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Abstract

Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both
applied probability and statistics but MLE cannot solve the problem of incomplete data or
hidden data because it is impossible to maximize likelihood function from hidden data.
Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this
problem if there is a relationship between hidden data and observed data. Such hinting
relationship is specified by a mapping from hidden data to observed data or by a joint
probability between hidden data and observed data. In other words, the relationship helps us
know hidden data by surveying observed data. The essential ideology of EM is to maximize
the expectation of likelihood function over observed data based on the hinting relationship
instead of maximizing directly the likelihood function of hidden data. Pioneers in EM
algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as
well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help
researchers comprehend it. Moreover some improvements of EM algorithm are also proposed
in the tutorial such as combination of EM and third-order convergence Newton-Raphson
process, combination of EM and gradient descent method, and combination of EM and particle
swarm optimization (PSO) algorithm.

Keywords: expectation maximization, EM, generalized expectation maximization, GEM, EM
convergence.

1. Introduction

Literature of expectation maximization (EM) algorithm in this tutorial is mainly extracted from
the preeminent article “Maximum Likelihood from Incomplete Data via the EM Algorithm”
by Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (Dempster, Laird, & Rubin, 1977).
For convenience, let DLR be reference to such three authors.

We begin a review of EM algorithm with some basic concepts. Before discussing main
subjects, there are some conventions. For example, if there is no additional explanation,
variables are often denoted by letters such as x, y, z, X, Y, and Z whereas values and constants
are often denoted by letters such as a, b, ¢, A, B, and C. Parameters are often denoted as Greek
letters such as a, S, y, ©, ®, and . Uppercase letters often denote vectors and matrices
(multivariate quantities) whereas lowercase letters often denote scalars (univariate quantities).
Script letters such as X and Y often denote data samples. Bold and uppercase letters such as X
and R often denote algebraic structures such as spaces, fields, and domains. Moreover, bold
and lowercase letters such as x, y, z, a, b, and ¢ may denote vectors. Bold and uppercase letters
suchas X, Y, Z, A, B, and C may denote matrices.

By default, vectors are column vectors although a vector can be column vector or row
vector. For example, given two vectors X and Y and two matrices A and B:

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints201802.0131.v5
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

X1 Y1
x=|"7 el
xT y’r
i3 Quz2 0 Qip biy b1z -+ by
A= a:21 a:22 a?n B = b?l b?Z b?k
Anm1 Amz2  ° Amn by bpy v Ak

X and Y above are column vectors. A row vector is represented as follows:

. _ Z2=(21,75,..,2,) . . .
The number of elements in vector is its dimension. Zero vector is denoted as 0 whose dimension
depends on context.

If considering rows and columns, myn matrix A can be denoted Amxn OF (&ij)mxn. VeCtor is 1-row
matrix or 1-column matrix such as Aixn Or Anxi. Scalar is 1-element vector or 1x1 matrix. A
matrix can be considered as a vector whose elements are vectors.

Let (0) denote zero matrix whose numbers of rows and columns depend on context. If
considering rows and columns, zero matrix can be denoted (0)mxn.

O 0 vee O
(0) = (O)mxn =1 . . "
O 0 vee O

Matrix A is square if m = n, which can be denoted A or (aij)n. Matrix A is diagonal if it is square
and its elements outside the main diagonal are zero:

A, 0O - 0
A= 0 A, - 0
0 0 - A
Let | be identity matrix or unit matrix, as follows:
1 0 - 0
=7 T
o o0 - 1

Note, I is diagonal and its diagonal elements are 1. The row (column) number of identity matrix
depends on context, but it can be denoted explicitly as Ix.
Vector addition and matrix addition are defined like numerical addition:
X1ty

X+Y= xz%)’z

Xr T Yy

a1 £ by A2 £ by 0 Ak by
A+B = az1 i b1 ax i b, Azn i byn
aml i bml amZ i me o amn i bmn

(ifn=K)

Vector and matrix can be multiplied with a scalar.
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kx,

kx = | %

kx,
kay, kay, - ka,
ka=| ko ke ko
Kami Kams - Ky

Let superscript “7” denote transposition operator for vector and matrix, as follows:
XT = (xq, %5, 0, Xy)

ai1 dz1 Q4
AT = Q12 Az - Gp
alp azp e arp

Transposition operator is linear with addition operator as follows:
X+ =xT+YT
(A+B)T =AT + BT
Dot product or scalar product of two vectors can be written with transposition operator, as

follows:
T
XTY = z XiYi
i=1
However, the product XY results out a symmetric matrix as follows:
X1Yy1 X1Y2 ot X1)r
x x see x
xyT = yxT = 2:3’1 2:3’2 . 2:3’r
XrY1 X¢Y2 o Xe)r

The length of module of vector X in Euclidean space is:

IX| = VXTX =

The notation |.| also denotes absolute value of scalar and determinant of square matrix; for
example, we have |-1| = 1 and |A| which is determinant of given square matrix A. Note,
determinant is only defined for square matrix. If A has nonzero determinant (#0), there exists
its inverse denoted A such that:

AATt=A"1A=1
Where 1 is identity matrix. If matrix A has its inverse, A is called invertible or non-singular. In
general, square matrix A is invertible is equivalent to the event that its determinant is nonzero
(#0). There are many documents which guide to calculate inverse of invertible matrix.
Given invertible matrix A, it is called orthogonal matrix if A = AT, which means AA™ =
AA=AAT=ATA=I.
Product (multiplication operator) of two matrices Amxn and Bnxk is:

€11 C12 - Cig
C21 Cp2 - (g
Cmi Cm2 = Cmk

n
Cij = Z Aipby;
v=1
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Square matrix A is symmetric if ajj = aji for all i and j. If A is symmetric then, AT = A. If both A
and B are symmetric with the same rows and column then, they are commutative such that AB
= BA with note that the product AB and BA produces a symmetric matrix. Given invertible
matrix A, if it is symmetric, its inverse A is symmetric too.

Given N matrices Aj such that their product (multiplication operator) is valid, we have:

N T 1
(]_[Al) = (Mady AT = AT = ARaf, 4]
i=1 i=N

Product of matrix and vector is similar to product of matrix and matrix when vector is
considered as 1-column matrix or 1-row matrix, which results a vector.

aj; Qg2 ot Qap X1 C1
a1 Qzz = don X2 C2
AX = . . . . =C = .
Am1 Amz = Qmn Xn Cm
Where ¢ = Z?:l ajjx;j.
;. Q12 0 Qap

Q1 Az = Qyp

ZTA = (21;22; '--sz) =C = (Cl,Cz, ...,Cn)

Am1 Amz2 ° Amn
Where Cj = Z?:l Ziaij.
Given square matrix A, tr(A) is trace operator which takes sum of diagonal its elements.

tr(4) = Z ajj

l
Given invertible matrix A (n rows and n columns), Jordan decomposition theorem (Hardle &
Simar, 2013, p. 63) stated that A is always decomposed as follows:
A=UANU"Y=UAUT
Where U is orthogonal matrix composed of eigenvectors. Hence, U is called eigenvector matrix.

u11 uz 1 e unl

ulz u22 e unz
U= : : : :

Uin Uzn e Upn

There are n column eigenvectors ui = (U11, U1z,..., U1n) in U and they are mutually orthogonal,
ui'uj = 0. Where A is diagonal matrix composed of eigenvalues. Hence, A is called eigenvalue

matrix.
A 0O - 0
A=Y A d
0 0 - A,

Where ;i are eigenvalues. When invertible matrix A is decomposed according to Jordan
decomposition, we call A is diagonalized. If A can be diagonalized, it is called diagonalizable
matrix. Of course, if A is invertible, A is diagonalizable. There are many documents for matrix
diagonalization.

Given symmetric matrix A, it is positive (negative) definite if and only if XTAX > 0 (XTAX
< 0) for all vector X+0". It is positive (negative) semi-definite if and only if XTAX >0 (XTAX <
0) for all vector X. When diagonalizable A is diagonalized into UAUT, it is positive (negative)
definite if and only if all eigenvalues in A are positive (negative). Similarly, it is positive
(negative) semi-definite if and only if all eigenvalues in A are non-negative (non-positive). If
A is degraded as a scalar, concepts “positive definite”, “positive semi-definite”, “negative
definite”, and “negative semi-definite” becomes concepts “positive”, “non-negative”,
“negative”, and “non-positive”, respectively.
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Suppose f(X) is scalar-by-vector function, for instance, f: R" — R where R" is r-dimensional
real vector space. The first-order derivative of f(X) is gradient vector as follows:

f( ) af(X) of(X)  9f(X)
fm—wm— =Df 00 = (5= 5 o
Where L% i partial first-order derivative of f with regard to x;. So gradient is row vector. The

second- order derivative of f(X) is called Hessian matrix as follows:

X)) 9

dx2 0x10x, 0x,0%,

0 ) F) 9
f"X) =7 =D 0 = | oxy0x, ~ 0x2 9x,0%,
BFX) ) )

0x,0x, 0x,.0x, 0x?

azf(X)___§_<0f(X)>

0xl-6xj N axl- ax]

’f(X) 9°f(X)
axiz B axiaxi
Hence, second-order partial derivatives of x; (s) are on diagonal of the Hessian matrix.
Hessian matrix is square matrix. Function f(X) is called n'-order analytic function or n*-
order smooth function if there is existence and continuity of k™ -order derivatives of f(X) where
k=1, 2,...,n. Function f(X) is called smooth enough function if n is large enough. According
to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), if f(X) is second-
order smooth function then, its Hessian matrix is symmetric.
’f(X) 9*f(X)
When X is univariate, gradient vector and Hessian matrix are degraded as scalar values.
Without loss of generality, by default, variable X in this research is multivariate as vector if
there is no additional explanation.
Given f(X) being second-order smooth function, f(X) is convex (strictly convex) in domain
X if and only if its Hessian matrix is semi-positive definite (positive definite) in X. Similarly,
f(X) is concave (strictly concave) in domain X if and only if its Hessian matrix is semi-negative
definite (negative definite) in X. Extreme point, optimized point, optimal point, or optimizer
X" is minimum point (minimizer) of convex function and is maximum point (maximizer) of
concave function.

Where

X* = argmin f(X) if f convex
b'e

X* = argmax f(X) if f concave
X

Given second-order smooth function f(X), function f(X) has stationary point X" if its gradient
vector at X" is zero, Df(X") = 0'. The stationary point X" is local minimum point if Hessian
matrix at X" that is D?f(X") is positive definite. Otherwise, the stationary point X" is local
maximum point if Hessian matrix at X" that is D?f(X") is negative definite. If a stationary point
X" is neither minimum point nor maximum point, it is saddle point in which Df(X") = 0" and
D2f(X") = (0) where (0) denotes zero matrix whose all elements are zero. Finding extreme point
(minimum point or maximum point) is optimization problem. Therefore, if f(X) is second-order
smooth function and its gradient vector Df(X) and Hessian matrix D?f(X) and are both
determined, the optimization problem is processed by solving the equation created from setting
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the gradient Df(X) to be zero (Df(X)=0T) and then checking if the Hessian matrix Df(X") is
positive definite or negative definite where X” is solution of equation Df(X)=0T. If such equation
cannot be solved due to its complexity, there are some popular methods to solve optimization
problem such as Newton-Raphson (Burden & Faires, 2011, pp. 67-71) and gradient descent
(Ta, 2014).

A short description of Newton-Raphson method is necessary because it is helpful to solve
the equation Df(X)=0" for optimization problem in practice, especially in case that there is no
algebraic formula for solution of such equation. Suppose f(X) is second-order smooth function,
according to first-order Taylor series expansion of Df(X) at X=Xo with very small residual, we
have:

T

Df(X) = Df(Xo) + (X — Xo)"(D*f (Xo))
Because f(X) is second-order smooth function, D%f(Xo) is symmetric matrix according to
Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies:

Df(Xo) = (D*(X0))"
So, we have:
Df(X) = Df(Xo) + (X — Xo)"D*f(Xo)
We expect that Df(X) = 0" so that X is a solution.
0" = Df(X) = Df (Xo) + (X — Xo)"D*f (Xo)
It implies:
-1
X" = X§ — Df (Xo) (D*f (Xo))

This means:

X~ Xo— (D2 (Xe))” (DF(X0))"
Therefore, Newton-Raphson method starts with an arbitrary value of Xo as a solution candidate
and then goes through some iterations. Suppose at k™ iteration, the current value is X and the
next value Xk+1 is calculated based on following equation:

Xir1 = X — (D2 (X)) 1(Df(Xk))T
The value X is solution of Df(X)=0" if Df(Xi)=0" which means that Xi+1=X« after some
iterations. At that time Xk+1 = Xk = X" is the local optimized point (local extreme point). So, the
terminated condition of Newton-Raphson method is Df(Xk)=0". Note, the X resulted from
Newton-Raphson method is local minimum point (local maximum point) if f(X) is convex
function (concave function) in current domain.

Newton-Raphson method computes second-order derivative D?f(X) but gradient descent
method (Ta, 2014) does not. This difference is not significant but a short description of gradient
descent method is necessary because it is also an important method to solve the optimization
problem in case that solving directly the equation Df(X)=0" is too complicated. Gradient
descent method is also iterative method starting with an arbitrary value of Xo as a solution
candidate. Suppose at k™ iteration, the next candidate point Xk+1 is computed based on the
current X as follows (Ta, 2014):

X1 = Xy + tpedy

The direction dx is called descending direction, which is the opposite of gradient of f(X). Hence,
we have dx = —Df(Xk). The value tx is the length of the descending direction dk. The value tx is
often selected an minimizer (maximizer) of function g(t) = f(Xk + tdx) for minimization
(maximization) where Xk and dk are known at k™ iteration. Alternately, t« is selected by some
advanced condition such as Barzilai-Borwein condition (Wikipedia, Gradient descent, 2018).
After some iterations, point X converges to the local optimizer X* when dix = 0. At that time
is we have X1 = Xk = X*. So, the terminated condition of Newton-Raphson method is dk=0".
Note, the X" resulted from gradient descent method is local minimum point (local maximum
point) if f(X) is convex function (concave function) in current domain.
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In the case that the optimization problem has some constraints, Lagrange duality (Jia, 2013)
is applied to solve this problem. Given first-order smooth function f(X) and constraints gi(X) <
0 and hj(X) = 0, the optimization problem is stated as follows:

Optimize f(X)
giX)<0fori=1,m
hj(X) =0forj= 1,n
A so-called Lagrange function la(X, 4, u) is established as sum of f(X) and constraints
multiplied by Lagrange multipliers A and x. In case of minimization problem, la(X, 4, ) is
m n

la(X, 2, = FCX) + Z 29 (0 + ) wih(X)
j=1
In case of maximization problem, la(X, 4, u) |s

la(X, A1) = f(X) - Z/Lg(X) Z ih(X)

Where all 4i>0. Note, 2 = (A1, A2,..., Am)" andﬂ (#1 U, .. ,,Ltm)T are called Lagrange multipliers
and la(X, 4, w) is function of X 4, and w. Thus, optimizing f(X) with subject to constraints gi(X)
<0 and hj(X) = 0 is equivalent to optimize la(X, 4, x), which is the reason that this method is
called Lagrange duality. Suppose la(X, 4, ) is also first-order smooth function. In case of
minimization problem, the gradient of la(X, 4, ) with regard to X is

m n

Dla(X,2, @) = DF () + ) ADg() + ) u;Dh(X)
In case of maximization problem, the gradient of la(X, 4, w) Wi;h regard to X is
Dla(X, A, 1) = Df(X) — 2,1 Dg(X) — Z u;Dh(X)

According to KKT condition (Wlklpedla Karush Kuhn—Tucker conditions, 2014), a local
optimized point (local extreme point) X" is solution of the following equation system:
(Dla(X, A, u) = 0T
gi(X) <0fori= 1,
h;(X) = 0 forj
Ai=0fori= 1,m

\i gX)=0

The last equation in the KKT system above is called complementary slackness. The main task
of KKT problem is to solve the first equation Dla(X, A, x) = 0T. Again some practical methods
such as Newton-Raphson method can be used to solve the equation Dla(X, A, x) = 0.
Alternately, gradient descent method can be used to optimize la(X, 4, x) with constraints
specified in KKT system.

3

=

,n

A

(gi(X) <Ofori= 1,m
hi(X) =0forj= 1,n
{A;=0fori=1,m

\2 29X) =0

0<P()<1

Let P(.) denote probability,

7
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We need to skim some essential probabilistic rules such as additional rule, multiplication rule,
total probability rule, and Bayes’ rule. Given two random events (or random variables) X and
Y, additional rule (Montgomery & Runger, 2003, p. 33) and multiplication rule (Montgomery
& Runger, 2003, p. 44) are expressed as follows:
PXUY)=PX)+PY)-PXNY)
P(XNnY)=PX,Y)=PX|Y)PY) =PY|X)P(X)
Where notations U and N denote union operator and intersection operator in set theory
(Wikipedia, Set (mathematics), 2014). Your attention please, when X and Y are numerical
variables, notations U and N also denote operators “or” and “and” in theory logic (Rosen, 2012,
pp. 1-12). The probability P(X, Y) is known as joint probability. The probability P(X|Y) is called
conditional probability of X givenY:
PX|Y) = P(X,Y) _ P(XNnY) _ P(Y|X)P(X)

P(Y) P(Y) P(Y)
Conditional probability is base of Bayes’ rule mentioned later.

If Xand Y are mutually exclusive (X N'Y = @) then, X U Y is often denoted as X+Y and we
have:

PX+Y)=PX)+PY)
(Due to P(@) = 0)
X and Y are mutually independent if and only if one of three following conditions is satisfied:
PXnY)=PX)PY)
P(X|Y) = P(X)
P(Y|X) =P(Y)
When X and Y are mutually independent, X n Y are often denoted as XY and we have:
P(XY) =P(X,Y) =P(XNnY)=PX)P(Y)
Given a complete set of mutually exclusive events X1, Xa,..., Xn such that
X;UX,U . uX, =X +X,+ -+ X, = Qwhere ( is probability space
Xi ﬂX] = Q,Vl,]
The total probability rule (Montgomery & Runger, 2003, p. 44) is specified as follows:
n

P(Y) = P(Y|X))P(X1) + P(Y[X2)P(X2) + -+ P(YIX)P(Xy) = Z P(Y|X)P(X;)
i=1
Where X; + X; + -+ X, = Qand X; N X; = 0,Vi,j
If X and Y are continuous variables, the total probability rule is re-written in integral form as
follows:

P(Y) = f P(Y|X)P(X)dX

X
Note, P(Y|X) and P(X) are continuous functions known as probability density functions
mentioned later. The important Bayes’ rule will also be mentioned later.

A variable X is called random variable if it conforms a probabilistic distribution which is
specified by a probability density function (PDF) or a cumulative distribution function (CDF)
(Montgomery & Runger, 2003, p. 64) (Montgomery & Runger, 2003, p. 102) but CDF and
PDF have the same meaning and they share interchangeable property when PDF is derivative
of CDF; in other words, CDF is integral of PDF. In practical statistics, PDF is used more
common than CDF is used and so, PDF is mentioned over the whole report. When X is discrete,
PDF is degraded as probability of X. Note, notation P(.) often denotes probability and it can be
used to denote PDF but we prefer to use lower case letters such as f and g to denote PDF. Given
a random variable having PDF f, we often state that “such variable has distribution f or such
variable has density function f”. Let F(X) and f(X) be CDF and PDF, respectively, equation 1.1
is definition of CDF and PDF.
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( Xo
F(Xy) = P(X < X) = f F0)dX

Continuous case: |

fo F0AX = 1

E (1.1)
FXo) = PX<X) = ) P(X)
X<X,
FX) = P(X) andz P(X) =1
In discrete case, probability at a single point Xo is determined as P(Xo) = f(Xo) but in continuous

case, probability is determined in an interval [a, b], (a, b), [a, b), or (a, b] where a, b, and X are
real as integral of the PDF in such interval as follows:

Discrete case:

Pla<X<bh)= jf(x)dx

a
Hence, in continuous case, probability at a single point is 0.

Equation 1.1 defines CDF and PDF for univariate random variable and so it is easy to
expend it for multivariate variable when X is vector. Let X = (X1, X2,..., Xn)" be n-dimension
random vector, its CDF and PDF are re-defined as follows:

Continuous case:
Xo

F(Xo) = P(X < Xo) = P(x1 < X01,x2 < XOZ' ...,Xn < XOn) = J f(X)dX

fo fo ff(X)dxldxz .dx,,

—00 —00
400 400

Jf(X)dX—J J ff(X)dxldxz Jdx, =1

—00 —00

(1.2)
Dlscrete case:
F(XO) = P(X < X()) = P(xl < Xo1, X2 < X2, -1 Xn < xOn) = Z P(X)

TS e

X1SXg1 X25X02 XnS<Xon

f&X) = P(X)

ZP(X)— z z Z P(X) =1

X12X01 X2=X02  Xn<Xon

Marglnal PDF of partial variable xi where x; is a component of X is the integral of f(X) over all

Xj except Xi.
+00 +00
fuo () = f f ff(x>dx1 g o dn
Where, o
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r frgGrdx, = 1

Joint PDF of x; and x; is defined as the integral of f(X) over all xx except x; and X;.
+00 400 +

fxixj(xi,xj)=f f f FCOdxg o dx;_qdxiyy ... dxj_1dxjq ... dx,

Where, o
+c0 +o0o
f f fxixj(xi; Xj) dxl-dxj =1
Conditional PDF of xi given x; i_s de;‘ined as follows:
PO )
1. (x) = ————
XleJ i ij (x])

Indeed, conditional PDF implies conditional probability.
Given random variable X and its PDF f(X), theoretical expectation E(X) and theoretical
variance V(X) of X are:

E(X) = f XFOOX L3)

X

V(X) = E(X —EX))(X —EX))" = f(x —EX))(X — E(X)) fF(X)dX

=EXX") —EX)EX)T
Given two random variables X and Y along with a joint PDF f(X, Y), theoretical covariance of
XandY is defined as follows:

VX, Y) = E(X - EQX))(Y —EM))
- f j(X —EX)(Y — E(V))" £(X,Y)dXdY

(1.4)

(1.5)

XY
If the random variables X and Y are mutually independent given the joint PDF f(X, Y), its
covariance is zero, V(X, Y)=0. Note, joint PDF is the PDF having two or more random variables.
When X and Y are multivariate vectors, V(X, Y) is covariance matrix of X and Y given the joint
PDF (X, Y).

The expectation E(X) of X is often called theoretical mean. When X is multivariate vector,
E(X) is mean vector and V(X) is covariance matrix. Note, covariance matrix is always
symmetric and invertible. As usual, E(X) and V(X) are often denoted as x and X, respectively
if they are parameters of PDF. When X is univariate, E(X) and V(X) are scalars and V(X) is
often denoted ¢ (if it is parameter of PDF). For example, if X is univariate and follows normal

distribution, its PDF is:
1 1(X —pw?
100 = o (57

If X is multivariate and follows multivariate normal distribution, its PDF is:

L 1
FOO = @m) 25 Zexp (—5 (X - )73 (X — 1))
When X = (X1, X2,..., Xn)" is multivariate, z and = have following forms:

10
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| M2
L O
Un
011 012 ** O1n
021 022 - Ozp
X= : : . :
On1 On2 ** Opn

Of course, u and X are determined by equation 1.3 and equation 1.4, respectively. However,
theoretical means and variances of partial variables xi can be determined separately. For
instance, each g; is theoretical mean of partial variable x; given marginal PDF fx]. (x]-).

w =E(x) = fxifxi(xi)dxi
Xi
Each oij where i#j is theoretical covariance of partial variables xi and x; given joint PDF

fxix,-(xi'xj)-
oij = V(x %) = EQq — ) (5 — ;) = f f(xi — 1) (% = 1) e, (0, 27 ) dox; s

Xi x]-
Each gii on diagonal of X is theoretical variance of partial variable x; given marginal PDF

fXj(xj)'
o = 0 = V(x) = EGe — p)? = f (= ) f, (x)dx,

Without loss of generality, by default, random varlable X in this research is multivariate as
vector if there is no additional explanation. Followings are some formulas related to
expectation (X) and variance V(X).
Let a and A be scalar constant and vector constant, respectively, we have:
E(aX+A) =aEX)+ A
V(aX + A) = a?V(X)
Given a set of random variables X = {X1, Xo,..., Xn) and N scalar constants ci (s), we have:

E (EN: cl-Xl-> = ZN: ¢ E(X))

i=1 i=1

N N N-1 N
14 (Z ciXi> = Z V(X)) +2 Z Z ciciV (X, X;)

i=1 i=1 i=1 j=i+1
Where V(Xi, Xj) is covariance of X; and X;.
If all Xi (s) are mutually independent, then

E (i ciXi) = ZN: ¢;E(X;)

i=1 i=1

14 <ZN: CiXi> = EN: etV (X))

i=1 i=1
If all X; (s) are identically distributed, which implies that all X; (s) are represented by the same
random variable X, then
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(Gor)- ()

i=1 i=1
N N N-1 N

1% (Z cin-> = (Z ci2> V(X)+2 Z Z cicj |V(X)
i=1 i=1 i=1 j=i+1

If all Xi (s) are mutually independent and identically distributed (iid), then

o (San) (3 oo

14 (i cl-Xl-> = (i cf) V(X)

Because EM algorithm is essential an advanced version of maximum likelihood estimation
(MLE) method, it is necessary to describe MLE in short. Suppose random variable X conforms
to a distribution specified by the PDF denoted f(X | ®) with parameter ©. For example, if X is
vector and follows normal distribution then,

n 1 1
F(X10) = (2m) 23| 2exp (-5 (X - 27X — )

Where u and X are theoretical mean vector and covariance matrix, respectively with note that
O = (u, £)". The notation |.| denotes determinant of given matrix and the notation = denotes
inverse of matrix X. Note, X is invertible and symmetric. Parameter of normal distribution is
theoretical mean and theoretical variance,

u=EX)

I=VX)=EX-wX-w"
But parameters of different distributions may be different from such mean and variance.
Anyhow theoretical mean and theoretical variance are always determined based on parameter
0.

For example, suppose X = (X1, Xz,..., Xn)" follows multinomial distribution of K trials, its

PDF is:

K! L
x10) = ————| [p”
/ ;-;1(xj!>,ﬂ”1

Where x; are integers and ® = (p1, p2,..., pn)" is the set of probabilities such that

M-

p;=1
Jj=1
n
ij =K
j=1
x]' € {0,1, ,K}

Obviously, the parameter ® = (p1, P2,..., pn)’ does not include theoretical mean E(X) and
theoretical variance V(X) but E(X) and V(X) of multinomial distribution is determined based on
® as follows:
E(x;) = Kp;
V(%) = Kp;(1-p))

A statistic is function of random variable X except the PDF f(X) itself where X can be
considered as an observation. For instance, E(X) and V(X) are statistics because they are
functions of X, as follows:
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E(X) = fo(XI@)dX

X
V(X) = E(X —EX))(X —EQ)) = f(x —EQO))(X - EX) f(X|0)dX =

X
=EXXD) —EX)EX)T
In practice, if X is replaced by sample X' = {X1, Xz,..., Xn} including N observation X; where
all X; (s) are mutually independent and identically distributed (iid). The concept “iid” implies
that all Xi (s) are represented the same random variable X. A statistic is function of X (s) for
instance, quantities X and S defined below are statistics:

N
_ 1
i=1

1 N Y v\T 1 N T vyl
S=NZ(Xi—X)(Xi—X) - N_inxi — XX
1= 1=

For multivariate normal distribution, X and S are estimates of theoretical mean x and theoretical
covariance matrix X. They are called sample mean and sample variance, respectively.

Sufficient statistic denoted z(X) is the statistic that it has all and only information to estimate
parameter . For example, sufficient statistic of the normal PDF above is z(X) = (X, XX)". In
fact, its parameter ® = (x, X)" including theoretical mean x and theoretical covariance matrix
Y is totally determined based on all and only X and XX (there is no redundant information in
7(X)) where X is observation considered as random variable, as follows:

©=EX) = fo(XlG))dX

X
T=EX-wWX-w"=EXX") —uu"
Similarly, given X = (x1, Xz,..., Xn)", sufficient statistic of multinomial PDF of K trials above is
7(X) = (X1, X2,..., Xn)" due to:
_E(x)

Pj=—F
Given a sample containing observations, purpose of point estimation is to estimate unknown
parameter ® based on such sample. The result of estimation process is the estimate © as
approximation of unknown ®. Formula to calculate © based on sample is called estimator of
@. As a convention, estimator of ® is denoted ®(X) or ®(X") where X is an observation and X
is sample including many observations. Actually, ©(X) or 8(X) is the same to ® but the
notation ©(X) or ®(X) implies that © is calculated based on observations. For example, given
sample X = {X1, Xa,..., Xn} including N observations iid X;, estimator of theoretical mean x of
normal distribution is:

,Vi=1,n

N
_ 1
=0 =00 =X =1 X,
i=1

As usual, estimator of O is determined based on sufficient statistics which in turn are functions
of observations where observations are considered as random variables. Estimation methods
mentioned in this research are MLE, Maximum A Posteriori (MAP), and EM in which MAP
and EM are variants of MLE.

According to viewpoint of Bayesian statistics, parameter ® is also random variable.
Equation 1.6 specifies Bayes’ rule in which f(®|¢) is called prior PDF (prior distribution) of ®
whereas f(®|X) is called posterior PDF (posterior distribution) of ® given observation X. Note,
¢ is parameter of the prior f(®|&), which is known as second-level parameter. For instance, if
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the prior f(®|¢) is multivariate normal PDF, we have & = (uo, 0?)" which are theoretical mean
and theoretical covariance matrix of random variable ®. Because ¢ is constant, the prior PDF
f(®|&) can be denoted f(®). Please pay attention that the posterior PDF f(®|X) is independent

from &
F(OIX) = fX10)£(0]¢) (L6)
Jo fXI®)f(O18)

In Bayes’ rule, the PDF (X | ®) is called likelihood function. If posterior distribution f(®|X)
has the same form of prior distribution f(®|¢), such posterior distribution and prior distribution
are called conjugate distributions (conjugate probabilities) and f(®|¢) is called conjugate prior
(Wikipedia, Conjugate prior, 2018) for likelihood function f(X|®). For example, if prior
distribution f(®[¢) is beta distribution and likelihood function P(X|®) follows binomial
distribution then, posterior distribution f(®|X) is beta distribution too and hence, f(®|¢) and
f(®[X) are conjugate distributions. Shortly, whether posterior distribution and prior distribution
are conjugate distributions depends on prior distribution and likelihood function. In some
research, © is also called hypothesis.

When X is evaluated as observation, let ® be estimate of ©. It is calculated as a maximizer
of the posterior PDF f(®|X) given X. Here data sample X has only one observation X as X’ =

{x}.
fX1©)f(©l$)
Jo fXI®)f(018)
Because the prior PDF f(®|¢) is assumed to be fixed and the value fe f(X|©)f(©]&) is constant
with regard to ®, we have:

® = argmax f(0]X) = argmax
® ®

0 = argmax f(0|X) = argmax f(X|0)
® ®

Obviously, MLE method determines © as a maximizer of the likelihood function f(X | ®) with
regard to ® when X is evaluated as observation. It is interesting that the likelihood function
f(X|®) is the PDF of X with parameter ®. For convenience, MLE maximizes the natural
logarithm of the likelihood function denoted I(®) instead of maximizing the likelihood function.

® = argmax [(®) = argmaxlog(f(X|0)) (1.7)
o 0

Where 1(®) = log(f(X | ®)) is called log-likelihood function of ®. Recall that equation 1.7
implies the optimization problem. Note, I(®) is function of ® if X is evaluated as observation.
1(©) = 1(8]X) = log(f(X1©)) (1.8)

Equation 1.7 is the simple result of MLE for estimating parameter based on observed sample.
The notation 1(®|X) implies that 1(®) is determined based on X. If the log-likelihood function
I(®) is first-order smooth function then, from equation 1.7, the estimate ® can be solution of
the equation created by setting the first-order derivative of I(®) regarding ® to be zero. If
solving such equation is too complex, some popular methods to solve optimization problem
are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient descent (Ta, 2014), and
Lagrange duality (Wikipedia, Karush—Kuhn—Tucker conditions, 2014).

For example, suppose X = (X1, Xz,..., Xn)" is vector and follows multivariate normal
distribution,

n 1 1
F(X10) = (2m) 212 Zexp (-5 (X - W2 (X - )
Then the log-likelihood function is
1 1
1(0) = —Zlog(2m) — Slogl2| — 5 (X = W57 (X —

Where 1 and X are mean vector and covariance matrix of f(X | ®), respectively with note that
® = (u, £)". The notation |.| denotes determinant of given matrix and the notation X denotes
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inverse of matrix . Note, ¥ is invertible and symmetric. Because normal PDF is smooth

enough function, from equation 1.7, the estimate ® = (ﬁ, E)T is solution of the equation
created by setting the first-order of 1(®) regarding x and X to be zero. The first-order partial
derivative of 1(®) with respect to « is (Nguyen, 2015, p. 35):
@ =X - M)Tz—l
ou
Setting this partial derivative to be zero, we obtain:
X-Wizl=03X—-u=>4=X
The first-order partial derivative of I(®) with respect to X is:

ale 1__,  1__, S
Due to:
0log(lz) _ .,
0x
And

X — s X —p) _or(X - - ')
ED - ED
Because Bilmes (Bilmes, 1998, p. 5) mentioned:
K- X - =t(X - & -w=T)
Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(4) =
Y. a;;. This implies (Nguyen, 2015, p. 45):
oX — )T 1(x - otr((X — (X —w)Tz?

X —w) x X =) _ aur(( ma(z W) - - et
Where X is symmetric and invertible matrix. Substituting the estimate /i into the first-order
partial derivative of 1(®) with respect to X, we have:

ol(® 1 1
6(_2) = —52_1 + EZ‘l(X -DE -z
The estimate ¥ is the solution of equation formed by setting the first-order partial derivative of

I(®) regarding X to zero matrix. Let (0) denote zero matrix.

O 0 - 0
O 0 - 0
We have:
al(®)
oy 1— (0) 1
o —52—1 +§Z‘1(X -DX -zt =(0)

> —X+ (X - - DT = (0)

==X - D& - _

Finally, MLE results out the estimate © for normal distribution given observation X as follows:
0=(a=XxS=x-pE-@7)

When g = X then £ = (0), which implies that the estimate £ of covariance matrix is arbitrary

with constraint that it is symmetric and invertible. This is reasonable because the sample is too

small with only one observation X. When X is replaced by a sample X = {X1, Xo,..., Xn} in

which all X; (s) are iid, it is easy to draw the following result by the similar way with equation

1.11.
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=5= Z(X X, — @) = (ZXXT) AT

Here, /i and £ are sample mean and sample variance m

In practice, if X is observed as particular N observations Xi, Xa,..., Xn. Let X = {X1, Xa,...,
Xn} be the observed sample of size N with note that all X; (s) are mutually independent and
identically distributed (iid). The Bayes’ rule specified by equation 1.6 is re-written as follows:

FOcle)F(016)
O =T acoyr el

However, the meaning of Bayes’ rule does not change. Because all X; (s) are iid, the likelihood
function becomes product of partial likelihood functions as follows:
N

rexiey =] [ raxey 19)

The log-likelihood function of ® becomes:

1(©) = 1(81X) = log(f(X0)) = log (1_[ fXi |@)> 2 log(f(x;10))  (1.10)
The notation 1(®|X) implies that 1(®) is determlned based on X We have:

0 = argmax1(0) = argmaxz log(f(XiIG))) (1.11)
® o 4

iz
Equation 1.11 is the main result of MLE for estimating parameter based on observed sample.
If the log-likelihood function I(®) is first-order smooth function then, from equation 1.11, the
estimate ® can be solution of the equation created by setting the first-order derivative of 1(®)
regarding O to be zero. If solving such equation is too complex, some popular methods to solve
optimization problem are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient
descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush—Kuhn—Tucker conditions, 2014).

For example, suppose each Xi = (Xi1, Xi,..., Xin)' is vector and follows multinomial
distribution of K trials,

FIO) = U,)]_[p ’

Where xik are integers and ©® = (p1, p2,..., pn)T is the set of probabilities such that

r

~.
1l
=

p;=1

=K

r

1]
[y

xij

]
xij € {0,1, ,K}
Given sample X = {X1, Xa,..., Xn} in which all X; (s) are iid, according to equation 1.10, the
log-likelihood function is

l(@)—l(G)IX)—Zlog n (x ')1—[ .
=1 ij*

i=1
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N n n

= Z log(K") — Z log(x;;!) + Z xi;log(p;)

i=1 j=1 j=1

Because there is the constraint }.7_; p; = 1, we use Lagrange duality method to maximize 1(®).
The Lagrange function 1a(®, 4) is sum of 1(®) and the constraint %, p; = 1 as follows:

n

la®,)) = 1(0) + A[ 1 —ij

j=1
N n

n n
= Z log(K!) — Z log(xij!) + injlog(pj) +A(1- z Dj
j=1 j=1

i=1 j=1
Note, 4 is called Lagrange multiplier. Of course, la(®, 2) is function of ® and 4. Because
multinomial PDF is smooth enough, the estimate ® = (py, P, ..., p,)7 is solution of the
equation created by setting the first-order of la(®) regarding pj and 1 to be zero. The first-order
partial derivative of la(®) with respect to p; is:

0la(®) XL, x; 3

op; pj

Setting this partial derivative to be zero, we obtain following equation:

N oy N
]

i=1
Summing this equation over n variables pj, we obtain:

n N N n n
= =1

A

j=1 i=1 i=1 j=1 j=
Due to
n
Qp=1
Jj=1
n
Z xij =K
j=1
We have

KN—-A=0=>A1=KN

Substitute 4 = nN into equation

i=1
We get the estimate ® = (py, Dy, ..., D)7 as follows:
A Iiv=1 Xij
Pi="KkN ~ ~
Quality of estimation is measured by mean and variance of the estimate 0. The mean of @ is:
E(®) = f 0X) f(X|©)dX (1.12)
X

The notation ®(X) implies the formulation to calculate ©, which is resulted from MLE, MAP,
or EM. Hence, ©(X) is considered as function of X in the integral fX@(X)f(Xle)dX. The ©

is unbiased estimate if E(®) = 0. Otherwise, if £(8) # © then, 8 is biased estimate. As usual,
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unbiased estimate is better than biased estimate. The condition E(®) = @ is the criterion to
check if an estimate is unbiased, which is applied for all estimation methods.
The variance of © is:

v(8) = [ (800 - E0) (800 - EX)) f(xledax (113)

X
The smaller the variance V(8), the better the © is.
For example, given multivariate normal distribution and given sample X = {X4, Xo,..., Xn}

where all Xi (s) are iid, the estimate ® = (3, E)T from MLE is:
= X;
5

= NZ(&- - - )"

E() = E Gix) - %i E(X) = %iE(X) —u

Then fi is unbiased estimate. We also have:

Due to:

N

N N N
E(S)=E ( Z(X DX - u)T)——E(ZxLXT > il - anﬁz )
i i=1 i=1 i
N
1 r o o 1

:NE ZXL-XL- —ZZ,uXL- +Zuu :NE

i=1 i=1 i=1 =1 i=1

(Due to X;a" = ax;")

N
AT 1 T A AT
=—E ZXX —2NaaT + Nap” NE X X; —Njp

i—1

(Due tofa= Z X;)

M
>
>
~
|
N
=
=
>
bﬂ
+
=
=
=
ﬂ
SN— ||

== Z E(X,XT) — E(aaT) = Z E(XXT) — E(aaT) = E(XXT) — E(aa7)

(Let X be random variable representing all iid X; (s))
=C+uw") - W@ +E@E@")
(Dueto £ = E(XXT) — uu” and the variance V(2) = E(aaT) — E(QQD)E(R)T)
=CE+pu") = WVE@ +pu") = -V ()
It is necessary to calculate the variance V (j1). In fact, we have:

1 1< 1< 1 1
V() = V(Nzxi> = mzl V(X ZFZ VOO =2V =28

i=1
Therefore, we have:
- 1 N-—-1
EE)=f-=X=———3

Hence, we conclude that £ is biased estimate because of E(£) # = m

Without loss of generality, suppose parameter @ is vector, the second-order derivative of
the log-likelihood function I(®) is called likelihood Hessian matrix (Zivot, 2009, p. 7) denoted
S(0).
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S(®) = S(0]|X) = D?1(0]X) (1.14)
Suppose ® = (64, O2,..., Or)" where there are r partial parameters 6, equation 1.14 is expended
as follows:
2%1(0]X) 0921(0]X) 2%1(0]X)
262 00,00, 060,06,
, d21(0]X) o’lel) a*el)  a%e)
Dl(GIX)=W= 96,00, 062 960,00,
921(0]X) a%l(e|X) 921(0]X)
00,00, 00,00, 062
Where,
0%1(e|x)  a [al(e|X)
06,06, ‘a_erl-( 26, )
20%1(e]x) 92%1(e]X)
067 06,00

The notation 1(®|X) implies that I(®) is determined based on X, according to equation 1.8. The
notation S(®|X) implies S(®) is calculated based on X. If sample X replaces X then,
S(0) = S(0|X) = D21(B]|X) (1.15)

Where X = {X1, Xa,..., Xn} be the observed sample of size N in which all X; (s) are iid. The
notation 1(®|X) implies that 1(®) is determined based on X, according to equation 1.11. The
notation S(®|X’) implies S(®) is calculated based on X.

The negative expectation of likelihood Hessian matrix is called information matrix or
Fisher information matrix denoted 1(®).

1(0) = —E(5(9)) (1.16)
If S(O®) is calculated by equation 1.14 with observation X then, 1(®) becomes:
1(0) = 1(8]X) = —E(S(0]X)) = — f D2(BIX)f (X|®)dX (1.17)

X
The notation 1(®|X) implies that 1(®) is determined based on X, according to equation 1.8. The
notation 1(®]X) implies I(®) is calculated based on X. Note, D21(0]X) is considered as function
of Xiin the integral [, D*1(0|X)f(X|©)dX.
If S(®) is calculated by equation 1.15 with observation sample X = {X1, Xa,..., Xn} in
which all X; (s) are iid then, 1(®) becomes:

1(0) = 1(8]X) = —E(S(8]X)) = N «1(6]X) = —Nszl(GIX)f(XIG)dX (118)
Where X is random variable representing every Xi. TheX notation 1(®|X) implies 1(®) is
calculated based on X . Note, D2I(®|X) is considered as function of X in the integral
J, D*1(6]X)f (X|©)dX. Following is proof of equation 1.18.

1(0) = 1(0]X) = —E(S(0]X)) = —E(D?1(8]X))
(The notation I(®|X) implies that 1(®) is determined based on X)

N
- _F (z 1)21(@|Xi)>

i=1
(Due to equation 1.8 and iid Xi (s))
N

= —ZE(DZI(G)IXi)) = —Z J D21(0]X,)f(X;|0)dX;

i=1 i=1yx
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N
- —Zf021(9|X)f(X|@)dx
i=1yx

(Let X be random variable representing every Xi)

Y f D21(B]X)f(X|®)dX = N * [(0]X)m

For M)IiE method, the inverse of estimator information matrix is called Cramer-Rao lower
bound denoted CR(®).
CR(®) =1(0)1 (1.19)

Where 1(®) is calculated by equation 1.17 or equation 1.18. Any covariance matrix of a MLE
estimate © has such Cramer-Rao lower bound. Such Cramer-Rao lower bound becomes V(8)
if and only if © is unbiased, (Zivot, 2009, p. 11):

V(@) > CR(@) if ® biased

V(@) = CR(@) if ® unbiased
Note, equation 1.19 and equation 1.20 are only valid for MLE method. The sign “>” implies
lower bound. In other words, Cramer-Rao lower bound is variance of the optimal MLE estimate.
Moreover, beside the criterion E(8) = ©, equation 1.20 can be used as another criterion to
check if an estimate is unbiased. However, the criterion E(®) = @ is applied for all estimation
methods whereas equation 1.20 is only applied for MLE.

Suppose O = (61, bx,..., 6r)T where there are r partial parameter 6, so the estimate is © =

(él, 0,, ..., @r)T. Each element on diagonal of the Cramer-Rao lower bound is lower bound of
a variance of 8y, denoted V (8, ). Let CR(8},) be lower bound of V(8y ), of course we have:
V() = CR(H;) if O biased
V() = CR(H,) if O, unbiased
The sign “>" implies lower bound. Derived from equation 1.18 and equation 1.19, CR(8y) is
specified by equation 1.22.

(1.20)

(1.21)

f(X|©)dX
-1 (1.22)

SN 221(01X) _ 921(0]X)
1(6x) ——N*E<a—9§> __Nfa—e,g

~ ~ \—1 1 2%1(0]X
CR(O) =1(6) = ‘N( f ;—%”f(xmd)()
X

Where N is size of sample X = {X1, Xo,..., Xn} in which all Xi (s) are iid. If there is only one
observation X then, N = 1. Of course, I(8;) is information matrix of 9. If 9 is univariate,
1(8;,) is scalar, which called information value.

For example, let X = {X1, Xo,..., Xn} be the observed sample of size N with note that all X;
(s) are iid, given multivariate normal PDF as follows:

no-1 1 _
F(X10) = (2m) " 213| 2exp (—5 (X — 5 (X — )
Where n is dimension of vector X and ® = (i, £)" with note that x is theoretical mean vector
and X is theoretical covariance matrix. Note, X is invertible and symmetric. From previous

example, the MLE estimate ® = (4, E)T given X is:
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N
N 1 . .
5 = ﬁZ(Xi — D& - )T
i=1

Mean and variance of i from previous example are:

E(@Q) =u
1
40D =N2

We knew that 1 is unbiased estimate with criterion E (&) = u. Now we check again if fi is
unbiased estimate with equation 1.21 as another criterion for MLE. Hence, we firstly calculate
the lower bound CR(i) and then compare it with the variance V(). In fact, according to
equation 1.8, the log-likelihood function is:

n 1 1
L(0]X) = —5log(2m) — ElogIZI —3 X - (X —p

2
The partial first-order derivative of 1(®|X) with regard to x is (Nguyen, 2015, p. 35):
aol(e]Xx) — (X — )Tz
au #
oX — T 1(x -
(due to D) o &~ =-2X—wTx*whenXis symmetric)

The partial second-order derivative of 1(®|X) with regard to x is (Nguyen, 2015, p. 36):

0%1(elx) o (al(e|X)\ o Ty-1y — _(y-1T — y-1
o*icelx) (T>—@((X—u)2 )= —@E ) =1

(Due to X is symmetric)
According to equation 1.22, the lower bound CR (1) is:

1( [ 0%1(0|X g -
CR(}) = _NU ;—Ml)f(xm)d)() =N(J z-lf(x|@)dx>

X

ou: oy

_ Z‘lff(XIG))dX _1—12—V(“)
N “Nc T

X
Due to V(1) = CR(f1), fi is unbiased estimate according to the criterion specified by equation
1.21.
Mean of £ from previous example is:
B(5) =215
N

We knew that £ is biased estimate because E(£) # Z. Now we check again if £ is biased

estimate with equation 1.21 as another criterion for MLE. The partial first-order derivative of
1(®]X) with regard to X is:

al(e]X) 1 1 1 1 S
Due to:
olog(=D) _ _,
X
And

X -W'E X —p) _or(X — X —i)'s™)

1)) 0X
Because Bilmes (Bilmes, 1998, p. 5) mentioned:
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K- X - =t(X - W& -'=")
Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(4) = Y; a;;.
This implies (Nguyen, 2015, p. 45):
IX -wW'E' X —pw _ or(X—p&-w'=T)
ED B o B
According to equation 1.22, the lower bound CR(Z) is:

9 B 9 (9
CR(Z) — _N<fwf(X|®)dX> = _%<fa_z< l(s)E!X)>f(X|®)dX>
X

X

X - X =)t

-1

-1

ol(e|X
<ﬁ<f (azl )f(XIG)dX>
i (Due to I(®]X) is smooth enough)
-1
1( 0 1
N<0_< <_§ 1y 21(X W& —Wre” )f(XIG))dX>
-1
1( 0 1
N(ﬁ( 52 jf(XIG))dX+ fZ‘l(X—u)(X—u)TZ‘lf(XIG))dX>
1/ 0 1 -
N((TZ( 52 X - wX - w'ET 1f(X|@)dX>
1/ 0 1 -
N(T( Sl opuiget f (X — (X - u)Tf(XIG)dX>
(Because £t and (X w)(X — p)T are symmetric matrices)
-1 -1
1({o, 1_ . 1_ 1({o, 1. 1__
=_N(E<_EZ R 12)) =‘N(E(_EZ Bk 1))

Where (0) is zero matrix. This implies the lower bound CR(Z) is inexistent. Hence, £ is biased
estimate. Even there is no unbiased estimate of variance for normal distribution by MLE =

MLE ignores prior PDF f(®|¢) because f(®|¢) is assumed to be fixed but Maximum A
Posteriori (MAP) method (Wikipedia, Maximum a posteriori estimation, 2017) concerns f(®|¢)
in maximization task when f f(X|©)f(0]¢) is constant with regard to @.

X|0)f (O
ff;(;l(|2)§;(r(c[)ir) argmas f (X|0)f (0¢)

Let f(X, ® | &) be the joint PDF of X and O where O is also random variable too. Note, £ is
parameter in the prior PDF f(®|¢). The likelihood function in MAP is also f(X, ® | £).

0= argmaxf(@lX) =ar g

f(X,0[8) = f(X|0)f(0S) (1.23)
Theoretical mean and variance of X are based on the joint PDF f(X, @ | £) as follows:
E(X) = ffo(X,@H)dXd@ (1.24)
X 0
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vex) = | | (X -E@) (X - E) F(X,01¢)dXde 1.25
(1.25)

X 0
Theoretical mean and variance of ® are based on f(®|¢) because f(®|¢) is function of only @
when £ is constant.

5@ = [ [erx.0l9dxde = [ or(elsdo (1.26)
X 0

(¢]

V(0) = f f (0 — E(©)(0 - E0))" f(X,0]£)dXdo
X 0

_ f(@ — E(®))(e — E®)" f(0]§)do (1.27)

0
= E(007[§) —E(BIHEOTS)
In general, statistics of @ are still based on f(®|¢&). Given sample X = {X1, Xo,..., Xn} in which
all Xi (s) are iid, the likelihood function becomes:

focee) =] [raeio (1.28)
The log-likelihood function £(@) in MAPL=i; re-defined with observation X or sample X as
follows:
£(0) = log(f (X, 1)) = 1(6) + log(f(8l5)) (1.29)
£(0) = log(f (X, 018)) = L(8) + log(f(8l%)) (1.30)

Where 1(®) is specified by equation 1.8 with observation X or equation 1.10 with sample X.
Therefore, the estimate © is determined according to MAP as follows:

0= arg(ranax(f(@)) = arggnax (1(9) + 108(f(®|f))) (1.31)

Good information provided by the prior f(®|¢) can improve quality of estimation. Essentially,
MAP is an improved variant of MLE. Later on, we also recognize that EM algorithm is also a
variant of MLE. All of them aim to maximize log-likelihood functions. Likelihood Hessian

matrix S(®), information matrix 1(®), and Cramer-Rao lower bound CR(®), CR(8)) are
extended in MAP with the new likelihood function £(0).

S(0) = D*£(0)

1(0) = —E(S(©))

CR(®) =1(0)1

SN £(0) 0%¢ ( )
I(Hk)——N*E< 767 ) le 267 f(X,0]8)dxde

CR(Oy) = I(ék)
Where N is size of sample X = {X1, Xo,..., Xn} in which all Xi (s) are iid. If there is only one
observation X then, N = 1.

Mean and variance of the estimate ® which are used to measure estimation quality are not
changed except that the joint PDF f(X, ® | &) is used instead.

5(6) = | [ 8cx.0)7(x,0)dxc0 (1.32)
X 0
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v(©) = [ [ (ex.0) - E) (0x.0) - EX)) F(x.0dKde  (133)
X 0

The notation (X, ®) implies the formulation to calculate ®, which is considered as function
of X and @ in the integral [, f, ©(X,©)f(X,0|¢)dXde. Recall the 8 is unbiased estimate if

E(®) = 0. Otherwise, if E(®) = 0 then, © is biased estimate. Moreover, the smaller the
variance V(8), the better the 8 is. Recall that there are two criteria to check if © is unbiased
estimate. Concretely, © is unbiased estimate if one of two following conditions is satisfied:
E(®)=0
V(©) = CR(0)
The criterion V(8) = CR(®) is expended for MAP.

It is necessary to have an example for parameter estimation with MAP. Given sample X =
{X1, X2,..., Xn} in which all X; (s) are iid. Each n-dimension Xi has following multivariate
normal PDF:

n 1
FO16) = @m) Elsl Zexp (~5 0~ TE 08— )

Where x and X are mean vector and covariance matrix of f(X | ®), respectively with note that
O = (u, X)". The notation |.| denotes determinant of given matrix and the notation = denotes
inverse of matrix X. Note, X is invertible and symmetric.

In ® = (1, )", suppose only x distributes normally with parameter & = (o, o) Where o and
Y are theoretical mean and covariance matrix of x. Thus, X is variable but not random variable.
The second-level parameter £ is constant. The prior PDF f(®|&) becomes f(«|¢), which specified
as follows:

noo1 1 _
F(O1E) = f(klHo, ) = (2m) 21| 2exp (=5 (1 — o) 25" (1 = )
Note, uo is n-element vector like x and Xo is nxn matrix like . Of course, X is also invertible
and symmetric. Suppose u = (u1, p2,. .., un)', tio = (o1, poz, .. ., pron) ", and

611 612 6111
R R I
6n1 6n2 o 6nn

It is deduced that uo;j is theoretical mean of u; whereas dij (i#]) is covariance of wi and g;.
Especially, dii is variance of .
Mean of X is:

E(X) = ffo(X,mf)dXd@:ffo(X|®)f(@|§)dXd@
X 0 X 0

- | ( | Xf(XIG))dX>f(®If)d® = [ wre@ie)d0 = [ wfGulio 2oy

0 X 0 u

=E(u) = Ko
Variance of X is:

V(X) = j j(x —EX)(X — E(X))' f(X,0]£)dXde

X 0

B f f(X ~EQ0)(X - EQD) f(X|©)f (0]¢)dxde
X 0

= f(f(X—E(X))(X—E(X))Tf(Xle)dX>f(@|f)d9
0 X
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[ 2re@1)0 = [ 3£l 2y = 2
® p
The log-likelihood function in MAP is

N
£(8) = log(£ (1)) + () = log(f (uI§)) + ) log(f (Xi16))
i=1
1 1
-~ 210g(2m) — S loglZol — 5 (u = 10)"25" (1 = )
1 1
+ Z (—glog(zm — Sloglz] = = (X = XX = u))

Because normal PDF is smooth enough, from equation 1.24, the estimate © = (ﬁ,f)T §
solution of the equation created by setting the first-order of #(®) regarding x and X to be zero.
Due to (Nguyen, 2015, p. 35):

0
oM (X=X - W) = —2(X - W'z
And (Nguyen, 2015, p. 35)
0
oM (= 1) 5 (1 = 110)) = (= o)™ (ot + g™ = (= )" (o + g H)

=2(n—po)" g
The first-order partial derivative of £(®) with respect to u is:
9£(0) u

ou =—(u—u) ot + Z(Xi —wrzt
=1

N
= —uTygt +ulzgt + (Z Xf)Z—l —NuTz?t
i=1

N
=—u" ot + N2TH) + pgZet + (Z X}) Dk
i=1
Setting this partial derivative to be zero, we obtain:
N
—uTEer+ N2 ™) + izt + <Z X{)Z‘l =0
i=1

N
= o+ NE DT =35 0 + z-lzxi

i=1

N
= ot + N2 Du =325 o + z-lzxi

i=1

N
= B2+ NDu =325 g + ZXi
i=1
Where 1 is identity matrix. Let,

N

_ 1

X = NZXL
i=1

We obtain the following equation to estimate x and X:
p=CZy + ND(ZZ5 ug + NX)
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The first-order partial derivative of I(®) with respect to X is:

0£(0) _ i (‘lz—l F2IE, - W)X - ufz‘l)

oz _ 2 2

i=1

Due to:
dlog(|Z]) -
B}
And
0X; — e (X — ) otr((X; — (X — )TE)
E) B %

Because Bilmes (Bilmes, 1998, p. 5) mentioned:
XK= — W = (X — WX — w7z )
Where tr(A) is trace operator which takes sum of diagonal elements of square matrix, tr(4) =
Y. a;;- This implies (Nguyen, 2015, p. 45):
oX; — Tz 1(X; — otr((X; — ) (X; —)Tr 1

( L ﬂ) az ( l ﬂ) — (( L .u)a(zl ,Ll) ) — —Z_l(Xi _ ‘Ll)(Xl _ ‘Ll,)TZ_l
Where X is symmetric and invertible matrix. The estimate £ is the solution of equation formed
by setting the first-order partial derivative of I(®) regarding X to zero matrix. Let (0) denote
zero matrix.

0 0 0
0 0 0
(0) = N M
0 0 0
We have:
04(0)
oy = (0)

(e et o)
2 > i— U i—Hu -

=4

=) X+ - —whH =(0)

=i

1l
[

L

N N
1 1
= NZ(XI: W& -W' = NZ(XiXLT —Xiu" — uX{ +pp")
i=1 i=1

U

N
1
= 5 KT = X — X + ")
i=1

N N N
1 2 1 _
=3= (NinXiT) —ﬁﬂinT +pup’ = (NZXiXiT> — 2uX + up”
i=1 i=1 i=1 T
MAP results out a system of two equations whose solution is the estimate © = (ﬁ, i) as

follows:
p=EEgt+ ND'(EZ5 o + NX)

N
1 _
Y= (ﬁz XiXiT) —2uX + uu’
i=1

Where | is identity matrix and
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N
_ 1
i=1

Because X is independent from the prior PDF f(u | 1o, Zo), it is estimated by MLE as usual,

N
« (1 __
ZZ(NE XiXiT>—XXT
i=1

The estimate £ in MAP here is as same as the one in MLE and so, it is biased. Substituting &
for X, we obtain the estimate /i in MAP:
a= (825t + NI) (855 o + NX)

Note,
N

_ 1 1<
E(X)=E (NZ Xi> = NZ E(X) = E(X) = o

i=1
N

_ 1 1w 1 1
V(%) = V<N2Xi> - FZ V) = V0 = 13

i=1 =
Now we check if ji is unbiased estimate. In fact, we have:

E(Q) = E ((2251 +NI) (825 e + N)?)) = (8557 + NI) (855 o + NE(D))

N
= (Zzt + NI)_l (225% + Z E(Xl-)>

i=1
= (8551 + NI) " (8550 + NE(X)) = (8557 + NI) ™ (£55 o + Nito)

(Due to E(X) = o)
= (Sx51+ NI (8251 + NI o = o
Therefore, the estimate /i is biased because the variable 4 is not always to equal uo.
Now we try to check again if i is unbiased estimate with Cramer-Rao lower bound. The

second-order partial derivative of £(0) regarding u is:

922(0) 9 [3£(0)\ 0 Y
“our :ﬁ<—6u >=£ —uT (" + NI + pg 2ot + ZXL'T x

=1
= -y + N2 )T = (5t + N2
(Because X and Xo are symmetric)

Cramer-Rao lower bound of i is:
-1

1 0%¢(0
CRG) =~ jj au(z)f(X,(é)lf)dXd@
X 0

1 -1
- j j (51 + NZ-D) (X, 0]¢)dXdO
X 0

1 1
— 5l [ear e nereinde | =g @+ N ko 2o
C) u
1
=5 @ N
Variance of /i is:
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V() = V(5 + NDLH(EE5 e + NX))

= V(@ + ND1285 o + NEZ5t + ND7IX) = V(N(ZZ;t + NID)71X)

= N2V (23! + ND)'X)

Because it is difficult to calculate V (4), suppose we fix T so that £ = %, = %, we have:
V(D) = N2V((EZ3'+ ND™X) = N2V(EZ~ L + ND)™1X) = N2V((I + ND™'X)

1 _ N2 _ N 5
i P =i

X
N+1 ) (N +1)2

(Dueto V(X) = %Z)
The Cramer-Rao lower bound of ji is re-written as follows

CR(j) = %(251 + Nz ) 1= %(2—1 + Nz 1) 1= (>: 11+ N))

(e

1
N (N + 1)
Obviously, fi is biased estimate due to V(i) # CR(i1). In general, the estimate © in MAP is
affected by the prior PDF f(®|¢). Even though it is biased, it can be better than the one resulted
from MLE because of valuable information in f(®|¢&). For instance, if fixing X, the variance of

g from MAP ( e Z) 1s “smaller” (lower bounded) than the one from MLE (%Z) [

Now we skim through an introduction of EM algorithm. Suppose there are two spaces X
and Y, in which X is hidden space (missing space) whereas Y is observed space. We do not
know X but there is a mapping from X to Y so that we can survey X by observing Y. The
mapping is many-one function ¢: X — Y and we denote ¢ X(Y) = {X € X: p(X) =Y} asall X €
X such that o(X) = Y. We also denote X(Y) = ¢ 1(Y). Let f(X | ®) be the PDF of random variable
X € X and let g(Y | ®) be the PDF of random variable Y € Y. Note, Y is also called observation.
Equation 1.34 specifies g(Y | ®) as integral of f(X | ®) over ¢ 1(Y).

o) = | fexie)ax (134)
o1V

Where O is probabilistic parameter represented as a column vector, ® = (61, 62,..., 6;)" in which
each 6 is a particular parameter. According to viewpoint of Bayesian statistics, ® is also
random variable. As a convention, let Q be the domain of ® such that ® € Q and the dimension
of Q is r. For example, normal distribution has two particular parameters such as mean x and
variance ¢ and so we have ® = (1, 6°)". Note that, ® can degrades into a scalar as ® = . The
conditional PDF of X given Y, denoted k(X | Y, ®), is specified by equation 1.35.

f(X10)
k(X|Y,0) 7110 (1.35)

According to DLR (Dempster, Laird, & Rubin, 1977, p. 1), X is called complete data and the
term “incomplete data” implies existence of X and Y where X is not observed directly and X is
only known by the many-one mapping ¢: X — Y. In general, we only know Y, f(X | ®), and
k(X'|Y, ®) and so our purpose is to estimate ® based on such Y, f(X | ®), and k(X | Y, ®). Like
MLE approach, EM algorithm also maximizes the likelihood function to estimate ® but the
likelihood function in EM concerns Y and there are also some different aspects in EM which
will be described later. Pioneers in EM algorithm firstly assumed that f(X | ®) belongs to
exponential family with note that many popular distributions such as normal, multinomial, and
Poisson belong to exponential family (please see table 1.1). Although DLR (Dempster, Laird,
& Rubin, 1977) proposed a generality of EM algorithm in which f(X | ®) distributes arbitrarily,
we should concern exponential family a little bit. Exponential family (Wikipedia, Exponential
family, 2016) refers to a set of probabilistic distributions whose PDF (s) have the same
exponential form according to equation 1.36 (Dempster, Laird, & Rubin, 1977, p. 3):

f(X10) = b(X) exp(077(X))/a(0©) (1.36)
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Where b(X) is a function of X, which is called base measure and z(X) is a vector function of X,
which is sufficient statistic. For example, the sufficient statistic of normal distribution is z(X)
= (X, XXNT. Equation 1.36 expresses the canonical form of exponential family. Recall that Q
is the domain of ® such that ® € Q. Suppose that Q is a convex set. If © is restricted only to Q
then, f(X | ®) specifies a regular exponential family. If ® lies in a curved sub-manifold Qo of
Q then, f(X | ®) specifies a curved exponential family. The a(®) is partition function for variable
X, which is used for normalization.

a(0) = fb(X)exp(G)TT(X))dX

X
As usual, a PDF is known as a popular form but its exponential family form (canonical form
of exponential family) specified by equation 1.36 looks unlike popular form although they are
the same. Therefore, parameter in popular form is different from parameter in exponential
family form.
For example, multivariate normal distribution with theoretical mean x and covariance
matrix X of random variable X = (X1, Xz,..., X»)| has PDF in popular form is:

n -1 1
FXI,5) = @r) 215172« exp (=5 (X = 75X — )
Hence, parameter in popular form is ® = (u, £)". Exponential family form of such PDF is:

- X 1 orp-1 1
£(X10,,0,) = 2m)2 v exp ( 01,0) () ) /exp (—7 010776 — 5108|260, )

Where,
_ (61
0= (62)
61 = Z_lll
1
= ——Z_l
0, >

b(X) = (2m) "2

(X
70 = ()
1 —t 1

Hence, parameter in exponential family form is ® = (61, 62)". Although, f(X | 61, &2) looks unlike
f(X | &, Z) but they are the same, f(X | 61, 62) = f(X | i, X). In fact, we have:

X _ 1__ X _ 1 e
0T(X) = (6,,6,) (XXT) - (2 —5E 1) (XXT> = WTETIX - S XTITIX
We also have:

1 1o 1 1 rg-tyy-1, 1 -1
a(®)=exp<—19192 91—510g|—292|>=exp(5,u RN ,u—zloglz |)

1 T 1 1 1 1 T 1
= exp (5;1 T+ ElogIZI) = |Z]|2 x exp (511 - u)
(Due to [} = Z[?)
Therefore,
1

n 1 1
f(X164,6,) = (2m)Z|Z| "2  exp (uTZ_lX - EXTZ*X - EHTE_1M>

n 1 1
= (2m)"Z|Z|7Z x exp (— 5 XTe X -y X — T X + /,LTZ_lu)>

n 1 1
= (2m)72|Z|"Z * exp (— 5 XTE X = T2 X - XT2 Yy + uTz—lu)>
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(Because X is symmetric, 11X = X" 1)

= (271)_%|Z|_% * exp (—%((XT —unE=1x — (xT - MT)Z_1M)>
n 1
= (27‘[)_7|Z|_% * exp <—§ ((XT —uNE (X - ,u)))

n 1
= (Zn)'flil'% * exp <—§ X - tx - u)) = fX|w,Z)m

The exponential family form is used to represents all distributions belonging to exponential
family as canonical form. Parameter in exponential family form is called exponential family
parameter. As a convention, parameter ® mentioned in EM algorithm is exponential family
parameter if PDF belongs to exponential family and there is no additional information.

Table 1.1 shows some popular distributions belonging to exponential family along with
their canonical forms (Wikipedia, Exponential family, 2016). In case of multivariate
distributions, dimension of random variable X = (x1, X2,..., Xn)" is n.

Distribution Popular Exponential 7(X) b(X) a(®)
PDF family
parameter
®

f(Xl.u!Z) 6 = 2_1‘[1 X 2 —% 1 Ta-1
Multivariate | _ 2 ZI_% ! 1 (XXT) (2m) exp (—191 6576,
normal - f s 6, = —52‘1 1

« e 2K-WTET ) — ~logl-20,1)

f(X|P1 Pz 6; = log(py) X K! 1

ﬂpx, 6, = log(p,) 2 (%)
Hn 1(x]') o x

Multinomial ! 6, = log(pn) n

Where, Y7, p; = 1,

Yix =K, andx €

{0,1,..,K}.

Table 1.1. Some popular distributions belonging to exponential family
It is necessary to survey some features of exponential family. The first-order derivative of
log(a(®)) is expectation of z(X).
log'(a(®)) = a'(0) _dlog(a(®)) da(®)/d® 1 d(f, b(X)exp(0T7(X))dX)
BN T%@ T de | a(®  a(e) do

1 d (b(X)exp(@TT(X)))
- a(@)f

% dx = f T(X)b(X) exp(077(X))/a(®) dX
X

— EG(0I0)
The second-order derivative of log(a(®)) is (Jebara, 2015):
, _d (ad@)) a'(©®) a'@®)(a@®)
log”(a(®)) ‘%<a(@)> ~ a0  a@ a(®
B ar/(@)
— a(e)

Where,

30


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020

dX

a'(®) 1 d? (b(X)exp(G)TT(X)))
a(®) a(@)l de
- j (z()) (z(X)) b(X) exp(677(X))/a(0) dX = E ((T(X))(T(X))T

°)
Hence (Hardle &)éimar, 2013, pp. 125-126),
log"(a(®)) = £ (z0) (x(0)"|o) - (EEI0)(EEMI0)" = VE(0le)

- j (2(X) — E@(X)10)) (%) — EG(x)|©))" F(X|0)dX

X
Where V(z(X) | ®) is central covariance matrix of z(X). Please read the book “Matrix Analysis
and Calculus” by Nguyen (Nguyen, 2015) for comprehending derivative of vector and matrix.
Let a(® | Y) be a so-called observed partition function for observation Y.

a(0ly) = f b(X)exp(0T7(X))dX

p~1(Y)
Similarly, we obtain that the first-order derivative of log(a(@ | Y)) is expectation of z(X) based
onY.

1 d(f _i b(Xexp(0T(X))dX
log'(a(0I1) = Uoo 5 )=E(T(X)IY,®)

If f(X | ®) follows exponential family, the conditional density k(X | Y, ®) is determined as
follows:

_Fx19)
KXY, 0) = e

Indeed, k(X | Y, ®) is conditional PDF. If f(X | ®) follows exponential family then, k(X | Y, ®)
also follows exponential family. In fact, we have:

f(x10) _ b(X) exp(07(X))/a(0) _ b(X)exp(0T7(X))

g(Y|e) f(p-1(y) b(X) exp(077(X))/a(®) dX fq,-1(y) b(X)exp(0Tt(X))dX
= b(X) exp(077(X))/a(O|Y)

Note that k(X | Y, ®) is determined on X € ¢ ~1(Y). Of course, we have:

k(X|Y,0) =

~ b(X)exp(071(X)) -1 PXDexp(07T(X))dX
kv, oax = | aelY) - a(elY)
p~H(Y) =Y
_a@ly)
T ae]y)

The first-order derivative of log(a(® | Y)) is:
log’ (a(0I)) = EG(X)|Y,©) = f T(Xk(X]Y, ©)dX

e 1Y)
The second-order derivative of log(a(®) | Y) is:

log”(a(@lY)) = V(z(X)|Y,0)

= j (z(X) —E()IY,0))(z(X) — E(z(X)Y, G)))Tk(XlY, 0)dXx

1Y)
Where V(z(X) | Y, ®) is central covariance matrix of z(X) given observed Y. Table 1.2 is
summary of f(X | ®), g(Y | ®), k(X | Y, ®), a(®), log’(a(®)), a(® | Y), and log’(a(® | Y)) with
exponential family.
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f(X10) = b(X) exp(077(X))/a(6)
g(Y|®) = f b(X) exp(077(X))/a(®) dX

1Y)

k(XIY,0) = b(X) exp(0T7(X))/a(0[Y)
k(X|Y,0)dX =1

1Y)

a(®) = j b(X)exp(O77(X))dX
X
log’ (a(6)) = E(x(X)|0) = f F(X10)T(X)dX

X
log" (a(®)) = V(x(X)|0) = f (z(X) — EG(X)[0))((X) — Ex(X)|0))" f(X|0)dX

X
a(e|y) = J b(X)exp(0T7(X))dX
o~ 1(Y)
log'(a(@|V)) = EG(X)IY,0) = f k(X|Y,0)T(X)dX

1Y)

log”(a(@|Y)) = V(z(X)|Y,0)

- f (x(X) — EGCOIY, ©))(z(X) — E@X)]Y, 8)) k(X]Y, 0)dx
9]
Table 1.2. Summary of f(X | ®), g(Y | ®), k(X | Y, ®), a(®), log’(a(®)), a(® | Y), and log’(a(®
| Y)) with exponential family
Simply, EM algorithm is iterative process including many iterations, in which each iteration
has expectation step (E-step) and maximization step (M-step). E-step aims to estimate
sufficient statistic given current parameter and observed data Y whereas M-step aims to re-
estimate the parameter based on such sufficient statistic by maximizing likelihood function
related to X. EM algorithm is described in the next section in detail. As an introduction, DLR
gave an example for illustrating EM algorithm (Dempster, Laird, & Rubin, 1977, pp. 2-3).
Example 1.1. Rao (Rao, 1955) presents observed data Y of 197 animals following
multinomial distribution with four categories, such as Y = (y1, Y2, Y3, Y4) = (125, 18, 20, 34).
The PDF of Y is:
V1 Y2 V3 Va4
oo = G G+ g) (1) -G-1) +()
Ly 24 4 4 4 4 4
Note, probabilities py1, py2, py3, and pya in g(Y | 6) are 1/2 + 6/4, 1/4 — 014, 1/4 — 6/4, and 6/4,
respectively as parameters. The expectation of any sufficient statistic y; with regard to g(Y | 6)
is:

E(ilY,0) = yipy,
Observed data Y is associated with hidden data X following multinomial distribution with five
categories, such as X = {X1, X2, X3, X4, X5} Where y1 = X1 + X2, Y2 = X3, Y3 = X4, Y4 = X5. The PDF
of X is:

(%) o1 6\ 1 6\
f(X16) = =Lt (-) (_) G- -G-3) ()
[I-1 () \2 4 4 4 4 4 4
Note, probabilities px, Pxz, Pxs, Pra, and pxs in (X | ) are 112, 6/4, 1/4 — 614, 1/4 — 0/4, and 6/4,

respectively as parameters. The expectation of any sufficient statistic x; with regard to f(X | 6)
is:

X5
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E(x;|0) = XiDx;
Due to y1 = X1 + X2, Y2 = X3, Y3 = X4, Y4 = Xs, the mapping function ¢ between X and Y is y1 =
@(X1, X2) = X1 + X2. Therefore g(Y | 0) is sum of f(X | ) over x1 and x2 such that x; + x2 = y1
according to equation 1.34. In other words, g(Y | &) is resulted from summing f(X | &) over all
(X1, X2) pairs such as (0, 125), (1, 124),..., (125, 0) and then substituting (18, 20, 34) for (X3, Xa,

Xs) because of y1 = 125 from observed Y.
125 0

giey= > > fxe
.X'1=0 x2=125—x1
Rao (Rao, 1955) applied EM algorithm into determining the optimal estimate °. Note y» = X3,
Y3 = Xa, Y4 = Xs are known and so only sufficient statistics x; and x, are not known. Given the t™"
iteration, sufficient statistics x; and x, are estimated as x1) and x, based on current parameter
69 and g(Y | 6) in E-step below:
K+ 20 = 3 = E(3v,00)
Given py1 = 1/2 + /4, which implies that:
© 1 6®
v =En|Y,09) =y, =y <§ + T)
Because the probability of y1 is 1/2 + 6/4 and y1 is sum of x1 and x, let p,|,, be conditional
probability of x; given y: and let p,.,|,,, be conditional probability of x. given yi1 such that
_ P(x1, 1) _ P(xy,y1)
Pl =7 1/2+6/4
_ P(x3,y1) _ P(x3,¥1)
Paln = T T 12+ 6/4

px1|3’1 + px2|y1 =1
Where P(x1, y1) and P(x2, y1) are joint probabilities of (x1, y1) and (x2, y1), respectively. We can
select P(x, y1) = 1/2 and P(x2, y1) = 6/4, which implies:

1/2
1/2+6® /4
6 /4

1/2+ 60 /4

10 = Bl 69) = 5%, = 5

2 = E(x,]Y,09) = yOp, 1y, = 17

Such that

t t t
0 40 = yf0

Note, we can select alternately as P(x1, y1) = P(xz, y1) = (1/2 + 6/4) | 2, for example but fixing
P(x1, y1) as 1/2 is better because the next estimate 6 known later depends only on x.®©.
When y1 is evaluated as y1 = 125, we obtain:

1/2
®
x;” =125 ———————
1 1/2 + 60 /4
6® /4
xP =125 /

1/2+ 610 /4
Please pay attention that the expectation y:® = E(y1 | Y, 89) gets value 125 when y; is evaluated
as y1 = 125 and the probability corresponding to y: gets maximal as 1/2 + 69/4 = 1.
According to M-step, the next estimate 6% is a maximizer of the log-likelihood function

related to X. This log-likelihood function is:

> x;)!
log(f(XIQ)) = log <%) — (xq + 2x5 + 2x3 + 2x4 + 2x5)1l0g(2) + (x, + x5)log(6)

=10

+ (x3 + x4)log(1 — 0)
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The first-order derivative of log(f(X | 9) is:
dlog(f(X19)) Xyt x5 xztx, X+ x5 — (0 +x3+ x4+ x5)0
deo 0 1-0 6(1—6)
Because Y2 = x3 = 18, y3 = x4 = 20, Y4 = Xs = 34 and X is approximated by x.®, we have:
dlog(F(xle)) x5” + 34— (xf” +72)0
EL, B 6(1—6)
As a maximizer of log(f(X | 6), the next estimate 69 is solution of the following equation

dlog(f(xle)) x5 + 34— (x{” +72)0

=0
06 6(1—-6)
So we have:
xP + 34
gt+1) — 2
xét) + 72
Where,
6 /4
xP =125 /

1/2+6® /4
For example, given the initial 8 = 0.5, at the first iteration, we have:
&Y
1/2+6W/4 0.5+ 0.5/4
oD — x;” +34 25434
xél) + 72 25+ 72
After five iterations we gets the optimal estimate 6"
6" =0W =90 =0.6268
Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) lists estimates of 8 over five iterations (t =1,
2, 3, 4, 5) with note that 8% is initialized arbitrarily and 8" = ® = §® is determined at the 5™
iteration. The third column gives deviation 6" and &% whereas the fourth column gives the ratio
of successive deviations. Later on, we will know that such ratio implies convergence rate.
t <o | (06D ]
t o® g — o0 - H(t))
6 =05 0.1268 | 0.1465
6 =0.6082 | 0.0186 | 0.1346
6® = 0.6082 | 0.0186 | 0.1346
6® = 0.6243 | 0.0025 | 0.1330
6®) =0.6243 | 0.0025 | 0.1330

25

= 0.6082

1

3 6™ =0.6265 | 0.0003 | 0.1328
A 6™ =0.6265 | 0.0003 | 0.1328
0® =0.6268 | 0 0.1328
5 6® =0.6268 | 0 0.1328
0® =0.6268 | 0 0.1328

Table 1.3. EM algorithm in simple case
For example, at the first iteration, we have:
6* — W = 0.6268 — 0.5 = 0.1268

9 — @ B 0@ — g* _ 0.6082 —0.6268 0.1465
0 —g® e _g*  05-06268
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2. EM algorithm
Expectation maximization (EM) algorithm has many iterations and each iteration has two steps
in which expectation step (E-step) calculates sufficient statistic of hidden data based on
observed data and current parameter whereas maximization step (M-step) re-estimates
parameter. When DLR proposed EM algorithm (Dempster, Laird, & Rubin, 1977), they firstly
concerned that the PDF f(X | ®) of hidden space belongs to exponential family. E-step and M-
step at the t™ iteration are described in table 2.1 (Dempster, Laird, & Rubin, 1977, p. 4), in
which the current estimate is ®©, with note that f(X | ®) belongs to regular exponential family.
E-step:

We calculate current value 7 of the sufficient statistic z(X) from observed Y and current

parameter ®® according to equation 2.6:

® = E(z(X)|y,0®)

M-step:
Basing on 7", we determine the next parameter ®**9 as solution of equation 2.3:
E@X)|©) =t®
Note, ©**D will become current parameter at the next iteration ((t+1)" iteration).
Table 2.1. E-step and M-step of EM algorithm given regular exponential PDF f(X|®)
EM algorithm stops if two successive estimates are equal, ®" = @0 = @D, at some t" iteration.
At that time we conclude that ®" is the optimal estimate of EM process. Please see table 1.2 to
know how to calculate E(z(X) | ®®) and E(z(X) | Y, ®Y). As a convention, the estimate of
parameter ® resulted from EM process is denoted ®” instead of ® in order to emphasize that
@ is solution of optimization problem.
It is necessary to explain E-step and M-step as well as convergence of EM algorithm.
Essentially, the two steps aim to maximize log-likelihood function of ®, denoted L(®), with
respect to observation Y.

0" = argmax L(0)
)

Where,
L(©) =1log(g(Y1))
Note that log(.) denotes logarithm function. Therefore, EM algorithm is an extension of
maximum likelihood estimation (MLE) method. In fact, let I1(®) be log-likelihood function of
® with respect to X.
[(0) = log(f(XIG))) = log(b(X)) + 0T (X) — log(a(@)) (2.2)
By referring to table 1.2, the first-order derivative of I(®) is:

dl(® dlo YO
d((a) = g(gé 1) = 7(X) — log'(a(®)) = 7(X) — E(x(X)|©) (2.2)
We set the first-order derivative of 1(®) to be zero with expectation that 1(®) will be maximized.
Therefore, the optimal estimate ® is solution of the following equation which is specified in
M-step.

E(x(X)0) = 7(X)
The expression E(z(X) | ®) is function of @ but z(X) is still dependent on X. Let 7! be value of
7(X) at the t" iteration of EM process, candidate for the best estimate of © is solution of equation
2.3 according to M-step.
E(z(X)]0) = t® (2.3)
Where,

E((X)]0) = f Fx1O)T(x)dx

X
Thus, we will calculate ¥ by maximizing the log-likelihood function L(®) given Y. Recall that
maximizing L(®) is the ultimate purpose of EM algorithm.

35


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

0* = argmax L(0)
)

Where,
L(®) = log(g(Y1®)) = log f f(X|©)dx (2.4)
o ()
Due to:
_ f(x10)
KO = ve
It implies:

L(0) = log(g(Y0)) = log(f (X|6)) — log(k(XY,0))

Because f(X | ®) belongs to exponential family, we have:
f(X18) = b(X) exp(0"7(X))/a(6)
k(XIY,0) = b(X) exp(0T7(X))/a(O|Y)
The log-likelihood function L(®) is reduced as follows:
L(®) = —log(a(@)) + log(a(@IY))
By referring to table 1.2, the first-order derivative of L(®) is:
dl(li—(@@) = —log’(a(G)) + log’(a(@IY)) =—E((X)|®) + E(z(X)|Y,0) (2.5)
We set the first-order derivative of L(®) to be zero with expectation that L(®) will be
maximized, as follows:
—E((X)|0) + E(r(X)|Y,0) =0
It implies:
E@(X)|0) = E(z(X)]Y,0)
Let ®Y be the current estimate at some t™ iteration of EM process. Derived from the equality
above, the value 7 is calculated as seen in equation 2.6.
t® =E(z(X)|r,0®) (2.6)
Where,
E(z(X)|r,0®) = f k(X|Y,0®)r(X)dx
e~1(Y)
Equation 2.6 specifies the E-step of EM process. After t iterations we will obtain ®" = @t =
®Y such that E(z(X) | Y, @) = E(z(X) | Y, ®") = ¥ = E(z(X) | ®") = E(z(X) | V) when @D
is solution of equation 2.3 (Dempster, Laird, & Rubin, 1977, p. 5). This means that ®” is the
optimal estimate of EM process because @ is solution of the equation:
E(X)0) = E(z(X)]Y,0)
Thus, we conclude that ®” is the optimal estimate of EM process.
0" = argmax L(0)

(€]
The EM algorithm shown in table 2.1 is totally exact with assumption that f(X|®) belongs to
regular exponential family. If f(X|®) is not regular, the maximal point (maximizer) of the log-
likelihood function 1(®) is not always the stationary point ®" so that the first-order derivative
of I(®) is zero, I’(®”) = 0. However, if f(X|®) belongs to curved exponential family, the M-step
of the EM algorithm shown in table 2.1 is modified as follows (Dempster, Laird, & Rubin,
1977, p. 5):
0+ = argmax [(0) = argmax [(0|r¥) = argmax (@Tr(t) - log(a(@)))) (2.7)
0eQ, e, e,

Where ¢ is calculated by equation 2.6 in E-step. This means that, in more general manner, the
maximizer @ will be found by some way. Recall that if @ lies in a curved sub-manifold Qo
of Q where Q is the domain of ® then, f(X | ®) belongs to curved exponential family.
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In general, given exponential family, within simple EM algorithm, E-step aims to calculate
the current sufficient statistic 7 that maximizes the log-likelihood function L(®) given Y at
current ®Y whereas M-step aims to maximize the log-likelihood function 1(®) given 70, as
seem in table 2.2. Note, in table 2.2, f(X|®) belongs to curved exponential family but it is not
necessary to be regular.

E-step:
We calculate current value 7 of the sufficient statistic z(X) from observed Y according
to equation 2.6.

® = E(z(X)|Y,0®)
Where,
E(x(X)|y,0®) = f k(X|Y,00)r(X)dx
o 1Y)
The log-likelihood function L(®®) given Y at current ®® gets maximal with such 7O,
Note, L(®) is specified by equation 2.4.
M-step:
Basing on 70, we determine the next parameter @Y by maximizing the log-likelihood
function 1(®) given 7, where 1(©) is specified by equation 2.1. Actually, the sufficient
statistic 7" calculated in E-step is substituted for unobserved X in I(®) so that it is possible
to maximize 1(®) with subject to ©.
0+ = argmax (0]t ®)
]

Table 2.2. E-step and M-step of EM algorithm given exponential PDF f(X|®)
EM algorithm stops if two successive estimates are equal, ®" = @0 = @D, at some t" iteration.
At that time, ® is the optimal estimate of EM process, which is an optimizer of L(®).
0" = argmax L(0)
0

Going back example 1.1, given the t iteration, sufficient statistics x; and x; are estimated as
x1® and x.® based on current parameter 89 in E-step according to equation 2.6.

xit) + xgt) — yl(t) — E()’1|Y'9(t))
Given py1 = 1/2 + 6/4, which implies that:

© 4 ® 1 6®
Xyt X" = E(yllY,H ) =YiPy, =01 E+T
This suggests us to select:
1/2
®)
=125——mm—FF—
%1 1/2+0©/4
/4
xP =125 /

1/2+ 610 /4
Essentially, equation 2.3 specifying M-step is result of maximizing the log-likelihood function
().
1(0) = log(f (X16))
(21_521 xi)!
= log ﬁ — (% + 2xy + 2x3 + 2x4 + 2x5)log(2)
i=1\Xi:

+ (x5 + x5)log(8) + (x5 + x4)log(1 — 6)

Hence, the next estimate 8™V is a maximizer of such log-likelihood function I(®).

ng) + 34

xgt) + 72
Table 1.3 (Dempster, Laird, & Rubin, 1977, p. 3) show resulted estimation m

6(t+1) —
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For further research, DLR gave a preeminent generality of EM algorithm (Dempster, Laird,
& Rubin, 1977, pp. 6-11) in which f(X | ®) specifies arbitrary distribution. In other words, there
is no requirement of exponential family. They define the conditional expectation Q(®’ | ®)
according to equation 2.8 (Dempster, Laird, & Rubin, 1977, p. 6).

Q(0'10) = E(log(f(X10))|Y,0) = f k(X|Y,®)log(f(X]0"))dX 2.8)
oY)
The two steps of generalized EM (GEM) algorithm aim to maximize Q(® | ®Y) at some t™
iteration as seen in table 2.3 (Dempster, Laird, & Rubin, 1977, p. 6).
E-step:
The expectation Q(® | ®Y) is determined based on current parameter ®Y, according to
equation 2.8. Actually, Q(® | ®") is formulated as function of ®.
M-step:
The next parameter @Y js a maximizer of Q(® | ®Y) with subject to ®. Note that @D
will become current parameter at the next iteration (the (t+1)™" iteration).
Table 2.3. E-step and M-step of GEM algorithm
DLR proved that GEM algorithm converges at some t™ iteration. At that time, ®" = @ = @®
is the optimal estimate of EM process, which is an optimizer of L(®).
0" = argmax L(0)

(]

It is deduced from E-step and M-step that Q(® | ®V) is increased after every iteration. How to
maximize Q(® | ®Y) is the optimization problem which is dependent on applications. For
example, the estimate @Y can be solution of the equation created by setting the first-order
derivative of Q(® | ®Y) regarding ® to be zero. If solving such equation is too complex, some
popular methods to solve optimization problem are Newton-Raphson (Burden & Faires, 2011,
pp. 67-71), gradient descent (Ta, 2014), and Lagrange duality (Wikipedia, Karush—-Kuhn—
Tucker conditions, 2014).

GEM algorithm still aims to maximize the log-likelihood function L(®) specified by
equation 2.4, which will be explained in next section. The next section also focuses on
convergence of GEM algorithm proved by DLR (Dempster, Laird, & Rubin, 1977, pp. 7-10)
but firstly we should discuss some features of Q(®’ | ®). In special case of exponential family,
Q(®’ | ®) is modified by equation 2.9.

Q(0'10) = E(log(b(X))|Y,0) + (0)1¢ — log(a(0®")) (2.9)
Where,
E(log(b(X))|r,0) = j k(X|Y,®log(b(X))dX
o~ 1(Y)
Tg = fk(XIY,@)T(X)dX

p~1(Y)
Following is a proof of equation 2.9.

Q(0'10) = E(log(f(x10")|r,0) = J k(X|Y,®)log(f(X10"))dX

oY)
= f k(X|Y, ®)log(b(X) exp((0)77(X))/a(0"))dx
1Y)
= k(x1Y,0) (log(b(X)) + (€")7(X) — log(a(®")) ) dX
1Y)
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= f k(X|Y,®)log(b(X))dX + f k(X|Y,0)(0)Tr(X)dX
711 1)
— f k(X|Y,0)log(a(®"))dX
oY)
Y,0) + (00T f k(X|Y,0)t(X)dX —log(a(0"))
o 1Y)
= E(log(b(X))|Y,©) + ()TE(x(X)|Y, 0) — log(a(6"))
Because k(X | Y, ®) belongs exponential family, the expectation E(z(X) | Y, ®) is function of ©,
denoted ze. It implies:
Q(0'10) = E(log(b(X))|Y,0) + (0)"7¢ — log(a(0’))m
If f(X|®) belongs to regular exponential family, Q(®’ | ®) gets maximal at the stationary point
©" so that the first-order derivative of Q(®’ | ®) is zero. By referring to table 1.2, the first-order
derivative of Q(®’ | ®) with regard to @’ is:
dQ(e']e) ,
—qo = o~ log'(a(®) =16 — E(x(X)]0)
Let 7O be the value of ze at the t™" iteration. The next parameter @Y is determined at M-step
as solution of the following equation.
dQ(e’|e
% =1t® —E@(X)]|0) =0
The equation above is indeed equation 2.3. If f(X|®) belongs to curved exponential family, @9
is determined as follows:

G)(t+1) — argmaXQ(@’le) — argmax ((@I)Tf(t) — log(a(el)))
Y o’

The equation above is indeed equation 2.7. Therefore, GEM shown in table 2.3 degrades into
EM shown in table 2.1 if f(X|®) belongs to exponential family. Of course, this recognition is
trivial. Example 1.1 is also a good example for GEM when multinomial distribution belongs
to exponential family and then we apply equation 2.7 into maximizing Q(®’ | ®).

In practice, if Y is observed as particular N observations Y1, Yo,..., Yn. Let Y = {Y1, Yo,...,
Yn} be the observed sample of size N with note that all Y; (s) are mutually independent and
identically distributed (iid). Given an observation Y;j, there is an associated random variable X;.
All X (s) are iid and they are not existent in fact. Each X; € X is a random variable like X. Of
course, the domain of each X; is X. Let X = {Xy, Xo,..., Xn} be the set of associated random
variables. Because all X; (s) are iid, the joint PDF of X is determined as follows:

= E(log(b(X))

£(X18) = (X, Xo, ., Xul®) = | [ FCXi1O)

Because all X; (s) are iid and each Y; is associated with X;, the conditional joint PDF of X given
Y is determined as follows:

N N

k(xly: G)) = k(Xl,Xz, '--JXN|Y11 YZ) ey YN; @) = n k(Xilylr YZ: ey YN! G) = n k(Xllylr G))
i=1 i=1

The conditional expectation Q(®’ | ®) given samples X and Y is determined as follows:

Q(e'10) = j k(X|Y, ©)log(f(X0"))dXx
o~ (1Y)

_ j j j ﬁk(xjm,@) ' log<f[f(Xi|®')> dXy ... dX; dX,

e I o 1(r) @ L(ry) \J=1
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- j f f ﬁk(X| v, 0) *(ilog(f(Xd@’)))dXN...dXZXm

et Y) 971 (2) 7 (YN) J =1 i=1
= j f k(X| ,0) |+ log(f(X;10")) dXy ...dX, dX;
o~it) o~10r) 1<YN> l
=) f f log(f(XI@)) l_[k(X| ,0) dXy ... dX, dX,
=1 p=1(ry) 9~ 1(1y) 1(YN)

(Suppose f(Xi | ®) and k(X; | Y,, @) are analytic functions)

_ Z f f f fa(x xplog(£(X10") * 1_[ k(X;]Y;, 0) dX dXy ... dX, dX,
=1 o=1(vP ¢~1(Y2) @ H¥YN) X
( S(X, X)) = {(1) g . Q - f S(X, X)u(X)dX = u(Xl-)\‘

according to Riemann integral
with note that the domain of X and X; is X

N
§(X, X)log(f(X10") x 1_[ k(X;|Y;,0) dXy ...dX, dX, dX
1) e7(Y2) e X(Yw) Jj=1

N
5(X, X)log(£(X10") * 1_[ k(X;|Y, ©) dXydX,dX, .. dX
=1

],

>

X ¢ (Y1), 1 (Y2)p” (Y N)
2]

/

N
_ log(f(X10")) * f 5(X, X,) * H k(X;|Y;, ©) dXydX,dX; ...dX
P71, (Y2), 0 (Y W) j=1
= log(f(X10")
i=1
. j 5(X, X)F(X,1Y;, ©)
<P_jv(y1)r<l’_1(yz)z---lfp_1(YN)
| ] eIy, 0) axyax,dx, .. ax
j=1,j#i
N
_ ZJlog(f(XIG)’))
i=1x
. | 5(X, X)k(X,]Y, ©)

(p_l(yl)'(p_l (YZ):---:(P_l (Yi—l)z
w_j\](Yi)’(p_l (Yi+1):---:§0_1(YN)

* 1_[ k(X;|Y;,0) dXy ... dX;y1dX;dX;_; ... dX,dX; ..dX

j=1,j#i
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i [ 10g(rx101)

i=1
' | sexokern, o)
@ (Y1), 1 (V2),. 071 (Vi_1) @~ E(Y))
N
* 1_[ k(X;|Y;,0) dXy ... dX;yq dX; dX;_; ... dX,dX; dX

(p_l(yl‘+1),...,(p_1(YN) ]=1!]¢l

Mz

=" [1og(rixien) «| [ cxokCxn, 0)ax

i=1 ‘P_l(Yi)
N
% f H k(X|Y;,0) dXy ... dX;41dX;_q ... dX,dX, dX
@~ 1(Y1),071(Y2),... j=1,j#i
P71V~ (Y i41), 0 (Y N)
N N
=Zflog(f(X|@'))* f 5(X, Xk (X;|Y;, ©)dX; | * H fk(xj|yj,@)dxj dx
i=1X o~i(ry JELIFLX;
N
=3 [1ogrxien «| [ s xokCelv, )ax; |ax
i=1x P~y

Due to jk(xjhg-,@)dxj =1

Xj

| [ s0cxonexv, eog(rxien)ax ax

i=1 (p_l(yi) X

Il
.MZ

(Suppose f(Xi | ®) and k(X; | Yj, ®) are analytic functions)
By taking Riemann integral on [, & (X, X;)k(X;|Y;, ®log(f(X|©"))dX, we have:

[ 60 xkCx T, ©)log(F(xleN)ax X = [ kOl Olog(F (Xile))dX,
B OD ¢ o~1(ry)

As a result, the conditional expectation Q(®’ | ®) given an observed sample Y = {Y1, Ya,...,
Yn} and a set of associated random variables X = {X1, Xo,..., Xn} is specified as follows:

N

@1 = [ KCtlv, ©)log(£(xilen)ax;

=1 p=1(yy
Note, all X () are iid and they are not existent in fact. Because all X; are iid, let X be the random
variable representing every X and the equation of Q(®’ | ®) is re-written according to equation
2.10. y

e@1e) = | k(XY 0)log(£(x10))dx (210)
=1 p=1(yy

The similar proof of equation 2.10 in case that Xi (s) are discrete is found in (Bilmes, 1998, p.
4). In case that f(X | ®) and k(X | Yi, ®) belong to exponential family, equation 2.10 becomes
equation 2.11 with an observed sample Y = {Y1, Ya,..., Yn}.
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N N
0(0'10) = (z E(log(b(O))|Y,, @)) + <(®')T > r@,yl) ~ Nog(a(@))  (211)
Where, = =
E(log(b(X))|1;,0) = f k(X|Y;, ®log(b(X))dX
71y
Toy; = f k(X|Y;, ©)t(X)dX

o1y
Please combine equation 2.9 and equation 2.10 to comprehend how to derive equation 2.11.
Note, 7y, is dependent on both ® and Yi.

DLR (Dempster, Laird, & Rubin, 1977, p. 1) called X as complete data because the
mapping ¢: X — Y is many-one function. There is another case that the complete space Z
consists of hidden space X and observed space Y with note that X and Y are separated. There
is no explicit mapping ¢ from X and Y but there exists a PDF of Z € Z as the joint PDF of X €
XandY €Y.

f(Z]©) = f(X,Y]0)
In this case, the equation 2.8 is modified with the joint PDF f(X, Y | ®). The PDF of Y becomes:

(o) = f (X, ¥10)dx

X

The PDF f(Y|®) is equivalent to the PDF g(Y|®) mentioned in equation 1.34. Although there is
no explicit mapping from X to Y, the PDF of Y above implies an implicit mapping from Zto Y.
The conditional PDF of X given Z is specified according to Bayes’ rule as follows:

£@IY,0) = F(X,¥1Y,0) = FINF(¥IY) = F(x]Y,0) = L 19 SO TD)
' Y ' fle) [ fx vieydx
The conditional PDF f(X|Y, ®) is equivalent to the conditional PDF k(X|Y, ®) mentioned in
equation 1.35. Of course, given Y, we always have:

jf(XIY, @)dX =1
X

Equation 2.12 specifies the conditional expectation Q(®’ | ®) in case that there is no explicit
mapping from X to Y but there exists the joint PDF of X and Y.

Q(e'10) = f fZly,®)log(f(z|0"))dX = f FEXIY,O)log(f(X,Y|0))dX  (2.12)
X X

Where,
f&X,Yl0)  f(X,Y|0)

frie) [ f(X,v|e)dx
Note, X is separated from Y and the complete data Z = (X, Y) is composed of X and Y. For
equation 2.12, the existence of the joint PDF (X, Y | ®) can be replaced by the existence of the
conditional PDF f(Y|X, ®) and the prior PDF f(X|®) due to:

fX,Y[0) = f(Y]X,0)f(X]6)

In applied statistics, equation 2.8 is often replaced by equation 2.12 because specifying the
joint PDF f(X, Y | ®) is more practical than specifying the mapping ¢: X — Y. However,
equation 2.8 is more general equation 2.12 because the requirement of the joint PDF for
equation 2.12 is stricter than the requirement of the explicit mapping for equation 2.8. In case
that X and Y are discrete, equation 2.12 becomes:

0(0'|0) = Z P(X]Y,®)log(P(X, Y|0"))

XeXx

fXY,0) =
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In case that X and Y are discrete, P(X, Y | ®) is the joint probability of X and Y whereas P(X | Y,
®) is the conditional probability of X given Y. Mixture model mentioned in subsection 5.1 is a
good example for GEM without explicit mapping from X to Y.

Equation 2.12 can be proved alternately without knowledge related to complete data (Sean,
2009). In fact, given hidden space X, observed space Y, and a joint PDF f(X, Y | ®), the
likelihood function L(®’) is re-defined here as log(f(Y | ®)). The maximizer is:

® = argmax L(0') = argmaxlog(f(Y]0"))
o’ ®

Suppose the current parameter is ® after some iteration. Next we must find out the new estimate
O that maximizes the next log-likelihood function L(®’). In other words, it maximizes the
deviation between current log-likelihood L(®) and next log-likelihood L(®’) with regard to ®’.
0= argmaX(L(G)’) - L(G)))
@I

Suppose the total probability of observed data can be determined by marginalizing over hidden
data:

F(Y|e) = f £(X, ¥10")dX

X
The expansion of f(Y | ®°) is total probability rule. The deviation L(®’) —L(®) is re-written:
L(0") = L(©) = log(f(¥|e") — log(f(¥|e,))

= log < J f(X, Y|®')dx> —log(f(¥10))

f(Y,X|e")
log<ff(X|Y 0)———= FCX10.0) dX)—log(f(YIG)))

Because hidden X is the complete set of mutually exclusive variables, the sum of conditional
probabilities of X is equal to 1 given Y and ©.

ff(XIY, @)dX =1
X

Where,
f(X,Y]0)
fXIY,0) =
[ f(X,Y10)dX
Applying Jensen’s inequality (Sean, 2009, pp. 3-4)

log ju(x)v(x)dx qu(x)log(v(x))dx

X X

where j u(x)dx =1

X
into the deviation L(®’) —L(®), Sean (Sean, 2009, p. 6) proved that:

, fx.y1e")

L(0") —L(®) = (3{[ f(X|Y,0)log (m)) —log(f(Y1©))

- ( f f(x1v,0) (log(£ (X, Y1) — log(f (X17,0))) dx> — log(£(¥10))
X

— ( f fXx\y, @)log(f(X,YI@’))dX) — ( f FX1Y,0)log(f (XY, @))dX) —log(f(Y10))
X X
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= ff(XIY, ®)log(f(X,Y]0"))dX + C
Wﬁere,
C=-— <f FX1Y,0)log(f (XY, @))dX) —log(f(Y10))
X

Because C is constant with regard to ©, it is possible to eliminate C in order to simplify the
optimization criterion as follows:

0= arggan(L(G)’) - L(®)) = argglax (f fX1Y,0)log(f(X,Y]0"))dX + C)
X

= argmaxff(XIY, @)log(f(X,YIG)’))dX
0/
Let '
0@'10) = [ £0x1Y, 0)log(F (. ¥10))ax
X

We have the proof m

In practice, suppose Y is observed as a sample Y = {Y1, Y2,..., Yn} Of size N with note that
all Y;i (s) are mutually independent and identically distributed (iid). The observed sample Y is
associated with a a hidden set (latent set) X’ = {X1, Xo,..., Xn} of size N. All X; (s) are iid and
they are not existent in fact. Let X € X be the random variable representing every Xi. Of course,
the domain of X is X. Equation 2.13 specifies the conditional expectation Q(®’ | ®) given such

Y.
0e@'10) = ) [ rexiv, 0)log(Fx, l0N)ax (2.13)

i=1x
Equation 2.13 is a variant of equation 2.10 in case that there is no explicit mapping between X;
and Y; but there exists the same joint PDF between X; and Yi. Please see the proof of equation
2.10 to comprehend how to derive equation 2.13. If both X and Y are discrete, equation 2.13

becomes:
N

0@'10) = ) > P(XIY, ©)log(P(X, Yi[6")
i=1 XeX
If X is discrete and Y is continuous such that f(X, Y | ®) = P(X|®)f(Y | X, ®) then, according to
the total probability rule, we have:

£(710) = > PXIO)f(VIX,6)
XeXx
Note, when only X is discrete, its PDF f(X|®) becomes the probability P(X|®). Therefore,

equation 2.14 is a variant of equation 2.13, as follows:
N

Q(e'18) = " > P(XIY;, 0)log(P(XI0)f (%], 0)) 214)
i=1 XEX
Where P(X | Yi, ©) is determined by Bayes’ rule, as follows:
P(X|0)f(Y:|X,0)
Lx P(X10)f(Y;|X,0)
Equation 2.14 is the base for estimating the probabilistic mixture model by EM algorithm,
which will be described later in detail.

P(X|Y;,0) =
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GEM is now described in general. Here it is necessary to explain GEM by viewpoint of
lower bound (Sean, 2009, pp. 7-8). The main purpose of GEM algorithm is to maximize the
log-likelihood L(®) = log(g(Y | ®)) with observed data Y. However, it is too difficult to
maximize log(g(Y | ®)) because g(Y | ®) is not well-defined when g(Y | ®) is integral of f(X |
®) given a general mapping function. DLR solved this problem by an iterative process which
is an instance of GEM algorithm. The lower-bound (Sean, 2009, pp. 7-8) of L(®) is maximized
over many iterations of the iterative process so that L(®) is maximized finally. Such lower-
bound is determined indirectly by the condition expectation Q(® | ®®) so that maximizing Q(®
| ®Y) is the same to maximizing the lower bound. Suppose ®®Y is a maximizer of Q(® | @Y)
at t™ iteration, which is also a maximizer of the lower bound at t™ iteration. The lower bound
is increased after every iteration. As a result, the maximizer ® of the final lower-bound after
many iterations will be expected as a maximizer of L(®) in final.

For more explanations, let Ib(® | ®©) be lower bound of L(®) at the t iteration (Sean, 2009,
p. 7). From equation 3.2, we have:

Ib© | ©9) = Q(e | ) —- H(©Y | 0Y)
Please see equation 3.1 for definition of H(®’ | ®). Due to equation 3.2 and equation 3.3
L(®) =Q(® | V) —H(e | 0Y)
H(© | 0Y) <H(@BY | eY)
We have:
Ib(® | 0Y) <L(0)
The lower bound Ib(® | ©©) has following property (Sean, 2009, p. 7):
Ib(®(0 | @(t)) = Q(@(t) | @(t)) _ H(@(t) | @(t)) = L(®(‘))
Therefore, the two steps of GEM is interpreted with regard to the lower bound Ib(® | V) as
seen in table 2.4.
E-step:
The lower bound Ib(® | ®Y) is re-calculated based on Q(® | V).
M-step:

The next parameter @Y is a maximizer of Q(® | ®©) which is also a maximizer of Ib(®

| ®9) because H(O®Y | ®V) is constant. Note that @Y will become current parameter at

the next iteration so that the lower bound is increased in the next iteration.

Table 2.4. An interpretation of GEM with lower bound

Because Q(® | ®Y) is defined fixedly in E-step, most variants of EM algorithm focus on how
to maximize Q(®’ | ®) in M-step more effectively so that EM is faster or more accurate. Figure
2.1 (Borman, 2004, p. 7) shows relationship between the log-likelihood function L(®) and its
lower-bound Ib(® | ©V).

L(©)=1b(©)0)

IH(©]©)

(©) o 0,
[l I H I h"
®

Figure 2.1. Relationship between the log-likelihood function and its lower-bound
Convergence of GEM will be mentioned in next section.
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3. Convergence of EM algorithm

Recall that DLR proposed GEM algorithm which aims to maximize the log-likelihood function
L(®) by maximizing Q(®’ | ®) over many iterations. This section focuses on mathematical
explanation of the convergence of GEM algorithm given by DLR (Dempster, Laird, & Rubin,
1977, pp. 6-9). Recall that we have:

1(@) = log(g(v1e)) =log| | rCxieax
oY)
Q(0'10) = E(log(f(X10"))|r,0) = f k(X|Y,®log(f(X10"))dX
o 1Y)
Let H(®’ | ®) be another conditional expectation which has strong relationship with Q(®’ | ®)
(Dempster, Laird, & Rubin, 1977, p. 6).
H(©'|0) = E(log(k(X|Y,0")|Y,0) = j k(X|Y,®)log(k(X|Y,0"))dX 3.1)
o~ 1(Y)
From equation 2.8 and equation 3.1, we have:
Q(0'|®) = L(0") + H(©'|6) 3.2)
Following is a proof of equation 3.2.
Q@'10)= [ K(XIY,0log(f(XIeN)dx = [  k(XIY,®)log(g(VIeNK(XIY,0))dx
1Y) 1Y)
- j k(XIY, ©)log(g(¥10"))dx + f k(X1Y, ©)log(k(X]Y, 0))dX
1Y) e~ HY)
=log(g(v10")) f k(X|Y,0)dX + H(©'|0) = log(g(Y|0")) + H(O'|®)
1Y)
=L(O)+HO'|0)m
Lemma 3.1 (Dempster, Laird, & Rubin, 1977, p. 6). For any pair (®’, ®) in Q x Q,
H(O'|0) < H(0|0) (3.3)
The equality occurs if and only if k(X | Y, ®”) = k(X | Y, ®) almost everywhere m
Following is a proof of lemma 3.1 as well as equation 3.3. The log-likelihood function L(®’)
is re-written as follows:

f(X107)

kXY, o) X

L(®") =log f f(X|0")dX | =log f k(X|Y,0)

1Y) =)
Due to

k(X|Y,0)dX =1

p~1(Y)
By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function,

log fu(x)v(x)dx Zju(x)log(v(x))dx

X X

Wherefu(x)dx =1

X

Sean (Sean, 2009, p. 6) proved that:
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L(®) = f k(XIY,@)log(m>dX

o k(X|Y,0©)
e (Y
- k(x1Y,0) (log(f (x10")) — log(k(X|Y,©))) dx
o~ 1(Y)
= f k(XIY,®log(k(X|Y,0)g(Y]0"))dX — f k(X|Y, ®log(k(X|Y,0))dX
9~1(r) o=1(y)
= k(X|Y,0) (log(k(XIY, 0")) + 1og(g(Y|@'))) dX — H(0|0)
o~1(Y)
_ f k(x1Y,0) (log(k(X]Y,07)) dX + f k(x1Y,0) (log(g(r10")) dX — H(6l6)
9~1(r) o1
= H(0'|®) +log(g(Y]0") f k(X|Y,0)dX — H(0|0)
-1(y)
= H(0'|0) + L(O") — H(@I((S)
It implies:

H(0'|0) <H(O|O)m
According to Jensen’s inequality (Sean, 2009, pp. 3-4), the equality occurs if and only if k(X |
Y, @) is linear or f(X | ®) is constant. In other words, the equality occurs if and only if k(X |
Y, ®’) =k(X|Y, ®) almost everywhere when f(X | ®) is not constant and k(X | Y, ®’) is a PDF.
Let {G(t)}:j =0W,0@,...,00,0D), . be a sequence of estimates of © resulted from
iterations of EM algorithm. Let ® — M(®) be the mapping such that each estimation @© —
O™ at any given iteration is defined by equation 3.4 (Dempster, Laird, & Rubin, 1977, p. 7).
D) = M(e®) (3.4)
Definition 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). An iterative algorithm with mapping
M(®) is a GEM algorithm if
Q(M(0)|8) = Q(6]6)m (3.5)
Of course, specification of GEM shown in table 2.3 satisfies the definition 3.1 because @Y is
a maximizer of Q(® | ®Y) with regard to variable ® in M-step.
Q(M(@(t))l(::)(t)) - Q(@(Hl)l@(t)) > Q(@(t)l@(t)),Vt
Theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7). For every GEM algorithm
L(M(®)) = L(0) forall® € Q (3.6)
Where equality occurs if and only if Q(M(®) | ®) = Q(® | ®) and k(X | Y, M(®)) = k(X | Y, ®)
almost everywhere m
Following is the proof of theorem 3.1 (Dempster, Laird, & Rubin, 1977, p. 7):
L(M(©)) - L(®) = (QM(©)|e) — H(M(©)]8)) - (Q(6]6) — H(6]0))
= (Q(M(0)|®) — Q(010)) + (H(B]6) — H(M(©)|0)) = Om
Because the equality of lemma 3.1 occurs if and only if k(X | Y, ®) = k(X | Y, ®) almost
everywhere and the equality of the definition 3.1 is Q(M(®) | ®) = Q(® | ®), we deduce that
the equality of theorem 3.1 occurs if and only if Q(M(®) | ®) = Q(® | ®) and k(X | Y, M(®)) =
k(X|Y, ®) almost everywhere. It is easy to draw corollary 3.1 and corollary 3.2 from definition
3.1 and theorem 3.1.
Corollary 3.1 (Dempster, Laird, & Rubin, 1977). Suppose for some 0* € Q, L(®") > L(®) for
all @ € Q then for every GEM algorithm:
D LME)=LEO)
(2) QM(©)[6)=Q(® |©)
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(3) KXY, M(@")) =k(X|Y,0") m
Proof. From theorem 3.1 and the assumption of corollary 3.1, we have:
{L(M(@)) > L(0) forall ® € Q
L(©*) = L(O) forall® € Q
This implies:
L(M(©%)) = L(©")
{L(M(@*)) < L(®%)
As a result,
L(M(©%)) = L(®")
From theorem 3.1, we also have:
QM(0)]0") = Q(O7[0%)
k(X|Y, M(©9) = k(X|Y,0)"
Corollary 3.2 (Dempster, Laird, & Rubin, 1977). If for some 0* € Q, L(®") > L(®) forall ® €
1 such that ® # ®*, then for every GEM algorithm:
MO)=0"m
Proof. From corollary 3.1 and the assumption of corollary 3.2, we have:
{L(M(@*)) = L(0%)
L(®*) > L(®) forall® € Q and 6 # O*
If M(®") £ ®", there is a contradiction L(M(®")) = L(®") > L(M(®")). Therefore, we have M(®")
=0 m
Theorem 3.2 (Dempster, Laird, & Rubin, 1977, p. 7). Suppose {G)(t)}:j is the sequence of
estimates resulted from GEM algorithm such that:
(1) The sequence {L(G)(t))}:i =L(eW),L(6@),...,L(6W), ... is bounded above, and
(2) QO™ | M) - Q(EY | V) > fO®D — V)T (O™ — D) for some scalar &> 0 and all
t.
Then the sequence {G(t)}:i converges to some @ in the closure of Q m

Proof. The sequence {L((E)(”)}:i is non-decreasing according to theorem 3.1 and is
bounded above according to the assumption 1 of theorem 3.2 and hence, the sequence
{L(@(t))}::i converges to some L” <+ According to Cauchy criterion (Dinh, Pham, Nguyen,
& Ta, 2000, p. 34), for all ¢ > 0, there exists a t(¢) such that, for all t > t(¢) and all v > 1:

v

L(0®+) — L(0®) = Z (L(G)(t“')) _ L(@(m—n)) <

By applying equation 3.2 and equation 3.§, ?or all i>1, we obtain:
Q(@(t+i)|@(t+i—1)) _ Q(@(t+i—1)|®(t+i—1))
— L(@(t+i)) + H(g(t+i)|@(t+i—1)) _ Q(g(t+i—1)|®(t+i—1))
< L(@(t+i)) + H(@(t+i—1)|®(t+i—1)) _ Q(@(t+i—1)|@(t+i—1))
— L(@(t+i)) _ L(@(t+i—1))
(Due to L(@®) = QO™ | @) — H(@®D | @1y according to equation 3.2)

It implies
v v
Z (Q(@(tﬂ')l@(tﬂ'—l)) _ Q(@(t+i—1)|®(t+i—1))) < Z (L(G)(””) _ L(G)(”"‘l)))
i=1 i=1

=L(@®) - L(eW) < ¢
By applying v times the assumption 2 of theorem 3.2, we obtain:
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v
E> Z (Q (@(t+i)|@(t+i—1)) — Q(@(t+i—1)|@(t+i_1)))

v
> gz(@(tﬂ) — @(t+i—1))T(®(t+i) _ @(t+i—1))
i=1

It means that
v

z|@(t+i) _ @(t+i—1)|2 < /¢
i=1
Where,
| o+ — @(t+i—1)|2 = (e(t+D _-@(t+i—1-))T(.®(t.+i) — (t+i-D) | |
Notation || denotes length of vector and so |@®) — @ 1) js distance between @) and A+
-1, Applying triangular inequality, for any & > 0, for all t > t(¢) and all v > 1, we have:
v

o+ — @(t)lz < Zl@(t+i) _ @(t+i—1)|2 <efE

i=1
According to Cauchy criterion, the sequence {G(t)}:i converges to some ®” in the closure of

Q.

Theorem 3.1 indicates that L(®) is non-decreasing on every iteration of GEM algorithm
and is strictly increasing on any iteration such that Q(@® | ®®) > Q(®® | ®Y). The corollaries
3.1 and 3.2 indicate that the optimal estimate is a fixed point of GEM algorithm. Theorem 3.2
points out convergence condition of GEM algorithm but does not assert the converged point
@ is maximizer of L(®). So, we need mathematical tools of derivative and differential to prove
convergence of GEM to a maximizer ®°. We assume that Q(®’ | ®), L(®), H(®’ | ®), and M(®)
are smooth enough. As a convention for derivatives of bivariate function, let D' denote as the
derivative (differential) by taking i"-order partial derivative (differential) with regard to first
variable and then, taking j"-order partial derivative (differential) with regard to second variable.
If i =0 (j = 0) then, there is no partial derivative with regard to first variable (second variable).
For example, following is an example of how to calculate the derivative D*'Q(®® | @),

. N AL

- Firstly, we determine D**Q(0'|0) = ———*

- Secondly, we substitute ®© and @Y for such D*Q(®’ | ®) to obtain D*Q(O® | @),
Equation 3.1 shows some derivatives (differentials) of Q(®’ | ®), H(®’ | ®), L(®), and M(®).

aQ(e’'|e
prgerie) = 24010
02Q(0'|0)
11 ! —
oy L8
20 ! —
D<"Q(0’|®) = FICOE
DYH(0'|0) = _aH(gzy'@)
- 9%H(e'le)
D11H(® |@) = az@[_]@)(lglgle)
DZOH(G)’IG)) = W
ey _ dL©)
(0) =——
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d*L(©
DZL(G)) = %

dM (0
DM(0) = dé) )

Table 3.1. Some differentials of Q(®’ | ®), H(®’ | ®), L(®), and M(®)
When @’ and @ are vectors, D°(...) is gradient vector and D?%(...) is Hessian matrix. As a
convention, let 0 = (0, 0,..., 0)" be zero vector.
Lemma 3.2 (Dempster, Laird, & Rubin, 1977, p. 8). For all ® in Q,

DH(0|0) = E (dlog(kgély’ ©) Y, @) —or 3.7)

D20H(0|0) = —D'H(8|0) = —Vy <d1°g(k§)(;ly’ )y @) (3.8)
" (dlog(k((l)élY, 0)) v @> _ <<dlog(kc(l)é |, @))>2 v @)

SRGETHETE

D9Q(6]0) = DL(®) = E (W v, @) (3.10)

D?9Q(0]0) = D2L(0) + D2°H(8|0) = E (dzloi((];()fle)) Y, @) (3.11)

(S (G o)

= D2L(0) + (DL(0))" — D?°Q(6]0)m
Note, Vn(.) denotes non-central variance (non-central covariance matrix). Followings are
proofs of equation 3.7, equation 3.8, equation 3.9, equation 3.10, equation 3.11, and equation
3.12. In fact, we have:

D1°H(G)’|®)=iE(log(k(X|Y,(E)’))|Y,G))=i J k(X|Y,®)log(k(X|Y,0"))dX

00’ 00’
( ) oY)
dlog(k(X|Y,0") dlog(k(X|Y,0"))
= f k(X|Y,©) o dX =E 10 Y,0)=
1Y)

k(x|Y,0) d(k(X|Y,0") ix
j Y)k(XIY, 0) de’

o~ 1(
It implies:
k(X|Y,0)d(k(X|Y,0)) d d
DYH(0]0) = dX = — k(X|Y,9)dX |=—(1
(©16) k(X|Y,0) de de (] ) dG)( )

@~1(Y) ~1()

=07
We also have:

50


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020

d0i:10.20944/preprints201802.0131.v5

0D°H(0'|0) 1 dk(X|Y,0) dk(X|Y,0")
11 ! = = X
DT H(6'1®) 00 f k(X|Y,0") do de’ d
~1(Y)
It implies:
1 dk(X|Y,0)dk(X|Y,0
DU (6l0) = f (X1Y,0) dk(X] )dX

k(X|Y,©) doe do
1Y)

_ fk(xw,@)( 1 dk(XIY,G))> dX:VN<dlog(kc(1)G()|y,@)) Y’®>

k(X|Y,0) do

o~ 1(Y)
We also have:
dD°H(0'|0) d?log(k(X|Y,0")
20 ! - T = !
D?°H(0'|0) = Y ( (02 Y,0

INY de’ doe
o-1r) (k(X|Y,0))

It implies:
2 1 dkX|Y,0)\°
D2°H(0|0) = — f k(X|Y,®) RKIT.8) 6 dx

o=1(r) '

dlog(k(X|Y,©
—VN< og( c(lel ) Y,G))

From equation 3.2, we have:
D?°Q(0'|©) = D2L(0") + D2°H(0'|0)
We also have:

0
DQ(0e'|0) = f k(X|Y,0)log(f(X]0"))dX

k(X|Y,0) <dk(X|Y, @'))2 = E ((dlog(k(XIY, 0))

96’
1Y)
_ j k(X|Y,0) dlog(gg,('@ ) ax
" dogl/(x16) (r0x10)
B dlog(f(X10)) . _ (dlog(f(X]0")
_ _L)k(xw,@) - dX—E< I y,e)
U k(xIY, ) df (X]0")
X0 de’
7
implies: k(X|Y,0) df (X|0) 1 df(x|e)
10 — ’ —
precele) = f fxi®  de f g(r10)  do
@~L(Y) p~1(Y)
! dfxie) 1 d
‘gm@)(p_fm o ¥~ gwie)de ¢_£y)f(x'9)dx
B 1 dg(Yl@)_dlog(g(YI@))_
gY@ de de = DL(®)
We have:

51

>2

v.0)

dX


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

) i 0D™Q(e’'|e) 0 k(X|Y,®)df (X]|0")
pEe®'1e) = 00’ _a@'< f()f(XIG)’) do X
oy
_ d (df(x10")/de"\ _ (d*log(f(X]0") )
_ f k(XlY,G))d@,< 199 >dX—E< el [
o~ 1(Y)
= f k(X1Y,) ((d2f(X]0)/d(©)2)f (X10") — (df (X0 /d0)?)/(f(X]0))" dX
o~ 1(Y)
~ (d*f(xle)/d@)?) df (x]0)/de"\’
_(p_iy)k(xw,@) X0 dXx (p_j(y)k(xw,@)(—f(xle,) >dX
B (d*f(X10)/d(©)») (dlog(f(X|0")) )
= _f k(X|Y,0) X0 dx VN< 10 Y,0
o~ 1(Y)
It implies:
, _ (d*f(X10)/d(0)?) dlog(f(X1))

1Y)

1 dfxie) . (dlog(f(X|8)) )
‘gm@)(p—im o

_ 1@ fx1e) dlog(f (X16))
—mm< , o dX)‘VN(T o)
@1

_ 1 d*g(v1®)  (dlog(£(X]6))
= 50V18) d(@)? ‘V”< ae m)
Due to:

d’log(g(¥1®)) 1  d?g(Y|®)

PLO® =——4@7 =~ grie) d@)

— (DL(®))’
We have:
D?°Q(0|0) = D?L(0) + (DL(@))2 —Vy <%gﬂ®)) Y, @) m

Lemma 3.3 (Dempster, Laird, & Rubin, 1977, p. 9). If f(X | ®) and k(X | Y, ®) belong to
exponential family, for all ® in Q, we have:

DYOH(0'|0) = E(z(X)|Y,0) — E(z(X)|Y,0") (3.13)
D2°H(0'|0) = —V(z(X)|Y,0") (3.14)
D'°Q(0'|0) = E(z(X)|0) — E(z(X)|0") (3.15)
D20Q(0'|0) = —V(z(X)|0")m (3.16)

Proof. If f(X | ®”) and k(X | Y, ®”) belong to exponential family, from table 1.2 we have:
dlog(gglg ) _ d‘é, (b(X) exp((0)72(X))/a(0")) = 1(X) — log'(a(8"))
=1(X) - E( ()0

And,
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d’log(f(¥le)) d

(b(X) exp((©)7'2(X))/a(8") = —log"(a(8")) = -V (z(X)|0")

d(0")?2 — d(0")?
And,
dlog(k(Y|®’ d
os010D) _ (b expl(€)7c00)/a(®'11)) = (1) — Iog'@(@)Y)
=1(X) — E(t(X)|Y,0")
And,
d?log(k(X|Y, 0’ d
Ogg(é,)t )) = GIE (b(X) exp((@’)TT(X))/a(G)’IY)) = —log”(a(@’IY))
= —V(X)|Y,0")
Hence,
0
D°H(@’'|0) = a@'< f( )k(XIY, ®)log(k(X|Y, @’))dX)
ey
_ j k(X|Y,0) dlog(kc(l)(;ly’ %)) ax
o~ 1(Y)
= k(X|Y,0)T(X)dX — j k(X|Y,®)E(t(X)|Y,0")dX
@) @1(Y)
= E(@X)|Y,0) — E(t(X)|Y,0") f k(X|Y,0)dX = E(t(X)|Y,0) — E(z(X)|Y,0")
-1(y)
We have: v
62
D*H(®'|0) = FIGIE f( )k(XIY, ®)log(k(X|Y,0"))dX
(Y
2 ’
_ f kXY, ©) 2 logg\zé})’()l:,@ ) ax = - f k(X]Y, ®)log” (a(0")|Y)dX
P1(Y) @=1(Y)
= —log” (a(©")|Y) f k(X|Y,0)dX = —log" (a(®)|Y) = =V(t(X)|Y,0")
-1(y)
We have: !

D'°Q(e'|e) =

0
a®'< f k(X|Y,@)1og(f(X|®'))dx>

p~1(Y)
_ j k(X]Y,0) dlog(gg,('@’)) ax
o 1Y)
- j k(X|Y, ©)z(X)dX — f k(X|Y, ©)E(x(X)]|0)dX
1Y) 1Y)
= E(@(X)|0) — E(r(X)|0") fk(X|Y,®)dX=E(T(X)|9)—E(T(X)|@')

p~1(Y)
We have:

62
DZOQ(G’IG)):W( f k(X|Y,@)1og(f(X|@'))dx>

1Y)

53


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

d?log(f (X]0'
_ f k(X|Y,0) Oi((j(;(,)zl ) gx = - f k(X|Y,®)log” (a(6"))dx
1Y) 1Y)
= —log" (a(®") f k(X|Y,0)dX = —log"(a(8") = —V(z(X)[0)m

o~ 1(Y)
Theorem 3.3 (Dempster, Laird, & Rubin, 1977, p. 8). Suppose the sequence {G)(t)}:j is an
instance of GEM algorithm such that
DQ(et+D]|e®) = o7
Then for all t, there exists a @ on the line segment joining ®® and ©®Y such that
Q(@(t+1)|®(t)) — Q(G(t)lg(t)) — _(@(t+1) — @(t))TDZOQ(@(()t+1)|@(t))(@(t+1) _ @(t))
Furthermore, if D*°Q(®"Y | ®Y) is negative definite, and the sequence {L((E)(t))}:j is

bounded above then, the sequence {G)(t)}:: converges to some ®" in the closure of Q m
Note, if ® is a scalar parameter, D°Q(®:"*V | ®Y) degrades as a scalar and the concept
“negative definite” becomes “negative” simply. Following is a proof of theorem 3.3.
Proof. Second-order Taylor series expending for Q(® | ®Y) at ® = @Y to obtain:
0(6]0®) = Q(6+D|e®) + D1QY(et+D]|e®) (0 — Ot+D)
+(0 - @(Hl))TDZOQ(@gt"'l)|@(t))(® — QD)
= Q(0t*V|0®) + (0 — @(t+1))TD20Q(®gt+l)|@(t))(® — (t+D)
(due to D*°Q(0+V|e®W) = 07)
Where 0™ is on the line segment joining ® and @Y, Let ® = ®Y, we have:
Q(@(t+1)|®(t)) _ Q(@(iﬁ)l@(t)) = —(e+D — @(t))TDZOQ(@(()t+1)|@(t))(@(t+1) —o®)
If D2°Q(O™Y) | ®V) is negative definite then,
Q(@(t+1)|@(t)) _ Q(@(t)le(t)) — _(@(t+1) _ @(t))TDon(chﬂ)|®(t))(@(t+1) _ @(t)) >0
Whereas,
(O+D — @<t))T(@(t+1> —0®) >0
So there exists some &> 0 such that
Q(@(t+1)|@(t)) — Q(@(Ol@(t)) > Sz((;_)(t+1) - @(t))T(@(Hl) - @(t))
In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {G)(t)}:j
converges to some ©" in the closure of € if the sequence {L(G)(t))}:; is bounded above m

Theorem 3.4 (Dempster, Laird, & Rubin, 1977, p. 9). Suppose the sequence {G)(f)}:j is an
instance of GEM algorithm such that

(1) The sequence {G)(t)}:j converges to ®” in the closure of Q.

(2) DQO®™Y | ©®¥) = 07 for all t.

(3) DXQ(O™V | ®V) is negative definite for all t.
Then DL(®") = 0", D?°Q(®" | ®") is negative definite, and

DM(0") = D H(0*|0")(D?°Q(010")) 'm (3.17)

The notation “” denotes inverse of matrix. Note, DM(®") is differential of M(®) at ® = @,
which implies convergence rate of GEM algorithm. Obviously, ®" is local maximizer due to
DL(®") = 0" and D*°Q(®" | ®"). Followings are proofs of theorem 3.4.

From equation 3.2, we have:
DL(@(t+1)) — DlOQ(@(t+1)|®(t)) _ DIOH(G(t+1)|®(t)) — _D10H(®(t+1)|®(t))
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(Due to D°Q(0+Y|e®) = 07)
When t approaches +<o such that @9 = @ = @" then, D°H(®" | ®") is zero according to
equation 3.7 and so we have:
DL(®") =0"
Of course, D?°Q(®” | ®) is negative definite because D*°Q(O@™Y | ®Y) is negative definite,
when t approaches +< such that @V = @V = @",
By first-order Taylor series expansion for D°Q(®: | ©,) as a function of ®; at ®; = ®" and
as a function of @, at ®, = @", respectively, we have:
D™Q(0,]0;) = D™Q(0,]0%) + (8, — 0")' D™ Q(0,]0*) + R{(0;)
D'°Q(0,]0,) = D*Q(6%|0,) + (6, — ©*)"D?*°Q(6%|0,) + R,(0,)
Where R1(®1) and R2(®.) are remainders. By summing such two series, we have:
2D'°Q(0,0,)
= D'°Q(0,|0") + D*°Q(07|0,) + (8, — 6")" D™ Q(0,]0)
+ (0, —07)'D?°Q(07]0,) + R1(0,) + R,(0,)
By substituting ®; = ®® and ®, = ®"*Y, we have:
2D10Q(®(t+1)|®(t))

— DlOQ(@(t+1) @*) + DlOQ(@* @(t)) + (@(t) _ @*)TDllQ(@(t+1)
+ (04D — 9%) D20Q(0*|0®) + R, (0W) + R,(0(t+D)
Due to D°Q(O®Y | @V) = 0T, we obtain:
oT = DlOQ(@(t+1) @*) + DlOQ(@* @(t)) + (@(t) _ @*)TDllQ(@(t+1) @*)
+ (04D — 9%) D20Q(0*|0®) + R, (0W) + R,(0E+D)

0*)

It implies:
(@(t+1) _ 9*)TD20Q(®* @(t))
— _(p® _ o\ p11 &+ |@*) — ( p10 (t+1)
(e® — o) D1 (e%*V]|e*) — (DQ(6
— (Ry(00) + R,(04+1))

Multiplying two sides of the equation above by D?°Q(®" | ®®)* and letting M(®V) = @),
M(@") = @, we obtain:

(4(6) ) = (80907
— _(@(t) _ @*)TDllQ(@(t+1) @*) (DZOQ(G* @(t))>_1
— (p@(e®*V]e) + p10g(e|0®)) (D2°Q(e" @(‘)))_1

-1
_ (Rl(e(t)) + RZ (@(t+1))) (DZOQ(@* @(t)))
Let t approach +e= such that ®® = @9 = @, we obtain DM(®") as differential of M(®) at ®"
as follows:

©*) + D*°Q(e

@(t)))

DM(0%) = —D'1Q(0°|0")(D°Q(0°10%)) " (3.18)
Due to, when t approaches +<o, we have:
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D11Q (@(t+1)
DZOQ (@*

O(t)) — DZOQ(@*IO*)

D1°Q(e(*V]er) = D'°Q(e"(6") = 07
p™°Q(e"|e®) = D**Q(e"|e") = 0"

Jim R, (6) = lim R,(6) =0

tl—i>Eloo k. (@(Hl)) - @(tlil)nl)@* RZ(O(HD) =0

The derivative D!Q(®’ | ®) is expended as follows:
D1Q(0'|®) = DL(0") + DY H(0'|0)
It implies:
D'Q(6*|0*) = DL(©*) + DH(©*|0*)
=0+ D'H(0*|0%)
(Due to theorem 3.4)
(Due to equation 3.8)
Therefore, equation 3.18 becomes equation 3.17.
DM(©") = D°H(6"|0") (D2 (6°]0")) "'m

Finally, theorem 3.4 is proved. By combination of theorems 3.2 and 3.4, | propose corollary
3.3 as a convergence criterion to local maximizer of GEM.
Corollary 3.3. If an algorithm satisfies three following assumptions:

(1) QM(®Y) | ©Y) > Q(O® | ®W) for all t.

(2) The sequence {L(G)(t))}:i is bounded above.

(3) D¥Q(®" | ®") = 0" and D?°Q(®" | ®") negative definite with suppose that ®" is the

converged point.

Then,

(1) Such algorithm is an GEM and converges to a local maximizer ®" of L(®) such that

DL(®") = 0" and D?’L(®") negative definite.

(2) Equation 3.17 is obtained m
The assumption 1 of corollary 3.3 implies that the given algorithm is a GEM according to
definition 3.1. From such assumption, we also have:

Q(@(Hl)l@(t)) — Q(@(ﬂl@(t)) >0

(O@+D — @<t))T(@(t+1> —0®)>0
So there exists some &> 0 such that

Q(@(t+1)|@(t)) — Q(@(t)lg(t)) > St(@(t+1) — @(t))T(@(Hl) — @(t))
In other words, the assumption 2 of theorem 3.2 is satisfied and hence, the sequence {G)(t)}:j

converges to some ©” in the closure of Q when the sequence {L(G“))}:i is bounded above

according to the assumption 2 of corollary 3.3. From equation 3.2, we have:
DL(@(t+1)) — DlOQ(@(t+1) |@(t)) _ DlOH(@(t+1) |®(t)) — _D10H(®(t+1) |®(t))
When t approaches +<° such that @ = @t = @" then,
DL(®") = DYQ(®" | ®") — DH(®" | ®)
D°H(®" | ®") is zero according to equation 3.7. Hence, along with the assumption 3 of
corollary 3.3, we have:
DL(®") =D¥Q(®"|®") =0T
Due to DL(®") = 0, we only assert here that the given algorithm converges to ®" as a stationary
point of L(®). Later on, we will prove that ®" is a local maximizer of L(®) when Q(M(®V) |
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oY) > Q@Y | @M), DL(®") = 0, and D¥®Q(®" | ®") negative definite. Due to D°Q(®" | ©") =
0T, we obtain equation 3.17 m

By default, suppose all GEM algorithms satisfy the assumptions 3.2 and 3.3 of corollary
3.3. Thus, we only check the assumption 1 to verify whether a given algorithm is a GEM which
converges to local maximizer ®". Note, if the assumption 1 of corollary 3.3 is replaced by
“QM(@®Y) | ©Y) > Q(OY | @) for all t” then, ®” is only asserted to be a stationary point of
L(®) such that DL(®") = 0. Wu (Wu, 1983) gave a deep research on convergence of GEM in
her/his article “On the Convergence Properties of the EM Algorithm”. Please read this article
for more details about convergence of GEM.

Because H(®’ | ®) and Q(®’ | ®) are smooth enough, D*°H(®" | ®") and D*°Q(0” | ®") are
symmetric matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second
derivatives, 2018). Thus, D*°H(®" | ®") and D*°Q(®" | ®") are commutative:

D*H(©” | ©)D¥Q(0" | @") = DQ(0" | )H*Q(0" | ©")
Suppose both D?H(®" | @) and D®Q(®" | @) are diagonalizable then, they are simultaneously
diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a (orthogonal)
eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange,
2013):

D?*°H(©*|0*) = UH;U™*

D*Q(e*|0") = UQ;U™!
Where He" and Q" are eigenvalue matrices of D*°H(®" | ®") and D*Q(®" | ®"), respectively,
according to equation 3.19 and equation 3.20. Of course, hi", hy',..., hy" are eigenvalues of
D®H(®" | ®") whereas q1", q2’,..., g are eigenvalues of D?°Q(®" | ®").

h’l O b O
Hy=0 M o 0 (3.19)
o 0 - h
qI 0 vee 0
=2 & 0 (3.20)
From equation 3.17, DM(®") is decomposed as seen in equation 3.21.
DM(0*) = (UH:U HY(UQ:UH = UH U UQY) AU (3.21)

) = U(H;(Q) Hu )
Let Me be eigenvalue matrix of DM(®"), specified by equation 15. As a convention M is
called convergence matrix.
hy
q

(e)
o

mj =

o
3
N *
I
|
o

Mg =He(Q) ™ = o (3.22)

hy
* * * *- q’;k. *
Of course, all mi” = h;" / gi" are eigenvalues of DM(®") with assumption gi" < 0 for all i. We
will prove that 0 <m;” < 1 for all i by contradiction. Conversely, suppose we always have m;" >
1 or mi" < 0 for some i. When © degrades into scalar as ® = @ with note that scalar is 1-element
vector, equation 3.17 is re-written as equation 3.23:

0 0 ees m;':
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DM = M* =t = Jig MEP) M) _ | 0“D —6°
(67) =M =m’ = lim —— 55— ——= lim — 0= (3.23)
-1
= D2°H(6710)(D?°Q(6716"))
From equation 3.23, the next estimate #*Y) approaches 6" when t — +<o and so we have:
M(e(t)) _ M(e(t+1)) 9(t+1) _ 9(t+2)
DM(6*) =M, =m" = tl_ljrnoo 9O — gt+D) = m gt — gt+1)
6(t+2) _ 9(t+1)

= Jim =D —gm

So equation 3.24 is a variant of equation 3.23 (McLachlan & Krishnan, 1997, p. 120).
6(t+2) _ 9(t+1)

* = = *: i 3.24
DM(07) = Mg = m" = lim —eras—rs (3.24)

Because the sequence {L(H(t))}:i =L(6W),L(6D®),...,L(6W), ... is non-decreasing, the

sequence {9(0}:1 =0W 9@ . 9®, . ismonotonous. This means:
61S62S"'S6tset+1s...sg*

Or

612622."26t26t+12"’29*
It implies

6(t+1) —9*
O=gm_g =TV
So we have
6(t+1) —9*
OSDM(H):ME :tl_l)rpoowsl

However, this contradicts the converse assumption “there always exists m;" > 1 or m;” < 0 for
some i”. Therefore, we conclude that 0 <m;” <1 for all i. In general, if ®" is stationary point
of GEM then, D?°Q(®" | ®") and Q. are negative definite, D’H(®" | ®") and He" are negative
semi-definite, and DM(®") and M.~ are positive semi-definite, according to equation 3.25.

q; <0,Vi

h; <0,Vi (3.25)

0<m;<1,Vi
As a convention, if GEM algorithm fortunately stops at the first iteration such that @ = @@
=®" then, mi" = 0 for all i.

Suppose O = (6,9, 9,0, ... 6,9) at current t™ iteration and ©" = (61", 62",..., 6"), each m;"
measures how much the next 6% is near to 6;". In other words, the smaller the m;" (s) are, the
faster the GEM is and so the better the GEM is. This is why DLR (Dempster, Laird, & Rubin,
1977, p. 10) defined that the convergence rate m* of GEM is the maximum one among all m;”,
as seen in equation 3.26. The convergence rate m” implies lowest speed.

m* = max{mj, mj, ..., m;} where mj = - (3.26)
m; 1
From equation 3.2 and equation 3.17, we have (Dempster, Laird, & Rubin, 1977, p. 10):
D?L(©*) = D?°Q(©*|0*) — D?°H(0*|0*) = D?°Q(0*|0*) — D?°Q(0*|0*)DM(0*)
= D?°Q(©*|0")(1 — DM (0%))
Where 1 is identity matrix:

10 - 0
e
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By the same way to draw convergence matrix Me" with note that D*°H(®" | ®"), D*Q(0" | "),
and DM(®") are symmetric matrices, we have:

Le = Qe(I - Me) (327)
Where Le" is eigenvalue matrix of D’L(®"). From equation 3.27, each eigenvalue Ii" of Le" is
proportional to each eigenvalues gi* of Qe" with ratio 1-m;" where m;” is an eigenvalue of M.
Equation 3.28 specifies a so-called speed matrix Se":

s;=1-m] 0 0
o (3.28)
0 0 o S =1—my,

From equation 3.25 and equation 3.28, we have 0 < ;" < 1. Equation 3.29 specifies Le_ which
is eigenvalue matrix of D?L(®").

L=gsi 0 = 0
L: = 0 l; ::qZSZ 0 (3.29)

From equation 3.28, suppose @0 = (1¥, 8.0,..., 6:9) at current t" iteration and ®" = (61",
62",..., 6r), each si” = 1-m;" is really the speed that the next 6(*Y moves to 6;". From equation
3.26 and equation 3.28, equation 3.30 specifies the speed s” of GEM algorithm.
s*=1—-m"
Where, (3.30)
m' = rrrlna*x{mj,mz, ., }

As a convention, if GEM algorithm fortunately stops at the first iteration such that @® = @@
=@ then, s" = 1.

For example, when ® degrades into scalar as ® = ¢, the fourth column of table 1.2
(Dempster, Laird, & Rubin, 1977, p. 3) gives sequences which approaches Me” = DM(6")
through many iterations by the following ratio to determine the limit in equation 3.23 with 4
= 0.6268.

9(t+1) — 9"

9 — g
In practice, if GEM is run step by step, 8" is not known yet at some t™" iteration when GEM
does not converge yet. Hence, equation 3.24 (McLachlan & Krishnan, 1997, p. 120) is used to
make approximation of Me” = DM(6") with unknown 6" and 6 # g4+,
9(t+2) _ 0(t+1)

DM(8") ~ et — @
It is required only two successive iterations because both 60 and 6% are determined at t™
iteration whereas 642 is determined at (t+1)" iteration. For example, in table 1.2, given 4% =
0.5, 6@ = 0.6082, and 6 = 0.6243, at t = 1, we have:
M) 0® —9@ 06243 —0.6082 01488
) 9@ -9 " 0.6082-05
Whereas the real Me" = DM(6") is 0.1465 shown in the fourth column of table 1.2 at t = 1.

We will prove by contradiction that if definition 3.1 is satisfied strictly such that Q(M(©®)
|0®) > QO | ®Y) then, Ii" < 0 for all i. Conversely, suppose we always have Ii" > 0 for some
i when Q(M(0Y) | V) > Q(OY | ®V). Given © degrades into scalar as ® = 6 with note that
scalar is 1-element vector, when Q(M(0©) | ©Y) > Q(BV | ®@Y), the sequence {L(e(t))}:j =
L(6W),L(6@), ..., L(6®), .. is strictly increasing, which in turn causes that the sequence
{H(t)}:j =0W, 9@, ., 9®, _is strictly monotonous. This means:

91<92<"'<9t<6t+1<"‘<9*
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Or
0;,>60,>>0,>60.,>>0"

It implies

6(t+1) _6*

W< 1,Vt
So we have

6(t+1) _9*
S;=1-M;=1—- lim ———>0

t—+o00 H(t) —0*
From equation 3.29, we deduce that D?L(6") = Le" = Qe Se’ < 0 where Q" = D?°Q(¢" | §") < 0.
However, this contradicts the converse assumption “there always exists Ii" > 0 for some i when
QM(B®Y) | 8Y) > Q(BY | ®Y)”. Therefore, if QM(OY) | W) > QO | ®WY) then, Ii" < 0 for all
i. In other words, at that time, D?’L(®") = L¢" is negative definite. Recall that we proved that
DL(®") = 0 for corollary 3.3. Now we have D?L(®") negative definite, which means that @" is
a local maximizer of L(®") in corollary 3.3. In other words, corollary 3.3 is proved.
Recall that L(®) is the log-likelihood function of observed Y according to equation 2.3.

L(®) =log(g(Y1@)) = log f f(X|@)dx
p~1(Y)

Both -D*H(®" | ®") and -D¥*Q(®" | ®") are information matrices (Zivot, 2009, pp. 7-9)
specified by equation 3.31.

1;(0*) = —D?°H(0*|0%)

10(8") = —D?Q(6"[0") (33D
I4(®") measures information of X about ®" with support of Y whereas lo(®") measures
information of X about ®". In other words, 14(®") measures observed information whereas
lo(®") measures hidden information. Let Vu(®”) and Vo(®”) be covariance matrices of ®" with
regard to 14(®) and 1o(®"), respectively. They are inverses of 1n(®@") and 1o(®") according to
equation 3.32.

-1
Vu(07) = (14(0")
-1
Vo(0") = (Io(0")
Equation 3.33 is a variant of equation 3.17 to calculate DM(®") based on information matrices:
-1 -1
DM(0) = I,;(6%) (IQ (@*)) = (V4(0) 'V, (07) (3.33)

If f(X | ©®), g(Y | ®) and k(X | Y, ®) belong to exponential family, from equation 3.14 and
equation 3.16, we have:

(3.32)

D?°H(0*|0*) = =V (z(X)|Y,0%)
D?°Q(0°|0") = =V (z(X)|0")
Hence, equation 3.34 specifies DM(@") in case of exponential family.
DM(©") = V()Y 0)(V(z(X)[6%) (3.34)
Equation 3.35 specifies relationships among Vu(®%), Vo(®"), V(z(X) | Y, @), and V(z(X) | @)
in case of exponential family.

V(0% = (V(z(0)lY,07)) "

4 (3.35)
Vo(0%) = (V(x(X)]09))

4. Variants of EM algorithm
The main purpose of EM algorithm (GEM algorithm) is to maximize the log-likelihood L(®)
= log(g(Y | ®)) with observed data Y by maximizing the condition expectation Q(®’ | ®). Such
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Q(®’ | ®) is defined fixedly in E-step. Therefore, most variants of EM algorithm focus on how
to maximize Q(®’ | ®) in M-step more effectively so that EM is faster or more accurate.

4.1. EM algorithm with prior probability
DLR (Dempster, Laird, & Rubin, 1977, pp. 6, 11) mentioned that the convergence rate DM(®")
specified by equation 3.17 can be improved by adding a prior probability z(®) in conjugation
with f(X | ©®), g(Y | ®) or k(X | Y, ®) according to maximum a posteriori probability (MAP)
method (Wikipedia, Maximum a posteriori estimation, 2017). For example, if z(®) in
conjugation with g(Y | ®) then, the posterior probability z(® | Y) is:
9(Y0)r(0)
O = T ron@de
Because feg(Yle))n(G))dG) is constant with regard to ©, the optimal likelihood-maximization
estimate ®" is a maximizer of g(Y | ®)z(®). When n(®) is conjugate prior of the posterior
probability z(® | X) (or z(® | Y)), both #z(®) and #(® | X) (or z(® | Y)) have the same
distributions (Wikipedia, Conjugate prior, 2018); for example, if z(®) is distributed normally,
(O | X) (or z(® | Y)) is also distributed normally.
For GEM algorithm, the log-likelihood function associated MAP method is £(©) specified
by equation 4.1.1 with note that z(®) is non-convex function.
£(0) =log(g(Y|0)m(0)) = L(©) + log(r(©)) (4.1.1)
It implies from equation 3.2 that
Q(0'10) + log(n(0")) = L(0") + log(n(©")) + H(0'|®) = L(©") + H(0'|0)

Let,

Q+(©'1©) = Q(e'|©) + log(r(6") (4.1.2)
GEM algorithm now aims to maximize Q+(®’ | ®) instead of maximizing Q(®’ | ®). The proof
of convergence for Q+(®’ | ®) is not changed in manner but determining the convergence
matrix Me for Q+(®’ | ®) is necessary. Because H(®’ | ®) is kept intact whereas Q(®’ | ®) is
replaced by Q+(®’ | ®), we expect that the convergence rate m” specified by equation 3.26 is
smaller so that the convergence speed s is increased and so GEM algorithm is improved with
regard to Q+(®’ | ®). Equation 4.1.3 specifies DM(®") for Q+(®’ | ®).

DM(0*) = DZOH(@*|G)*)(D2°Q+(@*|®*))‘1 (4.1.3)
Where Q+(®’ | ©) is specified by equation 4.1.2 and D?°Q.(®’ | ©) is specified by equation
4.1.4.

D%°Q,(0'|0) = D?°Q(0’'|8) + D?°L(n(0")) (4.1.4)
Where,

L(n(@’)) = log(n(@’))
Because Q(®’ | ®) and z(®*) are smooth enough, D®Q(®" | ®") and DXL (z(®")) are symmetric
matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018).
Thus, D?Q(®" | ®") and D?°L(z(®")) are commutative:

D*Q(0” | ©")D*L((@")) = D*°L(x(®"))D*’Q(®" | @)

Suppose both D?°Q(®" | ®") and D¥L(z(®")) are diagonalizable then, they are simultaneously
diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a (orthogonal)
eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange,
2013):

D*°Q(e%|0") =VQ;v!

D¥L(r(0%)) = VIV
Where Q¢” and TI" are eigenvalue matrices of D?°Q(®" | ®") and D®L(z(®")), respectively.
Note Q" and its eigenvalues are mentioned in equation 3.20. Because 7(®") is non-convex
function, eigenvalues 71", 72",..., o of ITe" are non-positive.
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m; 0 0
m=( 9 ™ 0
0 0 - m

From equation 4.1.2, D®Q.+(®" | ®") is decomposed as below:

D?°Q,(©7]0*) = D2°Q(07|0*) + DX°L(n(0%)) = VQsV L+ VIV 1 =V (Q; + T;)V !
So eigenvalue matrix of D?°Q+(®" | ®") is (Qe” + Ile") and eigenvalues of D?°Q.(®@" | ®") are
i + i, as follows:

G4m0 0
g+m=( O AT o0
0 0 - q'+m
According to equation 3.19, the eigenvalue matrix of D*H(®" | ®") is He" fixed as follows:
h; 0 - 0
L e
0o 0 - h

Due to DM(®") = D*H(®" | ©")D¥*Q.(®" | ®"), equation 3.21 is re-calculated:
DM(0*) = (UH U H(U(Q: + IHU™H) ™ = UH;UT'U(Qe + ) ' U™}
= U(Hz(Qc + Ip)"HUu ™t
As a result, the convergence matrix M. which is eigenvalue matrix of DM(®) is re-calculated
by equation 4.1.5.

. h
ml == * 0 h 0
q; + 1y \
I 0 Lo 0 I
Mg = Ho(Qe + 1) ™" = | M= e | (4.15)
k 0 0 e om= o )
. dr + Ty
The convergence rate m™ of GEM is re-defined by equation 4.1.6.
h*
m* = m&x{m{,mﬁ, .., my} where m; = pr -I-lnl* (4.1.6)

Because all hi", gi", and 7" are non-positive, we have:
hi hi .
* * S _* 4 Vl
q +1m; g X
Therefore, by comparing equation 4.1.6 and equation 3.26, we conclude that m” is smaller with
regard to Q+(®’ | ®). In other words, the convergence rate is improved with support of prior
probability z(®). In literature of EM, the combination of GEM and MAP with support of 7(®)

results out a so-called MAP-GEM algorithm.

4.2. EM algorithm with Newton-Raphson method
In the M-step of GEM algorithm, the next estimate @Y is a maximizer of Q(® | ®Y), which
means that @Y s a solution of equation D°Q(® | ®) = 0" where D°Q(® | ©®Y) is the first-
order derivative of Q(® | ®Y) with regard to variable ®. Newton-Raphson method (McLachlan
& Krishnan, 1997, p. 29) is applied into solving the equation D°Q(® | ®Y) = 0. As a result,
M-step is replaced a so-called Newton step (N-step).

N-step starts with an arbitrary value ®q as a solution candidate and also goes through many
iterations. Suppose the current parameter is @i, the next value ®; +1 is calculated based on
equation 4.2.1.
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-1 T
01 = 0; — (D2°Q(0;]0®)) ~ (D¢ (0;]0®)) (4.2.1)
N-step converges after some it iteration. At that time, ®i.1 is solution of equation D°Q(® | @V)
= 0 if ®i:1=0i. So the next parameter of GEM is ") = @j,1. The equation 4.2.1 is Newton-
Raphson process. Recall that D°Q(® | ®%) is gradient vector and D?°Q(® | ®Y) is Hessian
matrix. Following is a proof of equation 4.2.1.
According to first-order Taylor series expansion of D°Q(® | ©) at ® = ®; with very small
residual, we have:

T

D1°Q(0]0®) ~ D*0Q(6;]0®) + (0 — 8,)7 (D*°Q(6;]0®))
Because Q(® | ®Y) is smooth enough, D?Q(® | ®Y) is symmetric matrix according to
Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies:

D*Q(e | ©Y) = (D*Q(® | 6Y))T
So we have:
DQ(8]|0®) ~ D1°Q(0;|6®) + (6 — 6,)TD?°Q(0;|0W™)
Let ® = @i:1 and we expect that D1°Q(®i+1 | ®V) = 0T so that @;:1 is a solution.
0" = D'°Q(0:41|0®) ~ D'°Q(6;|0V) + (6;11 — ©)"D*°Q(6;|6®)

It implies:

(01217 ~ (0)7 — D0Q(0;|0®) (DZOQ(Gile(t)))_l
This means:

-1 T
01 ~ 0, — (D2°Q(0;]0®)) ~ (D™°¢(0;]0®)) m
Rai and Matthews (Rai & Matthews, 1993) proposed a so-called EM1 algorithm in which
Newton-Raphson process is reduced into one iteration, as seen in table 4.2.1 (Rai & Matthews,
1993, pp. 587-588). Rai and Matthews assumed that f(x) belongs to exponential family but their
EML algorithm is really a variant of GEM in general. In other words, there is no requirement
of exponential family for EM1.
E-step:
The expectation Q(® | ®VY) is determined based on current ®Y, according to equation
2.8. Actually, Q(® | ®V) is formulated as function of .
M-step:
The next parameter @Y is:
-1 T
0+ = 0 — (D2°g(e®|e®)) " (p10Q(e®]e)) 4.2.2)
Table 4.2.1. E-step and M-step of EM1 algorithm
Rai and Matthews proved convergence of EM1 algorithm by their proposal of equation 4.2.2.
Second-order Taylor series expending for Q(® | ©Y) at ® = @Y to obtain:
Q(@|®(t)) — Q(@(t+1)|®(t)) + DlOQ(@(t+1)|@(t))(® _ @(t+1))
n (9 _ @(1:+1))TD20Q(8(()L“+1)|@(t))(® _ @(t+1))
Where 0o is on the line segment joining ® and @Y, Let ® = ®Y, we have:
Q(@(t+1)|@(t)) _ Q(@(t)lg(t))
— _D10Q(®(t+1)|®(t))(@(t+1) _ @(t))
— (0@+D — @(t))TDZO(@(()t+1)|9(t))(9(t+1) —0®)
By substituting equation 4.2.2 for Q(®®? | @) — Q(®® | ®®) with note that D*°Q(® | ®V) is
symmetric matrix, we have:
Q(@(t+1)|@(t)) _ Q(@(t)|@(t))

— _D10Q(®(t+1)|®(t)) % (DZOQ(G(t)le(t)))_l . (DmQ(@(t)l@(t)))T
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-1

-1
—D1°Q(0®[0®) « (DZOQ(@(t)le(t))) N Dzo(O(()t+1)|®(t)) N (DZOQ(@(t)le(t)))
T
* (DloQ(@(t)|@<t)))
-1 T T -1 -1
(Due to ((DZOQ(@“)|®@)) ) = ((DZOQ(@)(f>|®<t))) ) = (p**@(e®[e®)) )
Let,
-1 -1
A= (DZOQ(G(t)le(t))) % D20(88t+1)|®(t)) % (DZOQ(G(t)lg(t)))
Because Q(®’ | ®) is smooth enough, D®XQ(O® | ©V) and D*Q(®:™ | ®Y) are symmetric
matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018).
Thus, D*Q(BY | ©Y) and D*Q(O"Y | ®V) are commutative:
D20Q(@(t) | @(t))DZOQ(®O(t+1) | @(t)) - D20Q(@Q(t+1) | ®(t))DZOQ(®(t) | @(t))
Suppose both D?Q(OY | ®Y) and D®Q(O,"Y | ®Y) are diagonalizable then, they are
simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a

(orthogonal) eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017)
(StackExchange, 2013):

Don(@(t)le(t)) — WQf,t)W‘l
Don(@8t+1)|®(t)) — WQgt‘H)W—l
Where Q:® and QY are eigenvalue matrices of D®Q(O® | ®®) and DXQ(®,™? | OW),
respectively. Matrix A is decomposed as below:
A= (W(zgt)w-l)_1 * (WQS“)W-l) R (WQS)W—l)_1
=w(Q®) ww oV w-w (o) = w(e®) etV w

-1
_ W( gt)) S)Qé”l)W‘l _ WQng)W_l

(Because Q:" and Q¢! are commutative)
Hence, eigenvalue matrix of A is also Qe™%. Suppose D?°Q(®:"*V | ®Y) is negative definite, A
is negative definite too. We have:
Q(@(t+1)|@(t)) — Q(@(t)|@(t))

— _D10Q(®(t+1)|®(t)) % (DZOQ(G(t)le(t)))_l . (DlOQ(e(t)lg(t)))T

T
_D10Q(@(t)|@(t)) % A * (DloQ(@(t)lg(t)))
Because D®Q(0" | @) is negative definite, we have:
-1 T
DlOQ(@(t+1)|®(t)) " (DZOQ(@(t)lg(t))> " (DIOQ(G(t)le(t))) <0
Because A is negative definite, we have:
T
p1Q(0®[0®) « A+ (D1Q(6®]0®)) <0
As a result, we have:
(e V|e®) — g(6®W]e®) > 0,vtm
Hence, EM1 surely converges to a local maximizer ®" according to corollary 3.3 with
assumption that D®Q(®:"Y | @) and D?Q(®Y | ®Y) are negative definite for all t where
@™V is a point on the line segment joining ® and @Y,
Rai and Matthews made experiment on their EM1 algorithm (Rai & Matthews, 1993, p.
590). As aresult, EM1 algorithm saved a lot of computations in M-step. In fact, by comparing

GEM (table 2.3) and EM1 (table 4.2.1), we conclude that EM1 increases Q(® | ®V) after each
iteration whereas GEM maximizes Q(® | ®V) after each iteration. However, EM1 will
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maximizes Q(® | ®Y) at the last iteration when it converges. EM1 gains this excellent and
interesting result because of Newton-Raphson process specified by equation 4.2.2.

Because equation 3.17 is not changed with regard to EML1, the convergence matrix of EM1

IS not changed.

M, = H.Q;*
Therefore, EM1 does not improve convergence rate in theory as MAP-GEM algorithm does
but EM1 algorithm really speeds up GEM process in practice because it saves computational
cost in M-step.

In equation 4.2.2, the second-order derivative D?°Q(®Y | ®Y) is re-computed at every
iteration for each @(t). If D?°Q(O® | @) is complicated, it can be fixed by D?°Q(OY | ®W)
over all iterations where ®® is arbitrarily initialized for EM process so as to save
computational cost. In other words, equation 4.2.2 is replaced by equation 4.2.3 (Ta, 2014).

@(t+1) — @(t) _ (Don(@(nl@(l)))—l (D10Q(@(t)|@(t)))T (4.2.3)

In equation 4.2.3, only D*Q(®® | @) is re-computed at every iteration whereas D*Q(OWY |
OW) is fixed. Equation 4.2.3 implies a pseudo Newton-Raphson process which still converges
to a local maximizer ®" but it is slower than Newton-Raphson process specified by equation
4.2.2 (Ta, 2014).

Newton-Raphson process specified by equation 4.2.2 has second-order convergence. |
propose to use equation 4.2.4 for speeding up EM1 algorithm. In other words, equation 4.2.2
is replaced by equation 4.2.4 (Ta, 2014), in which Newton-Raphson process is improved with
third-order convergence. Note, equation 4.2.4 is common in literature of Newton-Raphson
process.

@(t+1) — @(t) _ (DZOQ(q)(t)le(t)))_l (D10Q(®(t)|®(t)))'r
Where, (4.2.4)
1 -1 T
o® = e _ 5 (Don(@(t) |@<t))) (DmQ(@(t) |@(t)))

The convergence of equation 4.2.4 is same as the convergence of equation 4.2.2. Following is
a proof of equation 4.2.4 by Ta (Ta, 2014).
Without loss of generality, suppose ® is scalar such that ® = 6, let

q(8) = D°Q(6]6®)
Let r(6) represents improved Newton-Raphson process.

q(0)
0) =0 —
(6 7 (6 + 0(8)q(8))

Suppose w(#) has first derivative and we will find w(6). According to Ta (Ta, 2014), the first-
order derivative of 7(0) is:

q'(6)
@) =1-
T = T 000®)
N q(6)q" (6 + w(6)q(6))(1 + ' (6)q(6) + w(6)q' ()
(¢'(6 + w(8)9(®)))
According to Ta (Ta, 2014), the second-order derivative of #(6) is:

IIH
7'(6) = ~ oD

q'(6 + w(6)q(8))
N 2q'(0)q" (6 + w(8)q(8))(1 + w'(8)q(6) + w(8)q'(6))

(4'(6 + 0(©®)9(®))
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29(0) (4"(6 + w(©)a(®)) (1 + ' (©)q(8) + 0(©)q' ()’
('8 + w(©)q(6))
L 40)a"(6 +©(0)q(©)(L + »'(0)q(8) + w(0)q’ ©)°
('8 + w©)q(8)))
4 @9)"q"(8 + 0©®)q(0))w" ()
(¢'(6+ w(9)q(9)))
L 400)q"(6 + 0(8)4(8))(20'(6)q'(6) + w(6)q"(6))

(¢'(6 + w(@)q(@)))
If 8 is solution of equation q(6) = =0, Ta (Ta, 2014) gave:

q(8) =0
17(6_) =6
n'@®) =0
woa q"(0) .
O =" (1+20@)q'(®))
In order to achieve n”'(8) = 0, Ta (Ta, 2014) selected:
w(6) = —ﬂ,ve
2q'(6)
According to Ta (Ta, 2014), Newton-Raphson process is improved as follows:
gt+1) — g(®) _ q(e(t))
q (g(t) - M)
2q'(6W)

This means:
DQ(6]|6®)

p20¢ <9<t) _ Db0(6]6) 9(t>>
2D20Q(6|6®)
As aresult, equation 4.2.4 is a generality of the equation above when @ is vector.
| propose to apply gradient descent method (Ta, 2014) into M-step of GEM so that Newton-
Raphson process is replaced by gradient descent process with expectation that descending
direction which is the opposite of gradient vector D°Q(® | ®) speeds up convergence of GEM.
Table 4.2.2 specifies GEM associated with gradient descent method, which is called GD-GEM

gt+1) — g(©) _

algorithm.
E-step:
The expectation Q(® | ®V) is determined based on current ®©, according to equation
2.8. Actually, Q(® | ®V) is formulated as function of .
M-step:
The next parameter @Y js:
Qi+ = g® — y® (DloQ(@(t)|@(t)))T (4.2.5)
Where y® > 0 is length of the descending direction. As usual, ¥ is selected such that
y® = argmax Q(CD(t)l(E)(t)) (4.2.6)
Y
Where,
d® = ® 4 yDlOQ(G)(t)lﬁ)(t))
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Table 4.2.1. E-step and M-step of GD-GEM algorithm
Note, gradient descent method is used to solve minimization problem but its use for solving
maximization problem is the same. Second-order Taylor series expending for Q(® | ®Y) at ®
= O to obtain:
Q(@|®(t)) — Q(@(t+1)|®(t)) + DlOQ(@(t+1)|®(t))(® _ @(t+1))
n (9 _ @(t+1))TD20Q(@gt+1)|@(t))(® _ @(t+1))
Where 0™ is on the line segment joining ® and @Y, Let ® = @Y, we have:
Q(@(t+1)|@(t)) _ Q(@(t)lg(t))
— _DloQ(O(t+1)|®(t))(®(t+1) _ @(t))
— (e(t+D — @(t))TDZO(@(()t+1)|@(t))(@(t+1) —0®)
By substituting equation 4.2.5 for Q@Y | @®) — Q(®@"Y | ®Y), we have:
Q(@(t+1)|@(t)) _ Q(@)(t)|@(t))

= y©p10og(pt+D|e®) « (DlOQ(G)(f)|@(t)))T
~(y©)’D1Q(e®]e®) « p20(6{*V[e®) « (DloQ(@(t)|@(t)))T
Due to:
DlOQ(@(t+1)|®(t)) % (DIOQ(G(t)le(t)))T >0
Suppose DZO(G)gt“) |G)(t)) is negative definite

y(t) >0
As a result, we have:
Q(@(Hl)l@(t)) — Q(@(t)lg(t)) >*O, Vtm
Hence, GD-GEM surely converges to a local maximizer ®" according to corollary 3.3 with
assumption that D®Q(®"*Y | ®Y) is negative definite where @Y is a point on the line
segment joining © and Y,

It is not easy to solve the maximization problem with regard to y according to equation
4.2.6. So if Q(® | ®V) satisfies Wolfe conditions (Wikipedia, Wolfe conditions, 2017) and
concavity and D*Q(® | ®Y) is Lipschitz continuous (Wikipedia, Lipschitz continuity, 2018)
then, equation 4.2.6 is replaced by equation 4.2.7 (Wikipedia, Gradient descent, 2018).

D1Q(e®|e®) — DlOQ(@(t)le(t—l))) (0® — g(t-D)

|D10Q(0®|0®) — p1og(e®]e-D)|?
Where |.| denotes length or module of vector.

y® = ( (4.2.7)

4.3. EM algorithm with Aitken acceleration
According to Lansky and Casella (Lansky & Casella, 1992), GEM converges faster by
combination of GEM and Aitken acceleration. Without loss of generality, suppose © is scalar
such that ® = 6, the sequence {e(t)}:i =0W, 9@, ,0®, _ is monotonous. From equation
3.23
Q(t+1) —0*

DM(6*) = tl—1>$loo—9(t) —

We have the following approximate with t large enough (Lambers, 2009, p. 1):
6(t+1) —9* 9(t+2) —9*

90 — g+ grD _ g
We establish the following equation from the above approximation, as follows (Lambers, 2009,
p. 1):
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9(t+1) —6* 0(t+2) —0*

90 — g+ i+D _ g
= (9(t+1) _ 9*)2 ~ (9(t+2) _ 9*)(9(t) _ 9*)
N (9(t+1))2 _2gt+Dgx & g+ () _ gt+2)g* _ g(®) g

= (6(t+2) —29+D) 4 Q(t))e* ~ H(t)(e(t+2) —20+D) 4 Q(t)) _ (9(t+1) _ g(t))z
Hence, 6" is approximated by (Lambers, 2009, p. 1)
(p(t+D __9(0)2
Q(t+2) _ 28(t+1) + g(t)
We construct Aitken sequence {9“)}::; =0W 6@ . 6®  suchthat (Wikipedia, Aitken's
delta-squared process, 2017)

0* ~ 9 —

(t+1) _ g(®)? ©)?
(6 0) o (20°) (4.3.1)
p+2) — 29+1) 4 9(®) i 1:10)
Where A is forward difference operator,
AO® = g(t+1) _ g(®)

5O — g® _

And
A20® = A(A9D) = A(HEHD — 9O) = A9+ — Ag(®)
— (0(t+2) _ 9(t+1)) _ (9(t+1) _ e(t)) — 0(t+2) _ 20(t+1) + Q(t)
When @ is vector as © = (61, 6s,..., 6)", Aitken sequence {@(t)}:j =0W, 0@, ...,00 _is
defined by applying equation 4.3.1 into its components 6; (s) according to equation 4.3.2:

(80°)

A () ®
6"’ =0~ —
i i AZ ei(t)

Vi=12,..,1 (4.3.2)

Where,
Aei(t) — ei(t‘l'l) _ ei(t)

A26® = g{*? —26{*P 1 (¥
2 2 12
According theorem of Aitken acceleration, Aitken sequence {@(t)}:i approaches ©" faster

than the sequence {G)(t)}:i =0W,0®,...,0®, .. with note that the sequence {@(f)}:i is
instance of GEM.

g® _ gx
t—+oo gi — gi
Essentially, the combination of GEM and Aitken acceleration is to replace the sequence
{G)(t)}:i by Aitken sequence {@(t)}:i as seen in table 4.3.1.
E-step:
The expectation Q(® | ®V) is determined based on current ®®, according to equation
2.8. Actually, Q(® | ®9) is formulated as function of ®. Note thatt=1, 2, 3,... and ©©
=W,
M-step:
Let @D = (6,9, 9,0, . 6N T be a maximizer of Q(® | ©). Note ®D will become
current parameter at the next iteration ((t+1)" iteration).

— ~ p— ~ — ~ —_— T - -
Aitken parameter ¢~ = (91“ Vg pt 1)) is calculated according to
equation 4.3.2.
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-1)?
;-1 _ p(t-1) (Agi )
Azg{~"
If ¢ = ®(-2) then, the algorithm stops and we have 8¢~ = 92 = g,
Table 4.3.1. E-step and M- step of GEM algorithm combined with Aitken acceleratlon
Because Aitken sequence {@(t)} _converges to ®" faster than the sequence {G)(t)} does, the

convergence of GEM is |mproved W|th support of Aitken acceleration method.

In equation 4.3.2, parametric components 6 (S) converges separately. Guo, Li, and Xu (Guo,
Li, & Xu, 2017) assumed such components converges together with the same rate. So they
replaced equation 4.3.2 by equation 4.3.3 (Guo, Li, & Xu, 2017, p. 176) for Aitken sequence

(O

|a0®|*

00 = g® _
00 =00 —

A2e® (4.3.3)

4.4. ECM algorithm
Because M-step of GEM is complicated, Meng and Rubin (Meng & Rubin, 1993) proposed a
so-called Expectation Conditional Expectation (ECM) algorithm in which M-step is replaced
by several computationally simpler Conditional Maximization (CM) steps. Each CM-step
maximizes Q(® | ®Y) on given constraint. ECM is very useful in the case that maximization
of Q(® | ©) with constraints is simpler than maximization of Q(® | ®Y) without constraints
as usual.
Suppose the parameter @ is partitioned into S sub-parameters ® = {®1, @,..., ®s} and there
are S pre-selected vector function gs(®):
G ={g,(0);s=12,..,5} (4.4.1)
Each function gs(®) represents a constraint. Support there is a sufficient enough number of
derivatives of each gs(®). In ECM algorithm (Meng & Rubin, 1993, p. 268), M-step is replaced
by a sequence of CM-steps. Each CM-step maximizes Q(® | ®®) over ® but with some function
0s(®) fixed at its previous value. Concretely, there are S CM-steps and every s CM-step finds
O that maximizes Q(® | ®Y) over ® subject to the constraint gs(®) = gy(@ 1), The
next parameter @ is the output of the final CM-step such that @Y = @t Table 4.4.1
(Meng & Rubin, 1993, p. 272) shows E-step and CM-steps of ECM algorithm.
E-step:
As usual, Q(® | ®Y) is determined based on current ®© according to equation 2.8.
Actually, Q(® | @) is formulated as function of @.
CM-steps:
There are S CM-steps. In every s" CM step (s =1, 2...., S), finding

s—1
o(t+3) = argmax{ (6|0®@) with subject to g4(0) = g, (G)(”T)>} (4.4.2)
(€]
The next parameter ®*3 is the output of the final CM-step (S CM-step):

o+ — G(Hg) (4.4.3)
Note, @ will become current parameter at the next iteration ((t+1)" iteration).
Table 4.3.1. E-step and CM-steps of ECM algorithm

ECM algorithm stops at some t™" iteration such that ®V = @) = ®*, CM-steps depend on how
to define pre-selected functions in G. For example, if gs(®) consists all sub-parameters except
Os then, the s CM-step maximizes Q(® | ®Y) with regard to ®@s whereas other sub-parameters
are fixed. If g«(®) consists only ©s then, the s" CM-step maximizes Q(® | ®V) with regard to
all sub-parameters except ®s. Note, definition of ECM algorithm is specified by equation 4.4.2
and equation 4.4.3
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From equation 4.4.2 and equation 4.4.3, we have:
Q(@(t+1)|@(t)) — Q(M(@(t))|@(t)) > Q(G)(t)lﬁ)(t)),‘v’t
Hence, the convergence of ECM is asserted according to corollary 3.3. However, Meng and
Rubin (Meng & Rubin, 1993, pp. 274-276) provided some conditions for convergence of ECM
to a maximizer of L(®).

5. Applications of EM

5.1. Mixture model and EM
As usual, let X be the hidden or latent space and let Y be the observed space. Especially, the
random variable X in X represents latent class or latent component of random variable Y in Y.
Suppose X is discrete and ranges in X = {1, 2,..., K}. The so-called probabilistic finite mixture
model is represented by the PDF of Y, as seen in equation 5.1.1.

K

F(718) = ) afe(V165) (5.1.1)
X=1
Where,
0 = (ay,ay, ..., ak, 041,05, ...,0)T
K
z ak = 1
k=1

Note, Y can be discrete or continuous. Recall that the ultimate purpose of EM algorithm is to
maximize f(Y|®) with subject to ®. Each fx(Y|6x) is called the X" partial PDF of Y whose partial
parameter is 0. Each fx(Y|6x) is also called the X" observational PDF of Y. It is really the
conditional PDF of Y given X, as seen in equation 5.1.2.

fx(Y16x) = f(YIX, 0x) (5.1.2)
From equation 5.1.1, the mixture model f(Y|®) is the mean of K partial PDFs. The variable X
implies which partial PDF “generates” Y (Bilmes, 1998, p. 5).

Each ax is called mixture coefficient. It is really the probability of discrete X, as seen in
equation 5.1.3. However, in mixture model, each ax is also considered as parameter, which is
belongs to the compound parameter ®.

ay = P(X) (5.1.3)
The joint probabilistic distribution of X and Y, which implies the implicit mapping between X
and Y, is product of the mixture coefficient ax and the X" PDF of Y, as seen in equation 5.1.4.

F(X,Y10) = PUOS(YIX, 6) = e f(¥16x) (514)
This implies:
K K K
FV10) = ) FCX,Y18) = D PCOS(YIX, 6:) = > axfe(¥16x) (515)

Equation 5.1.6 specifies the conditional probability of X given Y. Please pay attention to this

important probability.

ax fx(Y160x)

S afi(Y16)

Following is the proof of equation 5.1.6. According to Bayes’ rule, we have:
P)f (ylx, 6x)

=1 POOF(YIX, 6x)
Applying equation 5.1.3 and equation 5.1.4, we have:
U (¥165)

Z}Ig=1 axfx(Y|0x)

P(X|Y,0) = (5.1.6)

PX=x|Y =y,0) =

PX=x]Y =y,0) =
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In other words, equation 5.1.6 is establishedm
Now GEM algorithm is applied into mixture model for estimating the parameter ®. Derived
from equation 2.12, the conditional expectation Q(®’|®) of mixture model becomes:

0(0'10) = Z P(X|Y,®)log(f(X,Y]0")) = Z P(XlY,®)log(axfy(Y165))  (5.1.7)
Xex Xex
In practice, suppose Y is observed as a sample Y = {Y1, Y2,..., Yn} of size N with note that all

Yi (s) are mutually independent and identically distributed (iid). The observed sample Y is
associated with a a hidden set (latent set) X’ = {X1, Xo,..., Xn} of size N. All X; (s) are iid and
they are not existent in fact. Let X € X be the random variable representing every Xi. Of course,
the domain of X is X. Derived from equation 2.14, equation 5.1.8 specifies Q(®’|®) given such

Y.
N
Q(e'10) = > > P(XIY; ©)log(ax fx (¥i16;) (5.18)
i=1 XeX
Equation 5.1.8 is the general case of equation 5.1.7. At the t" iteration of GEM, given current
parameter OO = (c1®, o20,..., ak®, 610, ,09,.... 6<O)T, the conditional expectation specified
by equation 5.1.8 is written as follows:

N
0(0]0®) = > " P(x|1;, 0 )log(ax fx (¥i16,)

i=1 XeX
Thus, the unknown of Q(®|@Y) is ® = (a1, az,..., ak, 61, Oa,..., 6k)". Because X is discrete and
ranges in {1, 2,..., K}, the conditional expectation Q(®|0Y) is re-written as equation 5.1.9 for
convenience.

0(ee®) = z Z P(k|Y;, ) log(aef (Yi16:)) (5.1.9)

i=1k=1

Where the conditional probability P(k | Y, ®Y) is determined by equation 5.1.10 which is indeed
equation 5.1.6.
(o)

=1 “z(t)fl<yi|91(t))
At M-step of the current t™ iteration, Q(®|®Y) specified by equation 5.1.9 is maximized with
subject to ®. How to maximize Q(®|®®Y) with subject to ® is dependent on types of partial
PDFs fi(Yil6k).

Because there is the constraint }};_, 6, = 1, we use Lagrange duality method to maximize
to maximize Q(®|®WY). The Lagrange function la(®, 4 | ®Y) is sum of Q(®|®Y) and the
constraint ¥X_, a,, = 1, which is specified by equation 5.1.11.

K
la(,A0®) = g(6]6®) + 1 (1 -> ak>

P(k|v;,09) = P(X = k|y,0®) =

(5.1.10)

N K k=1

= > P(k]Y,6©)log(a) (5.1.11)
i;l k;l K

+ ; kZ:l P(k|Y, 0 )log(fi (Yi16,)) + A (1 - kZl ak>

Note, 4 > 0 is called Lagrange multiplier. Of course, la(®, A | ®V) is function of ® and A. The
next parameters ax**? that maximizes Q(®|0Y) is solution of the equation formed by setting
the first-order partial derivative of Lagrange function regarding ox and 2 to be zero with suppose
that the Lagrange function is first-order smooth function.
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dla(e,2|0®)

aak
N K K
z z P(k|v;, 8©)log(ay) + 1 <1 — z ak> =0
aak
i=1 k=1 k=1
o z—P(k|Yl,®(t)) 1=0
Th|s |mpI|es
N
Z P(k|Y, 0©) — a1 = 0 (5.1.12)

=1
Summing equation 5.1.12 over K classes {1, 2...., K}, we have (Bilmes, 1998, p. 5):

Zzp(kh/ o) — AZ =0
i=1k=
K K
<due to ZP(k|Yi,(E)(t)) = 1and Z ay = 1)
=1

SN-1=0
k=1

= A=N
Substituting 2 = N into equation 5.1.12, the next parameters ax™? is totally determined by

equation 5.1.13.
N

1
alt = NZP(km@(ﬂ) (5.1.13)

Note, the conditional probability P(k | Yi, ®(0) is determined by equation 5.1.10.

When parameters ox®*Y) and A are determined, the Lagrange function la(®, A | ®9) is now
function of parameters 6k as la(6«6®). The next parameters 6™V is solution of the equation
formed by setting the first-order partial derivative of Lagrange function regarding 6k to be zero
with suppose that the Lagrange function is first-order smooth function.
dla(0,1|0W)

06, B

N K
d
e E(Z P(k|Y, ®<f>)log(fk(n|9k))> =0

i=1 k=
& z P(k|;, 8®) 010g(fk (; |9k))

Thus the next parameters (9k(t+1) is solution of the equation 5.1.14.
N

S p(|v, 6©) "’“g({;;“”k” ~0 (5.114)
k

[y

i=1

The two steps of GEM algorithm for constructing mixture model at some t" iteration are shown
in table 5.1.1. Note, suppose the Lagrange function is first-order smooth function.
E-step:
The conditional probability P(k | Yi, ®) is calculated based on current parameter @© =
(19, a2¥,..., ak®, 610, 6,9...., 6«M)T, according to equation 5.1.10.
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FR )
<1 az(t)fl(yi|91(t))
M-step:

The next parameter @D = (ay ™D, gD ™D, 9, 9,0 oI which is a
maximizer of Q(® | ®Y) with subject to ©, is calculated by equation 5.1.13 and equation
5.1.14. Note, 6V s solution of the equation 5.1.14.

N

1
al(ct+1) — ﬁz P(klyi» @(t))

i=1
N dlog (fk AL )

GIEHD:zP(k'Yi'@(t)) ggll k ) -0

i=1

Table 5.1.1. E-step and M-step of GEM algorithm for constructing mixture model regarding
first-order smooth Lagrange function
GEM algorithm converges at some t™" iteration. At that time, ®" = @™V = @0 is the optimal
estimate of mixture model regarding first-order smooth Lagrange function.
Suppose that each PDF fi(Yi|6k) ) belongs to regular exponential family and then, solving

equation 5.1.4 is easier as follows:
N

Z P(k|Yi»@(t)) alog(j;e(yilek)) -0
k

n i (klr, 0©) %8 (p(r) expa(z,f t0)/a®)
i=1 k

(Due to fi(Yil6k) ) belongs to exponential family)

= > P(k|¥, 0) (x) ~ log'(a(8))) = 0

P(k|v;,0®) =

i=1

= > P(k|Y, 00)(2(r) — E@(1)I6) = 0

(Due to log’(a(6k)) = E(z(Y]6k)), please see table 1.2)
In general, the next parameters &% is solution of the equation 5.1.15 within regular

exponential family.
N

Z P(k|Y, 0©D)(z(Y) — E(x(Y)|6,)) = 0 (5.1.15)
i=1
Where Y is the random variable representing all Y; (s) and,

EG(V)|6,) = f WD fi(Y16)dY

Y
The two steps of GEM algorithm for constructing mixture model at some t" iteration are shown
in table 5.1.2 with suppose that each partial PDF fx(Y|6x) is assumed to belong regular
exponential family.
E-step:
The conditional probability P(k | Yi, ®) is calculated based on current parameter @© =
(1, a2¥,..., ak®, 610, 6,9...., 6«M)T, according to equation 5.1.10.
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L)
M-step:

The next parameter @D = (ay ™D, gD ™D, 9, 9,0 oI which is a
maximizer of Q(® | ®Y) with subject to ©, is calculated by equation 5.1.13 and equation

5.1.15. Note, 6V is solution of the equation 5.1.15.
N

1
a}(€t+1) Nz P(klyu @(t))

i=1

PRE ZP(k|Y C10) (T(Y) - (T(Y)|9(t+1))> =0

Table 5.1.1. E-step and M- step of GEM algorithm for constructing mixture model regarding
regular exponential family

GEM algorithm converges at some t" iteration. At that time, " = @Y = @0 is the optimal

estimate of mixture model regarding regular exponential family.

There is a special case that each fi(Yi|6k) is normal distribution, which is popular in domain
of mixture model, with note that normal distribution belongs to regular exponential family.
Thus, let Y be random variable representing all Y;. Without loss of generality, suppose Y is
vector so that each fk(Y|6k) is multivariate normal distribution. Recall that each fk(Y|6k) is called
the k™ partial PDF of Y or the k™" observational PDF of Y. In this case, the mixture model is
called normal mixture model (Gaussian mixture model) and it is easy to solve equation 5.1.14
or equation 5.1.15 for 6. Suppose random variable Y is vector of size n.

n 1
fi(Y16;) = (2n)7|zk|‘%exp (— S = ) I — uk)) (5.1.16)

Where ux and Zx are mean vector and covariance matrix of fx(Y|6k), respectively. The notation
|| denotes determinant of given matrix and the notation X« denotes inverse of matrix Z«. Note,
Yy is invertible and symmetric. Now we find other parameters 6t = (1™, V)T by solving
directly equation 5.1.14 or equation 5.1.15. Recall that each Yi conforms to multivariate normal
distribution, according to equation 5.1.16.

noo1 1 _
Fi18) = (212l Zexp (~ 5 0 — w5 O - o))
Where u and Xk are mean and covariance matrix of fi(Yi|6k), respectively. The Lagrange
function is re-written as follows:

P(k]Y, 0©) =

K

=01
AT

la(0,1|0®) = P(k|Y 0®)log(ay)

l

1
+ P(k|v;,0) (—Elog(ZT[) — E1og|zk|

1]
[
&

1]

i 1

; K
- E(Yi — ) (Y - /Jk)) +A<1 - Z ak)

k=1
Where p is the dimension of Yj; in other words, p is the dimension of space Y.
The first-order partial derivative of Lagrange function with respect to u« is (Nguyen, 2015,
p. 35):
dla(©,1|0®)

N
2= P(k[%, 09) (% — "2
Mk

i=1
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(Y, — )" (Y — )
O

The next parameter .9 that maximizes Q(0]|@Y) is solution of the equation formed by setting

the first-order partial derivative of Lagrange function with regard to ux to be 0T. Note that 0 =

(0, 0,..., 0)" is zero vector.

dla(0,2|0®)

O

& D P(k[%, 09) (% — "5 = 07

<due to = —=2(Y; — u)"2; when 2t is symmetric)

OT

e (Z P(k|y;, 0©)(Y; - uk)T> Yt =0"

N
= > P(k|¥, 0©) (¥, — )" = 0

=1

N
= Y P(k|¥, 09)(¥; - ) = 0
i=1

N N
o z P(k|v, 8©)Y; — (2 P(k|Y, e<t>)) te =0
i=1

=1

N N
o (7 Ple1100) = ) Peefr o)

i=1 i=1
This implies equation 5.1.17 to specify the next parameter (V.

e+1) _ 2iea P(K]Y, 09,
te R P(k]Y, 00)
Note, the conditional probability P(k | Yi, ®©) is determined by equation 5.1.10.
The first-order partial derivative of Lagrange function with respect to X is:

01a(0,2]0®) < 1 )
% = > P(%,09) (=55 + 530 = m) (¥ = i) "i)
i=1

Due to:

(5.1.17)

0log(I%c) _ .,
0% k
And
oY, — ) TSN — ) atr((Yi —w) (Y — uk)TZzZl)
E) B 9z,
Because Bilmes (Bilmes, 1998, p. 5) mentioned:
(Y — )" E MY — ) = (Y — ) (% — )5
Where tr(A) is trace operator which takes sum of diagonal elements of matrix tr(4) = Y; a;;.
This implies (Nguyen, 2015, p. 45):
O(Y; — w)TEM Y — ) atr((Yi — w) (Y — )2 1)
Eh B 0%

= =20 — ) (Y — )T
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Where Xk is symmetric and invertible matrix. Substituting the next parameter % specified
by equation 5.1.16 into the first-order partial derivative of Lagrange function with respect to
Yk, We have:

N
1
= (0N - (t+1) (t+1)
3%, = P(k|Yl,®t)( ! +5 %k (Y T )(Y e )zkl)

i=
The next parameter Zk(“” that maximizes Q(®|®Y) is the solution of equation formed by setting
the first-order partial derivative of Lagrange function regarding X« to zero matrix. Let (0)
denote zero matrix.

(0) = . . .
We have:
0la(0,2|0®) ©
azk B

@ZP(HYL,@(”) (——zk +;zk (v — ) (v, - u(”“) )—(0)

l

ﬁEP (k|Yu@(t))< ze+ (Y= 1) (¥ — ) )
N
@Zp(kw o0 (1)) )= (3, w))) _©
N N 1
s <z P(k|yl.'@(t))> ES Ep(km@(t)) <(Y ,u(tﬂ))(Y 'u(t+1)) )
This lirznlplies equation 5.1.18 to 1specify the next parameter X, "9,
N _P(kly, e® < (t+1) Y, — (t+1) )
g _ (el @) (1 — ™) (%~ ™) (5.1.18)
Y =

¥ P(k]Y, 00)
Note, the conditional probability P(k | Yi, ®Y) is determined by equation 5.1.10 and the next
parameter .Y is specified by equation 5.1.17.

As a result, the solution &Y = (™Y, )T of equation 5.1.14 or equation 5.1.15 is
specified by equation 5.1.17 and equation 5.1.18 when each fk(Y|6k) is multivariate normal
distribution within normal mixture model. The two steps of GEM algorithm for constructing
normal mixture model at some t" iteration are refined in table 5.1.3 (Bilmes, 1998, p. 7).

E-step:
The conditional probability P(k | Yi, ®V) is calculated based on current parameter @® =
(a1, a29,..., ak®, 610, 0,9, ... 6«®)T, according to equation 5.1.10. Note, in normal
mixture model, each observational PDF fi(Y|6k) is (multivariate) normal distribution with
mean vector ux and covariance matrix X such that 6« = (ux, Z)".

a(t) fk(Y' glgt))
{{1 l(t)fl( i|91(t))

P(k|v;, 0®) =

M-step:
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The next parameter @Y = (ay ™D, oD oD, 9,0 9,00 oI which is a
maximizer of Q(® | ®Y) with subject to @, is calculated by equation 5.1.13, equation
5.1.17, and equation 5.1.18 with current parameter ©®,

N

1
al(ct+1) — ﬁz P(klyi» @(t))

i=1
(t+1) _ N P(k|v;, 0®)y;
e I, P(k[v, 00)

§V=1P(k|yi'®(t)) ((Yz _ IJI((HD)(Yi _ 'u’((t+1))T>

L, P(k|v, 0©)

Table 5.1.3. E-step and M-step of GEM algorithm for constructing normal mixture model
GEM algorithm converges at some t™" iteration. At that time, ®" = @Y = @0 is the optimal
estimate of normal mixture model.

Z,((Hl) —

6. Discussions

The convergence of GEM is based on the assumption that Q(®’ | ®) is smooth enough but Q(®’
| ®) may not be smooth in practice when f(X | ®) may be discrete probability function. For
example, when f(X | ®) and k(X | Y, ®) are discrete, equation 2.8 becomes

0(e'10) = E(log(f(x1eN)[v,0) = > k(X|Y,®)log(f(X]6")
1Y)
This discussion section goes beyond traditional variants of GEM algorithm when Q(®’ | ®) is
not smooth. Therefore, heuristic optimization methods which simulate social behavior, such as
particle swarm optimization (PSO) algorithm (Poli, Kennedy, & Blackwell, 2007) and artificial
bee colony (ABC) algorithm, are useful in case that there is no requirement of existence of
derivative. Moreover, these heuristic methods aim to find global optimizer. | propose an
association of GEM and PSO which produces a so-called quasi-PSO-GEM algorithm in which
M-step is implemented by one-time PSO (Wikipedia, Particle swarm optimization, 2017).
Given current t iteration, ®© is modeled as swarm’s best position. Suppose there are n
particles and each particle i has current velocity Vi, current positions Wi, and best position
@, At each iteration, it is expected that these particles move to swarm’s new best position
which is the next parameter @Y. The swarm’s best position at the final iteration is expected
as ®”. Table 6.2 is the proposal of quasi-PSO-GEM algorithm.
E-step:
As usual, Q(® | ®9) is determined based on current ®© according to equation 2.8.
Actually, Q(® | ®0) is formulated as function of @.
M-step includes four sub-steps:
1. Calculating the next velocity Vi*? of each particle based on its current velocity Vi®,
its current positions i, its best positions @i, and the swarm’s best position @:
VI = 0V +r¢y (0 — () + 1,00 — w{) (6.1)
Where w, ¢1, and ¢ are particular parameters of PSO (Poli, Kennedy, & Blackwell,
2007, pp. 3-4) whereas r is a random number such that 0 <r < 1 (Wikipedia, Particle
swarm optimization, 2017).
2. Calculating the next position ¥;**V) of each particle based on its current position ¥;®
and its current velocity Vi®:

(t+1) _ p® ()
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3. If Q(@i® | @) < Q(¥i™Y | ®) then, the next best position of each particle i is re-
assigned as @i = {*1), Otherwise, such next best position is kept intact as @;*V

= q)i(t).
4. The next parameter @Y is the swarm’s new best position over the best positions of
all particles:
o rgmao(ol o) o6 o). 0(010)) i3

o®
If the bias @Y — @) is small enough, the algorithm stops. Otherwise, ®*% and all
Vit i) i) pecome current parameters in the next iteration.
Table 6.1. E-step and M-step of the proposed quasi-PSO-GEM
At the first iteration, each particle is initialized with ¥ = ®;¥) = @ and uniformly distributed
velocity Vi®. Note, ®® is initialized arbitrarily. Other termination criteria can be used, for
example, Q(® | ®Y) is large enough or the number of iterations is large enough.

We cannot prove mathematically convergence of quasi-PSO-GEM but we expect that @2
resulted from equation 6.3 is an approximation of ®" at the last iteration after a large enough
number of iterations. However, quasi-PSO-GEM tendentiously approaches global maximizer
of L(®), regardless of whether L(®) is concave. Hence, it is necessary to make experiment on
quasi-PSO-GEM.

There are many other researches which combine EM and PSO but the proposed quasi-PSO-
GEM algorithm has different ideology when it one-time PSO is embed into M-step to maximize
Q(® | ®Y) and so the ideology of quasi-PSO-GEM is near to the ideology of Newton-Raphson
process. With different viewpoint, some other researches combine EM and PSO in order to
solving better a particular problem instead of improving EM itself. For example, Ari and Aksoy
(Ari & Aksoy, 2010) used PSO to solve optimization problem of the clustering algorithm based
on mixture model and EM. Rajeswari and Gunasundari (Rajeswari & Gunasundari, 2016)
proposed EM for PSO based weighted clustering. Zhang, Zhuang, Gao, Luo, Ran, and Du
(Zhang, et al., 2014) proposed a so-called PSO-EM algorithm to make optimum use of PSO in
partial E-step in order solve the difficulty of integrals in normal compositional model.
Golubovic, Olcan, and Kolundzija (Golubovic, Olcan, & Kolundzija, 2007) proposed a few
modifications of the PSO algorithm which are applied to EM optimization of a broadside
antenna array. Tang, Song, and Liu (Tang, Song, & Liu, 2014) proposed a hybrid clustering
method based on improved PSO and EM clustering algorithm to overcome drawbacks of EM
clustering algorithm. Tran, Vo, and Lee (Tran, Vo, & Lee, 2013) proposed a novel clustering
algorithm for image segmentation by employing the arbitrary covariance matrices that uses
PSO for the estimation of Gaussian mixture models.

References

Ari, C., & Aksoy, S. (2010). Maximum Likelihood Estimation of Gaussian Mixture Models
Using Particle Swarm Optimization. The 20th International Conference on Pattern
Recognition (ICPR 2010) (pp. 746-749). Istanbul: IEEE. Retrieved February 21, 2018,
from www.cs.bilkent.edu.tr/~saksoy/papers/icprl0_clustering.pdf

Bilmes, J. A. (1998). A Gentle Tutorial of the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models. International Computer
Science Institute, Department of Electrical Engineering and Computer Science.
Berkeley: University of Washington. Retrieved from
http://melodi.ee.washington.edu/people/bilmes/mypubs/bilmes1997-em.pdf

Borman, S. (2004). The Expectation Maximization Algorithm - A short tutorial. University of
Notre Dame, Department of Electrical Engineering. South Bend, Indiana: Sean
Borman's Home Page.

78


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

Burden, R. L., & Faires, D. J. (2011). Numerical Analysis (9th Edition ed.). (M. Julet, Ed.)
Brooks/Cole Cengage Learning.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete
Data via the EM Algorithm. (M. Stone, Ed.) Journal of the Royal Statistical Society,
Series B (Methodological), 39(1), 1-38.

Dinh, L. T., Pham, D. H., Nguyen, T. X., & Ta, P. D. (2000). Univariate Analysis - Principles
and Practices. (K. H. Ha, T. V. Ngo, & D. H. Pham, Eds.) Hanoi, Vietnam: Hanoi
National University Publisher. Retrieved from
http://www.ebook.edu.vn/?page=1.14&view=11156

Golubovic, R. M., Olcan, D. I., & Kolundzija, B. M. (2007). Particle Swarm Optimization
Algorithm and Its Modifications Applied to EM Problems. In B. D. Milovanovi¢ (Ed.),
The 8th International Conference on Telecommunications in Modern Satellite, Cable
and Broadcasting Services (ELSIKS 2007) (pp. 427-430). Nis, Serbia: IEEE.
doi:10.1109/TELSKS.2007.4376029

Guo, X., Li, Q.-y., & Xu, W.-l. (2017, February). Acceleration of the EM Algorithm Using the
Vector Aitken Method and Its Steffensen Form. Acta Mathematicae Applicatae Sinica,
33(1), 175-182. doi:10.1007/s10255-017-0648-3

Hardle, W., & Simar, L. (2013). Applied Multivariate Statistical Analysis. Berlin, Germany:
Research Data Center, School of Business and Economics, Humboldt University.

Jebara, T. (2015). The Exponential Family of Distributions. Columbia University, Computer
Science Department. New York: Columbia Machine Learning Lab. Retrieved April 27,
2016, from http://www.cs.columbia.edu/~jebara/4771/tutorials/lecture12.pdf

Jia, Y.-B. (2013). Lagrange Multipliers. Lecture notes on course “Problem Solving Techniques
for Applied Computer Science”, lowa State University of Science and Technology,
USA.

Lambers, J. (2009). Accelerating Convergence. University of Southern Mississippi,
Department of Mathematics. Hattiesburg: University of Southern Mississippi.
Retrieved February 15, 2018, from
http://www.math.usm.edu/lambers/mat460/fall09/lecture13.pdf

Lansky, D., & Casella, G. (1992). Improving the EM Algorithm. Computing Science and
Statistics, 420-424. doi:10.1007/978-1-4612-2856-1_67

McLachlan, G., & Krishnan, T. (1997). The EM Algorithm and Extensions. New York, NY,
USA: John Wiley & Sons. Retrieved from
https://books.google.com.vn/books?id=NBawzaWoWa8C

Meng, X.-L., & Rubin, D. B. (1993, June 1). Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80(2), 267-278. doi:10.2307/2337198

Montgomery, D. C., & Runger, G. C. (2003). Applied Statistics and Probability for Engineers
(3rd Edition ed.). New York, NY, USA: John Wiley & Sons, Inc.

Nguyen, L. (2015). Matrix Analysis and Calculus (1st ed.). (C. Evans, Ed.) Hanoi, Vietnam:

Lambert Academic Publishing. Retrieved from
https://www.shuyuan.sg/store/gb/book/matrix-analysis-and-calculus/isbn/978-3-659-
69400-4

Poli, R., Kennedy, J., & Blackwell, T. (2007, June). Particle swarm optimization. (M. Dorigo,
Ed.) Swarm Intelligence, 1(1), 33-57. doi:10.1007/s11721-007-0002-0

Rai, S. N., & Matthews, D. E. (1993, June). Improving the EM Algorithm. (C. A. McGilchrist,
Ed.) Biometrics, 49(2), 587-591. doi:10.2307/2532570

Rajeswari, J., & Gunasundari, R. (2016, December). EMPWC: Expectation Maximization with
Particle Swarm Optimization based Weighted Clustering for Outlier Detection in Large
Scale Data. (C.-H. Lien, & T.-L. Liao, Eds.) International Journal of Control Theory
and Applications (IJCTA), 9(36), 517-531. Retrieved February 21, 2018, from

79


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

http://serialsjournals.com/articlesview.php?volumesno_id=1131&article_id=14367&v
olumes_id=848&journals_id=268

Rao, R. C. (1955, June). Estimation and tests of significance in factor analysis. Psychometrika,
20(2), 93-111. d0i:10.1007/BF02288983

Rosen, K. H. (2012). Discrete Mathematics and Its Applications (7nd Edition ed.). (M. Lange,
Ed.) McGraw-Hill Companies.

Sean, B. (2009). The Expectation Maximization Algorithm - A short tutorial. University of
Notre Dame, Indiana, Department of Electrical Engineering. Sean Borman's Homepage.

StackExchange. (2013, November 19). Eigenvalues of the product of 2 symmetric matrices.
(Stack Exchange Network) Retrieved February 9, 2018, from Mathematics
StackExchange:  https://math.stackexchange.com/questions/573583/eigenvalues-of-
the-product-of-2-symmetric-matrices

Ta, P. D. (2014). Numerical Analysis Lecture Notes. Vietnam Institute of Mathematics,
Numerical Analysis and Scientific Computing. Hanoi: Vietnam Institute of
Mathematics. Retrieved 2014

Tang, Z., Song, Y.-Q., & Liu, Z. (2014). Medical Image Clustering Based on Improved Particle
Swarm Optimization and Expectation Maximization Algorithm. The 6th Chinese
Conference on Pattern Recognition (CCPR 2014). Il, pp. 360-371. Changsha, China:
Springer. doi:10.1007/978-3-662-45643-9_38

Tran, A-K,, Vo, Q.-N., & Lee, G. (2013). Maximum Likelihood Estimation of Gaussian
Mixture Models Using PSO for Image Segmentation. In J. Chen, A. Cuzzocrea, & L.
T. Yang (Ed.), The 2013 IEEE 16th International Conference on Computational
Science and Engineering (CSE 2013) (pp. 501-507). Sydney, NSW, Australia: IEEE.
doi:10.1109/CSE.2013.81

Wikipedia. (2014, August 4). Karush—Kuhn-Tucker conditions. (Wikimedia Foundation)
Retrieved November 16, 2014, from Wikipedia website:
http://en.wikipedia.org/wiki/Karush—Kuhn-Tucker_conditions

Wikipedia. (2014, October 10). Set (mathematics). (A. Rubin, Editor, & Wikimedia Foundation)
Retrieved October 11, 2014, from Wikipedia website:
http://en.wikipedia.org/wiki/Set_(mathematics)

Wikipedia. (2016, March September). Exponential family. (Wikimedia Foundation) Retrieved
2015, from Wikipedia website: https://en.wikipedia.org/wiki/Exponential_family

Wikipedia. (2017, May 25). Aitken's delta-squared process. (Wikimedia Foundation)
Retrieved February 15, 2018, from Wikipedia website:
https://en.wikipedia.org/wiki/Aitken%?27s_delta-squared_process

Wikipedia. (2017, February 27). Commuting matrices. (Wikimedia Foundation) Retrieved
February 9, 2018, from Wikipedia website:
https://en.wikipedia.org/wiki/Commuting_matrices

Wikipedia. (2017, November 27). Diagonalizable matrix. (Wikimedia Foundation) Retrieved
February 10, 2018, from Wikipedia website:
https://en.wikipedia.org/wiki/Diagonalizable _matrix#Simultaneous_diagonalization

Wikipedia. (2017, March 2). Maximum a posteriori estimation. (Wikimedia Foundation)
Retrieved April 15, 2017, from Wikipedia website:
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation

Wikipedia. (2017, March 7). Particle swarm optimization. (Wikimedia Foundation) Retrieved
April 8, 2017, from Wikipedia website:
https://en.wikipedia.org/wiki/Particle_swarm_optimization

Wikipedia. (2017, May 8). Wolfe conditions. (Wikimedia Foundation) Retrieved February 20,
2018, from Wikipedia website: https://en.wikipedia.org/wiki/Wolfe_conditions

80


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

Wikipedia. (2018, January 15). Conjugate prior. (Wikimedia Foundation) Retrieved February
15, 2018, from Wikipedia website: https://en.wikipedia.org/wiki/Conjugate_prior

Wikipedia. (2018, January 28). Gradient descent. (Wikimedia Foundation) Retrieved February
20, 2018, from Wikipedia website: https://en.wikipedia.org/wiki/Gradient_descent

Wikipedia. (2018, February 17). Lipschitz continuity. (Wikimedia Foundation) Retrieved
February 20, 2018, from Wikipedia website:
https://en.wikipedia.org/wiki/Lipschitz_continuity

Wikipedia. (2018, January 7). Symmetry of second derivatives. (Wikimedia Foundation)
Retrieved February 10, 2018, from Wikipedia website:
https://en.wikipedia.org/wiki/Symmetry_of _second_derivatives

Wu, J. C. (1983, March). On the Convergence Properties of the EM Algorithm. The Annals of
Statistics, 11(2), 95-103. Retrieved from
https://projecteuclid.org/euclid.aos/1176346060

Zhang, B., Zhuang, L., Gao, L., Luo, W., Ran, Q., & Du, Q. (2014, May 14). PSO-EM: A
Hyperspectral Unmixing Algorithm Based On Normal Compositional Model. (A. Plaza,
Ed.) IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7782 - 7792.
doi:10.1109/TGRS.2014.2319337

Zivot, E. (2009). Maximum Likelihood Estimation. Lecture Notes on course "Econometric
Theory I: Estimation and Inference (first quarter, second year PhD)", University of
Washington, Seattle, Washington, USA.

81


https://doi.org/10.20944/preprints201802.0131.v5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2020 doi:10.20944/preprints201802.0131.v5

Contents
AADSTIACT ...ttt bbb e s 1
IO 101 (oo [FTox [ o OSSPSR USRS 1
2. EM AlQOTTtNM ... e 35
3. Convergence of EM algorithm..........ccooouiiiiiiiic e 46
4. Variants of EM algorithim ..........cooiiiiiiiiie e 60
4.1. EM algorithm with prior probability............cccoeoeiiiiiiiiiiee e 61
4.2. EM algorithm with Newton-Raphson method.............ccccccoieiiiii i 62
4.3. EM algorithm with Aitken acceleration............ccoeoeiiiiiiiieicce e 67
4.4, ECM @lgOITTNM ..o 69
5. APPLICALIONS OF EM ......oiiiiiiiiccc et nne e 70
5.1. Mixture model anNd EM .........cccvoiiiiiieece et 70
T I S0t 0T L] OSSR 77
R EIENICES ...ttt bbbt bbb b bttt 78

82


https://doi.org/10.20944/preprints201802.0131.v5

