete data because the 

mapping φ: X → Y is many-one function. There is another case that the complete space Z 

consists of hidden space X and observed space Y with note that X and Y are separated. There 

is no explicit mapping φ from X and Y but there exists a PDF of 𝑍 ∈ 𝒁 as the joint PDF of 𝑋 ∈
𝑿 and 𝑌 ∈ 𝒀. 

𝑓(𝑍|Θ) = 𝑓(𝑋, 𝑌|Θ) 
In this case, the equation 2.8 is modified with the joint PDF f(X, Y | Θ). The PDF of Y becomes: 

𝑓(𝑌|Θ) = ∫𝑓(𝑋, 𝑌|Θ)d𝑋

𝑿

 

The PDF f(Y|Θ) is equivalent to the PDF g(Y|Θ) mentioned in equation 1.34. Although there is 

no explicit mapping from X to Y, the PDF of Y above implies an implicit mapping from Z to Y. 

The conditional PDF of X given Z is specified according to Bayes’ rule as follows: 

𝑓(𝑍|𝑌, Θ) = 𝑓(𝑋, 𝑌|𝑌, Θ) = 𝑓(𝑋|𝑌)𝑓(𝑌|𝑌) = 𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

𝑓(𝑌|Θ)
=

𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

The conditional PDF f(X|Y, Θ) is equivalent to the conditional PDF k(X|Y, Θ) mentioned in 

equation 1.35. Of course, given Y, we always have: 

∫𝑓(𝑋|𝑌, Θ)d𝑋

𝑿

= 1 

Equation 2.12 specifies the conditional expectation Q(Θ’ | Θ) in case that there is no explicit 

mapping from X to Y but there exists the joint PDF of X and Y. 

𝑄(Θ′|Θ) = ∫𝑓(𝑍|𝑌, Θ)log(𝑓(𝑍|Θ′))d𝑋

𝑿

= ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑿

 (2.12) 

Where, 

𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

𝑓(𝑌|Θ)
=

𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

Note, X is separated from Y and the complete data Z = (X, Y) is composed of X and Y. For 

equation 2.12, the existence of the joint PDF f(X, Y | Θ) can be replaced by the existence of the 

conditional PDF f(Y|X, Θ) and the prior PDF f(X|Θ) due to: 

𝑓(𝑋, 𝑌|Θ) = 𝑓(𝑌|𝑋, Θ)𝑓(𝑋|Θ) 
In applied statistics, equation 2.8 is often replaced by equation 2.12 because specifying the 

joint PDF f(X, Y | Θ) is more practical than specifying the mapping φ: X → Y. However, 

equation 2.8 is more general equation 2.12 because the requirement of the joint PDF for 

equation 2.12 is stricter than the requirement of the explicit mapping for equation 2.8. In case 

that X and Y are discrete, equation 2.12 becomes: 

𝑄(Θ′|Θ) = ∑𝑃(𝑋|𝑌, Θ)log(𝑃(𝑋, 𝑌|Θ′))

𝑋∈𝑿
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In case that X and Y are discrete, P(X, Y | Θ) is the joint probability of X and Y whereas P(X | Y, 

Θ) is the conditional probability of X given Y. Mixture model mentioned in subsection 5.1 is a 

good example for GEM without explicit mapping from X to Y. 

Equation 2.12 can be proved alternately without knowledge related to complete data (Sean, 

2009). In fact, given hidden space X, observed space Y, and a joint PDF f(X, Y | Θ), the 

likelihood function L(Θ’) is re-defined here as log(f(Y | Θ’)). The maximizer is: 

Θ̂ = argmax
Θ′

𝐿(Θ′) = argmax
Θ

log(𝑓(𝑌|Θ′)) 

Suppose the current parameter is Θ after some iteration. Next we must find out the new estimate 

Θ̂ that maximizes the next log-likelihood function L(Θ’). In other words, it maximizes the 

deviation between current log-likelihood L(Θ) and next log-likelihood L(Θ’) with regard to Θ’. 

Θ̂ = argmax
Θ′

(𝐿(Θ′) − 𝐿(Θ)) 

Suppose the total probability of observed data can be determined by marginalizing over hidden 

data: 

𝑓(𝑌|Θ′) = ∫𝑓(𝑋, 𝑌|Θ′)d𝑋

𝑿

 

The expansion of f(Y | Θ’) is total probability rule. The deviation L(Θ’) –L(Θ) is re-written: 

𝐿(Θ′) − 𝐿(Θ) = log(𝑓(𝑌|Θ′)) − log(𝑓(𝑌|Θ𝑡)) 

= log (∫𝑓(𝑋, 𝑌|Θ′)d𝑋

𝑿

) − log(𝑓(𝑌|Θ)) 

= log (∫𝑓(𝑋|𝑌, Θ)
𝑓(𝑌, 𝑋|Θ′)

𝑓(𝑋|𝑂, Θ)
𝑿

d𝑋) − log(𝑓(𝑌|Θ)) 

Because hidden X is the complete set of mutually exclusive variables, the sum of conditional 

probabilities of X is equal to 1 given Y and Θ. 

∫𝑓(𝑋|𝑌, Θ)d𝑋

𝑿

= 1 

Where, 

𝑓(𝑋|𝑌, Θ) =
𝑓(𝑋, 𝑌|Θ)

∫ 𝑓(𝑋, 𝑌|Θ)d𝑋
𝑋

 

Applying Jensen’s inequality (Sean, 2009, pp. 3-4) 

log(∫𝑢(𝑥)𝑣(𝑥)d𝑥

𝑥

) ≥ ∫𝑢(𝑥)log(𝑣(𝑥))d𝑥

𝑥

 

where∫𝑢(𝑥)d𝑥

𝑥

= 1 

into the deviation L(Θ’) –L(Θ), Sean (Sean, 2009, p. 6) proved that: 

𝐿(Θ′) − 𝐿(Θ) ≥ (∫𝑓(𝑋|𝑌, Θ)log (
𝑓(𝑋, 𝑌|Θ′)

𝑓(𝑋|𝑌, Θ)
)

𝑿

) − log(𝑓(𝑌|Θ)) 

= (∫𝑓(𝑋|𝑌, Θ) (log(𝑓(𝑋, 𝑌|Θ′)) − log(𝑓(𝑋|𝑌, Θ))) d𝑋

𝑿

) − log(𝑓(𝑌|Θ)) 

= (∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑿

) − (∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋|𝑌, Θ))d𝑋

𝑿

) − log(𝑓(𝑌|Θ)) 
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= ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑿

+ 𝐶 

Where, 

𝐶 = −(∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋|𝑌, Θ))d𝑋

𝑿

) − log(𝑓(𝑌|Θ)) 

Because C is constant with regard to Θ’, it is possible to eliminate C in order to simplify the 

optimization criterion as follows: 

Θ̂ = argmax
Θ′

(𝐿(Θ′) − 𝐿(Θ)) = argmax
Θ′

(∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑿

+ 𝐶)

= argmax
Θ′

∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑿

 

Let 

𝑄(Θ′|Θ) = ∫𝑓(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))d𝑋

𝑿

 

We have the proof ■ 

In practice, suppose Y is observed as a sample 𝒴 = {Y1, Y2,…, YN} of size N with note that 

all Yi (s) are mutually independent and identically distributed (iid). The observed sample 𝒴 is 

associated with a a hidden set (latent set) 𝒳 = {X1, X2,…, XN} of size N. All Xi (s) are iid and 

they are not existent in fact. Let 𝑋 ∈ 𝑿 be the random variable representing every Xi. Of course, 

the domain of X is X. Equation 2.13 specifies the conditional expectation Q(Θ’ | Θ) given such 

𝒴. 

𝑄(Θ′|Θ) =∑∫𝑓(𝑋|𝑌𝑖, Θ)log(𝑓(𝑋, 𝑌𝑖|Θ
′))d𝑋

𝑿

𝑁

𝑖=1

 (2.13) 

Equation 2.13 is a variant of equation 2.10 in case that there is no explicit mapping between Xi 

and Yi but there exists the same joint PDF between Xi and Yi. Please see the proof of equation 

2.10 to comprehend how to derive equation 2.13. If both X and Y are discrete, equation 2.13 

becomes: 

𝑄(Θ′|Θ) =∑∑𝑃(𝑋|𝑌𝑖 , Θ)log(𝑃(𝑋, 𝑌𝑖|Θ
′))

𝑋∈𝑿

𝑁

𝑖=1

 

If X is discrete and Y is continuous such that f(X, Y | Θ) = P(X|Θ)f(Y | X, Θ) then, according to 

the total probability rule, we have: 

𝑓(𝑌|Θ) = ∑𝑃(𝑋|Θ)𝑓(𝑌|𝑋, Θ)

𝑋∈𝑿

 

Note, when only X is discrete, its PDF f(X|Θ) becomes the probability P(X|Θ). Therefore, 

equation 2.14 is a variant of equation 2.13, as follows: 

𝑄(Θ′|Θ) =∑∑𝑃(𝑋|𝑌𝑖, Θ)log(𝑃(𝑋|Θ
′)𝑓(𝑌𝑖|𝑋, Θ

′))

𝑋∈𝑿

𝑁

𝑖=1

 (2.14) 

Where P(X | Yi, Θ) is determined by Bayes’ rule, as follows: 

𝑃(𝑋|𝑌𝑖, Θ) =
𝑃(𝑋|Θ)𝑓(𝑌𝑖|𝑋, Θ)

∑ 𝑃(𝑋|Θ)𝑓(𝑌𝑖|𝑋, Θ)𝑋
 

Equation 2.14 is the base for estimating the probabilistic mixture model by EM algorithm, 

which will be described later in detail. 
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GEM is now described in general. Here it is necessary to explain GEM by viewpoint of 

lower bound (Sean, 2009, pp. 7-8). The main purpose of GEM algorithm is to maximize the 

log-likelihood L(Θ) = log(g(Y | Θ)) with observed data Y. However, it is too difficult to 

maximize log(g(Y | Θ)) because g(Y | Θ) is not well-defined when g(Y | Θ) is integral of f(X | 

Θ) given a general mapping function. DLR solved this problem by an iterative process which 

is an instance of GEM algorithm. The lower-bound (Sean, 2009, pp. 7-8) of L(Θ) is maximized 

over many iterations of the iterative process so that L(Θ) is maximized finally. Such lower-

bound is determined indirectly by the condition expectation Q(Θ | Θ(t)) so that maximizing Q(Θ 

| Θ(t)) is the same to maximizing the lower bound. Suppose Θ(t+1) is a maximizer of Q(Θ | Θ(t)) 

at tth iteration, which is also a maximizer of the lower bound at tth iteration. The lower bound 

is increased after every iteration. As a result, the maximizer Θ* of the final lower-bound after 

many iterations will be expected as a maximizer of L(Θ) in final. 

For more explanations, let lb(Θ | Θ(t)) be lower bound of L(Θ) at the tth iteration (Sean, 2009, 

p. 7). From equation 3.2, we have: 

lb(Θ | Θ(t)) = Q(Θ | Θ(t)) – H(Θ(t) | Θ(t)) 

Please see equation 3.1 for definition of H(Θ’ | Θ). Due to equation 3.2 and equation 3.3 

L(Θ) = Q(Θ | Θ(t)) – H(Θ | Θ(t)) 

H(Θ | Θ(t)) ≤ H(Θ(t) | Θ(t)) 

We have: 

lb(Θ | Θ(t)) ≤ L(Θ) 

The lower bound lb(Θ | Θ(t)) has following property (Sean, 2009, p. 7): 

lb(Θ(t) | Θ(t)) = Q(Θ(t) | Θ(t)) – H(Θ(t) | Θ(t)) = L(Θ(t)) 

Therefore, the two steps of GEM is interpreted with regard to the lower bound lb(Θ | Θ(t)) as 

seen in table 2.4. 

E-step: 

The lower bound lb(Θ | Θ(t)) is re-calculated based on Q(Θ | Θ(t)). 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) which is also a maximizer of lb(Θ 

| Θ(t)) because H(Θ(t) | Θ(t)) is constant. Note that Θ(t+1) will become current parameter at 

the next iteration so that the lower bound is increased in the next iteration. 

Table 2.4. An interpretation of GEM with lower bound 

Because Q(Θ | Θ(t)) is defined fixedly in E-step, most variants of EM algorithm focus on how 

to maximize Q(Θ’ | Θ) in M-step more effectively so that EM is faster or more accurate. Figure 

2.1 (Borman, 2004, p. 7) shows relationship between the log-likelihood function L(Θ) and its 

lower-bound lb(Θ | Θ(t)). 

 
Figure 2.1. Relationship between the log-likelihood function and its lower-bound 

Convergence of GEM will be mentioned in next section. 
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3. Convergence of EM algorithm 
Recall that DLR proposed GEM algorithm which aims to maximize the log-likelihood function 

L(Θ) by maximizing Q(Θ’ | Θ) over many iterations. This section focuses on mathematical 

explanation of the convergence of GEM algorithm given by DLR (Dempster, Laird, & Rubin, 

1977, pp. 6-9). Recall that we have: 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log ( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

 

Let H(Θ’ | Θ) be another conditional expectation which has strong relationship with Q(Θ’ | Θ) 

(Dempster, Laird, & Rubin, 1977, p. 6). 

𝐻(Θ′|Θ) = 𝐸(log(𝑘(𝑋|𝑌, Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 (3.1) 

From equation 2.8 and equation 3.1, we have: 

𝑄(Θ′|Θ) = 𝐿(Θ′) + 𝐻(Θ′|Θ) (3.2) 

Following is a proof of equation 3.2. 

𝑄(Θ′|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑔(𝑌|Θ′)𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑔(𝑌|Θ′))d𝑋

𝜑−1(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

 

= log(𝑔(𝑌|Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

+𝐻(Θ′|Θ) = log(𝑔(𝑌|Θ′)) + 𝐻(Θ′|Θ)

= 𝐿(Θ′) + 𝐻(Θ′|Θ)∎ 

Lemma 3.1 (Dempster, Laird, & Rubin, 1977, p. 6). For any pair (Θ’, Θ) in Ω x Ω, 

𝐻(Θ′|Θ) ≤ 𝐻(Θ|Θ) (3.3) 

The equality occurs if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost everywhere ■ 

Following is a proof of lemma 3.1 as well as equation 3.3. The log-likelihood function L(Θ’) 

is re-written as follows: 

𝐿(Θ′) = log( ∫ 𝑓(𝑋|Θ′)d𝑋

𝜑−1(𝑌)

) = log( ∫ 𝑘(𝑋|𝑌, Θ)
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
d𝑋

𝜑−1(𝑌)

) 

Due to 

∫ 𝑘(𝑋|𝑌, Θ′)d𝑋

𝜑−1(𝑌)

= 1 

By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function, 

log(∫𝑢(𝑥)𝑣(𝑥)d𝑥

𝑥

) ≥ ∫𝑢(𝑥)log(𝑣(𝑥))d𝑥

𝑥

 

where∫𝑢(𝑥)d𝑥

𝑥

= 1 

Sean (Sean, 2009, p. 6) proved that: 
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𝐿(Θ′) ≥ ∫ 𝑘(𝑋|𝑌, Θ)log (
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
)d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑓(𝑋|Θ′)) − log(𝑘(𝑋|𝑌, Θ))) d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′)𝑔(𝑌|Θ′))d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ))d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑘(𝑋|𝑌, Θ′)) + log(𝑔(𝑌|Θ′))) d𝑋

𝜑−1(𝑌)

− 𝐻(Θ|Θ) 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑘(𝑋|𝑌, Θ′))) d𝑋

𝜑−1(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑔(𝑌|Θ′))) d𝑋

𝜑−1(𝑌)

− 𝐻(Θ|Θ) 

= 𝐻(Θ′|Θ) + log(𝑔(𝑌|Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

− 𝐻(Θ|Θ) 

= 𝐻(Θ′|Θ) + 𝐿(Θ′) − 𝐻(Θ|Θ) 
It implies: 

𝐻(Θ′|Θ) ≤ 𝐻(Θ|Θ)∎ 

According to Jensen’s inequality (Sean, 2009, pp. 3-4), the equality occurs if and only if k(X | 

Y, Θ’) is linear or  f(X | Θ’) is constant. In other words, the equality occurs if and only if k(X | 

Y, Θ’) = k(X | Y, Θ) almost everywhere when f(X | Θ) is not constant and k(X | Y, Θ’) is a PDF. 

Let {Θ(𝑡)}
𝑡=1

+∞
= Θ(1), Θ(2), … , Θ(𝑡), Θ(𝑡+1), … be a sequence of estimates of Θ resulted from 

iterations of EM algorithm. Let Θ → M(Θ) be the mapping such that each estimation Θ(t) → 

Θ(t+1) at any given iteration is defined by equation 3.4 (Dempster, Laird, & Rubin, 1977, p. 7). 

Θ(𝑡+1) = 𝑀(Θ(𝑡)) (3.4) 

Definition 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). An iterative algorithm with mapping 

M(Θ) is a GEM algorithm if 

𝑄(𝑀(Θ)|Θ) ≥ 𝑄(Θ|Θ)∎ (3.5) 

Of course, specification of GEM shown in table 2.3 satisfies the definition 3.1 because Θ(t+1) is 

a maximizer of Q(Θ | Θ(t)) with regard to variable Θ in M-step. 

𝑄(𝑀(Θ(𝑡))|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) ≥ 𝑄(Θ(𝑡)|Θ(𝑡)), ∀𝑡 
Theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). For every GEM algorithm 

𝐿(𝑀(Θ)) ≥ 𝐿(Θ) for all Θ ∈ Ω (3.6) 

Where equality occurs if and only if Q(M(Θ) | Θ) = Q(Θ | Θ) and k(X | Y, M(Θ)) = k(X | Y, Θ) 

almost everywhere ■ 

Following is the proof of theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7): 

𝐿(𝑀(Θ)) − 𝐿(Θ) = (𝑄(𝑀(Θ)|Θ) − 𝐻(𝑀(Θ)|Θ)) − (𝑄(Θ|Θ) − 𝐻(Θ|Θ))

= (𝑄(𝑀(Θ)|Θ) − 𝑄(Θ|Θ)) + (𝐻(Θ|Θ) − 𝐻(𝑀(Θ)|Θ)) ≥ 0∎ 

Because the equality of lemma 3.1 occurs if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost 

everywhere and the equality of the definition 3.1 is Q(M(Θ) | Θ) = Q(Θ | Θ), we deduce that 

the equality of theorem 3.1 occurs if and only if Q(M(Θ) | Θ) = Q(Θ | Θ) and k(X | Y, M(Θ)) = 

k(X | Y, Θ) almost everywhere. It is easy to draw corollary 3.1 and corollary 3.2 from definition 

3.1 and theorem 3.1. 

Corollary 3.1 (Dempster, Laird, & Rubin, 1977). Suppose for some Θ∗ ∈ Ω, L(Θ*) ≥ L(Θ) for 

all Θ ∈ Ω then for every GEM algorithm: 

(1) L(M(Θ*)) = L(Θ*) 

(2) Q(M(Θ*) | Θ*) = Q(Θ* | Θ*) 
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(3) k(X | Y, M(Θ*)) = k(X | Y, Θ*) ■ 

Proof. From theorem 3.1 and the assumption of corollary 3.1, we have: 

{
𝐿(𝑀(Θ)) ≥ 𝐿(Θ) for all Θ ∈ Ω

𝐿(Θ∗) ≥ 𝐿(Θ) for all Θ ∈ Ω
 

This implies: 

{
𝐿(𝑀(Θ∗)) ≥ 𝐿(Θ∗)

𝐿(𝑀(Θ∗)) ≤ 𝐿(Θ∗)
 

As a result, 

𝐿(𝑀(Θ∗)) = 𝐿(Θ∗) 
From theorem 3.1, we also have: 

𝑄(𝑀(Θ∗)|Θ∗) = 𝑄(Θ∗|Θ∗)

𝑘(𝑋|𝑌,𝑀(Θ∗)) = 𝑘(𝑋|𝑌, Θ∗)
∎ 

Corollary 3.2 (Dempster, Laird, & Rubin, 1977). If for some Θ∗ ∈ Ω, L(Θ*) > L(Θ) for all Θ ∈
Ω such that Θ ≠ Θ*, then for every GEM algorithm: 

M(Θ*) = Θ* ■ 

Proof. From corollary 3.1 and the assumption of corollary 3.2, we have: 

{
𝐿(𝑀(Θ∗)) = 𝐿(Θ∗)

𝐿(Θ∗) > 𝐿(Θ) for all Θ ∈ Ω and Θ ≠ Θ∗
 

If M(Θ*) ≠ Θ*, there is a contradiction L(M(Θ*)) = L(Θ*) > L(M(Θ*)). Therefore, we have M(Θ*) 

= Θ* ■ 

Theorem 3.2 (Dempster, Laird, & Rubin, 1977, p. 7). Suppose {Θ(𝑡)}
𝑡=1

+∞
 is the sequence of 

estimates resulted from GEM algorithm such that: 

(1) The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
= 𝐿(Θ(1)), 𝐿(Θ(2)),… , 𝐿(Θ(𝑡)), … is bounded above, and 

(2) Q(Θ(t+1) | Θ(t)) – Q(Θ(t) | Θ(t)) ≥ ξ(Θ(t+1) – Θ(t))T(Θ(t+1) – Θ(t)) for some scalar ξ > 0 and all 

t. 

Then the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of Ω ■ 

Proof. The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is non-decreasing according to theorem 3.1 and is 

bounded above according to the assumption 1 of theorem 3.2 and hence, the sequence 

{𝐿(Θ(𝑡))}
𝑡=1

+∞
 converges to some L* < +∞. According to Cauchy criterion (Dinh, Pham, Nguyen, 

& Ta, 2000, p. 34), for all ε > 0, there exists a t(ε) such that, for all t ≥ t(ε) and all v ≥ 1: 

𝐿(Θ(𝑡+𝑣)) − 𝐿(Θ(𝑡)) =∑(𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

< 𝜀 

By applying equation 3.2 and equation 3.3, for all i ≥ 1, we obtain: 

𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) 

= 𝐿(Θ(𝑡+𝑖)) + 𝐻(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1))   

≤ 𝐿(Θ(𝑡+𝑖)) + 𝐻(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) 

= 𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)) 
(Due to L(Θ(t+i–1)) = Q(Θ(t+i–1) | Θ(t+i–1)) – H(Θ(t+i–1) | Θ(t+i–1)) according to equation 3.2) 

It implies 

∑(𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

<∑(𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

= 𝐿(Θ(𝑡+𝑣)) − 𝐿(Θ(𝑡)) < 𝜀 
By applying v times the assumption 2 of theorem 3.2, we obtain: 
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𝜀 >∑(𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

≥ 𝜉∑(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))
𝑇
(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))

𝑣

𝑖=1

 

It means that 

∑|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|
2

𝑣

𝑖=1

< 𝜀 𝜉⁄  

Where, 

|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|
2
= (Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))

𝑇
(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)) 

Notation |.| denotes length of vector and so |Θ(t+i) – Θ(t+i –1)| is distance between Θ(t+i) and Θ(t+i 

–1). Applying triangular inequality, for any ε > 0, for all t ≥ t(ε) and all v ≥ 1, we have: 

|Θ(𝑡+𝑣) − Θ(𝑡)|
2
≤∑|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|

2
𝑣

𝑖=1

< 𝜀 𝜉⁄  

According to Cauchy criterion, the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of 

Ω. 

Theorem 3.1 indicates that L(Θ) is non-decreasing on every iteration of GEM algorithm 

and is strictly increasing on any iteration such that Q(Θ(t+1) | Θ(t)) > Q(Θ(t) | Θ(t)). The corollaries 

3.1 and 3.2 indicate that the optimal estimate is a fixed point of GEM algorithm. Theorem 3.2 

points out convergence condition of GEM algorithm but does not assert the converged point 

Θ* is maximizer of L(Θ). So, we need mathematical tools of derivative and differential to prove 

convergence of GEM to a maximizer Θ*. We assume that Q(Θ’ | Θ), L(Θ), H(Θ’ | Θ), and M(Θ) 

are smooth enough. As a convention for derivatives of bivariate function, let Dij denote as the 

derivative (differential) by taking ith-order partial derivative (differential) with regard to first 

variable and then, taking jth-order partial derivative (differential) with regard to second variable. 

If i = 0 (j = 0) then, there is no partial derivative with regard to first variable (second variable). 

For example, following is an example of how to calculate the derivative D11Q(Θ(t) | Θ(t+1)). 

- Firstly, we determine 𝐷11𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕Θ′𝜕Θ
 

- Secondly, we substitute Θ(t) and Θ(t+1) for such D11Q(Θ’ | Θ) to obtain D11Q(Θ(t) | Θ(t+1)). 

Equation 3.1 shows some derivatives (differentials) of Q(Θ’ | Θ), H(Θ’ | Θ), L(Θ), and M(Θ). 

𝐷10𝑄(Θ′|Θ) =
𝜕𝑄(Θ′|Θ)

𝜕Θ′
 

𝐷11𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕Θ′𝜕Θ
 

𝐷20𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕(Θ′)2
 

𝐷10𝐻(Θ′|Θ) =
𝜕𝐻(Θ′|Θ)

𝜕Θ′
 

𝐷11𝐻(Θ′|Θ) =
𝜕2𝐻(Θ′|Θ)

𝜕Θ′𝜕Θ
 

𝐷20𝐻(Θ′|Θ) =
𝜕2𝐻(Θ′|Θ)

𝜕(Θ′)2
 

𝐷𝐿(Θ) =
d𝐿(Θ)

dΘ
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𝐷2𝐿(Θ) =
d2𝐿(Θ)

dΘ2
 

𝐷𝑀(Θ) =
d𝑀(Θ)

dΘ
 

Table 3.1. Some differentials of Q(Θ’ | Θ), H(Θ’ | Θ), L(Θ), and M(Θ) 

When Θ’ and Θ are vectors, D10(…) is gradient vector and D20(…) is Hessian matrix. As a 

convention, let 0 = (0, 0,…, 0)T be zero vector. 

Lemma 3.2 (Dempster, Laird, & Rubin, 1977, p. 8). For all Θ in Ω, 

𝐷10𝐻(Θ|Θ) = 𝐸 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) = 𝟎𝑇 (3.7) 

 

𝐷20𝐻(Θ|Θ) = −𝐷11𝐻(Θ|Θ) = −𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) (3.8) 

 

𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) = 𝐸 ((

dlog(𝑘(𝑋|𝑌, Θ))
dΘ

)

2

|𝑌, Θ)

= −𝐸 (
𝑑2log(𝑘(𝑋|𝑌, Θ))

d(Θ)2
|𝑌, Θ) 

(3.9) 

 

𝐷10𝑄(Θ|Θ) = 𝐷𝐿(Θ) = 𝐸 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) (3.10) 

 

𝐷20𝑄(Θ|Θ) = 𝐷2𝐿(Θ) + 𝐷20𝐻(Θ|Θ) = 𝐸 (
𝑑2log(𝑓(𝑋|Θ))

d(Θ)2
|𝑌, Θ) (3.11) 

 

𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) = 𝐸 ((

dlog(𝑓(𝑋|Θ))
dΘ

)

2

|𝑌, Θ)

= 𝐷2𝐿(Θ) + (𝐷𝐿(Θ))
2
− 𝐷20𝑄(Θ|Θ)∎ 

(3.12) 

Note, VN(.) denotes non-central variance (non-central covariance matrix). Followings are 

proofs of equation 3.7, equation 3.8, equation 3.9, equation 3.10, equation 3.11, and equation 

3.12. In fact, we have: 

𝐷10𝐻(Θ′|Θ) =
𝜕

𝜕Θ′
𝐸(log(𝑘(𝑋|𝑌, Θ′))|𝑌, Θ) =

𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

= 𝐸 (
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
|𝑌, Θ) =

= ∫
𝑘(𝑋|𝑌, Θ)

𝑘(𝑋|𝑌, Θ′)

d(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

It implies: 

𝐷10𝐻(Θ|Θ) = ∫
𝑘(𝑋|𝑌, Θ)

𝑘(𝑋|𝑌, Θ)

d(𝑘(𝑋|𝑌, Θ))

dΘ
d𝑋

𝜑−1(𝑌)

=
d

dΘ
( ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

) =
d

dΘ
(1)

= 𝟎𝑇 

We also have: 
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𝐷11𝐻(Θ′|Θ) =
𝜕𝐷10𝐻(Θ′|Θ)

𝜕Θ
= ∫

1

𝑘(𝑋|𝑌, Θ′)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ

d𝑘(𝑋|𝑌, Θ′)

dΘ′
d𝑋

𝜑−1(𝑌)

 

It implies: 

𝐷11𝐻(Θ|Θ) = ∫
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ

d𝑘(𝑋|𝑌, Θ)

dΘ
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ
)

2

d𝑋

𝜑−1(𝑌)

= 𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) 

We also have: 

𝐷20𝐻(Θ′|Θ) =
𝜕𝐷10𝐻(Θ′|Θ)

𝜕Θ′
= 𝐸 (

𝑑2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
|𝑌, Θ) 

= − ∫
𝑘(𝑋|𝑌, Θ)

(𝑘(𝑋|𝑌, Θ′))
2 (
d𝑘(𝑋|𝑌, Θ′)

dΘ′
)

2

d𝑋

𝜑−1(𝑌)

= −𝐸 ((
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
)

2

|𝑌, Θ) 

It implies: 

𝐷20𝐻(Θ|Θ) = − ∫ 𝑘(𝑋|𝑌, Θ) (
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ
)

2

d𝑋

𝜑−1(𝑌)

= −𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) 

From equation 3.2, we have: 

𝐷20𝑄(Θ′|Θ) = 𝐷2𝐿(Θ′) + 𝐷20𝐻(Θ′|Θ) 
We also have: 

𝐷10𝑄(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

)

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

= 𝐸 (
dlog(𝑓(𝑋|Θ′))

dΘ′
|𝑌, Θ) 

= ∫
𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ′)

d𝑓(𝑋|Θ′)

dΘ′
d𝑋

𝜑−1(𝑌)

 

It implies: 

𝐷10𝑄(Θ|Θ) = ∫
𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ)

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

= ∫
1

𝑔(𝑌|Θ)

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

 

=
1

𝑔(𝑌|Θ)
∫

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

=
1

𝑔(𝑌|Θ)

d

dΘ
( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) 

=
1

𝑔(𝑌|Θ)

d𝑔(𝑌|Θ)

dΘ
=
dlog(𝑔(𝑌|Θ))

dΘ
= 𝐷𝐿(Θ) 

We have: 
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𝐷20𝑄(Θ′|Θ) =
𝜕𝐷10𝑄(Θ′|Θ)

𝜕Θ′
=

𝜕

𝜕Θ′
( ∫

𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ′)

d𝑓(𝑋|Θ′)

dΘ′
d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
𝑑

dΘ′
(
d𝑓(𝑋|Θ′) dΘ′⁄

𝑓(𝑋|Θ′)
) d𝑋

𝜑−1(𝑌)

= 𝐸 (
𝑑2log(𝑓(𝑋|Θ′))

d(Θ′)2
|𝑌, Θ) 

= ∫ 𝑘(𝑋|𝑌, Θ) ((d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )𝑓(𝑋|Θ′) − (d𝑓(𝑋|Θ′) dΘ′⁄ )2) (𝑓(𝑋|Θ′))
2

⁄ d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )

𝑓(𝑋|Θ′)
d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ) (
d𝑓(𝑋|Θ′) dΘ′⁄

𝑓(𝑋|Θ′)
)

2

d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )

𝑓(𝑋|Θ′)
d𝑋

𝜑−1(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ′))

dΘ′
|𝑌, Θ) 

It implies: 

𝐷20𝑄(Θ|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ) d(Θ)2⁄ )

𝑓(𝑋|Θ)
d𝑋

𝜑−1(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)
∫

d2𝑓(𝑋|Θ)

d(Θ)2
d𝑋

𝜑−1(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)

d2

d(Θ)2
( ∫

𝑓(𝑋|Θ)

dΘ
d𝑋

𝜑−1(𝑌)

) − 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)

d2𝑔(𝑌|Θ)

d(Θ)2
− 𝑉𝑁 (

dlog(𝑓(𝑋|Θ))
dΘ

|𝑌, Θ) 

Due to: 

𝐷2𝐿(Θ) =
d2log(𝑔(𝑌|Θ))

d(Θ)2
=

1

𝑔(𝑌|Θ)

d2𝑔(𝑌|Θ)

d(Θ)2
− (𝐷𝐿(Θ))

2
 

We have: 

𝐷20𝑄(Θ|Θ) = 𝐷2𝐿(Θ) + (𝐷𝐿(Θ))
2
− 𝑉𝑁 (

dlog(𝑓(𝑋|Θ))
dΘ

|𝑌, Θ)∎ 

Lemma 3.3 (Dempster, Laird, & Rubin, 1977, p. 9). If f(X | Θ) and k(X | Y, Θ) belong to 

exponential family, for all Θ in Ω, we have: 

𝐷10𝐻(Θ′|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) − 𝐸(𝜏(𝑋)|𝑌, Θ′) (3.13) 

 

𝐷20𝐻(Θ′|Θ) = −𝑉(𝜏(𝑋)|𝑌, Θ′) (3.14) 

 

𝐷10𝑄(Θ′|Θ) = 𝐸(𝜏(𝑋)|Θ) − 𝐸(𝜏(𝑋)|Θ′) (3.15) 

 

𝐷20𝑄(Θ′|Θ) = −𝑉(𝜏(𝑋)|Θ′)∎ (3.16) 

Proof. If f(X | Θ’) and k(X | Y, Θ’) belong to exponential family, from table 1.2 we have: 

dlog(𝑓(𝑌|Θ′))

dΘ′
=

d

dΘ′
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ ) = 𝜏(𝑋) − log′(𝑎(Θ′))

= 𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ′) 
And, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


53 

 

d2log(𝑓(𝑌|Θ′))

d(Θ′)2
=

d

d(Θ′)2
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ ) = −log′′(𝑎(Θ′)) = −𝑉(𝜏(𝑋)|Θ′) 

And, 

dlog(𝑘(𝑌|Θ′))

dΘ′
=

d

dΘ′
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′|𝑌)⁄ ) = 𝜏(𝑋) − log′(𝑎(Θ′)|𝑌)

= 𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ′) 
And, 

d2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
=

d

d(Θ′)2
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′|𝑌)⁄ ) = −log′′(𝑎(Θ′|𝑌))

= −𝑉(𝜏(𝑋)|𝑌, Θ′) 
Hence, 

𝐷10𝐻(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)𝐸(𝜏(𝑋)|𝑌, Θ′)d𝑋

𝜑−1(𝑌)

 

= 𝐸(𝜏(𝑋)|𝑌, Θ) − 𝐸(𝜏(𝑋)|𝑌, Θ′) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= 𝐸(𝜏(𝑋)|𝑌, Θ) − 𝐸(𝜏(𝑋)|𝑌, Θ′) 

We have: 

𝐷20𝐻(Θ′|Θ) =
𝜕2

𝜕(Θ′)2
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝜑−1(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
d2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
d𝑋

𝜑−1(𝑌)

= − ∫ 𝑘(𝑋|𝑌, Θ)log′′(𝑎(Θ′)|𝑌)d𝑋

𝜑−1(𝑌)

 

= −log′′(𝑎(Θ′)|𝑌) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= −log′′(𝑎(Θ′)|𝑌) = −𝑉(𝜏(𝑋)|𝑌, Θ′) 

We have: 

𝐷10𝑄(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

)

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝜑−1(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝜑−1(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)𝐸(𝜏(𝑋)|Θ)d𝑋

𝜑−1(𝑌)

 

= 𝐸(𝜏(𝑋)|Θ) − 𝐸(𝜏(𝑋)|Θ′) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= 𝐸(𝜏(𝑋)|Θ) − 𝐸(𝜏(𝑋)|Θ′) 

We have: 

𝐷20𝑄(Θ′|Θ) =
𝜕2

𝜕(Θ′)2
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝜑−1(𝑌)

) 
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= ∫ 𝑘(𝑋|𝑌, Θ)
d2log(𝑓(𝑋|Θ′))

d(Θ′)2
d𝑋

𝜑−1(𝑌)

= − ∫ 𝑘(𝑋|𝑌, Θ)log′′(𝑎(Θ′))d𝑋

𝜑−1(𝑌)

 

= −log′′(𝑎(Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝜑−1(𝑌)

= −log′′(𝑎(Θ′)) = −𝑉(𝜏(𝑋)|Θ′)∎ 

Theorem 3.3 (Dempster, Laird, & Rubin, 1977, p. 8). Suppose the sequence {Θ(𝑡)}
𝑡=1

+∞
 is an 

instance of GEM algorithm such that 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇 

Then for all t, there exists a Θ0
(t+1) on the line segment joining Θ(t) and Θ(t+1) such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

Furthermore, if D20Q(Θ0
(t+1) | Θ(t)) is negative definite, and the sequence {𝐿(Θ(𝑡))}

𝑡=1

+∞
 is 

bounded above then, the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of Ω ■ 

Note, if Θ is a scalar parameter, D20Q(Θ0
(t+1) | Θ(t)) degrades as a scalar and the concept 

“negative definite” becomes “negative” simply. Following is a proof of theorem 3.3. 

Proof. Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ = Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

= 𝑄(Θ(𝑡+1)|Θ(𝑡)) + (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

(due to 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇) 
Where Θ0

(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

If D20Q(Θ(t+1) | Θ(t)) is negative definite then, 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) > 0 

Whereas, 

(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) ≥ 0 

So there exists some ξ > 0 such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) ≥ 𝜉(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) 

In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {Θ(𝑡)}
𝑡=1

+∞
 

converges to some Θ* in the closure of Ω if the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above ■ 

Theorem 3.4 (Dempster, Laird, & Rubin, 1977, p. 9). Suppose the sequence {Θ(𝑡)}
𝑡=1

+∞
 is an 

instance of GEM algorithm such that 

(1) The sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to Θ* in the closure of Ω. 

(2) D10Q(Θ(t+1) | Θ(t)) = 0T for all t. 

(3) D20Q(Θ(t+1) | Θ(t)) is negative definite for all t. 

Then DL(Θ*) = 0T, D20Q(Θ* | Θ*) is negative definite, and 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1
∎ (3.17) 

The notation “–1” denotes inverse of matrix. Note, DM(Θ*) is differential of M(Θ) at Θ = Θ*, 

which implies convergence rate of GEM algorithm. Obviously, Θ* is local maximizer due to 

DL(Θ*) = 0T and D20Q(Θ* | Θ*). Followings are proofs of theorem 3.4. 

From equation 3.2, we have: 

𝐷𝐿(Θ(𝑡+1)) = 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) = −𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) 
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(Due to 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇) 

When t approaches +∞ such that Θ(t) = Θ(t+1) = Θ* then, D10H(Θ* | Θ*) is zero according to 

equation 3.7 and so we have: 

DL(Θ*) = 0T 

Of course, D20Q(Θ* | Θ*) is negative definite because D20Q(Θ(t+1) | Θ(t)) is negative definite, 

when t approaches +∞ such that Θ(t) = Θ(t+1) = Θ*. 

By first-order Taylor series expansion for D10Q(Θ2 | Θ1) as a function of Θ1 at Θ1 = Θ* and 

as a function of Θ2 at Θ2 = Θ*, respectively, we have: 

𝐷10𝑄(Θ2|Θ1) = 𝐷
10𝑄(Θ2|Θ

∗) + (Θ1 − Θ
∗)𝑇𝐷11𝑄(Θ2|Θ

∗) + 𝑅1(Θ1) 
𝐷10𝑄(Θ2|Θ1) = 𝐷10𝑄(Θ∗|Θ1) + (Θ2 − Θ

∗)𝑇𝐷20𝑄(Θ∗|Θ1) + 𝑅2(Θ2) 
Where R1(Θ1) and R2(Θ2) are remainders. By summing such two series, we have: 

2𝐷10𝑄(Θ2|Θ1)
= 𝐷10𝑄(Θ2|Θ

∗) + 𝐷10𝑄(Θ∗|Θ1) + (Θ1 − Θ
∗)𝑇𝐷11𝑄(Θ2|Θ

∗)
+ (Θ2 − Θ

∗)𝑇𝐷20𝑄(Θ∗|Θ1) + 𝑅1(Θ1) + 𝑅2(Θ2) 
By substituting Θ1 = Θ(t) and Θ2 = Θ(t+1), we have: 

2𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))

= 𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)) + (Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗)

+ (Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) + 𝑅1(Θ

(𝑡)) + 𝑅2(Θ
(𝑡+1)) 

Due to D10Q(Θ(t+1) | Θ(t)) = 0T, we obtain: 

𝟎𝑇 = 𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)) + (Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗)

+ (Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) + 𝑅1(Θ

(𝑡)) + 𝑅2(Θ
(𝑡+1)) 

It implies: 

(Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) 

= −(Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗) − (𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)))

− (𝑅1(Θ
(𝑡)) + 𝑅2(Θ

(𝑡+1))) 

Multiplying two sides of the equation above by D20Q(Θ* | Θ(t))–1 and letting M(Θ(t)) = Θ(t+1),  

M(Θ*) = Θ*, we obtain: 

(𝑀(Θ(𝑡)) − 𝑀(Θ∗))
𝑇

= (Θ(𝑡+1) − Θ∗)
𝑇
 

= −(Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗) (𝐷20𝑄(Θ∗|Θ(𝑡)))

−1

 

−(𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡))) (𝐷20𝑄(Θ∗|Θ(𝑡)))
−1

 

−(𝑅1(Θ
(𝑡)) + 𝑅2(Θ

(𝑡+1))) (𝐷20𝑄(Θ∗|Θ(𝑡)))
−1

 

Let t approach +∞ such that Θ(t) = Θ(t+1) = Θ*, we obtain DM(Θ*) as differential of M(Θ) at Θ* 

as follows: 

𝐷𝑀(Θ∗) = −𝐷11𝑄(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1

 (3.18) 

Due to, when t approaches +∞, we have: 
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𝐷11𝑄(Θ(𝑡+1)|Θ∗) = 𝐷11𝑄(Θ∗|Θ∗)

𝐷20𝑄(Θ∗|Θ(𝑡)) = 𝐷20𝑄(Θ∗|Θ∗)

𝐷10𝑄(Θ(𝑡+1)|Θ∗) = 𝐷10𝑄(Θ∗|Θ∗) = 𝟎𝑇

𝐷10𝑄(Θ∗|Θ(𝑡)) = 𝐷10𝑄(Θ∗|Θ∗) = 𝟎𝑇

lim
𝑡→+∞

𝑅1(Θ
(𝑡)) = lim

Θ(𝑡)→Θ∗
𝑅1(Θ

(𝑡)) = 0

lim
𝑡→+∞

𝑅2(Θ
(𝑡+1)) = lim

Θ(𝑡+1)→Θ∗
𝑅2(Θ

(𝑡+1)) = 0

 

The derivative D11Q(Θ’ | Θ) is expended as follows: 

𝐷11𝑄(Θ′|Θ) = 𝐷𝐿(Θ′) + 𝐷11𝐻(Θ′|Θ) 
It implies: 

𝐷11𝑄(Θ∗|Θ∗) = 𝐷𝐿(Θ∗) + 𝐷11𝐻(Θ∗|Θ∗) 
= 0 + 𝐷11𝐻(Θ∗|Θ∗) 

(Due to theorem 3.4) 

= −𝐷20𝐻(Θ∗|Θ∗) 
(Due to equation 3.8) 

Therefore, equation 3.18 becomes equation 3.17. 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1
∎ 

Finally, theorem 3.4 is proved. By combination of theorems 3.2 and 3.4, I propose corollary 

3.3 as a convergence criterion to local maximizer of GEM. 

Corollary 3.3. If an algorithm satisfies three following assumptions: 

(1) Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)) for all t. 

(2) The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above. 

(3) D10Q(Θ* | Θ*) = 0T and D20Q(Θ* | Θ*) negative definite with suppose that Θ* is the 

converged point. 

Then, 

(1) Such algorithm is an GEM and converges to a local maximizer Θ* of L(Θ) such that 

DL(Θ*) = 0T and D2L(Θ*) negative definite. 

(2) Equation 3.17 is obtained ■ 

The assumption 1 of corollary 3.3 implies that the given algorithm is a GEM according to 

definition 3.1. From such assumption, we also have: 

{
𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0

(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) ≥ 0

 

So there exists some ξ > 0 such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) ≥ 𝜉(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) 

In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {Θ(𝑡)}
𝑡=1

+∞
 

converges to some Θ* in the closure of Ω when the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above 

according to the assumption 2 of corollary 3.3. From equation 3.2, we have: 

𝐷𝐿(Θ(𝑡+1)) = 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) = −𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) 

When t approaches +∞ such that Θ(t) = Θ(t+1) = Θ* then, 

DL(Θ*) = D10Q(Θ* | Θ*) – D10H(Θ* | Θ*)  

D10H(Θ* | Θ*) is zero according to equation 3.7. Hence, along with the assumption 3 of 

corollary 3.3, we have: 

DL(Θ*) = D10Q(Θ* | Θ*) = 0T 

Due to DL(Θ*) = 0, we only assert here that the given algorithm converges to Θ* as a stationary 

point of L(Θ). Later on, we will prove that Θ* is a local maximizer of L(Θ) when Q(M(Θ(t)) | 
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Θ(t)) > Q(Θ(t) | Θ(t)), DL(Θ*) = 0, and D20Q(Θ* | Θ*) negative definite. Due to D10Q(Θ* | Θ*) = 

0T, we obtain equation 3.17 ■ 

By default, suppose all GEM algorithms satisfy the assumptions 3.2 and 3.3 of corollary 

3.3. Thus, we only check the assumption 1 to verify whether a given algorithm is a GEM which 

converges to local maximizer Θ*. Note, if the assumption 1 of corollary 3.3 is replaced by 

“Q(M(Θ(t)) | Θ(t)) ≥ Q(Θ(t) | Θ(t)) for all t” then, Θ* is only asserted to be a stationary point of 

L(Θ) such that DL(Θ*) = 0T. Wu (Wu, 1983) gave a deep research on convergence of GEM in 

her/his article “On the Convergence Properties of the EM Algorithm”. Please read this article 

for more details about convergence of GEM. 

Because H(Θ’ | Θ) and Q(Θ’ | Θ) are smooth enough, D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are 

symmetric matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second 

derivatives, 2018). Thus, D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are commutative: 

D20H(Θ* | Θ*)D20Q(Θ* | Θ*) = D20Q(Θ* | Θ*)H20Q(Θ* | Θ*) 

Suppose both D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are diagonalizable then, they are simultaneously 

diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a (orthogonal) 

eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange, 

2013): 

𝐷20𝐻(Θ∗|Θ∗) = 𝑈𝐻𝑒
∗𝑈−1

𝐷20𝑄(Θ∗|Θ∗) = 𝑈𝑄𝑒
∗𝑈−1

 

Where He
* and Qe

* are eigenvalue matrices of D20H(Θ* | Θ*) and D20Q(Θ* | Θ*), respectively, 

according to equation 3.19 and equation 3.20. Of course, h1
*, h2

*,…, hr
* are eigenvalues of 

D20H(Θ* | Θ*) whereas q1
*, q2

*,…, qr
* are eigenvalues of D20Q(Θ* | Θ*). 

𝐻𝑒
∗ = (

ℎ1
∗ 0 ⋯ 0
0 ℎ2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑟

∗

) (3.19) 

 

𝑄𝑒
∗ = (

𝑞1
∗ 0 ⋯ 0
0 𝑞2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑟

∗

) (3.20) 

From equation 3.17, DM(Θ*) is decomposed as seen in equation 3.21. 

𝐷𝑀(Θ∗) = (𝑈𝐻𝑒
∗𝑈−1)(𝑈𝑄𝑒

∗𝑈−1)−1 = 𝑈𝐻𝑒
∗𝑈−1𝑈(𝑄𝑒

∗)−1Λ−1𝑈−1

= 𝑈(𝐻𝑒
∗(𝑄𝑒

∗)−1)𝑈−1 
(3.21) 

Let Me
* be eigenvalue matrix of DM(Θ*), specified by equation 15. As a convention Me

* is 

called convergence matrix. 

𝑀𝑒
∗ = 𝐻𝑒

∗(𝑄𝑒
∗)−1 =

(

 
 
 
 
 
𝑚1
∗ =

ℎ1
∗

𝑞1
∗ 0 ⋯ 0

0 𝑚2
∗ =

ℎ2
∗

𝑞2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑚𝑟
∗ =

ℎ𝑟
∗

𝑞𝑟∗)

 
 
 
 
 

 (3.22) 

Of course, all mi
* = hi

* / qi
* are eigenvalues of DM(Θ*) with assumption qi

* < 0 for all i. We 

will prove that 0 ≤ mi
* ≤ 1 for all i by contradiction. Conversely, suppose we always have mi

* > 

1 or mi
* < 0 for some i. When Θ degrades into scalar as Θ = θ with note that scalar is 1-element 

vector, equation 3.17 is re-written as equation 3.23: 
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𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = 𝑚∗ = lim

𝑡→+∞

𝑀(𝜃(𝑡)) −𝑀(𝜃∗)

𝜃(𝑡) − 𝜃∗
= lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
=

= 𝐷20𝐻(𝜃∗|𝜃∗)(𝐷20𝑄(𝜃∗|𝜃∗))
−1

 

(3.23) 

From equation 3.23, the next estimate θ(t+1) approaches θ* when t → +∞ and so we have: 

𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = 𝑚∗ = lim

𝑡→+∞

𝑀(𝜃(𝑡)) −𝑀(𝜃(𝑡+1))

𝜃(𝑡) − 𝜃(𝑡+1)
= lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃(𝑡+2)

𝜃(𝑡) − 𝜃(𝑡+1)

= lim
𝑡→+∞

𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 

So equation 3.24 is a variant of equation 3.23 (McLachlan & Krishnan, 1997, p. 120). 

𝐷𝑀(𝜃∗) = 𝑀𝑒 = 𝑚∗ = lim
𝑡→+∞

𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 (3.24) 

Because the sequence {𝐿(𝜃(𝑡))}
𝑡=1

+∞
= 𝐿(𝜃(1)), 𝐿(𝜃(2)),… , 𝐿(𝜃(𝑡)), … is non-decreasing, the 

sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is monotonous. This means: 

𝜃1 ≤ 𝜃2 ≤ ⋯ ≤ 𝜃𝑡 ≤ 𝜃𝑡+1 ≤ ⋯ ≤ 𝜃∗ 
Or 

𝜃1 ≥ 𝜃2 ≥ ⋯ ≥ 𝜃𝑡 ≥ 𝜃𝑡+1 ≥ ⋯ ≥ 𝜃∗ 
It implies 

0 ≤
𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≤ 1, ∀𝑡 

So we have 

0 ≤ 𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≤ 1 

However, this contradicts the converse assumption “there always exists mi
* > 1 or mi

* < 0 for 

some i”. Therefore, we conclude that 0 ≤ mi
* ≤ 1 for all i. In general, if Θ* is stationary point 

of GEM then, D20Q(Θ* | Θ*) and Qe
* are negative definite, D20H(Θ* | Θ*) and He

* are negative 

semi-definite, and DM(Θ*) and Me
* are positive semi-definite, according to equation 3.25. 
𝑞𝑖
∗ < 0, ∀𝑖

ℎ𝑖
∗ ≤ 0, ∀𝑖

0 ≤ 𝑚𝑖
∗ ≤ 1, ∀𝑖

 (3.25) 

As a convention, if GEM algorithm fortunately stops at the first iteration such that Θ(1) = Θ(2) 

= Θ* then, mi
* = 0 for all i. 

Suppose Θ(t) = (θ1
(t), θ2

(t),…, θr
(t)) at current tth iteration and Θ* = (θ1

*, θ2
*,…, θr

*), each mi
* 

measures how much the next θi
(t+1) is near to θi

*. In other words, the smaller the mi
* (s) are, the 

faster the GEM is and so the better the GEM is. This is why DLR (Dempster, Laird, & Rubin, 

1977, p. 10) defined that the convergence rate m* of GEM is the maximum one among all mi
*, 

as seen in equation 3.26. The convergence rate m* implies lowest speed. 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑟

∗}  where 𝑚1
∗ =

ℎ1
∗

𝑞1
∗ (3.26) 

From equation 3.2 and equation 3.17, we have (Dempster, Laird, & Rubin, 1977, p. 10): 

𝐷2𝐿(Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) − 𝐷20𝐻(Θ∗|Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) − 𝐷20𝑄(Θ∗|Θ∗)𝐷𝑀(Θ∗)

= 𝐷20𝑄(Θ∗|Θ∗)(𝐼 − 𝐷𝑀(Θ∗)) 

Where I is identity matrix: 

𝐼 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 
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By the same way to draw convergence matrix Me
* with note that D20H(Θ* | Θ*), D20Q(Θ* | Θ*), 

and DM(Θ*) are symmetric matrices, we have: 

𝐿𝑒 = 𝑄𝑒(𝐼 − 𝑀𝑒) (3.27) 

Where Le
* is eigenvalue matrix of D2L(Θ*). From equation 3.27, each eigenvalue li

* of Le
* is 

proportional to each eigenvalues qi
* of Qe

* with ratio 1–mi
* where mi

* is an eigenvalue of Me
*. 

Equation 3.28 specifies a so-called speed matrix Se
*: 

𝑆𝑒
∗ = (

𝑠1
∗ = 1 −𝑚1

∗ 0 ⋯ 0
0 𝑠2

∗ = 1 −𝑚2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑟

∗ = 1 −𝑚𝑟
∗

) (3.28) 

From equation 3.25 and equation 3.28, we have 0 ≤ si
* ≤ 1. Equation 3.29 specifies Le

* which 

is eigenvalue matrix of D2L(Θ*). 

𝐿𝑒
∗ = (

𝑙1
∗ = 𝑞1

∗𝑠1
∗ 0 ⋯ 0

0 𝑙2
∗ = 𝑞2

∗𝑠2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑙𝑟

∗ = 𝑞𝑟
∗𝑠𝑟
∗

) (3.29) 

From equation 3.28, suppose Θ(t) = (θ1
(t), θ2

(t),…, θr
(t)) at current tth iteration and Θ* = (θ1

*, 

θ2
*,…, θr

*), each si
* = 1–mi

* is really the speed that the next θi
(t+1) moves to θi

*. From equation 

3.26 and equation 3.28, equation 3.30 specifies the speed s* of GEM algorithm. 

𝑠∗ = 1 −𝑚∗ 

Where, 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ , 𝑚2
∗ , … ,𝑚𝑟

∗} 
(3.30) 

As a convention, if GEM algorithm fortunately stops at the first iteration such that Θ(1) = Θ(2) 

= Θ* then, s* = 1. 

For example, when Θ degrades into scalar as Θ = θ, the fourth column of table 1.2 

(Dempster, Laird, & Rubin, 1977, p. 3) gives sequences which approaches Me
* = DM(θ*) 

through many iterations by the following ratio to determine the limit in equation 3.23 with θ* 

= 0.6268. 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
 

In practice, if GEM is run step by step, θ* is not known yet at some tth iteration when GEM 

does not converge yet. Hence, equation 3.24 (McLachlan & Krishnan, 1997, p. 120) is used to 

make approximation of Me
* = DM(θ*) with unknown θ* and θ(t) ≠ θ(t+1). 

𝐷𝑀(𝜃∗) ≈
𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 

It is required only two successive iterations because both θ(t) and θ(t+1) are determined at tth 

iteration whereas θ(t+2) is determined at (t+1)th iteration. For example, in table 1.2, given θ(1) = 

0.5, θ(2) = 0.6082, and θ(3) = 0.6243, at t = 1, we have: 

𝐷𝑀(𝜃∗) ≈
𝜃(3) − 𝜃(2)

𝜃(2) − 𝜃(1)
=
0.6243 − 0.6082

0.6082 − 0.5
= 0.1488 

Whereas the real Me
* = DM(θ*) is 0.1465 shown in the fourth column of table 1.2 at t = 1. 

We will prove by contradiction that if definition 3.1 is satisfied strictly such that Q(M(Θ(t)) 

| Θ(t)) > Q(Θ(t) | Θ(t)) then, li
* < 0 for all i. Conversely, suppose we always have li

* ≥ 0 for some 

i when Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)). Given Θ degrades into scalar as Θ = θ with note that  

scalar is 1-element vector, when Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)), the sequence {𝐿(𝜃(𝑡))}
𝑡=1

+∞
=

𝐿(𝜃(1)), 𝐿(𝜃(2)), … , 𝐿(𝜃(𝑡)),… is strictly increasing, which in turn causes that the sequence 

{𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is strictly monotonous. This means: 

𝜃1 < 𝜃2 < ⋯ < 𝜃𝑡 < 𝜃𝑡+1 < ⋯ < 𝜃∗ 
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Or 

𝜃1 > 𝜃2 > ⋯ > 𝜃𝑡 > 𝜃𝑡+1 > ⋯ > 𝜃∗ 
It implies 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
< 1, ∀𝑡 

So we have 

𝑆𝑒
∗ = 1 −𝑀𝑒

∗ = 1 − lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
> 0 

From equation 3.29, we deduce that D2L(θ*) = Le
* = Qe

*Se
* < 0 where Qe

* = D20Q(θ* | θ*) < 0. 

However, this contradicts the converse assumption “there always exists li
* ≥ 0 for some i when 

Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t))”. Therefore, if Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)) then, li
* < 0 for all 

i. In other words, at that time, D2L(Θ*) = Le
* is negative definite. Recall that we proved that 

DL(Θ*) = 0 for corollary 3.3. Now we have D2L(Θ*) negative definite, which means that Θ* is 

a local maximizer of L(Θ*) in corollary 3.3. In other words, corollary 3.3 is proved. 

Recall that L(Θ) is the log-likelihood function of observed Y according to equation 2.3. 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝜑−1(𝑌)

) 

Both –D20H(Θ* | Θ*) and –D20Q(Θ* | Θ*) are information matrices (Zivot, 2009, pp. 7-9) 

specified by equation 3.31. 

𝐼𝐻(Θ
∗) = −𝐷20𝐻(Θ∗|Θ∗) 

𝐼𝑄(Θ
∗) = −𝐷20𝑄(Θ∗|Θ∗) 

(3.31) 

IH(Θ*) measures information of X about Θ* with support of Y whereas IQ(Θ*) measures 

information of X about Θ*. In other words, IH(Θ*) measures observed information whereas 

IQ(Θ*) measures hidden information. Let VH(Θ*) and VQ(Θ*) be covariance matrices of Θ* with 

regard to IH(Θ*) and IQ(Θ*), respectively. They are inverses of IH(Θ*) and IQ(Θ*) according to 

equation 3.32. 

𝑉𝐻(Θ
∗) = (𝐼𝐻(Θ

∗))
−1

𝑉𝑄(Θ
∗) = (𝐼𝑄(Θ

∗))
−1 (3.32) 

Equation 3.33 is a variant of equation 3.17 to calculate DM(Θ*) based on information matrices: 

𝐷𝑀(Θ∗) = 𝐼𝐻(Θ
∗) (𝐼𝑄(Θ

∗))
−1

= (𝑉𝐻(Θ
∗))

−1
𝑉𝑄(Θ

∗) (3.33) 

If f(X | Θ), g(Y | Θ) and k(X | Y, Θ) belong to exponential family, from equation 3.14 and 

equation 3.16, we have: 

𝐷20𝐻(Θ∗|Θ∗) = −𝑉(𝜏(𝑋)|𝑌, Θ∗) 
𝐷20𝑄(Θ∗|Θ∗) = −𝑉(𝜏(𝑋)|Θ∗) 

Hence, equation 3.34 specifies DM(Θ*) in case of exponential family. 

𝐷𝑀(Θ∗) = 𝑉(𝜏(𝑋)|𝑌, Θ∗)(𝑉(𝜏(𝑋)|Θ∗))
−1

 (3.34) 

Equation 3.35 specifies relationships among VH(Θ*), VQ(Θ*), V(τ(X) | Y, Θ*), and V(τ(X) | Θ*) 

in case of exponential family. 

𝑉𝐻(Θ
∗) = (𝑉(𝜏(𝑋)|𝑌, Θ∗))

−1

𝑉𝑄(Θ
∗) = (𝑉(𝜏(𝑋)|Θ∗))

−1  (3.35) 

 

4. Variants of EM algorithm 
The main purpose of EM algorithm (GEM algorithm) is to maximize the log-likelihood L(Θ) 

= log(g(Y | Θ)) with observed data Y by maximizing the condition expectation Q(Θ’ | Θ). Such 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


61 

 

Q(Θ’ | Θ) is defined fixedly in E-step. Therefore, most variants of EM algorithm focus on how 

to maximize Q(Θ’ | Θ) in M-step more effectively so that EM is faster or more accurate. 

 

4.1. EM algorithm with prior probability 

DLR (Dempster, Laird, & Rubin, 1977, pp. 6, 11) mentioned that the convergence rate DM(Θ*) 

specified by equation 3.17 can be improved by adding a prior probability π(Θ) in conjugation 

with f(X | Θ), g(Y | Θ) or k(X | Y, Θ) according to maximum a posteriori probability (MAP) 

method (Wikipedia, Maximum a posteriori estimation, 2017). For example, if π(Θ) in 

conjugation with g(Y | Θ) then, the posterior probability π(Θ | Y) is: 

𝜋(Θ|𝑌) =
𝑔(𝑌|Θ)𝜋(Θ)

∫ 𝑔(𝑌|Θ)𝜋(Θ)dΘ
Θ

 

Because ∫ 𝑔(𝑌|Θ)𝜋(Θ)dΘ
Θ

 is constant with regard to Θ, the optimal likelihood-maximization 

estimate Θ* is a maximizer of g(Y | Θ)π(Θ). When π(Θ) is conjugate prior of the posterior 

probability π(Θ | X)  (or π(Θ | Y)), both π(Θ) and π(Θ | X) (or π(Θ | Y)) have the same 

distributions (Wikipedia, Conjugate prior, 2018); for example, if π(Θ) is distributed normally, 

π(Θ | X) (or π(Θ | Y)) is also distributed normally. 

For GEM algorithm, the log-likelihood function associated MAP method is ℒ(Θ) specified 

by equation 4.1.1 with note that π(Θ) is non-convex function. 

ℒ(Θ) = log(𝑔(𝑌|Θ)𝜋(Θ)) = 𝐿(Θ) + log(𝜋(Θ)) (4.1.1) 

It implies from equation 3.2 that 

𝑄(Θ′|Θ) + log(𝜋(Θ′)) = 𝐿(Θ′) + log(𝜋(Θ′)) + 𝐻(Θ′|Θ) = ℒ(Θ′) + 𝐻(Θ′|Θ) 

Let, 

𝑄+(Θ
′|Θ) = 𝑄(Θ′|Θ) + log(𝜋(Θ′)) (4.1.2) 

GEM algorithm now aims to maximize Q+(Θ’ | Θ) instead of maximizing Q(Θ’ | Θ). The proof 

of convergence for Q+(Θ’ | Θ) is not changed in manner but determining the convergence 

matrix Me for Q+(Θ’ | Θ) is necessary. Because H(Θ’ | Θ) is kept intact whereas Q(Θ’ | Θ) is 

replaced by Q+(Θ’ | Θ), we expect that the convergence rate m* specified by equation 3.26 is 

smaller so that the convergence speed s* is increased and so GEM algorithm is improved with 

regard to Q+(Θ’ | Θ). Equation 4.1.3 specifies DM(Θ*) for Q+(Θ’ | Θ). 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄+(Θ
∗|Θ∗))

−1
 (4.1.3) 

Where Q+(Θ’ | Θ) is specified by equation 4.1.2 and D20Q+(Θ’ | Θ) is specified by equation 

4.1.4. 

𝐷20𝑄+(Θ
′|Θ) = 𝐷20𝑄(Θ′|Θ) + 𝐷20𝐿(𝜋(Θ′)) (4.1.4) 

Where, 

𝐿(𝜋(Θ′)) = log(𝜋(Θ′)) 
Because Q(Θ’ | Θ) and π(Θ’) are smooth enough, D20Q(Θ* | Θ*) and D20L(π(Θ*)) are symmetric 

matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018). 

Thus, D20Q(Θ* | Θ*) and D20L(π(Θ*)) are commutative: 

D20Q(Θ* | Θ*)D20L(π(Θ*)) = D20L(π(Θ*))D20Q(Θ* | Θ*) 

Suppose both D20Q(Θ* | Θ*) and D20L(π(Θ*)) are diagonalizable then, they are simultaneously 

diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a (orthogonal) 

eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange, 

2013): 

𝐷20𝑄(Θ∗|Θ∗) = 𝑉𝑄𝑒
∗𝑉−1

𝐷20𝐿(𝜋(Θ∗)) = 𝑉Π𝑒
∗𝑉−1

 

Where Qe
* and Πe

* are eigenvalue matrices of D20Q(Θ* | Θ*) and D20L(π(Θ*)), respectively. 

Note Qe
* and its eigenvalues are mentioned in equation 3.20. Because π(Θ*) is non-convex 

function, eigenvalues π1
*, π2

*,…, πr
* of Πe

* are non-positive. 
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Π𝑒
∗ = (

𝜋1
∗ 0 ⋯ 0

0 𝜋2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜋𝑟

∗

) 

From equation 4.1.2, D20Q+(Θ* | Θ*) is decomposed as below: 

𝐷20𝑄+(Θ
∗|Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) + 𝐷20𝐿(𝜋(Θ∗)) = 𝑉𝑄𝑒

∗𝑉−1 + 𝑉Π𝑒
∗𝑉−1 = 𝑉(𝑄𝑒

∗ + Π𝑒
∗)𝑉−1 

So eigenvalue matrix of D20Q+(Θ* | Θ*) is (Qe
* + Πe

*) and eigenvalues of D20Q+(Θ* | Θ*) are 

qi
* + πi

*, as follows: 

𝑄𝑒
∗ + Π𝑒

∗ = (

𝑞1
∗ + 𝜋1

∗ 0 ⋯ 0
0 𝑞2

∗ + 𝜋2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑟

∗ + 𝜋𝑟
∗

) 

According to equation 3.19, the eigenvalue matrix of D20H(Θ* | Θ*) is He
* fixed as follows: 

𝐻𝑒
∗ = (

ℎ1
∗ 0 ⋯ 0

0 ℎ2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑟

∗

) 

Due to DM(Θ*) = D20H(Θ* | Θ*)D20Q+(Θ* | Θ*), equation 3.21 is re-calculated: 

𝐷𝑀(Θ∗) = (𝑈𝐻𝑒
∗𝑈−1)(𝑈(𝑄𝑒

∗ + Π𝑒
∗)𝑈−1)−1 = 𝑈𝐻𝑒

∗𝑈−1𝑈(𝑄𝑒
∗ +Π𝑒

∗)−1𝑈−1

= 𝑈(𝐻𝑒
∗(𝑄𝑒

∗ + Π𝑒
∗)−1)𝑈−1 

As a result, the convergence matrix Me
* which is eigenvalue matrix of DM(Θ*) is re-calculated 

by equation 4.1.5. 

𝑀𝑒
∗ = 𝐻𝑒

∗(𝑄𝑒
∗ + Π𝑒

∗)−1 =

(

 
 
 
 
 
𝑚1
∗ =

ℎ1
∗

𝑞1
∗ + 𝜋1

∗ 0 ⋯ 0

0 𝑚2
∗ =

ℎ2
∗

𝑞2
∗ + 𝜋2

∗ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑚𝑟
∗ =

ℎ𝑟
∗

𝑞𝑟∗ + 𝜋𝑟∗)

 
 
 
 
 

 (4.1.5) 

The convergence rate m* of GEM is re-defined by equation 4.1.6. 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑟

∗}  where 𝑚𝑖
∗ =

ℎ𝑖
∗

𝑞𝑖
∗ + 𝜋𝑖

∗ (4.1.6) 

Because all hi
*, qi

*, and πi
* are non-positive, we have: 

ℎ𝑖
∗

𝑞𝑖
∗ + 𝜋𝑖

∗ ≤
ℎ𝑖
∗

𝑞𝑖
∗  , ∀𝑖 

Therefore, by comparing equation 4.1.6 and equation 3.26, we conclude that m* is smaller with 

regard to Q+(Θ’ | Θ). In other words, the convergence rate is improved with support of prior 

probability π(Θ). In literature of EM, the combination of GEM and MAP with support of π(Θ) 

results out a so-called MAP-GEM algorithm. 

 

4.2. EM algorithm with Newton-Raphson method 

In the M-step of GEM algorithm, the next estimate Θ(t+1) is a maximizer of Q(Θ | Θ(t)), which 

means that Θ(t+1) is a solution of equation D10Q(Θ | Θ(t)) = 0T where D10Q(Θ | Θ(t)) is the first-

order derivative of Q(Θ | Θ(t)) with regard to variable Θ. Newton-Raphson method (McLachlan 

& Krishnan, 1997, p. 29) is applied into solving the equation D10Q(Θ | Θ(t)) = 0T. As a result, 

M-step is replaced a so-called Newton step (N-step). 

N-step starts with an arbitrary value Θ0 as a solution candidate and also goes through many 

iterations. Suppose the current parameter is Θi, the next value Θi +1 is calculated based on 

equation 4.2.1. 
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Θ𝑖+1 = Θ𝑖 − (𝐷
20𝑄(Θ𝑖|Θ

(𝑡)))
−1

(𝐷10𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

 (4.2.1) 

N-step converges after some ith iteration. At that time, Θi+1 is solution of equation D10Q(Θ | Θ(t)) 

= 0 if Θi+1=Θi. So the next parameter of GEM is Θ(t+1) = Θi+1. The equation 4.2.1 is Newton-

Raphson process. Recall that D10Q(Θ | Θ(t)) is gradient vector and D20Q(Θ | Θ(t)) is Hessian 

matrix. Following is a proof of equation 4.2.1. 

According to first-order Taylor series expansion of D10Q(Θ | Θ(t)) at Θ = Θi with very small 

residual, we have: 

𝐷10𝑄(Θ|Θ(𝑡)) ≈ 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) + (Θ − Θ𝑖)

𝑇 (𝐷20𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

 

Because Q(Θ | Θ(t)) is smooth enough, D20Q(Θ | Θ(t)) is symmetric matrix according to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies: 

D20Q(Θ | Θ(t)) = (D20Q(Θ | Θ(t)))T 

So we have: 

𝐷10𝑄(Θ|Θ(𝑡)) ≈ 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) + (Θ − Θ𝑖)

𝑇𝐷20𝑄(Θ𝑖|Θ
(𝑡)) 

Let Θ = Θi+1 and we expect that D10Q(Θi+1 | Θ
(t)) = 0T so that Θi+1 is a solution. 

𝟎𝑇 = 𝐷10𝑄(Θ𝑖+1|Θ
(𝑡)) ≈ 𝐷10𝑄(Θ𝑖|Θ

(𝑡)) + (Θ𝑖+1 − Θ𝑖)
𝑇𝐷20𝑄(Θ𝑖|Θ

(𝑡)) 
It implies: 

(Θ𝑖+1)
𝑇 ≈ (Θ𝑖)

𝑇 −𝐷10𝑄(Θ𝑖|Θ
(𝑡)) (𝐷20𝑄(Θ𝑖|Θ

(𝑡)))
−1

 

This means: 

Θ𝑖+1 ≈ Θ𝑖 − (𝐷
20𝑄(Θ𝑖|Θ

(𝑡)))
−1

(𝐷10𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

∎ 

Rai and Matthews (Rai & Matthews, 1993) proposed a so-called EM1 algorithm in which 

Newton-Raphson process is reduced into one iteration, as seen in table 4.2.1 (Rai & Matthews, 

1993, pp. 587-588). Rai and Matthews assumed that f(x) belongs to exponential family but their 

EM1 algorithm is really a variant of GEM in general. In other words, there is no requirement 

of exponential family for EM1. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step: 

The next parameter Θ(t+1) is: 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.2) 
 

Table 4.2.1. E-step and M-step of EM1 algorithm 

Rai and Matthews proved convergence of EM1 algorithm by their proposal of equation 4.2.2. 

Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ = Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

Where Θ0
(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡))

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡))

− (Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

By substituting equation 4.2.2 for Q(Θ(t+1) | Θ(t)) – Q(Θ(t) | Θ(t)) with note that D20Q(Θ | Θ(t)) is 

symmetric matrix, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇
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−𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ 𝐷20(Θ0
(𝑡+1)

|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

(Due to ((𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1
)
𝑇

= ((𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇
)
−1

= (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

) 

Let, 

𝐴 = (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

 

Because Q(Θ’ | Θ) is smooth enough, D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are symmetric 

matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018). 

Thus, D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are commutative: 

D20Q(Θ(t) | Θ(t))D20Q(Θ0
(t+1) | Θ(t)) = D20Q(Θ0

(t+1) | Θ(t))D20Q(Θ(t) | Θ(t))  

Suppose both D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are diagonalizable then, they are 

simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a 

(orthogonal) eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) 

(StackExchange, 2013): 

𝐷20𝑄(Θ(𝑡)|Θ(𝑡)) = 𝑊𝑄𝑒
(𝑡)𝑊−1

𝐷20𝑄(Θ0
(𝑡+1)|Θ(𝑡)) = 𝑊𝑄𝑒

(𝑡+1)𝑊−1
 

Where Qe
(t) and Qe

(t+1) are eigenvalue matrices of D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)), 

respectively. Matrix A is decomposed as below: 

𝐴 = (𝑊𝑄𝑒
(𝑡)𝑊−1)

−1

∗ (𝑊𝑄𝑒
(𝑡+1)𝑊−1) ∗ (𝑊𝑄𝑒

(𝑡)𝑊−1)
−1

 

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑊−1𝑊𝑄𝑒
(𝑡+1)𝑊−1𝑊(𝑄𝑒

(𝑡))
−1

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑄𝑒
(𝑡+1)𝑄𝑒

(𝑡)𝑊−1 

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑄𝑒
(𝑡)𝑄𝑒

(𝑡+1)𝑊−1 = 𝑊𝑄𝑒
(𝑡+1)𝑊−1 

(Because Qe
(t) and Qe

(t+1) are commutative) 

Hence, eigenvalue matrix of A is also Qe
(t+1). Suppose D20Q(Θ0

(t+1) | Θ(t)) is negative definite, A 

is negative definite too. We have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐴 ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Because D20Q(Θ(t) | Θ(t)) is negative definite, we have: 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

< 0 

Because A is negative definite, we have: 

𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐴 ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

< 0 

As a result, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0, ∀𝑡∎ 

Hence, EM1 surely converges to a local maximizer Θ* according to corollary 3.3 with 

assumption that D20Q(Θ0
(t+1) | Θ(t)) and D20Q(Θ(t) | Θ(t)) are negative definite for all t where 

Θ0
(t+1) is a point on the line segment joining Θ and Θ(t+1). 

Rai and Matthews made experiment on their EM1 algorithm (Rai & Matthews, 1993, p. 

590). As a result, EM1 algorithm saved a lot of computations in M-step. In fact, by comparing 

GEM (table 2.3) and EM1 (table 4.2.1), we conclude that EM1 increases Q(Θ | Θ(t)) after each 

iteration whereas GEM maximizes Q(Θ | Θ(t)) after each iteration. However, EM1 will 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


65 

 

maximizes Q(Θ | Θ(t)) at the last iteration when it converges. EM1 gains this excellent and 

interesting result because of Newton-Raphson process specified by equation 4.2.2. 

Because equation 3.17 is not changed with regard to EM1, the convergence matrix of EM1 

is not changed. 

𝑀𝑒 = 𝐻𝑒𝑄𝑒
−1 

Therefore, EM1 does not improve convergence rate in theory as MAP-GEM algorithm does 

but EM1 algorithm really speeds up GEM process in practice because it saves computational 

cost in M-step. 

In equation 4.2.2, the second-order derivative D20Q(Θ(t) | Θ(t)) is re-computed at every 

iteration for each Θ(t). If D20Q(Θ(t) | Θ(t)) is complicated, it can be fixed by D20Q(Θ(1) | Θ(1)) 

over all iterations where Θ(1) is arbitrarily initialized for EM process so as to  save 

computational cost. In other words, equation 4.2.2 is replaced by equation 4.2.3 (Ta, 2014). 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Θ(1)|Θ(1)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.3) 

In equation 4.2.3, only D10Q(Θ(t) | Θ(t)) is re-computed at every iteration whereas D20Q(Θ(1) | 

Θ(1)) is fixed. Equation 4.2.3 implies a pseudo Newton-Raphson process which still converges 

to a local maximizer Θ* but it is slower than Newton-Raphson process specified by equation 

4.2.2 (Ta, 2014). 

Newton-Raphson process specified by equation 4.2.2 has second-order convergence. I 

propose to use equation 4.2.4 for speeding up EM1 algorithm. In other words, equation 4.2.2 

is replaced by equation 4.2.4 (Ta, 2014), in which Newton-Raphson process is improved with 

third-order convergence. Note, equation 4.2.4 is common in literature of Newton-Raphson 

process. 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Φ(𝑡)|Θ(𝑡)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Where, 

Φ(𝑡) = Θ(𝑡) −
1

2
(𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

(4.2.4) 

The convergence of equation 4.2.4 is same as the convergence of equation 4.2.2. Following is 

a proof of equation 4.2.4 by Ta (Ta, 2014). 

Without loss of generality, suppose Θ is scalar such that Θ = θ, let 

𝑞(𝜃) = 𝐷10𝑄(𝜃|𝜃(𝑡)) 

Let r(θ) represents improved Newton-Raphson process. 

𝜂(𝜃) = 𝜃 −
𝑞(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

Suppose ω(θ) has first derivative and we will find ω(θ). According to Ta (Ta, 2014), the first-

order derivative of η(θ) is: 

𝜂′(𝜃) = 1 −
𝑞′(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

+
𝑞(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

According to Ta (Ta, 2014), the second-order derivative of η(θ) is: 

𝜂′′(𝜃) = −
𝑞′′(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

+
2𝑞′(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  
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−
2𝑞(𝜃) (𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))

2

(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))
2

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
3  

+
𝑞(𝜃)𝑞′′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

2

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

+
(𝑞(𝜃))

2
𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))𝜔′′(𝜃)

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

+
𝑞(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(2𝜔′(𝜃)𝑞′(𝜃) + 𝜔(𝜃)𝑞′′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

If 𝜃̅ is solution of equation q(θ) = 0, Ta (Ta, 2014) gave: 

𝑞(𝜃̅) = 0

𝜂(𝜃̅) = 𝜃̅

𝜂′(𝜃̅) = 0

𝜂′′(𝜃̅) =
𝑞′′(𝜃̅)

𝑞′(𝜃̅)
(1 + 2𝜔(𝜃̅)𝑞′(𝜃̅))

 

In order to achieve 𝜂′′(𝜃̅) = 0, Ta (Ta, 2014) selected: 

𝜔(𝜃) = −
𝑞(𝜃)

2𝑞′(𝜃)
, ∀𝜃 

According to Ta (Ta, 2014), Newton-Raphson process is improved as follows: 

𝜃(𝑡+1) = 𝜃(𝑡) −
𝑞(𝜃(𝑡))

𝑞′ (𝜃(𝑡) −
𝑞(𝜃(𝑡))

2𝑞′(𝜃(𝑡))
)

 

This means: 

𝜃(𝑡+1) = 𝜃(𝑡) −
𝐷10𝑄(𝜃|𝜃(𝑡))

𝐷20𝑄 (𝜃(𝑡) −
𝐷10𝑄(𝜃|𝜃(𝑡))

2𝐷20𝑄(𝜃|𝜃(𝑡))
|𝜃(𝑡))

 

As a result, equation 4.2.4 is a generality of the equation above when Θ is vector. 

I propose to apply gradient descent method (Ta, 2014) into M-step of GEM so that Newton-

Raphson process is replaced by gradient descent process with expectation that descending 

direction which is the opposite of gradient vector D10Q(Θ | Θ(t)) speeds up convergence of GEM. 

Table 4.2.2 specifies GEM associated with gradient descent method, which is called GD-GEM 

algorithm. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step: 

The next parameter Θ(t+1) is: 

Θ(𝑡+1) = Θ(𝑡) − 𝛾(𝑡) (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.5) 

Where γ(t) > 0 is length of the descending direction. As usual, γ(t) is selected such that 

𝛾(𝑡) = argmax
𝛾

𝑄(Φ(𝑡)|Θ(𝑡)) (4.2.6) 

Where, 

Φ(𝑡) = Θ(𝑡) + 𝛾𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) 
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Table 4.2.1. E-step and M-step of GD-GEM algorithm 

Note, gradient descent method is used to solve minimization problem but its use for solving 

maximization problem is the same. Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ 

= Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

Where Θ0
(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡))

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡))

− (Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

By substituting equation 4.2.5 for Q(Θ(t+1) | Θ(t)) – Q(Θ(t+1) | Θ(t)), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= 𝛾(𝑡)𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−(𝛾(𝑡))
2
𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐷20(Θ0

(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Due to: 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

≥ 0

Suppose 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) is negative definite

𝛾(𝑡) > 0

 

As a result, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0, ∀𝑡∎ 

Hence, GD-GEM surely converges to a local maximizer Θ* according to corollary 3.3 with 

assumption that D20Q(Θ0
(t+1) | Θ(t)) is negative definite where Θ0

(t+1) is a point on the line 

segment joining Θ and Θ(t+1). 

It is not easy to solve the maximization problem with regard to γ according to equation 

4.2.6. So if Q(Θ | Θ(t)) satisfies Wolfe conditions (Wikipedia, Wolfe conditions, 2017) and 

concavity and D10Q(Θ | Θ(t)) is Lipschitz continuous (Wikipedia, Lipschitz continuity, 2018) 

then, equation 4.2.6 is replaced by equation 4.2.7 (Wikipedia, Gradient descent, 2018). 

𝛾(𝑡) =
(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐷10𝑄(Θ(𝑡)|Θ(𝑡−1))) (Θ(𝑡) − Θ(𝑡−1))

|𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐷10𝑄(Θ(𝑡)|Θ(𝑡−1))|
2  (4.2.7) 

Where |.| denotes length or module of vector. 

 

4.3. EM algorithm with Aitken acceleration 

According to Lansky and Casella (Lansky & Casella, 1992), GEM converges faster by 

combination of GEM and Aitken acceleration. Without loss of generality, suppose Θ is scalar 

such that Θ = θ, the sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is monotonous. From equation 

3.23 

𝐷𝑀(𝜃∗) = lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
 

We have the following approximate with t large enough (Lambers, 2009, p. 1): 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≈
𝜃(𝑡+2) − 𝜃∗

𝜃(𝑡+1) − 𝜃∗
 

We establish the following equation from the above approximation, as follows (Lambers, 2009, 

p. 1): 
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𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≈
𝜃(𝑡+2) − 𝜃∗

𝜃(𝑡+1) − 𝜃∗
 

⇒ (𝜃(𝑡+1) − 𝜃∗)
2
≈ (𝜃(𝑡+2) − 𝜃∗)(𝜃(𝑡) − 𝜃∗) 

⇒ (𝜃(𝑡+1))
2
− 2𝜃(𝑡+1)𝜃∗ ≈ 𝜃(𝑡+2)𝜃(𝑡) − 𝜃(𝑡+2)𝜃∗ − 𝜃(𝑡)𝜃∗ 

⇒ (𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡))𝜃∗ ≈ 𝜃(𝑡)(𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)) − (𝜃(𝑡+1) − 𝜃(𝑡))
2
 

Hence, θ* is approximated by (Lambers, 2009, p. 1) 

𝜃∗ ≈ 𝜃(𝑡) −
(𝜃(𝑡+1) − 𝜃(𝑡))

2

𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)
 

We construct Aitken sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … such that (Wikipedia, Aitken's 

delta-squared process, 2017) 

𝜃(𝑡) = 𝜃(𝑡) −
(𝜃(𝑡+1) − 𝜃(𝑡))

2

𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)
= 𝜃(𝑡) −

(∆𝜃(𝑡))
2

∆2𝜃(𝑡)
 (4.3.1) 

Where Δ is forward difference operator, 

∆𝜃(𝑡) = 𝜃(𝑡+1) − 𝜃(𝑡) 
And 

∆2𝜃(𝑡) = ∆(∆𝜃(𝑡)) = ∆(𝜃(𝑡+1) − 𝜃(𝑡)) = ∆𝜃(𝑡+1) − ∆𝜃(𝑡)

= (𝜃(𝑡+2) − 𝜃(𝑡+1)) − (𝜃(𝑡+1) − 𝜃(𝑡)) = 𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡) 

When Θ is vector as Θ = (θ1, θ2,…, θr)
T, Aitken sequence {Θ̂(𝑡)}

𝑡=1

+∞
= Θ̂(1), Θ̂(2), … , Θ̂(𝑡), … is 

defined by applying equation 4.3.1 into its components θi (s) according to equation 4.3.2: 

𝜃𝑖
(𝑡) = 𝜃𝑖

(𝑡) −
(∆𝜃𝑖

(𝑡))
2

∆2𝜃𝑖
(𝑡)

, ∀𝑖 = 1,2, … , 𝑟 (4.3.2) 

Where, 

∆𝜃𝑖
(𝑡) = 𝜃𝑖

(𝑡+1) − 𝜃𝑖
(𝑡)

 

∆2𝜃(𝑡) = 𝜃𝑖
(𝑡+2) − 2𝜃𝑖

(𝑡+1) + 𝜃𝑖
(𝑡)

 

According theorem of Aitken acceleration, Aitken sequence {Θ̂(𝑡)}
𝑡=1

+∞
 approaches Θ* faster 

than the sequence {Θ(𝑡)}
𝑡=1

+∞
= Θ(1), Θ(2), … , Θ(𝑡), … with note that the sequence {Θ(𝑡)}

𝑡=1

+∞
 is 

instance of GEM. 

lim
𝑡→+∞

𝜃𝑖
(𝑡) − 𝜃𝑖

∗

𝜃𝑖
(𝑡) − 𝜃𝑖

∗
= 0 

Essentially, the combination of GEM and Aitken acceleration is to replace the sequence 

{Θ(𝑡)}
𝑡=1

+∞
 by Aitken sequence {Θ̂(𝑡)}

𝑡=1

+∞
 as seen in table 4.3.1. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.8. Actually, Q(Θ | Θ(t)) is formulated as function of Θ. Note that t = 1, 2, 3,… and Θ(0) 

= Θ(1). 

M-step: 

Let Θ(t+1) = (θ1
(t+1), θ2

(t),…, θr
(t+1))T be a maximizer of Q(Θ | Θ(t)). Note Θ(t+1) will become 

current parameter at the next iteration ((t+1)th iteration). 

Aitken parameter Θ̂(𝑡−1) = (𝜃1
(𝑡−1), 𝜃2

(𝑡−1), … , 𝜃𝑟
(𝑡−1))

𝑇

 is calculated according to 

equation 4.3.2. 
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𝜃𝑖
(𝑡−1) = 𝜃𝑖

(𝑡−1) −
(∆𝜃𝑖

(𝑡−1)
)
2

∆2𝜃𝑖
(𝑡−1)

 

If Θ̂(𝑡−1) = Θ̂(𝑡−2) then, the algorithm stops and we have Θ̂(𝑡−1) = Θ̂(𝑡−2) = Θ∗.  
Table 4.3.1. E-step and M-step of GEM algorithm combined with Aitken acceleration 

Because Aitken sequence {Θ̂(𝑡)}
𝑡=1

+∞
converges to Θ* faster than the sequence {Θ(𝑡)}

𝑡=1

+∞
 does, the 

convergence of GEM is improved with support of Aitken acceleration method. 

In equation 4.3.2, parametric components θi (s) converges separately. Guo, Li, and Xu (Guo, 

Li, & Xu, 2017) assumed such components converges together with the same rate. So they 

replaced equation 4.3.2 by equation 4.3.3 (Guo, Li, & Xu, 2017, p. 176) for Aitken sequence 

{Θ̂(𝑡)}
𝑡=1

+∞
. 

Θ̂(𝑡) = Θ(𝑡) −
|∆Θ(𝑡)|

2

|∆2Θ(𝑡)|
∆2Θ(𝑡) (4.3.3) 

 

4.4. ECM algorithm 

Because M-step of GEM is complicated, Meng and Rubin (Meng & Rubin, 1993) proposed a 

so-called Expectation Conditional Expectation (ECM) algorithm in which M-step is replaced 

by several computationally simpler Conditional Maximization (CM) steps. Each CM-step 

maximizes Q(Θ | Θ(t)) on given constraint. ECM is very useful in the case that maximization 

of Q(Θ | Θ(t)) with constraints is simpler than maximization of Q(Θ | Θ(t)) without constraints 

as usual. 

Suppose the parameter Θ is partitioned into S sub-parameters Θ = {Θ1, Θ2,…, ΘS} and there 

are S pre-selected vector function gs(Θ): 

𝐺 = {𝑔𝑠(Θ); 𝑠 = 1,2, … , 𝑆} (4.4.1) 

Each function gs(Θ) represents a constraint. Support there is a sufficient enough number of 

derivatives of each gs(Θ). In ECM algorithm (Meng & Rubin, 1993, p. 268), M-step is replaced 

by a sequence of CM-steps. Each CM-step maximizes Q(Θ | Θ(t)) over Θ but with some function 

gs(Θ) fixed at its previous value. Concretely, there are S CM-steps and every sth CM-step finds 

Θ(t+s/S) that maximizes Q(Θ | Θ(t)) over Θ subject to the constraint gs(Θ) = gs(Θ
(t+(s–1)/S)). The 

next parameter Θ(t+1) is the output of the final CM-step such that Θ(t+1) = Θ(t+s/S). Table 4.4.1 

(Meng & Rubin, 1993, p. 272) shows E-step and CM-steps of ECM algorithm. 

E-step: 

As usual, Q(Θ | Θ(t)) is determined based on current Θ(t) according to equation 2.8. 

Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

CM-steps: 

There are S CM-steps. In every sth CM step (s =1, 2,…, S), finding 

Θ(𝑡+
𝑠
𝑆
) = argmax

Θ
{𝑄(Θ|Θ(𝑡)) with subject to 𝑔𝑠(Θ) = 𝑔𝑠 (Θ

(𝑡+
𝑠−1
𝑆
))} (4.4.2) 

The next parameter Θ(t+1) is the output of the final CM-step (Sth CM-step): 

Θ(𝑡+1) = Θ(𝑡+
𝑆
𝑆
)
 (4.4.3) 

Note, Θ(t+1) will become current parameter at the next iteration ((t+1)th iteration). 

Table 4.3.1. E-step and CM-steps of ECM algorithm 

ECM algorithm stops at some tth iteration such that Θ(t) = Θ(t+1) = Θ*. CM-steps depend on how 

to define pre-selected functions in G. For example, if gs(Θ) consists all sub-parameters except 

Θs then, the sth CM-step maximizes Q(Θ | Θ(t)) with regard to Θs whereas other sub-parameters 

are fixed. If gs(Θ) consists only Θs then, the sth CM-step maximizes Q(Θ | Θ(t)) with regard to 

all sub-parameters except Θs. Note, definition of ECM algorithm is specified by equation 4.4.2 

and equation 4.4.3 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


70 

 

From equation 4.4.2 and equation 4.4.3, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝑄(𝑀(Θ(𝑡))|Θ(𝑡)) ≥ 𝑄(Θ(𝑡)|Θ(𝑡)), ∀𝑡 
Hence, the convergence of ECM is asserted according to corollary 3.3. However, Meng and 

Rubin (Meng & Rubin, 1993, pp. 274-276) provided some conditions for convergence of ECM 

to a maximizer of L(Θ). 

 

5. Applications of EM 
 

5.1. Mixture model and EM 

As usual, let X be the hidden or latent space and let Y be the observed space. Especially, the 

random variable X in X represents latent class or latent component of random variable Y in Y. 

Suppose X is discrete and ranges in X = {1, 2,…, K}. The so-called probabilistic finite mixture 

model is represented by the PDF of Y, as seen in equation 5.1.1. 

𝑓(𝑌|Θ) = ∑𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)

𝐾

𝑋=1

 (5.1.1) 

Where, 

Θ = (𝛼1, 𝛼2, … , 𝛼𝐾, 𝜃1, 𝜃2, … , 𝜃𝐾)
𝑇

∑𝛼𝑘

𝐾

𝑘=1

= 1
 

Note, Y can be discrete or continuous. Recall that the ultimate purpose of EM algorithm is to 

maximize f(Y|Θ) with subject to Θ. Each fX(Y|θX) is called the Xth partial PDF of Y whose partial 

parameter is θX. Each fX(Y|θX) is also called the Xth observational PDF of Y. It is really the 

conditional PDF of Y given X, as seen in equation 5.1.2. 

𝑓𝑋(𝑌|𝜃𝑋) = 𝑓(𝑌|𝑋, 𝜃𝑋) (5.1.2) 

From equation 5.1.1, the mixture model f(Y|Θ) is the mean of K partial PDFs. The variable X 

implies which partial PDF “generates” Y (Bilmes, 1998, p. 5). 

Each αX is called mixture coefficient. It is really the probability of discrete X, as seen in 

equation 5.1.3. However, in mixture model, each αX is also considered as parameter, which is 

belongs to the compound parameter Θ. 

𝛼𝑋 = 𝑃(𝑋) (5.1.3) 

The joint probabilistic distribution of X and Y, which implies the implicit mapping between X 

and Y, is product of the mixture coefficient αX and the Xth PDF of Y, as seen in equation 5.1.4. 

𝑓(𝑋, 𝑌|Θ) = 𝑃(𝑋)𝑓(𝑌|𝑋, 𝜃𝑋) = 𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋) (5.1.4) 

This implies: 

𝑓(𝑌|Θ) = ∑𝑓(𝑋, 𝑌|Θ)

𝐾

𝑋=1

= ∑𝑃(𝑋)𝑓(𝑌|𝑋, 𝜃𝑋)

𝐾

𝑋=1

= ∑𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)

𝐾

𝑋=1

 (5.1.5) 

Equation 5.1.6 specifies the conditional probability of X given Y. Please pay attention to this 

important probability. 

𝑃(𝑋|𝑌, Θ) =
𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)

∑ 𝛼𝑙𝑓𝑙(𝑌|𝜃𝑙)
𝐾
𝑙=1

 (5.1.6) 

Following is the proof of equation 5.1.6. According to Bayes’ rule, we have: 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦, Θ) =
𝑃(𝑥)𝑓(𝑦|𝑥, 𝜃𝑥)

∑ 𝑃(𝑋)𝑓(𝑌|𝑋, 𝜃𝑋)
𝐾
𝑋=1

 

Applying equation 5.1.3 and equation 5.1.4, we have: 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦, Θ) =
𝛼𝑥𝑓𝑥(𝑦|𝜃𝑥)

∑ 𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋)
𝐾
𝑋=1

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


71 

 

In other words, equation 5.1.6 is established■ 

Now GEM algorithm is applied into mixture model for estimating the parameter Θ. Derived 

from equation 2.12, the conditional expectation Q(Θ’|Θ) of mixture model becomes: 

𝑄(Θ′|Θ) = ∑𝑃(𝑋|𝑌, Θ)log(𝑓(𝑋, 𝑌|Θ′))

𝑋∈𝑿

= ∑𝑃(𝑋|𝑌, Θ)log(𝛼𝑋𝑓𝑋(𝑌|𝜃𝑋
′ ))

𝑋∈𝑿

 (5.1.7) 

In practice, suppose Y is observed as a sample 𝒴 = {Y1, Y2,…, YN} of size N with note that all 

Yi (s) are mutually independent and identically distributed (iid). The observed sample 𝒴 is 

associated with a a hidden set (latent set) 𝒳 = {X1, X2,…, XN} of size N. All Xi (s) are iid and 

they are not existent in fact. Let 𝑋 ∈ 𝑿 be the random variable representing every Xi. Of course, 

the domain of X is X. Derived from equation 2.14, equation 5.1.8 specifies Q(Θ’|Θ) given such 

𝒴. 

𝑄(Θ′|Θ) =∑∑𝑃(𝑋|𝑌𝑖 , Θ)log(𝛼𝑋𝑓𝑋(𝑌𝑖|𝜃𝑋
′ ))

𝑋∈𝑿

𝑁

𝑖=1

 (5.1.8) 

Equation 5.1.8 is the general case of equation 5.1.7. At the tth iteration of GEM, given current 

parameter Θ(t) = (α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, the conditional expectation specified 

by equation 5.1.8 is written as follows: 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑋|𝑌𝑖, Θ
(𝑡))log(𝛼𝑋𝑓𝑋(𝑌𝑖|𝜃𝑋))

𝑋∈𝑿

𝑁

𝑖=1

 

Thus, the unknown of Q(Θ|Θ(t)) is Θ = (α1, α2,…, αK, θ1, θ2,…, θK)T. Because X is discrete and 

ranges in {1, 2,…, K}, the conditional expectation Q(Θ|Θ(t)) is re-written as equation 5.1.9 for 

convenience. 

𝑄(Θ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝛼𝑘𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

 (5.1.9) 

Where the conditional probability P(k | Y, Θ(t)) is determined by equation 5.1.10 which is indeed 

equation 5.1.6. 

𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) = 𝑃(𝑋 = 𝑘|𝑌𝑖, Θ

(𝑡)) =
𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 (5.1.10) 

At M-step of the current tth iteration, Q(Θ|Θ(t)) specified by equation 5.1.9 is maximized with 

subject to Θ. How to maximize Q(Θ|Θ(t)) with subject to Θ is dependent on types of partial 

PDFs fk(Yi|θk). 

Because there is the constraint ∑ 𝜃𝑘
𝑛
𝑘=1 = 1, we use Lagrange duality method to maximize 

to maximize Q(Θ|Θ(t)). The Lagrange function la(Θ, λ | Θ(t)) is sum of Q(Θ|Θ(t)) and the 

constraint ∑ 𝛼𝑘
𝐾
𝑘=1 = 1, which is specified by equation 5.1.11. 

𝑙𝑎(Θ, λ|Θ(𝑡)) = 𝑄(Θ|Θ(𝑡)) + 𝜆 (1 −∑𝛼𝑘

𝐾

𝑘=1

)

=∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝛼𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

+∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

+ 𝜆(1 −∑𝛼𝑘

𝐾

𝑘=1

) 

(5.1.11) 

Note, λ ≥ 0 is called Lagrange multiplier. Of course, la(Θ, λ | Θ(t)) is function of Θ and λ. The 

next parameters αk
(t+1) that maximizes Q(Θ|Θ(t)) is solution of the equation formed by setting 

the first-order partial derivative of Lagrange function regarding αk and λ to be zero with suppose 

that the Lagrange function is first-order smooth function. 
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𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝛼𝑘
= 0  

⇔
𝜕

𝜕𝛼𝑘
(∑∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))log(𝛼𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

+ 𝜆(1 −∑𝛼𝑘

𝐾

𝑘=1

)) = 0 

⇔∑
1

𝛼𝑘
𝑃(𝑘|𝑌𝑖 , Θ

(𝑡))

𝑁

𝑖=1

− 𝜆 = 0 

This implies: 

∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

− 𝛼𝑘𝜆 = 0 (5.1.12) 

Summing equation 5.1.12 over K classes {1, 2,…, K}, we have (Bilmes, 1998, p. 5): 

∑∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))

𝐾

𝑘=1

𝑁

𝑖=1

− 𝜆∑𝛼𝑘

𝐾

𝑘=1

= 0 

⟺𝑁− 𝜆 = 0 

(due to ∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝐾

𝑘=1

= 1 and ∑𝛼𝑘

𝐾

𝑘=1

= 1) 

⟺ 𝜆 = 𝑁 

Substituting λ = N into equation 5.1.12, the next parameters αk
(t+1) is totally determined by 

equation 5.1.13. 

𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

 (5.1.13) 

Note, the conditional probability P(k | Yi, Θ
(t)) is determined by equation 5.1.10. 

When parameters αk
(t+1) and λ are determined, the Lagrange function la(Θ, λ | Θ(t)) is now 

function of parameters θk as la(θk|θk
(t)). The next parameters θk

(t+1) is solution of the equation 

formed by setting the first-order partial derivative of Lagrange function regarding θk to be zero 

with suppose that the Lagrange function is first-order smooth function. 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝜃𝑘
= 0 

⇔
𝜕

𝜕𝜃𝑘
(∑∑𝑃(𝑘|𝑌𝑖 , Θ

(𝑡))log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

) = 0 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 0 

Thus, the next parameters θk
(t+1) is solution of the equation 5.1.14. 

∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 0 (5.1.14) 

 

The two steps of GEM algorithm for constructing mixture model at some tth iteration are shown 

in table 5.1.1. Note, suppose the Lagrange function is first-order smooth function. 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 5.1.10. 
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𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (α1
(t+1), α2

(t+1),…, αK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 5.1.13 and equation 

5.1.14. Note, θk
(t+1) is solution of the equation 5.1.14. 

𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜃𝑘
(𝑡+1):∑𝑃(𝑘|𝑌𝑖 , Θ

(𝑡))
𝜕log (𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡+1)))

𝜕𝜃𝑘

𝑁

𝑖=1

= 0

 

Table 5.1.1. E-step and M-step of GEM algorithm for constructing mixture model regarding 

first-order smooth Lagrange function 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the optimal 

estimate of mixture model regarding first-order smooth Lagrange function. 

Suppose that each PDF fk(Yi|θk) ) belongs to regular exponential family and then, solving 

equation 5.1.4 is easier as follows: 

∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))

𝜕log(𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝜕𝜃𝑘

𝑁

𝑖=1

= 0 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝜕log (𝑏(𝑌𝑖) exp(𝜃𝑘
𝑇𝜏(𝑌𝑖)) 𝑎(𝜃𝑘)⁄ )

𝜕𝜃𝑘

𝑁

𝑖=1

= 0 

(Due to fk(Yi|θk) ) belongs to exponential family) 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) (𝜏(𝑌𝑖) − log

′(𝑎(𝜃𝑘)))

𝑁

𝑖=1

= 0 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝜏(𝑌𝑖) − 𝐸(𝜏(𝑌)|𝜃𝑘))

𝑁

𝑖=1

= 0 

(Due to log’(a(θk)) = E(τ(Y|θk)), please see table 1.2) 

In general, the next parameters θk
(t+1) is solution of the equation 5.1.15 within regular 

exponential family. 

∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝜏(𝑌𝑖) − 𝐸(𝜏(𝑌)|𝜃𝑘))

𝑁

𝑖=1

= 0 (5.1.15) 

Where Y is the random variable representing all Yi (s) and, 

𝐸(𝜏(𝑌)|𝜃𝑘) = ∫𝜏(𝑌)𝑓𝑘(𝑌|𝜃𝑘)d𝑌

𝑌

 

The two steps of GEM algorithm for constructing mixture model at some tth iteration are shown 

in table 5.1.2 with suppose that each partial PDF fX(Y|θX) is assumed to belong regular 

exponential family. 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 5.1.10. 
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𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (α1
(t+1), α2

(t+1),…, αK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 5.1.13 and equation 

5.1.15. Note, θk
(t+1) is solution of the equation 5.1.15. 

𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜃𝑘
(𝑡+1):∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡)) (𝜏(𝑌𝑖) − 𝐸(𝜏(𝑌)|𝜃𝑘
(𝑡+1)))

𝑁

𝑖=1

= 0

 

Table 5.1.1. E-step and M-step of GEM algorithm for constructing mixture model regarding 

regular exponential family 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the optimal 

estimate of mixture model regarding regular exponential family. 

There is a special case that each fk(Yi|θk) is normal distribution, which is popular in domain 

of mixture model, with note that normal distribution belongs to regular exponential family. 

Thus, let Y be random variable representing all Yi. Without loss of generality, suppose Y is 

vector so that each fk(Y|θk) is multivariate normal distribution. Recall that each fk(Y|θk) is called 

the kth partial PDF of Y or the kth observational PDF of Y. In this case, the mixture model is 

called normal mixture model (Gaussian mixture model) and it is easy to solve equation 5.1.14 

or equation 5.1.15 for θk. Suppose random variable Y is vector of size n. 

𝑓𝑘(𝑌|𝜃𝑘) = (2𝜋)−
𝑛
2|Σ𝑘|

−
1
2exp (−

1

2
(𝑌 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌 − 𝜇𝑘)) (5.1.16) 

Where μk and Σk are mean vector and covariance matrix of fk(Y|θk), respectively. The notation 

|.| denotes determinant of given matrix and the notation Σk
–1 denotes inverse of matrix Σk. Note, 

Σk is invertible and symmetric. Now we find other parameters θk
(t+1) = (μk

(t+1), Σk
(t+1))T by solving 

directly equation 5.1.14 or equation 5.1.15. Recall that each Yi conforms to multivariate normal 

distribution, according to equation 5.1.16. 

𝑓𝑘(𝑌𝑖|𝜃𝑘) = (2𝜋)
−
𝑛
2|Σ𝑘|

−
1
2exp (−

1

2
(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)) 

Where μk and Σk are mean and covariance matrix of fk(Yi|θk), respectively. The Lagrange 

function is re-written as follows: 

𝑙𝑎(Θ, λ|Θ(𝑡)) =∑∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))log(𝛼𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

+∑∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) (−

𝑛

2
log(2π) −

1

2
log|Σ𝑘|

𝐾

𝑘=1

𝑁

𝑖=1

−
1

2
(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)) + 𝜆 (1 −∑𝛼𝑘

𝐾

𝑘=1

) 

Where p is the dimension of Yi; in other words, p is the dimension of space Y. 

The first-order partial derivative of Lagrange function with respect to μk is (Nguyen, 2015, 

p. 35): 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝜇𝑘
=∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))((𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1)

𝑁

𝑖=1
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(due to 
𝜕(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)

𝜕𝜇𝑘
= −2(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1 when Σ𝑘

−1 is symmetric) 

The next parameter μk
(t+1) that maximizes Q(Θ|Θ(t)) is solution of the equation formed by setting 

the first-order partial derivative of Lagrange function with regard to μk to be 0T. Note that 0 = 

(0, 0,…, 0)T is zero vector. 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝜇𝑘
= 𝟎𝑇 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))((𝑌𝑖 − 𝜇𝑘)

𝑇∑𝑘
−1)

𝑁

𝑖=1

= 𝟎𝑇 

⇔ (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝑌𝑖 − 𝜇𝑘)

𝑇

𝑁

𝑖=1

)∑𝑘
−1 = 𝟎𝑇 

⇒∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝑌𝑖 − 𝜇𝑘)

𝑇

𝑁

𝑖=1

= 𝟎𝑇 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))(𝑌𝑖 − 𝜇𝑘)

𝑁

𝑖=1

= 𝟎 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑌𝑖

𝑁

𝑖=1

− (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)𝜇𝑘 = 𝟎 

⇔ (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)𝜇𝑘 =∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))𝑌𝑖

𝑁

𝑖=1

 

This implies equation 5.1.17 to specify the next parameter μk
(t+1). 

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))𝑌𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

 (5.1.17) 

Note, the conditional probability P(k | Yi, Θ
(t)) is determined by equation 5.1.10. 

The first-order partial derivative of Lagrange function with respect to Σk is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕Σ𝑘
=∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡)) (−
1

2
Σ𝑘
−1 +

1

2
Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1)

𝑁

𝑖=1

 

Due to: 
𝜕 log(|Σ𝑘|)

𝜕Σ𝑘
= Σ𝑘

−1 

And 

𝜕(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘)

𝜕Σ𝑘
=
𝜕tr((𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1)

𝜕Σ𝑘
 

Because Bilmes (Bilmes, 1998, p. 5) mentioned: 

(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘) = tr((𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1) 

Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(𝐴) = ∑ 𝑎𝑖𝑖𝑖 . 

This implies (Nguyen, 2015, p. 45): 

𝜕(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘)

𝜕Σ𝑘
=
𝜕tr((𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)

𝑇Σ𝑘
−1)

𝜕Σ𝑘
= −Σ𝑘

−1(𝑌𝑖 − 𝜇𝑘)(𝑌𝑖 − 𝜇𝑘)
𝑇Σ𝑘

−1 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2020                   doi:10.20944/preprints201802.0131.v5

https://doi.org/10.20944/preprints201802.0131.v5


76 

 

Where Σk is symmetric and invertible matrix. Substituting the next parameter μk
(t+1) specified 

by equation 5.1.16 into the first-order partial derivative of Lagrange function with respect to 

Σk, we have: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕Σ𝑘
=∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡)) (−
1

2
Σ𝑘
−1 +

1

2
Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

Σ𝑘
−1)

𝑁

𝑖=1

 

The next parameter Σk
(t+1) that maximizes Q(Θ|Θ(t)) is the solution of equation formed by setting 

the first-order partial derivative of Lagrange function regarding Σk to zero matrix. Let (0) 

denote zero matrix. 

(𝟎) = (

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

) 

We have: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕Σ𝑘
= (𝟎) 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) (−

1

2
Σ𝑘
−1 +

1

2
Σ𝑘
−1(𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

Σ𝑘
−1)

𝑁

𝑖=1

= (𝟎) 

⇒∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) (−Σ𝑘 + (𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇
)

𝑁

𝑖=1

= (𝟎) 

⇔∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)

𝑁

𝑖=1

− (∑𝑃(𝑘|𝑌𝑖, Ψ
(𝑡))

𝑁

𝑖=1

)Σ𝑘 = (𝟎) 

⇔ (∑𝑃(𝑘|𝑌𝑖, Θ
(𝑡))

𝑁

𝑖=1

)Σ𝑘 =∑𝑃(𝑘|𝑌𝑖 , Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)

𝑁

𝑖=1

 

This implies equation 5.1.18 to specify the next parameter Σk
(t+1). 

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

 
(5.1.18) 

Note, the conditional probability P(k | Yi, Θ
(t)) is determined by equation 5.1.10 and the next 

parameter μk
(t+1) is specified by equation 5.1.17. 

As a result, the solution θk
(t+1) = (μk

(t+1), Σk
(t+1))T of equation 5.1.14 or equation 5.1.15 is 

specified by equation 5.1.17 and equation 5.1.18 when each fk(Y|θk) is multivariate normal 

distribution within normal mixture model. The two steps of GEM algorithm for constructing 

normal mixture model at some tth iteration are refined in table 5.1.3 (Bilmes, 1998, p. 7). 

E-step: 

The conditional probability P(k | Yi, Θ
(t)) is calculated based on current parameter Θ(t) = 

(α1
(t), α2

(t),…, αK
(t), θ1

(t), θ2
(t),…, θK

(t))T, according to equation 5.1.10. Note, in normal 

mixture model, each observational PDF fk(Y|θk) is (multivariate) normal distribution with 

mean vector μk and covariance matrix Σk such that θk = (μk, Σk)
T. 

𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) =

𝛼𝑘
(𝑡)𝑓𝑘(𝑌𝑖|𝜃𝑘

(𝑡))

∑ 𝛼𝑙
(𝑡)𝑓𝑙(𝑌𝑖|𝜃𝑙

(𝑡))𝐾
𝑙=1

 

M-step: 
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The next parameter Θ(t+1) = (α1
(t+1), α2

(t+1),…, αK
(t+1), θ1

(t+1), θ2
(t+1),…, θK

(t+1))T, which is a 

maximizer of Q(Θ | Θ(t)) with subject to Θ, is calculated by equation 5.1.13, equation 

5.1.17, and equation 5.1.18 with current parameter Θ(t). 

𝛼𝑘
(𝑡+1) =

1

𝑁
∑𝑃(𝑘|𝑌𝑖, Θ

(𝑡))

𝑁

𝑖=1

𝜇𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑌𝑖

𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡))𝑁

𝑖=1

Σ𝑘
(𝑡+1) =

∑ 𝑃(𝑘|𝑌𝑖, Θ
(𝑡)) ((𝑌𝑖 − 𝜇𝑘

(𝑡+1))(𝑌𝑖 − 𝜇𝑘
(𝑡+1))

𝑇

)𝑁
𝑖=1

∑ 𝑃(𝑘|𝑌𝑖 , Θ
(𝑡))𝑁

𝑖=1

 

Table 5.1.3. E-step and M-step of GEM algorithm for constructing normal mixture model 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the optimal 

estimate of normal mixture model. 

 

6. Discussions 
The convergence of GEM is based on the assumption that Q(Θ’ | Θ) is smooth enough but Q(Θ’ 

| Θ) may not be smooth in practice when f(X | Θ) may be discrete probability function. For 

example, when f(X | Θ) and k(X | Y, Θ) are discrete, equation 2.8 becomes 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∑ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))

𝜑−1(𝑌)

 

This discussion section goes beyond traditional variants of GEM algorithm when Q(Θ’ | Θ) is 

not smooth. Therefore, heuristic optimization methods which simulate social behavior, such as 

particle swarm optimization (PSO) algorithm (Poli, Kennedy, & Blackwell, 2007) and artificial 

bee colony (ABC) algorithm, are useful in case that there is no requirement of existence of 

derivative. Moreover, these heuristic methods aim to find global optimizer. I propose an 

association of GEM and PSO which produces a so-called quasi-PSO-GEM algorithm in which 

M-step is implemented by one-time PSO (Wikipedia, Particle swarm optimization, 2017). 

Given current tth iteration, Θ(t) is modeled as swarm’s best position. Suppose there are n 

particles and each particle i has current velocity Vi
(t), current positions Ψi

(t), and best position 

Φi
(t). At each iteration, it is expected that these particles move to swarm’s new best position 

which is the next parameter Θ(t+1). The swarm’s best position at the final iteration is expected 

as Θ*. Table 6.2 is the proposal of quasi-PSO-GEM algorithm. 

E-step: 

As usual, Q(Θ | Θ(t)) is determined based on current Θ(t) according to equation 2.8. 

Actually, Q(Θ | Θ(t)) is formulated as function of Θ. 

M-step includes four sub-steps: 

1. Calculating the next velocity Vi
(t+1) of each particle based on its current velocity Vi

(t), 

its current positions Ψi
(t), its best positions Φi

(t), and the swarm’s best position Θ(t): 

𝑉𝑖
(𝑡+1) = 𝜔𝑉𝑖

(𝑡) + 𝑟𝜙1(Φ𝑖
(𝑡) −Ψ𝑖

(𝑡)) + 𝑟𝜙2(Θ
(𝑡) −Ψ𝑖

(𝑡)) (6.1) 

Where ω, ϕ1, and ϕ2 are particular parameters of PSO (Poli, Kennedy, & Blackwell, 

2007, pp. 3-4) whereas r is a random number such that 0 < r < 1 (Wikipedia, Particle 

swarm optimization, 2017). 

2. Calculating the next position Ψi
(t+1) of each particle based on its current position Ψi

(t) 

and its current velocity Vi
(t): 

Ψ𝑖
(𝑡+1) = Ψ𝑖

(𝑡) + 𝑉𝑖
(𝑡)

 (6.2) 
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3. If Q(Φi
(t) | Θ(t)) < Q(Ψi

(t+1) | Θ(t)) then, the next best position of each particle i is re-

assigned as Φi
(t+1) = Ψi

(t+1). Otherwise, such next best position is kept intact as Φi
(t+1) 

= Φi
(t). 

4. The next parameter Θ(t+1) is the swarm’s new best position over the best positions of 

all particles: 

Θ(𝑡+1) = argmax
Φ
𝑖
(𝑡)

{𝑄(Φ1
(𝑡)|Θ(𝑡)), 𝑄(Φ2

(𝑡)|Θ(𝑡)), … , 𝑄(Φ𝑛
(𝑡)|Θ(𝑡))} (6.3) 

If the bias |Θ(t+1) – Θ(t)| is small enough, the algorithm stops. Otherwise, Θ(t+1) and all 

Vi
(t+1), Ψi

(t+1), Φi
(t+1) become current parameters in the next iteration. 

Table 6.1. E-step and M-step of the proposed quasi-PSO-GEM 

At the first iteration, each particle is initialized with Ψi
(1) = Φi

(1) = Θ(1) and uniformly distributed 

velocity Vi
(1). Note, Θ(1) is initialized arbitrarily. Other termination criteria can be used, for 

example, Q(Θ | Θ(t)) is large enough or the number of iterations is large enough. 

We cannot prove mathematically convergence of quasi-PSO-GEM but we expect that Θ(t+1) 

resulted from equation 6.3 is an approximation of Θ* at the last iteration after a large enough 

number of iterations. However, quasi-PSO-GEM tendentiously approaches global maximizer 

of L(Θ), regardless of whether L(Θ) is concave. Hence, it is necessary to make experiment on 

quasi-PSO-GEM. 

There are many other researches which combine EM and PSO but the proposed quasi-PSO-

GEM algorithm has different ideology when it one-time PSO is embed into M-step to maximize 

Q(Θ | Θ(t)) and so the ideology of quasi-PSO-GEM is near to the ideology of Newton-Raphson 

process. With different viewpoint, some other researches combine EM and PSO in order to 

solving better a particular problem instead of improving EM itself. For example, Ari and Aksoy 

(Ari & Aksoy, 2010) used PSO to solve optimization problem of the clustering algorithm based 

on mixture model and EM. Rajeswari and Gunasundari (Rajeswari & Gunasundari, 2016) 

proposed EM for PSO based weighted clustering. Zhang, Zhuang, Gao, Luo, Ran, and Du 

(Zhang, et al., 2014) proposed a so-called PSO-EM algorithm to make optimum use of PSO in 

partial E-step in order solve the difficulty of integrals in normal compositional model. 

Golubovic, Olcan, and Kolundzija (Golubovic, Olcan, & Kolundzija, 2007) proposed a few 

modifications of the PSO algorithm which are applied to EM optimization of a broadside 

antenna array. Tang, Song, and Liu (Tang, Song, & Liu, 2014) proposed a hybrid clustering 

method based on improved PSO and EM clustering algorithm to overcome drawbacks of EM 

clustering algorithm. Tran, Vo, and Lee (Tran, Vo, & Lee, 2013) proposed a novel clustering 

algorithm for image segmentation by employing the arbitrary covariance matrices that uses 

PSO for the estimation of Gaussian mixture models. 
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