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Abstract 
Maximum likelihood estimation (MLE) is a popular method for parameter estimation in both 

applied probability and statistics but MLE cannot solve the problem of incomplete data or 

hidden data because it is impossible to maximize likelihood function from hidden data. 

Expectation maximum (EM) algorithm is a powerful mathematical tool for solving this 

problem if there is a relationship between hidden data and observed data. Such hinting 

relationship is specified by a mapping from hidden data to observed data or by a joint 

probability between hidden data and observed data. In other words, the relationship helps us 

know hidden data by surveying observed data. The essential ideology of EM is to maximize 

the expectation of likelihood function over observed data based on the hinting relationship 

instead of maximizing directly the likelihood function of hidden data. Pioneers in EM 

algorithm proved its convergence. As a result, EM algorithm produces parameter estimators as 

well as MLE does. This tutorial aims to provide explanations of EM algorithm in order to help 

researchers comprehend it. Moreover some improvements of EM algorithm are also proposed 

in the tutorial such as combination of EM and third-order convergence Newton-Raphson 

process, combination of EM and gradient descent method, and combination of EM and particle 

swarm optimization (PSO) algorithm. 

Keywords: expectation maximization, EM, generalized expectation maximization, GEM, EM 

convergence. 

 

1. Introduction 
Literature of expectation maximization (EM) algorithm in this tutorial is mainly extracted from 

the preeminent article “Maximum Likelihood from Incomplete Data via the EM Algorithm” 

by Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin (Dempster, Laird, & Rubin, 1977). 

For convenience, let DLR be reference to such three authors. 

We begin a review of EM algorithm with some basic concepts. Before discussing main 

subjects, there are some conventions. For example, if there is no additional explanation, random 

variables are denoted as uppercase letters such as X, Y, and Z. Bold and uppercase letters such 

as X and R denotes algebraic structures such as spaces and fields. By default, vectors are 

column vectors. For example, given two vectors X and Y and two matrices A and B: 

𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑟

) 𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑟

)

𝐴 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) 𝐵 = (

𝑏11 𝑏12 ⋯ 𝑏1𝑘
𝑏21 𝑏22 ⋯ 𝑏2𝑘
⋮ ⋮ ⋱ ⋮
𝑏𝑛1 𝑏𝑛2 ⋯ 𝑎𝑛𝑘

)

 

Matrix A is squared if m = n. Matrix Λ is diagonal if it is squared and its elements outside the 

main diagonal are zero: 
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Λ = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑟

) 

Let I be identity matrix or unit matrix, as follows: 

𝐼 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 

Let superscript “T” denote transposition operation for vector and matrix, as follows: 

𝑋𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑟)

𝐴𝑇 = (

𝑎11 𝑎21 ⋯ 𝑎𝑟1
𝑎12 𝑎22 ⋯ 𝑎𝑟2
⋮ ⋮ ⋱ ⋮
𝑎1𝑝 𝑎2𝑝 ⋯ 𝑎𝑟𝑝

)
 

Dot product or scalar product of two vectors can be written with transposition operation, as 

follows: 

𝑋𝑇𝑌 =∑𝑥𝑖𝑦𝑖

𝑟

𝑖=1

 

However, the product XYT results out a matrix as follows: 

𝑋𝑌𝑇 = (

𝑥1𝑦1 𝑥1𝑦2 ⋯ 𝑥1𝑦𝑟
𝑥2𝑦1 𝑥2𝑦2 ⋯ 𝑥2𝑦𝑟
⋮ ⋮ ⋱ ⋮

𝑥𝑟𝑦1 𝑥𝑟𝑦2 ⋯ 𝑥𝑟𝑦𝑟

) 

The length of module of vector X in Euclidean space is: 

|𝑋| = √𝑋𝑇𝑋 = √∑𝑥𝑖
2

𝑟

𝑖=1

 

The product of two matrices is: 

𝐴𝐵 = 𝐶 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑘
𝑎21 𝑎22 ⋯ 𝑎2𝑘
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑘

)

𝑐𝑖𝑗 =∑𝑎𝑖𝑣𝑏𝑣𝑗

𝑛

𝑣=1

 

Matrix A is symmetric if aij = aji for all i and j. If A is symmetric then, AT = A. If both A and B 

are symmetric then, they are commutative such that AB = BA. 

Suppose f(X) is scalar-by-vector function, for example, f: Rr → R where Rr is r-dimensional 

real vector space. The first-order derivative of f(X) is gradient vector as follows: 

𝑓′(𝑋) = ∇𝑓(𝑋) =
d𝑓(𝑋)

d𝑋
= 𝐷𝑓(𝑋) = (

𝜕𝑓(𝑋)

𝜕𝑥1
,
𝜕𝑓(𝑋)

𝜕𝑥2
, … ,

𝜕𝑓(𝑋)

𝜕𝑥𝑟
) 

Where 
𝜕𝑓(𝑋)

𝜕𝑥𝑖
 is partial derivative of f with regard to xi. So gradient vector is row vector. The 

second-order derivative of f(X) is called Hessian matrix as follows: 
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𝑓′′(𝑋) =
d2𝑓(𝑋)

d𝑋2
= 𝐷2𝑓(𝑋) =

(

 
 
 
 
 

𝜕2𝑓(𝑋)

𝜕𝑥1
2

𝜕2𝑓(𝑋)

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓(𝑋)

𝜕𝑥1𝜕𝑥𝑟
𝜕2𝑓(𝑋)

𝜕𝑥2𝜕𝑥1

𝜕2𝑓(𝑋)

𝜕𝑥2
2 ⋯

𝜕2𝑓(𝑋)

𝜕𝑥2𝜕𝑥𝑟
⋮ ⋮ ⋱ ⋮

𝜕2𝑓(𝑋)

𝜕𝑥𝑟𝜕𝑥1

𝜕2𝑓(𝑋)

𝜕𝑥𝑟𝜕𝑥2
⋯

𝜕2𝑓(𝑋)

𝜕𝑥𝑟2 )

 
 
 
 
 

 

Hessian matrix is squared matrix. Function f(X) is called nth-order analytic function or nth-order 

smooth function if there is existence and continuity of kth-order derivatives of f(X) where k = 1, 

2,…, n. Function f(X) is called smooth enough function if n is large enough. According to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), if f(X) is second-order 

smooth function then, its Hessian matrix is symmetric. 

Now we skim through an introduction of EM algorithm. Suppose there are two samples X 

and Y, in which X is hidden space (missing space) whereas Y is observed space. We do not 

know X but there is a mapping from X to Y so that we can survey X by observing Y. The 

mapping is many-one function φ: X → Y and we denote X(Y) as all 𝑋 ∈ 𝑿 such that φ(X) = Y. 

So we have X(Y) = {X: φ(X) = Y}. Let f(X | Θ) be probability density function of random 

variable 𝑋 ∈ 𝑿 and let g(Y | Θ) be probability density function of random variable 𝑌 ∈ 𝒀. Note, 

Y is also called observation. Equation 1.1 specifies g(Y | Θ) as integral of f(X | Θ) over X(Y). 

𝑔(𝑌|Θ) = ∫ 𝑓(𝑋|Θ)d𝑋

𝑿(𝑌)

 (1.1) 

Where Θ is probabilistic parameter represented as a column vector, Θ = (θ1, θ2,…, θr)
T in which 

each θi is a particular parameter. For example, normal distribution has two particular 

parameters such as mean μ and variance σ2 and so we have Θ = (μ, σ2)T. Note that, Θ can 

degrades into a scalar as Θ = θ. The conditional probability density function of X given Y, 

denoted k(X | Y, Θ), is specified by equation 1.2. 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 (1.2) 

DLR (Dempster, Laird, & Rubin, 1977, p. 1) considered X as complete data and Y as 

incomplete data because the mapping φ: X → Y is many-one function. In general, we only 

know Y, f(X | Θ), and k(X | Y, Θ) and so our purpose is to estimate Θ based on such Y, f(X | Θ), 

and k(X | Y, Θ). Pioneers in EM algorithm firstly assumed that f(X | Θ) belongs to exponential 

family with note that many popular distributions such as normal, multinomial, and Poisson 

belong to exponential family. Although DLR (Dempster, Laird, & Rubin, 1977) proposed a 

generality of EM algorithm in which f(X | Θ) distributes arbitrarily, we should concern 

exponential family a little bit. Exponential family (Wikipedia, Exponential family, 2016) refers 

to a set of probabilistic distributions whose density functions have the same exponential form 

according to equation 1.3 (Dempster, Laird, & Rubin, 1977, p. 3): 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  (1.3) 

Where b(X) is a function of X, which is called base measure and τ(X) is a vector function of X, 

which is sufficient statistic. Equation 1.3 expresses the canonical form of exponential family. 

Let Ω be the convex set such that Θ ∈ Ω. If Θ is restricted only to Ω then, f(X | Θ) specifies a 

regular exponential family. If Θ lies in a curved sub-manifold of Ω then, f(X | Θ) specifies a 

curved exponential family. The a(Θ) is partition function for variable X, which is used for 

normalization. 

𝑎(Θ) = ∫𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑋
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The first-order derivative of log(a(Θ)) is expectation of τ(X). 

log′(𝑎(Θ)) =
𝑎′(Θ)

𝑎(Θ)
=
dlog(𝑎(Θ))

dΘ
=
d𝑎(Θ) dΘ⁄

𝑎(Θ)
=

1

𝑎(Θ)

d(∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝑋

)

dΘ

=
1

𝑎(Θ)
∫
d (𝑏(𝑋)exp(Θ𝑇𝜏(𝑋)))

dΘ
d𝑋

𝑋

= ∫𝜏(𝑋)𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑋

= 𝐸(𝜏(𝑋)|Θ) 
The second-order derivative of log(a(Θ)) is (Jebara, 2015): 

log′′(𝑎(Θ)) =
d

dΘ
(
𝑎′(Θ)

𝑎(Θ)
) =

𝑎′′(Θ)

𝑎(Θ)
−
𝑎′(Θ)

𝑎(Θ)

(𝑎′(Θ))
𝑇

𝑎(Θ)

=
𝑎′′(Θ)

𝑎(Θ)
− (𝐸(𝜏(𝑋)|Θ))(𝐸(𝜏(𝑋)|Θ))

𝑇
 

Where, 

𝑎′′(Θ)

𝑎(Θ)
=

1

𝑎(Θ)
∫
d2 (𝑏(𝑋)exp(Θ𝑇𝜏(𝑋)))

dΘ
d𝑋

𝑋

= ∫(𝜏(𝑋))(𝜏(𝑋))
𝑇
𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑋

= 𝐸 ((𝜏(𝑋))(𝜏(𝑋))
𝑇
|Θ) 

Hence (Hardle & Simar, 2013, pp. 125-126), 

log′′(𝑎(Θ)) = 𝐸 ((𝜏(𝑋))(𝜏(𝑋))
𝑇
|Θ) − (𝐸(𝜏(𝑋)|Θ))(𝐸(𝜏(𝑋)|Θ))

𝑇
= 𝑉(𝜏(𝑋)|Θ)

= ∫(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ))
𝑇
𝑓(𝑋|Θ)d𝑋

𝑋

 

Where V(τ(X) | Θ) is central covariance matrix of τ(X). Please read the book “Matrix Analysis 

and Calculus” by Nguyen (Nguyen, 2015) for comprehending derivative of vector and matrix. 

Let a(Θ | Y) be a so-called observed partition function for observation Y. 

𝑎(Θ|𝑌) = ∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑿(𝑌)

 

Similarly, we obtain that the first-order derivative of log(a(θ | Y)) is expectation of τ(X) based 

on Y. 

log′(𝑎(Θ|𝑌)) =
1

𝑎(Θ)

d (∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝑿(𝑌)

)

dΘ
= 𝐸(𝜏(𝑋)|𝑌, Θ) 

If f(X | Θ) follows exponential family, the conditional density k(X | Y, Θ) is determined as 

follows: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 

If f(X | Θ) follows exponential family then, k(X | Y, Θ) also follows exponential family. In fact, 

we have: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
=

𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄

∫ 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋
𝑿(𝑌)

=
𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))

∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝑿(𝑌)

= 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

Note that k(X | Y, Θ) is determined on 𝑋 ∈ 𝑿(𝑌). Of course, we have: 

∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

= ∫
𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))

𝑎(Θ|𝑌)
d𝑋

𝑿(𝑌)

=
∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋
𝑿(𝑌)

𝑎(Θ|𝑌)
=
𝑎(Θ|𝑌)

𝑎(Θ|𝑌)
= 1 
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The first-order derivative of log(a(Θ | Y)) is: 

log′(𝑎(Θ|𝑌)) = 𝐸(𝜏(𝑋)|𝑌, Θ) = ∫𝜏(𝑋)𝑘(𝑋|𝑌, Θ)d𝑋

𝑋

 

The second-order derivative of log(a(Θ) | Y) is: 

log′′(𝑎(Θ|𝑌)) = 𝑉(𝜏(𝑋)|𝑌, Θ)

= ∫(𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))(𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ))
𝑇
𝑘(𝑋|𝑌, Θ)d𝑋

𝑋

 

Where V(τ(X) | Y, Θ) is central covariance matrix of τ(X) given observed Y. Table 1.1 is 

summary of f(X | Θ), g(Y | Θ), k(X | Y, Θ), a(Θ), log’(a(Θ)), a(Θ | Y), and log’(a(Θ | Y)) with 

exponential family. 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄

𝑔(𝑌|Θ) = ∫ 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ d𝑋

𝑿(𝑌)

𝑘(𝑋|𝑌, Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄

𝑎(Θ) = ∫𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑋

log′(𝑎(Θ)) = 𝐸(𝜏(𝑋)|Θ)

log′′(𝑎(Θ)) = 𝑉(𝜏(𝑋)|Θ)

𝑎(Θ|𝑌) = ∫ 𝑏(𝑋)exp(Θ𝑇𝜏(𝑋))d𝑋

𝑿(𝑌)

log′(𝑎(Θ|𝑌)) = 𝐸(𝜏(𝑋)|𝑌, Θ)

log′′(𝑎(Θ|𝑌)) = 𝑉(𝜏(𝑋)|𝑌, Θ)

∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

= 1

 

Table 1.1. Summary of f(X | Θ), g(Y | Θ), k(X | Y, Θ), a(Θ), log’(a(Θ)), a(Θ | Y), and log’(a(Θ | 

Y)) with exponential family. 

Simply, EM algorithm is iterative process including many iterations, in which each iteration 

has expectation step (E-step) and maximization step (M-step). E-step aims to estimate 

sufficient statistic given current parameter and observed data Y whereas M-step aims to re-

estimate the parameter based on such sufficient statistic by maximizing likelihood function of 

X. EM algorithm is described in the next section in detail. As an introduction, DLR gave an 

example for illustrating EM algorithm (Dempster, Laird, & Rubin, 1977, pp. 2-3). Rao (Rao, 

1955) presents observed data (incomplete data) Y of 197 animals following multinomial 

distribution with four categories, such as Y = (y1, y2, y3, y4) = (125, 18, 20, 34). The probability 

density function of Y is: 

𝑔(𝑌|𝜃) =
(∑ 𝑦𝑖

4
𝑖=1 )!

∏ 𝑦𝑖!
4
𝑖=1

∗ (
1

2
+
𝜃

4
)
𝑦1

∗ (
1

4
−
𝜃

4
)
𝑦2

∗ (
1

4
−
𝜃

4
)
𝑦3

∗ (
𝜃

4
)
𝑦4

 

Note, probabilities py1, py2, py3, and py4 in g(Y | θ) are 1/2 + θ/4, 1/4 – θ/4, 1/4 – θ/4, and θ/4, 

respectively as parameters. The expectation of any sufficient statistic yi with regard to g(Y | θ) 

is: 

𝐸(𝑦𝑖|𝑌, 𝜃) = 𝑦𝑖𝑝𝑦𝑖 
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Observed data (incomplete data) Y is associated with hidden data X following multinomial 

distribution with five categories, such as X = {x1, x2, x3, x4, x5} where y1 = x1 + x2, y2 = x3, y3 = 

x4, y4 = x5. The probability density function of X is: 

𝑓(𝑋|𝜃) =
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

∗ (
1

2
)
𝑥1

∗ (
𝜃

4
)
𝑥2

∗ (
1

4
−
𝜃

4
)
𝑥3

∗ (
1

4
−
𝜃

4
)
𝑥4

∗ (
𝜃

4
)
𝑥5

 

Note, probabilities px1, px2, px3, px4, and px5 in f(X | θ) are 1/2, θ/4, 1/4 – θ/4, 1/4 – θ/4, and θ/4, 

respectively as parameters. The expectation of any sufficient statistic xi with regard to f(X | θ) 

is: 

𝐸(𝑥𝑖|𝜃) = 𝑥𝑖𝑝𝑥𝑖 

Due to y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5, the mapping function φ between X and Y is y1 = 

φ(x1, x2) = x1 + x2. Therefore g(Y | θ) is sum of f(X | θ) over x1 and x2 such that x1 + x2 = y1 

according to equation 1.1. In other words, g(Y | θ) is resulted from summing f(X | θ) over all 

(x1, x2) pairs such as (0, 125), (1, 124),…, (125, 0) because of y1 = 125 from observed Y. 

𝑔(𝑌|𝜃) = ∑ ( ∑ 𝑓(𝑋|𝜃)

0

𝑥2=125−𝑥1

)

125

𝑥1=0

 

Rao (Rao, 1955) applied EM algorithm into determining the optimal estimate θ*. Note y2 = x3, 

y3 = x4, y4 = x5 are known and so only sufficient statistics x1 and x2 are not known. Given the tth 

iteration, sufficient statistics x1 and x2 are estimated as x1
(t) and x2

(t) based on current parameter 

θ(t) and g(Y | θ) in E-step below: 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝑦1
(𝑡) = 𝐸(𝑦1|𝑌, 𝜃

(𝑡)) 

Due to y1 = 125 from observed data and py1 = 1/2 + θ/4, which implies that: 

𝑥1
(𝑡) + 𝑥2

(𝑡) = 𝐸(𝑦1|𝑌, 𝜃
(𝑡)) = 𝑦1𝑝𝑦1 = 125 (

1

2
+
𝜃(𝑡)

4
) 

We select: 

𝑥1
(𝑡) = 125

1 2⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

𝑥2
(𝑡) = 125

𝜃(𝑡) 4⁄

1 2⁄ + 𝜃(𝑡) 4⁄
 

According to M-step, the next estimate θ(t+1) is a maximizer of the log-likelihood function of 

X. This log-likelihood function is: 

log(𝑓(𝑋|𝜃)) = log (
(∑ 𝑥𝑖

5
𝑖=1 )!

∏ (𝑥𝑖!)
5
𝑖=1

) − (𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 + 2𝑥5)log(2) + (𝑥2 + 𝑥5)log(𝜃)

+ (𝑥3 + 𝑥4)log(1 − 𝜃) 
The first-order derivative of log(f(X | θ) is: 

dlog(𝑓(𝑋|𝜃))

d𝜃
=
𝑥2 + 𝑥5
𝜃

−
𝑥3 + 𝑥4
1 − 𝜃

=
𝑥2 + 𝑥5 − (𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)𝜃

𝜃(1 − 𝜃)
 

Because y2 = x3 = 18, y3 = x4 = 20, y4 = x5 = 34 and x2 is approximated by x2
(t), we have: 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
 

As a maximizer of log(f(X | θ), the next estimate θ(t+1) is solution of the following equation 

𝜕log(𝑓(𝑋|𝜃))

𝜕𝜃
=
𝑥2
(𝑡) + 34 − (𝑥2

(𝑡) + 72)𝜃

𝜃(1 − 𝜃)
= 0 

So we have: 
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𝜃(𝑡+1) =
𝑥2
(𝑡) + 34

𝑥2
(𝑡) + 72

 

For example, given the initial θ(1) = 0.5, at the first iteration, we have: 

𝑥2
(1) = 125

𝜃(0) 4⁄

1 2⁄ + 𝜃(0) 4⁄
=
125 ∗ 0.5/4

0.5 + 0.5/4
= 25 

𝜃(2) =
𝑥2
(1) + 34

𝑥2
(1) + 72

=
25 + 34

25 + 72
= 0.6082 

After five iterations we gets the optimal estimate θ*: 

𝜃∗ = 𝜃(4) = 𝜃(5) = 0.6268 

Table 1.2 (Dempster, Laird, & Rubin, 1977, p. 3) lists estimates of θ over five iterations (t =1, 

2, 3, 4, 5) with note that θ(1) is initialized arbitrarily and θ* = θ(5) = θ(6) is determined at the 5th 

iteration. The third column gives deviation θ* and θ(t) whereas the fourth column gives the ratio 

of successive deviations. Later on, we will know that such ratio implies convergence rate. 

t θ(t) θ* – θ(t) 
(θ* – θ(t+1)) / 

(θ* – θ(t)) 

1 
θ(1) = 0.5 0.1268 0.1465 

θ(2) = 0.6082 0.0186 0.1346 

2 
θ(2) = 0.6082 0.0186 0.1346 

θ(3) = 0.6243 0.0025 0.1330 

3 
θ(3) = 0.6243 0.0025 0.1330 

θ(4) = 0.6265 0.0003 0.1328 

4 
θ(4) = 0.6265 0.0003 0.1328 

θ(5) = 0.6268 0 0.1328 

5 
θ(5) = 0.6268 0 0.1328 

θ(6) = 0.6268 0 0.1328 

Table 1.2. EM algorithm in simple case 

For example, at the first iteration, we have: 

𝜃∗ − 𝜃(1) = 0.6268 − 0.5 = 0.1268 

𝜃∗ − 𝜃(2)

𝜃∗ − 𝜃(1)
=
𝜃(2) − 𝜃∗

𝜃(1) − 𝜃∗
=
0.6082 − 0.6268

0.5 − 0.6268
= 0.1465 

 

2. EM algorithm 
Expectation maximization (EM) algorithm has many iterations and each iteration has two steps 

in which expectation step (E-step) calculates sufficient statistic of hidden data based on 

observed data and current parameter whereas maximization step (M-step) re-estimates 

parameter. When DLR proposed EM algorithm (Dempster, Laird, & Rubin, 1977), they firstly 

concerned that the probability density function f(X | Θ) of hidden space belongs to exponential 

family. E-step and M-step at the tth iteration are described in table 2.1 (Dempster, Laird, & 

Rubin, 1977, p. 4), in which the current estimate is Θ(t). 

E-step: 

We calculate current value τ(t) of the sufficient statistic τ(X) from observed Y and current 

parameter Θ(t) as follows: 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) 

M-step: 

Basing on τ(t), we determine the next parameter Θ(t+1) as solution of following equation: 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) 
Note, Θ(t+1) will become current parameter at the next iteration ((t+1)th iteration). 
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Table 2.1. E-step and M-step of EM algorithm 

EM algorithm stops if two successive estimates are equal, Θ* = Θ(t) = Θ(t+1), at some tth iteration. 

At that time we conclude that Θ* is the optimal estimate of EM process. Please see table 1.1 to 

know how to calculate E(τ(X) | Θ(t)) and E(τ(X) | Y, Θ(t)). 

It is necessary to explain E-step and M-step as well as convergence of EM algorithm. 

Essentially, the two steps aim to maximize log-likelihood function of Θ, denoted L(Θ), with 

respect to observation Y. 

Θ∗ = argmax
Θ

𝐿(Θ) 

Where, 

𝐿(Θ) = log(𝑔(𝑌|Θ)) 

Note that log(.) denotes logarithm function. Therefore, EM algorithm is an extension of 

maximum likelihood estimation (MLE) method. In fact, let l(Θ) be log-likelihood function of 

Θ with respect to variable X. 

𝑙(Θ) = log(𝑓(𝑌|Θ)) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄ = log(𝑋) + Θ𝑇𝜏(𝑋) − log(𝑎(Θ)) 
By referring to table 1.1, the first-order derivative of l(Θ) is: 

d𝑙(Θ)

dΘ
=
dlog(𝑓(𝑌|Θ))

dΘ
= 𝜏(𝑋) − log′(𝑎(Θ)) = 𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ) (2.1) 

Maximizing l(Θ) is to set the first-order derivative of l(Θ) to be zero. Therefore, the optimal 

estimate Θ* is solution of the following equation which is specified in M-step.  

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑋) 
The expression E(τ(X) | Θ) is function of Θ but τ(X) is still dependent on X. Let τ(t) be value of 

τ(X) at the tth iteration of EM process, candidate for the best estimate of Θ is solution of equation 

2.2 according to M-step. 

𝐸(𝜏(𝑋)|Θ) = 𝜏(𝑡) (2.2) 

Thus, we will calculate τ(t) by maximizing the log-likelihood function L(Θ) with respect to 

observation Y. Recall that maximizing L(Θ) is the ultimate purpose of EM algorithm. 

Θ∗ = argmax
Θ

𝐿(Θ) 

Where, 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝑿(𝑌)

) (2.3) 

Due to: 

𝑘(𝑋|𝑌, Θ) =
𝑓(𝑋|Θ)

𝑔(𝑌|Θ)
 

It implies: 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log(𝑓(𝑋|Θ)) − log(𝑘(𝑋|𝑌, Θ)) 
Because f(X | Θ) belongs to exponential family, we have: 

𝑓(𝑋|Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ)⁄  

𝑘(𝑋|𝑌, Θ) = 𝑏(𝑋) exp(Θ𝑇𝜏(𝑋)) 𝑎(Θ|𝑌)⁄  

The log-likelihood function L(Θ) is reduced as follows: 

𝐿(Θ) = −log(𝑎(Θ)) + log(𝑎(Θ|𝑌)) 
By referring to table 1.1, the first-order derivative of L(Θ) is: 

d𝐿(Θ)

dΘ
= −log′(𝑎(Θ)) + log′(𝑎(Θ|𝑌)) = −𝐸(𝜏(𝑋)|Θ) + 𝐸(𝜏(𝑋)|𝑌, Θ) (2.4) 

Maximizing L(Θ) is to set the first-order derivative of L(Θ) to be zero as be zero as follows: 

−𝐸(𝜏(𝑋)|Θ) + 𝐸(𝜏(𝑋)|𝑌, Θ) = 0 

It implies: 
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𝐸(𝜏(𝑋)|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) 
Let Θ(t) be the current estimate at some tth iteration of EM process. Derived from the equality 

above, the value τ(t) is calculated as seen in equation 2.5. 

𝜏(𝑡) = 𝐸(𝜏(𝑋)|𝑌, Θ(𝑡)) (2.5) 

Equation 2.5 specifies the E-step of EM process. After t iterations we will obtain Θ* = Θ(t+1) = 

Θ(t) such that E(τ(X) | Y, Θ(t)) = E(τ(X) | Y, Θ*) = τ(t) = E(τ(X) | Θ*) = E(τ(X) | Θ(t+1)) when Θ(t+1) 

is solution of equation 2.2 (Dempster, Laird, & Rubin, 1977, p. 5). This means that Θ* is the 

optimal estimate of EM process because Θ* is solution of the equation: 

𝐸(𝜏(𝑋)|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) 
Thus, we conclude that Θ* is the optimal estimate of EM process. 

Θ∗ = argmax
Θ

𝐿(Θ) 

For further research, DLR gave a preeminent generality of EM algorithm (Dempster, Laird, & 

Rubin, 1977, pp. 6-11) in which f(X | Θ) specifies arbitrary distribution. In other words, there 

is no requirement of exponential family. They define the conditional expectation Q(Θ’ | Θ) 

according to equation 2.6 (Dempster, Laird, & Rubin, 1977, p. 6). 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝑿(𝑌)

 (2.6) 

The two steps of generalized EM (GEM) algorithm aim to maximize Q(Θ | Θ(t)) at some tth 

iteration as seen in table 2.2 (Dempster, Laird, & Rubin, 1977, p. 6). 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.6. 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)). Note that Θ(t+1) will become 

current parameter at the next iteration ((t+1)th iteration). 

Table 2.2. E-step and M-step of GEM algorithm 

DLR proved that GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) 

is the optimal estimate of EM process. It is deduced from E-step and M-step that Q(Θ | Θ(t)) is 

increased after every iteration. How to maximize Q(Θ | Θ(t)) is optimization problem which is 

dependent on applications. For example, some popular methods to solve optimization problem 

are Newton-Raphson (Burden & Faires, 2011, pp. 67-71), gradient descent (Ta, 2014), and 

Lagrangian duality (Jia, 2013). GEM algorithm still aims to maximize the log-likelihood 

function L(Θ) specified by equation 2.3. The next section focuses on the convergence of GEM 

algorithm proved by DLR (Dempster, Laird, & Rubin, 1977, pp. 7-10) but firstly we should 

discuss some features of Q(Θ’ | Θ). In special case of exponential family, Q(Θ’ | Θ) is modified 

by equation 2.7. 

𝑄(Θ′|Θ) = 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝜏Θ − log(𝑎(Θ
′)) (2.7) 

Where, 

𝐸(log(𝑏(𝑋))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋))d𝑋

𝑿(𝑌)

 

𝜏Θ = ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝑿(𝑌)

 

Following is a proof of equation 2.7. 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ )d𝑋

𝑿(𝑌)
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= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑏(𝑋)) + (Θ′)𝑇𝜏(𝑋) − log(𝑎(Θ′))) d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑏(𝑋))d𝑋

𝑿(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ)(Θ′)𝑇𝜏(𝑋)d𝑋

𝑿(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)

𝑿(𝑌)

log(𝑎(Θ′))d𝑋 

= 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇 ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝑿(𝑌)

− log(𝑎(Θ′)) 

= 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝐸(𝜏(𝑋)|𝑌, Θ) − log(𝑎(Θ′)) 
Because k(X | Y, Θ) belongs exponential family, the expectation E(τ(X) | Y, Θ) is function of Θ, 

denoted τΘ. It implies: 

𝑄(Θ′|Θ) = 𝐸(log(𝑏(𝑋))|𝑌, Θ) + (Θ′)𝑇𝜏Θ − log(𝑎(Θ
′))∎ 

If there is no mapping function φ: X → Y, the equation 2.6 is modified with assumption that 

there is a joint probability of X and Y, denoted P(X, Y | Θ). Note that P(X, Y | Θ) can be discrete 

or continuous. The condition probability of X given Y is specified according to Bayes’ rule as 

follows: 

𝑃(𝑋|𝑌, Θ) =
𝑃(𝑋, 𝑌|Θ)

∫ 𝑃(𝑋, 𝑌|Θ)d𝑋
𝑋∈𝑿0

 

Note, 𝑿0 ⊆ 𝑿 is domain of X. Given Y, we always have: 

∫ 𝑃(𝑋|𝑌, Θ)d𝑋

𝑋∈𝑿0

= 1 

Equation 2.8 specifies the conditional expectation Q(Θ’ | Θ) without mapping function. 

𝑄(Θ′|Θ) = ∫ 𝑃(𝑋|𝑌, Θ)log(𝑃(𝑋, 𝑌|Θ′))d𝑋

𝑋∈𝑿0

 (2.8) 

Note, the requirement of joint probability is stricter than requirement of mapping function φ 

and so, equation 2.6 is the most general definition of Q(Θ’ | Θ). 

 

3. Convergence of EM algorithm 
Recall that DLR proposed GEM algorithm which aims to maximize the log-likelihood function 

L(Θ) by maximizing Q(Θ’ | Θ) over many iterations. This section focuses on mathematical 

explanation of the convergence of GEM algorithm given by DLR (Dempster, Laird, & Rubin, 

1977, pp. 6-9). Recall that we have: 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝑿(𝑌)

) 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝑿(𝑌)

 

Let H(Θ’ | Θ) be another conditional expectation which has strong relationship with Q(Θ’ | Θ) 

(Dempster, Laird, & Rubin, 1977, p. 6). 

𝐻(Θ′|Θ) = 𝐸(log(𝑘(𝑋|𝑌, Θ′))|𝑌, Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝑿(𝑌)

 (3.1) 

From equation 2.6 and equation 3.1, we have: 

𝑄(Θ′|Θ) = 𝐿(Θ′) + 𝐻(Θ′|Θ) (3.2) 

Following is a proof of equation 3.2. 

𝑄(Θ′|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝑿(𝑌)

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑔(𝑌|Θ′)𝑘(𝑋|𝑌, Θ′))d𝑋

𝑿(𝑌)

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 February 2018                   doi:10.20944/preprints201802.0131.v4

http://dx.doi.org/10.20944/preprints201802.0131.v4


11 

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑔(𝑌|Θ′))d𝑋

𝑿(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝑿(𝑌)

 

= log(𝑔(𝑌|Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

+ 𝐻(Θ′|Θ) = log(𝑔(𝑌|Θ′)) + 𝐻(Θ′|Θ)

= 𝐿(Θ′) + 𝐻(Θ′|Θ)∎ 

Lemma 1 (Dempster, Laird, & Rubin, 1977, p. 6). For any pair (Θ’, Θ) in Ω x Ω, 

𝐻(Θ′|Θ) ≤ 𝐻(Θ|Θ) (3.3) 

The equality occurs if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost everywhere ■ 

Following is a proof of lemma 1 as well as equation 3.3. The log-likelihood function L(Θ’) 

is re-written as follows: 

𝐿(Θ′) = log( ∫ 𝑓(𝑋|Θ′)d𝑋

𝑿(𝑌)

) = log( ∫ 𝑘(𝑋|𝑌, Θ)
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
d𝑋

𝑿(𝑌)

) 

Due to 

∫ 𝑘(𝑋|𝑌, Θ′)d𝑋

𝑿(𝑌)

= 1 

By applying Jensen’s inequality (Sean, 2009, pp. 3-4) with concavity of logarithm function, 

Sean (Sean, 2009, p. 6) proved that: 

𝐿(Θ′) ≥ ∫ 𝑘(𝑋|𝑌, Θ)log (
𝑓(𝑋|Θ′)

𝑘(𝑋|𝑌, Θ)
)d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑓(𝑋|Θ′)) − log(𝑘(𝑋|𝑌, Θ))) d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′)𝑔(𝑌|Θ′))d𝑋

𝑿(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ))d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑘(𝑋|𝑌, Θ′)) + log(𝑔(𝑌|Θ′))) d𝑋

𝑿(𝑌)

− 𝐻(Θ|Θ) 

= ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑘(𝑋|𝑌, Θ′))) d𝑋

𝑿(𝑌)

+ ∫ 𝑘(𝑋|𝑌, Θ) (log(𝑔(𝑌|Θ′))) d𝑋

𝑿(𝑌)

− 𝐻(Θ|Θ) 

= 𝐻(Θ′|Θ) + log(𝑔(𝑌|Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

− 𝐻(Θ|Θ) 

= 𝐻(Θ′|Θ) + 𝐿(Θ′) − 𝐻(Θ|Θ) 
It implies: 

𝐻(Θ′|Θ) ≤ 𝐻(Θ|Θ)∎ 

According to Jensen’s inequality (Sean, 2009, pp. 3-4), the equality occurs if and only if k(X | 

Y, Θ’) is linear or  f(X | Θ’) is constant. In other words, the equality occurs if and only if k(X | 

Y, Θ’) = k(X | Y, Θ) almost everywhere when f(X | Θ) is not constant. 

Let {Θ(𝑡)}
𝑡=1

+∞
= Θ(1), Θ(2), … , Θ(𝑡), Θ(𝑡+1), … be a sequence of estimates of Θ resulted from 

iterations of EM algorithm. Let Θ → M(Θ) be the mapping such that each estimation Θ(t) → 

Θ(t+1) at any given iteration is defined by equation 3.4 (Dempster, Laird, & Rubin, 1977, p. 7). 

Θ(𝑡+1) = 𝑀(Θ(𝑡)) (3.4) 

Definition 1 (Dempster, Laird, & Rubin, 1977, p. 7). An iterative algorithm with mapping M(Θ) 

is a GEM algorithm if 

𝑄(𝑀(Θ)|Θ) ≥ 𝑄(Θ|Θ)∎ (3.5) 
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Of course, specification of GEM shown in table 2.2 satisfies the definition 1 because Θ(t+1) is a 

maximizer of Q(Θ | Θ(t)) with regard to variable Θ in M-step. 

𝑄(𝑀(Θ(𝑡))|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) ≥ 𝑄(Θ(𝑡)|Θ(𝑡)), ∀𝑡 
Theorem 1 (Dempster, Laird, & Rubin, 1977, p. 7). For every GEM algorithm 

𝐿(𝑀(Θ)) ≥ 𝐿(Θ) for all Θ ∈ Ω (3.6) 

Where equality occurs if and only if Q(M(Θ) | Θ) = Q(Θ | Θ) and k(X | Y, M(Θ)) = k(X | Y, Θ) 

almost everywhere ■ 

Following is the proof of theorem 1 (Dempster, Laird, & Rubin, 1977, p. 7): 

𝐿(𝑀(Θ)) − 𝐿(Θ) = (𝑄(𝑀(Θ)|Θ) − 𝐻(𝑀(Θ)|Θ)) − (𝑄(Θ|Θ) − 𝐻(Θ|Θ))

= (𝑄(𝑀(Θ)|Θ) − 𝑄(Θ|Θ)) + (𝐻(Θ|Θ) − 𝐻(𝑀(Θ)|Θ)) ≥ 0∎ 

Because the equality of lemma 1 occurs if and only if k(X | Y, Θ’) = k(X | Y, Θ) almost 

everywhere and the equality of the definition 1 is Q(M(Θ) | Θ) = Q(Θ | Θ), we deduce that the 

equality of theorem 1 occurs if and only if Q(M(Θ) | Θ) = Q(Θ | Θ) and k(X | Y, M(Θ)) = k(X | 

Y, Θ) almost everywhere. It is easy to draw corollary 1 and corollary 2 from definition 1 and 

theorem 1. 

Corollary 1 (Dempster, Laird, & Rubin, 1977). Suppose for some Θ∗ ∈ Ω, L(Θ*) ≥ L(Θ) for 

all Θ ∈ Ω then for every GEM algorithm: 

(a) L(M(Θ*)) = L(Θ*) 

(b) Q(M(Θ*) | Θ*) = Q(Θ* | Θ*) 

(c) k(X | Y, M(Θ*)) = k(X | Y, Θ*) ■ 

Proof. From theorem 1 and the assumption of corollary 1, we have: 

{
𝐿(𝑀(Θ)) ≥ 𝐿(Θ) for all Θ ∈ Ω

𝐿(Θ∗) ≥ 𝐿(Θ) for all Θ ∈ Ω
 

This implies: 

{
𝐿(𝑀(Θ∗)) ≥ 𝐿(Θ∗)

𝐿(𝑀(Θ∗)) ≤ 𝐿(Θ∗)
 

As a result, 

𝐿(𝑀(Θ∗)) = 𝐿(𝑀(Θ∗)) 
From theorem 1, we also have: 

𝑄(𝑀(Θ∗)|Θ∗) = 𝑄(Θ∗|Θ∗)

𝑘(𝑋|𝑌,𝑀(Θ∗)) = 𝑘(𝑋|𝑌, Θ∗)
∎ 

Corollary 2 (Dempster, Laird, & Rubin, 1977). If for some Θ∗ ∈ Ω, L(Θ*) > L(Θ) for all Θ ∈
Ω such that Θ ≠ Θ*, then for every GEM algorithm: 

M(Θ*) = Θ* ■ 

Proof. From corollary 1 and the assumption of corollary 2, we have: 

{
𝐿(𝑀(Θ∗)) = 𝐿(Θ∗)

𝐿(Θ∗) > 𝐿(Θ) for all Θ ∈ Ω and Θ ≠ Θ∗
 

If M(Θ*) ≠ Θ*, there is a contradiction L(M(Θ*)) = L(Θ*) > L(M(Θ*)). Therefore, we have M(Θ*) 

= Θ* ■ 

Theorem 2 (Dempster, Laird, & Rubin, 1977, p. 7). Suppose {Θ(𝑡)}
𝑡=1

+∞
 is the sequence of 

estimates resulted from GEM algorithm such that: 

(1) The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
= 𝐿(Θ(1)), 𝐿(Θ(2)), … , 𝐿(Θ(𝑡)), … is bounded above, and 

(2) Q(Θ(t+1) | Θ(t)) – Q(Θ(t) | Θ(t)) ≥ ξ(Θ(t+1) – Θ(t))T(Θ(t+1) – Θ(t)) for some scalar ξ > 0 and all 

t. 

Then the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of Ω ■ 
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Proof. The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is non-decreasing according to theorem 1 and is bounded 

above according to the assumption 1 of theorem 2 and hence, the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 

converges to some L* < +∞. According to Cauchy criterion (Dinh, Pham, Nguyen, & Ta, 2000, 

p. 34), for all ε > 0, there exists a t(ε) such that, for all t ≥ t(ε) and all v ≥ 1: 

𝐿(Θ(𝑡+𝑣)) − 𝐿(Θ(𝑡)) =∑(𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

< 𝜀 

By applying equations 3.2 and 3.3, for all i ≥ 1, we obtain: 

𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) 

= 𝐿(Θ(𝑡+𝑖)) + 𝐻(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1))   

≤ 𝐿(Θ(𝑡+𝑖)) + 𝐻(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)) 

= 𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)) 
(Due to L(Θ(t+i–1)) = Q(Θ(t+i–1) | Θ(t+i–1)) – H(Θ(t+i–1) | Θ(t+i–1)) according to equation 3.2) 

It implies 

∑(𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

<∑(𝐿(Θ(𝑡+𝑖)) − 𝐿(Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

= 𝐿(Θ(𝑡+𝑣)) − 𝐿(Θ(𝑡)) < 𝜀 
By applying v times the assumption 2 of theorem 2, we obtain: 

𝜀 >∑(𝑄(Θ(𝑡+𝑖)|Θ(𝑡+𝑖−1)) − 𝑄(Θ(𝑡+𝑖−1)|Θ(𝑡+𝑖−1)))

𝑣

𝑖=1

≥ 𝜉∑(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))
𝑇
(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))

𝑣

𝑖=1

 

It means that 

∑|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|
2

𝑣

𝑖=1

< 𝜀 𝜉⁄  

Where, 

|Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)|
2
= (Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1))

𝑇
(Θ(𝑡+𝑖) − Θ(𝑡+𝑖−1)) 

Notation |.| denotes length of vector and so |Θ(t+i) – Θ(t+i –1)| is distance between Θ(t+i) and Θ(t+i 

–1). Applying triangular inequality, for any ε > 0, for all t ≥ t(ε) and all v ≥ 1, we have: 

|Θ(𝑡+𝑣) − Θ(𝑡)|
2
< 𝜀 𝜉⁄  

According to Cauchy criterion, the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of 

Ω. 

Theorem 1 indicates that L(Θ) is non-decreasing on every iteration of GEM algorithm and 

is strictly increasing on any iteration such that Q(Θ(t+1) | Θ(t)) > Q(Θ(t) | Θ(t)). The corollaries 1 

and 2 indicate that the optimal estimate is a fixed point of GEM algorithm. Theorem 2 points 

out convergence condition of GEM algorithm. However, there is still no assertion of 

convergence yet and so we need mathematical tools of derivative and differential to prove 

convergence of GEM. We assume that Q(Θ’ | Θ), L(Θ), H(Θ’ | Θ), and M(Θ) are smooth enough. 

As a convention for derivatives of bivariate function, let Dij denote as the derivative 

(differential) by taking ith-order partial derivative (differential) with regard to first variable and 

then, taking jth-order partial derivative (differential) with regard to second variable. If i = 0 (j 

= 0) then, there is no partial derivative with regard to first variable (second variable). For 

example, following is an example of how to calculate the derivative D11Q(Θ(t) | Θ(t+1)). 
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- Firstly, we determine 𝐷11𝑄(Θ′|Θ) =
𝜕𝑄(Θ′|Θ)

𝜕Θ′𝜕Θ
 

- Secondly, we substitute Θ(t) and Θ(t+1)) for such D11Q(Θ’ | Θ) to obtain D11Q(Θ(t) | Θ(t+1)). 

Equation 3.1 shows some derivatives (differentials) of Q(Θ’ | Θ), H(Θ’ | Θ), L(Θ), and M(Θ). 

𝐷10𝑄(Θ′|Θ) =
𝜕𝑄(Θ′|Θ)

𝜕Θ′

𝐷11𝑄(Θ′|Θ) =
𝜕𝑄(Θ′|Θ)

𝜕Θ′𝜕Θ

𝐷20𝑄(Θ′|Θ) =
𝜕2𝑄(Θ′|Θ)

𝜕(Θ′)2

𝐷10𝐻(Θ′|Θ) =
𝜕𝐻(Θ′|Θ)

𝜕Θ′

𝐷11𝐻(Θ′|Θ) =
𝜕𝐻(Θ′|Θ)

𝜕Θ′𝜕Θ

𝐷20𝐻(Θ′|Θ) =
𝜕2𝐻(Θ′|Θ)

𝜕(Θ′)2

𝐷𝐿(Θ) =
d𝐿(Θ)

dΘ

𝐷2𝐿(Θ) =
d2𝐿(Θ)

dΘ2

𝐷𝑀(Θ) =
d𝑀(Θ)

dΘ

 

Table 3.1. Some differentials of Q(Θ’ | Θ), H(Θ’ | Θ), L(Θ), and M(Θ) 

When Θ’ and Θ are vectors, D10(…) is gradient vector and D20(…) is Hessian matrix. As a 

convention, let 0 = (0, 0,…, 0)T be zero vector. 

Lemma 2 (Dempster, Laird, & Rubin, 1977, p. 8). For all Θ in Ω, 

𝐷10𝐻(Θ|Θ) = 𝐸 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) = 𝟎𝑇 (3.7) 

 

𝐷20𝐻(Θ|Θ) = −𝐷11𝐻(Θ|Θ) = −𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) (3.8) 

 

𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) = 𝐸 ((

dlog(𝑘(𝑋|𝑌, Θ))
dΘ

)

2

|𝑌, Θ)

= −𝐸 (
𝑑2log(𝑘(𝑋|𝑌, Θ))

d(Θ)2
|𝑌, Θ) 

(3.9) 

 

𝐷10𝑄(Θ|Θ) = 𝐷𝐿(Θ) = 𝐸 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) (3.10) 

 

𝐷20𝑄(Θ|Θ) = 𝐷2𝐿(Θ) + 𝐷20𝐻(Θ|Θ) = 𝐸 (
𝑑2log(𝑓(𝑋|Θ))

d(Θ)2
|𝑌, Θ) (3.11) 
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𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) = 𝐸 ((

dlog(𝑓(𝑋|Θ))
dΘ

)

2

|𝑌, Θ)

= 𝐷2𝐿(Θ) + (𝐷𝐿(Θ))
2
− 𝐷20𝑄(Θ|Θ)∎ 

(3.12) 

Note, VN(.) denotes non-central covariance matrix. Followings are proofs of equations 3.7, 3.8, 

3.9, 3.10, 3.11, and 3.12. In fact, we have: 

𝐷10𝐻(Θ′|Θ) =
𝜕

𝜕Θ′
𝐸(log(𝑘(𝑋|𝑌, Θ′))|𝑌, Θ) =

𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝑿(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝑿(𝑌)

= 𝐸 (
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
|𝑌, Θ) =

= ∫
𝑘(𝑋|𝑌, Θ)

𝑘(𝑋|𝑌, Θ′)

d(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝑿(𝑌)

 

It implies: 

𝐷10𝐻(Θ|Θ) = ∫
𝑘(𝑋|𝑌, Θ)

𝑘(𝑋|𝑌, Θ)

d(𝑘(𝑋|𝑌, Θ))

dΘ
d𝑋

𝑿(𝑌)

=
d

dΘ
( ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

) =
d

dΘ
(1) = 𝟎𝑇 

We also have: 

𝐷11𝐻(Θ′|Θ) =
𝜕𝐷10𝐻(Θ′|Θ)

𝜕Θ
= ∫

1

𝑘(𝑋|𝑌, Θ′)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ

d𝑘(𝑋|𝑌, Θ′)

dΘ′
d𝑋

𝑿(𝑌)

 

It implies: 

𝐷11𝐻(Θ|Θ) = ∫
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ

d𝑘(𝑋|𝑌, Θ)

dΘ
d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ) (
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ
)

2

d𝑋

𝑿(𝑌)

= 𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) 

We also have: 

𝐷20𝐻(Θ′|Θ) =
𝜕𝐷10𝐻(Θ′|Θ)

𝜕Θ′
= 𝐸 (

𝑑2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
|𝑌, Θ) 

= − ∫
𝑘(𝑋|𝑌, Θ)

(𝑘(𝑋|𝑌, Θ′))
2 (
d𝑘(𝑋|𝑌, Θ′)

dΘ′
)

2

d𝑋

𝑿(𝑌)

= −𝐸 ((
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
)

2

|𝑌, Θ) 

It implies: 

𝐷20𝐻(Θ|Θ) = − ∫ 𝑘(𝑋|𝑌, Θ) (
1

𝑘(𝑋|𝑌, Θ)

d𝑘(𝑋|𝑌, Θ)

𝑑Θ
)

2

d𝑋

𝑿(𝑌)

= −𝑉𝑁 (
dlog(𝑘(𝑋|𝑌, Θ))

dΘ
|𝑌, Θ) 

From equation 3.2, we have: 

𝐷20𝑄(Θ′|Θ) = 𝐷2𝐿(Θ′) + 𝐷20𝐻(Θ′|Θ) 
We also have: 

𝐷10𝑄(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝑿(𝑌)

) = ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝑿(𝑌)
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= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝑿(𝑌)

= 𝐸 (
dlog(𝑓(𝑋|Θ′))

dΘ′
|𝑌, Θ) 

= ∫
𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ′)

d𝑓(𝑋|Θ′)

dΘ′
d𝑋

𝑿(𝑌)

 

It implies: 

𝐷10𝑄(Θ|Θ) = ∫
𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ)

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝑿(𝑌)

= ∫
1

𝑔(𝑌|Θ)

d𝑓(𝑋|Θ)

dΘ
d𝑋

𝑿(𝑌)

 

=
1

𝑔(𝑌|Θ)
∫
d𝑓(𝑋|Θ)

dΘ
d𝑋

𝑿(𝑌)

=
1

𝑔(𝑌|Θ)

d

dΘ
( ∫ 𝑓(𝑋|Θ)d𝑋

𝑿(𝑌)

) 

=
1

𝑔(𝑌|Θ)

d𝑔(𝑌|Θ)

dΘ
=
dlog(𝑔(𝑌|Θ))

dΘ
= 𝐷𝐿(Θ) 

We have: 

𝐷20𝑄(Θ′|Θ) =
𝜕𝐷10𝑄(Θ′|Θ)

𝜕Θ′
=
𝜕

𝜕Θ′
( ∫

𝑘(𝑋|𝑌, Θ)

𝑓(𝑋|Θ′)

d𝑓(𝑋|Θ′)

dΘ′
d𝑋

𝑿(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
𝑑

dΘ′
(
d𝑓(𝑋|Θ′) dΘ′⁄

𝑓(𝑋|Θ′)
) d𝑋

𝑿(𝑌)

= 𝐸 (
𝑑2log(𝑓(𝑋|Θ′))

d(Θ′)2
|𝑌, Θ) 

= ∫ 𝑘(𝑋|𝑌, Θ) ((d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )𝑓(𝑋|Θ′) − (d𝑓(𝑋|Θ′) dΘ′⁄ )2) (𝑓(𝑋|Θ′))
2

⁄ d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )

𝑓(𝑋|Θ′)
d𝑋

𝑿(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ) (
d𝑓(𝑋|Θ′) dΘ′⁄

𝑓(𝑋|Θ′)
)

2

d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ′) d(Θ′)2⁄ )

𝑓(𝑋|Θ′)
d𝑋

𝑿(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ′))

dΘ′
|𝑌, Θ) 

It implies: 

𝐷20𝑄(Θ|Θ) = ∫ 𝑘(𝑋|𝑌, Θ)
(d2𝑓(𝑋|Θ) d(Θ)2⁄ )

𝑓(𝑋|Θ)
d𝑋

𝑿(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)
∫
d2𝑓(𝑋|Θ)

d(Θ)2
d𝑋

𝑿(𝑌)

− 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)

d2

d(Θ)2
( ∫

𝑓(𝑋|Θ)

dΘ
d𝑋

𝑿(𝑌)

) − 𝑉𝑁 (
dlog(𝑓(𝑋|Θ))

dΘ
|𝑌, Θ) 

=
1

𝑔(𝑌|Θ)

d2𝑔(𝑌|Θ)

d(Θ)2
− 𝑉𝑁 (

dlog(𝑓(𝑋|Θ))
dΘ

|𝑌, Θ) 

Due to: 

𝐷2𝐿(Θ) =
d2log(𝑔(𝑌|Θ))

d(Θ)2
=

1

𝑔(𝑌|Θ)

d2𝑔(𝑌|Θ)

d(Θ)2
− (𝐷𝐿(Θ))

2
 

We have: 

𝐷20𝑄(Θ|Θ) = 𝐷2𝐿(Θ) + (𝐷𝐿(Θ))
2
− 𝑉𝑁 (

dlog(𝑓(𝑋|Θ))
dΘ

|𝑌, Θ)∎ 
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Lemma 3 (Dempster, Laird, & Rubin, 1977, p. 9). If f(X | Θ) and k(X | Y, Θ) belong to 

exponential family, for all Θ in Ω, we have: 

𝐷10𝐻(Θ′|Θ) = 𝐸(𝜏(𝑋)|𝑌, Θ) − 𝐸(𝜏(𝑋)|𝑌, Θ′) (3.13) 

 

𝐷20𝐻(Θ′|Θ) = −𝑉(𝜏(𝑋)|𝑌, Θ′) (3.14) 

 

𝐷10𝑄(Θ′|Θ) = 𝐸(𝜏(𝑋)|Θ) − 𝐸(𝜏(𝑋)|Θ′) (3.15) 

 

𝐷20𝑄(Θ′|Θ) = −𝑉(𝜏(𝑋)|Θ′)∎ (3.16) 

Proof. If f(X | Θ’) and k(X | Y, Θ’) belong to exponential family, from table 1.1 we have: 

dlog(𝑓(𝑌|Θ′))

dΘ′
=
d

dΘ′
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ ) = 𝜏(𝑋) − log′(𝑎(Θ′))

= 𝜏(𝑋) − 𝐸(𝜏(𝑋)|Θ′) 
And, 

d2log(𝑓(𝑌|Θ′))

d(Θ′)2
=

d

d(Θ′)2
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′)⁄ ) = −log′′(𝑎(Θ′)) = −𝑉(𝜏(𝑋)|Θ′) 

And, 

dlog(𝑘(𝑌|Θ′))

dΘ′
=
d

dΘ′
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′|𝑌)⁄ ) = 𝜏(𝑋) − log′(𝑎(Θ′)|𝑌)

= 𝜏(𝑋) − 𝐸(𝜏(𝑋)|𝑌, Θ′) 
And, 

d2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
=

d

d(Θ′)2
(𝑏(𝑋) exp((Θ′)𝑇𝜏(𝑋)) 𝑎(Θ′|𝑌)⁄ ) = −log′′(𝑎(Θ′|𝑌))

= −𝑉(𝜏(𝑋)|𝑌, Θ′) 
Hence, 

𝐷10𝐻(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝑿(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑘(𝑋|𝑌, Θ′))

dΘ′
d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝑿(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)𝐸(𝜏(𝑋)|𝑌, Θ′)d𝑋

𝑿(𝑌)

 

= 𝐸(𝜏(𝑋)|𝑌, Θ) − 𝐸(𝜏(𝑋)|𝑌, Θ′) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

= 𝐸(𝜏(𝑋)|𝑌, Θ) − 𝐸(𝜏(𝑋)|𝑌, Θ′) 

We have: 

𝐷20𝐻(Θ′|Θ) =
𝜕2

𝜕(Θ′)2
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑘(𝑋|𝑌, Θ′))d𝑋

𝑿(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
d2log(𝑘(𝑋|𝑌, Θ′))

d(Θ′)2
d𝑋

𝑿(𝑌)

= − ∫ 𝑘(𝑋|𝑌, Θ)log′′(𝑎(Θ′)|𝑌)d𝑋

𝑿(𝑌)

 

= −log′′(𝑎(Θ′)|𝑌) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

= −log′′(𝑎(Θ′)|𝑌) = −𝑉(𝜏(𝑋)|𝑌, Θ′) 

We have: 
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𝐷10𝑄(Θ′|Θ) =
𝜕

𝜕Θ′
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝑿(𝑌)

) = ∫ 𝑘(𝑋|𝑌, Θ)
dlog(𝑓(𝑋|Θ′))

dΘ′
d𝑋

𝑿(𝑌)

 

= ∫ 𝑘(𝑋|𝑌, Θ)𝜏(𝑋)d𝑋

𝑿(𝑌)

− ∫ 𝑘(𝑋|𝑌, Θ)𝐸(𝜏(𝑋)|Θ)d𝑋

𝑿(𝑌)

 

= 𝐸(𝜏(𝑋)|Θ) − 𝐸(𝜏(𝑋)|Θ′) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

= 𝐸(𝜏(𝑋)|Θ) − 𝐸(𝜏(𝑋)|Θ′) 

We have: 

𝐷20𝑄(Θ′|Θ) =
𝜕2

𝜕(Θ′)2
( ∫ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))d𝑋

𝑿(𝑌)

) 

= ∫ 𝑘(𝑋|𝑌, Θ)
d2log(𝑓(𝑋|Θ′))

d(Θ′)2
d𝑋

𝑿(𝑌)

= − ∫ 𝑘(𝑋|𝑌, Θ)log′′(𝑎(Θ′))d𝑋

𝑿(𝑌)

 

= −log′′(𝑎(Θ′)) ∫ 𝑘(𝑋|𝑌, Θ)d𝑋

𝑿(𝑌)

= −log′′(𝑎(Θ′)) = −𝑉(𝜏(𝑋)|Θ′)∎ 

Theorem 3 (Dempster, Laird, & Rubin, 1977, p. 8). Suppose the sequence {Θ(𝑡)}
𝑡=1

+∞
 is an 

instance of GEM algorithm such that 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇 

Then for all t, there exists a Θ0
(t+1) on the line segment joining Θ(t) and Θ(t+1) such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

Furthermore, if D20Q(Θ0
(t+1) | Θ(t)) is negative definite, and the sequence {𝐿(Θ(𝑡))}

𝑡=1

+∞
 is 

bounded above then, the sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to some Θ* in the closure of Ω ■ 

Note, if Θ is a scalar parameter, D20Q(Θ0
(t+1) | Θ(t)) degrades as a scalar and the concept 

“negative definite” becomes “negative” simply. Following is a proof of theorem 3. 

Proof. Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ = Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

= 𝑄(Θ(𝑡+1)|Θ(𝑡)) + (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

(due to 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇) 
Where Θ0

(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

If D20Q(Θ(t+1) | Θ(t)) is negative definite then, 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) = −(Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) > 0 

Whereas, 

(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) ≥ 0 

So there exists some ξ > 0 such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) ≥ 𝜉(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) 

In other words, the assumption 2 of theorem 2 is satisfied and hence, the sequence {Θ(𝑡)}
𝑡=1

+∞
 

converges to some Θ* in the closure of Ω if the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above ■ 
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Theorem 4 (Dempster, Laird, & Rubin, 1977, p. 9). Suppose the sequence {Θ(𝑡)}
𝑡=1

+∞
 is an 

instance of GEM algorithm such that 

(1) The sequence {Θ(𝑡)}
𝑡=1

+∞
 converges to Θ* in the closure of Ω. 

(2) D10Q(Θ(t+1) | Θ(t)) = 0T for all t. 

(3) D20Q(Θ(t+1) | Θ(t)) is negative definite for all t. 

Then DL(Θ*) = 0T, D20Q(Θ* | Θ*) is negative definite, and 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1
∎ (3.17) 

The notation “–1” denotes inverse of matrix. Note, DM(Θ*) is differential of M(Θ) at Θ = Θ*, 

which implies convergence of GEM algorithm. Followings are proofs of theorem 4. 

From equation 3.2, we have: 

𝐷𝐿(Θ(𝑡+1)) = 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) = −𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) 

(Due to 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝟎𝑇) 

When t approaches +∞ such that Θ(t) = Θ(t+1) = Θ* then, D10H(Θ* | Θ*) is zero according to 

equation 3.7 and so we have: 

DL(Θ*) = 0T 

Of course, D20Q(Θ* | Θ*) is negative definite because D20Q(Θ(t+1) | Θ(t)) is negative definite, 

when t approaches +∞ such that Θ(t) = Θ(t+1) = Θ*. 

By first-order Taylor series expansion for D10Q(Θ2 | Θ1) as a function of Θ1 at Θ1 = Θ* and 

as a function of Θ2 at Θ2 = Θ*, respectively, we have: 

𝐷10𝑄(Θ2|Θ1) = 𝐷
10𝑄(Θ2|Θ

∗) + (Θ1 − Θ
∗)𝑇𝐷11𝑄(Θ2|Θ

∗) + 𝑅1(Θ1) 
𝐷10𝑄(Θ2|Θ1) = 𝐷

10𝑄(Θ∗|Θ1) + (Θ2 − Θ
∗)𝑇𝐷20𝑄(Θ∗|Θ1) + 𝑅2(Θ2) 

Where R1(Θ1) and R2(Θ2) are remainders. By summing such two series, we have: 

2𝐷10𝑄(Θ2|Θ1)
= 𝐷10𝑄(Θ2|Θ

∗) + 𝐷10𝑄(Θ∗|Θ1) + (Θ1 − Θ
∗)𝑇𝐷11𝑄(Θ2|Θ

∗)
+ (Θ2 − Θ

∗)𝑇𝐷20𝑄(Θ∗|Θ1) + 𝑅1(Θ1) + 𝑅2(Θ2) 
By substituting Θ1 = Θ(t) and Θ2 = Θ(t+1), we have: 

2𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))

= 𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡)) + (Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗)

+ (Θ(𝑡+1) − Θ∗)
𝑇
𝐷20𝑄(Θ∗|Θ(𝑡)) + 𝑅1(Θ

(𝑡)) + 𝑅2(Θ
(𝑡+1)) 

It implies: 

(𝑀(Θ(𝑡)) − 𝑀(Θ∗))
𝑇

= (Θ(𝑡+1) − Θ∗)
𝑇
 

= −(Θ(𝑡) − Θ∗)
𝑇
𝐷11𝑄(Θ(𝑡+1)|Θ∗) (𝐷20𝑄(Θ∗|Θ(𝑡)))

−1

 

−(𝐷10𝑄(Θ(𝑡+1)|Θ∗) + 𝐷10𝑄(Θ∗|Θ(𝑡))) (𝐷20𝑄(Θ∗|Θ(𝑡)))
−1

 

−(𝑅1(Θ
(𝑡)) + 𝑅2(Θ

(𝑡+1))) (𝐷20𝑄(Θ∗|Θ(𝑡)))
−1

 

Let t approach +∞ such that Θ(t) = Θ(t+1) = Θ*, we obtain DM(Θ*) as differential of M(Θ) at Θ* 

as follows: 

𝐷𝑀(Θ∗) = −𝐷11𝑄(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1

 (3.18) 

Due to, when t approaches +∞, we have: 
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𝐷11𝑄(Θ(𝑡+1)|Θ∗) = 𝐷11𝑄(Θ∗|Θ∗)

𝐷20𝑄(Θ∗|Θ(𝑡)) = 𝐷20𝑄(Θ∗|Θ∗)

𝐷10𝑄(Θ(𝑡+1)|Θ∗) = 𝐷10𝑄(Θ∗|Θ∗) = 𝟎𝑇

𝐷10𝑄(Θ∗|Θ(𝑡)) = 𝐷10𝑄(Θ∗|Θ∗) = 𝟎𝑇

lim
𝑡→+∞

𝑅1(Θ
(𝑡)) = lim

Θ(𝑡)→Θ∗
𝑅1(Θ

(𝑡)) = 0

lim
𝑡→+∞

𝑅2(Θ
(𝑡+1)) = lim

Θ(𝑡+1)→Θ∗
𝑅2(Θ

(𝑡+1)) = 0

 

The derivative D11Q(Θ’ | Θ) is expended as follows: 

𝐷11𝑄(Θ′|Θ) = 𝐷𝐿(Θ′) + 𝐷11𝐻(Θ′|Θ) 
It implies: 

𝐷11𝑄(Θ∗|Θ∗) = 𝐷𝐿(Θ∗) + 𝐷11𝐻(Θ∗|Θ∗) 
= 0 + 𝐷11𝐻(Θ∗|Θ∗) 

(Due to theorem 4) 

= −𝐷20𝐻(Θ∗|Θ∗) 
(Due to equation 3.8) 

Therefore, equation 3.18 becomes equation 3.17. 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄(Θ∗|Θ∗))
−1
∎ 

Finally, theorem 4 is proved. By combination of theorems 2 and 4, corollary 3 is a criterion of 

convergence of GEM. 

Corollary 3. If an algorithm satisfies three following assumptions: 

(1) Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)) for all t. 

(2) The sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above. 

(3) D10Q(Θ* | Θ*) = 0T and D20Q(Θ* | Θ*) negative definite. 

Then, 

(1) Such algorithm is an GEM and converges to a local maximizer Θ* of L(Θ) such that 

DL(Θ*) = 0T and D2L(Θ*) negative definite. 

(2) Equation 3.17 is obtained ■ 

The assumption 1 of corollary 3 implies that the given algorithm is a GEM according to 

definition 1. From such assumption, we also have: 

{
𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0

(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) ≥ 0

 

So there exists some ξ > 0 such that 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) ≥ 𝜉(Θ(𝑡+1) − Θ(𝑡))
𝑇
(Θ(𝑡+1) − Θ(𝑡)) 

In other words, the assumption 2 of theorem 2 is satisfied and hence, the sequence {Θ(𝑡)}
𝑡=1

+∞
 

converges to some Θ* in the closure of Ω when the sequence {𝐿(Θ(𝑡))}
𝑡=1

+∞
 is bounded above 

according to the assumption 2 of corollary 3. From equation 3.2, we have: 

𝐷𝐿(Θ(𝑡+1)) = 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) = −𝐷10𝐻(Θ(𝑡+1)|Θ(𝑡)) 

When t approaches +∞ such that Θ(t) = Θ(t+1) = Θ* then, 

DL(Θ*) = D10Q(Θ* | Θ*) – D10H(Θ* | Θ*)  

D10H(Θ* | Θ*) is zero according to equation 3.7. Hence, along with the assumption 3 of 

corollary 3, we have: 

DL(Θ*) = D10Q(Θ* | Θ*) = 0T 

Due to DL(Θ*) = 0, we only assert here that the given algorithm converges to Θ* as a stationary 

point of L(Θ). Later on, we will prove that Θ* is a local maximizer of L(Θ) when Q(M(Θ(t)) | 
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Θ(t)) > Q(Θ(t) | Θ(t)), DL(Θ*) = 0, and D20Q(Θ* | Θ*) negative definite. Due to D10Q(Θ* | Θ*) = 

0T, we obtain equation 3.17 ■ 

By default, suppose all GEM algorithms satisfy the assumptions 2 and 3 of corollary 3. 

Thus, we only check the assumption 1 to verify whether a given algorithm is a GEM which 

converges to local maximizer Θ*. Note, if the assumption 1 of corollary 3 is replaced by 

“Q(M(Θ(t)) | Θ(t)) ≥ Q(Θ(t) | Θ(t)) for all t” then, Θ* is only asserted to be a stationary point of 

L(Θ) such that DL(Θ*) = 0T. Wu (Wu, 1983) gave a deep research on convergence of GEM in 

her/his article “On the Convergence Properties of the EM Algorithm”. Please read this article 

for more details about convergence of GEM. 

Because H(Θ’ | Θ) and Q(Θ’ | Θ) are smooth enough, D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are 

symmetric matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second 

derivatives, 2018). Thus, D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are commutative: 

D20H(Θ* | Θ*)D20Q(Θ* | Θ*) = D20Q(Θ* | Θ*)H20Q(Θ* | Θ*) 

Suppose both D20H(Θ* | Θ*) and D20Q(Θ* | Θ*) are diagonalizable then, they are simultaneously 

diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a (orthogonal) 

eigenvector matrix U such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange, 

2013): 

𝐷20𝐻(Θ∗|Θ∗) = 𝑈𝐻𝑒
∗𝑈−1

𝐷20𝑄(Θ∗|Θ∗) = 𝑈𝑄𝑒
∗𝑈−1

 

Where He
* and Qe

* are eigenvalue matrices of D20H(Θ* | Θ*) and D20Q(Θ* | Θ*), respectively, 

according to equations 3.19 and 3.20. Of course, h1
*, h2

*,…, hr
* are eigenvalues of D20H(Θ* | 

Θ*) whereas q1
*, q2

*,…, qr
* are eigenvalues of D20Q(Θ* | Θ*). 

𝐻𝑒
∗ = (

ℎ1
∗ 0 ⋯ 0

0 ℎ2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑟

∗

) (3.19) 

 

𝑄𝑒
∗ = (

𝑞1
∗ 0 ⋯ 0
0 𝑞2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑟

∗

) (3.20) 

From equation 3.17, DM(Θ*) is decomposed as seen in equation 3.21. 

𝐷𝑀(Θ∗) = (𝑈𝐻𝑒
∗𝑈−1)(𝑈𝑄𝑒

∗𝑈−1)−1 = 𝑈𝐻𝑒
∗𝑈−1𝑈(𝑄𝑒

∗)−1Λ−1𝑈−1

= 𝑈(𝐻𝑒
∗(𝑄𝑒

∗)−1)𝑈−1 
(3.21) 

Let Me
* be eigenvalue matrix of DM(Θ*), specified by equation 15. As a convention Me

* is 

called convergence matrix. 

𝑀𝑒
∗ = 𝐻𝑒

∗(𝑄𝑒
∗)−1 =

(

 
 
 
 
 
𝑚1
∗ =

ℎ1
∗

𝑞1
∗ 0 ⋯ 0

0 𝑚2
∗ =

ℎ2
∗

𝑞2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑚𝑟
∗ =

ℎ𝑟
∗

𝑞𝑟∗)

 
 
 
 
 

 (3.22) 

Of course, all mi
* = hi

* / qi
* are eigenvalues of DM(Θ*) with assumption qi

* < 0 for all i. We 

will prove that 0 ≤ mi
* ≤ 1 for all i by contradiction. Conversely, suppose we always have mi

* > 

1 or mi
* < 0 for some i. When Θ degrades into scalar as Θ = θ with note that scalar is 1-element 

vector, equation 3.17 is re-written as equation 3.23: 
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𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = 𝑚∗ = lim

𝑡→+∞

𝑀(𝜃(𝑡)) −𝑀(𝜃∗)

𝜃(𝑡) − 𝜃∗
= lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
=

= 𝐷20𝐻(𝜃∗|𝜃∗)(𝐷20𝑄(𝜃∗|𝜃∗))
−1

 

(3.23) 

From equation 3.23, the next estimate θ(t+1) approaches θ* when t → +∞ and so we have: 

𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = 𝑚∗ = lim

𝑡→+∞

𝑀(𝜃(𝑡)) −𝑀(𝜃(𝑡+1))

𝜃(𝑡) − 𝜃(𝑡+1)
= lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃(𝑡+2)

𝜃(𝑡) − 𝜃(𝑡+1)

= lim
𝑡→+∞

𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 

So equation 3.24 is a variant of equation 3.23 (McLachlan & Krishnan, 1997, p. 120). 

𝐷𝑀(𝜃∗) = 𝑀𝑒 = 𝑚
∗ = lim

𝑡→+∞

𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 (3.24) 

Because the sequence {𝐿(𝜃(𝑡))}
𝑡=1

+∞
= 𝐿(𝜃(1)), 𝐿(𝜃(2)), … , 𝐿(𝜃(𝑡)), … is non-decreasing, the 

sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is monotonous. This means: 

𝜃1 ≤ 𝜃2 ≤ ⋯ ≤ 𝜃𝑡 ≤ 𝜃𝑡+1 ≤ ⋯ ≤ 𝜃
∗ 

Or 

𝜃1 ≥ 𝜃2 ≥ ⋯ ≥ 𝜃𝑡 ≥ 𝜃𝑡+1 ≥ ⋯ ≥ 𝜃
∗ 

It implies 

0 ≤
𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≤ 1, ∀𝑡 

So we have 

0 ≤ 𝐷𝑀(𝜃∗) = 𝑀𝑒
∗ = lim

𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≤ 1 

However, this contradicts the converse assumption “there always exists mi
* > 1 or mi

* < 0 for 

some i”. Therefore, we conclude that 0 ≤ mi
* ≤ 1 for all i. In general, if Θ* is stationary point 

of GEM then, D20Q(Θ* | Θ*) and Qe
* are negative definite, D20H(Θ* | Θ*) and He

* are negative 

semi-definite, and DM(Θ*) and Me
* are positive semi-definite, according to equation 3.25. 
𝑞𝑖
∗ < 0, ∀𝑖

ℎ𝑖
∗ ≤ 0, ∀𝑖

0 ≤ 𝑚𝑖
∗ ≤ 1, ∀𝑖

 (3.25) 

As a convention, if GEM algorithm fortunately stops at the first iteration such that Θ(1) = Θ(2) 

= Θ* then, mi
* = 0 for all i. 

Suppose Θ(t) = (θ1
(t), θ2

(t),…, θr
(t)) at current tth iteration and Θ* = (θ1

*, θ2
*,…, θr

*), each mi
* 

measures how much the next θi
(t+1) is near to θi

*. In other words, the smaller the mi
* (s) are, the 

faster the GEM is and so the better the GEM is. This is why DLR (Dempster, Laird, & Rubin, 

1977, p. 10) defined that the convergence rate m* of GEM is the maximum one among all mi
*, 

as seen in equation 3.26. The convergence rate m* implies lowest speed. 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑟

∗}  where 𝑚1
∗ =

ℎ1
∗

𝑞1
∗ (3.26) 

From equations 3.2 and 3.17, we have (Dempster, Laird, & Rubin, 1977, p. 10): 

𝐷2𝐿(Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) − 𝐷20𝐻(Θ∗|Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) − 𝐷20𝑄(Θ∗|Θ∗)𝐷𝑀(Θ∗)

= 𝐷20𝑄(Θ∗|Θ∗)(𝐼 − 𝐷𝑀(Θ∗)) 

Where I is identity matrix: 

𝐼 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 
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By the same way to draw convergence matrix Me
* with note that D20H(Θ* | Θ*), D20Q(Θ* | Θ*), 

and DM(Θ*) are symmetric matrices, we have: 

𝐿𝑒 = 𝑄𝑒(𝐼 − 𝑀𝑒) (3.27) 

Where Le
* is eigenvalue matrix of D2L(Θ*). From equation 3.27, each eigenvalue li

* of Le
* is 

proportional to each eigenvalues qi
* of Qe

* with ratio 1–mi
* where mi

* is an eigenvalue of Me
*. 

Equation 3.28 specifies a so-called speed matrix Se
*: 

𝑆𝑒
∗ = (

𝑠1
∗ = 1 −𝑚1

∗ 0 ⋯ 0
0 𝑠2

∗ = 1 −𝑚2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑟

∗ = 1 −𝑚𝑟
∗

) (3.28) 

From equations 3.25 and 3.28, we have 0 ≤ si
* ≤ 1. Equation 3.29 specifies Le

* which is 

eigenvalue matrix of D2L(Θ*). 

𝐿𝑒
∗ = (

𝑙1
∗ = 𝑞1

∗𝑠1
∗ 0 ⋯ 0

0 𝑙2
∗ = 𝑞2

∗𝑠2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑙𝑟

∗ = 𝑞𝑟
∗𝑠𝑟
∗

) (3.29) 

From equation 3.28, suppose Θ(t) = (θ1
(t), θ2

(t),…, θr
(t)) at current tth iteration and Θ* = (θ1

*, 

θ2
*,…, θr

*), each si
* = 1–mi

* is really the speed that the next θi
(t+1) moves to θi

*. From equations 

3.26 and 3.28, equation 3.30 specifies the speed s* of GEM algorithm. 

𝑠∗ = 1 −𝑚∗ 
Where, 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ , 𝑚2
∗ , … ,𝑚𝑟

∗} 
(3.30) 

As a convention, if GEM algorithm fortunately stops at the first iteration such that Θ(1) = Θ(2) 

= Θ* then, s* = 1. 

For example, when Θ degrades into scalar as Θ = θ, the fourth column of table 1.1 

(Dempster, Laird, & Rubin, 1977, p. 3) gives sequences which approaches Me
* = DM(θ*) 

through many iterations by the following ratio to determine the limit in equation 3.23 with θ* 

= 0.6268. 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
 

In practice, if GEM is run step by step, θ* is not known yet at some tth iteration when GEM 

does not converge yet. Hence, equation 3.24 (McLachlan & Krishnan, 1997, p. 120) is used to 

make approximation of Me
* = DM(θ*) with unknown θ* and θ(t) ≠ θ(t+1). 

𝐷𝑀(𝜃∗) ≈
𝜃(𝑡+2) − 𝜃(𝑡+1)

𝜃(𝑡+1) − 𝜃(𝑡)
 

It is required only two successive iterations because both θ(t) and θ(t+1) are determined at tth 

iteration whereas θ(t+2) is determined at (t+1)th iteration. For example, in table 1.1, given θ(1) = 

0.5, θ(2) = 0.6082, and θ(3) = 0.6243, at t = 1, we have: 

𝐷𝑀(𝜃∗) ≈
𝜃(3) − 𝜃(2)

𝜃(2) − 𝜃(1)
=
0.6243 − 0.6082

0.6082 − 0.5
= 0.1488 

Whereas the real Me
* = DM(θ*) is 0.1465 shown in the fourth column of table 1.1 at t = 1. 

We will prove by contradiction that if definition 1 is satisfied strictly such that Q(M(Θ(t)) | 

Θ(t)) > Q(Θ(t) | Θ(t)) then, li
* < 0 for all i. Conversely, suppose we always have li

* ≥ 0 for some 

i when Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)). Given Θ degrades into scalar as Θ = θ with note that  

scalar is 1-element vector, when Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)), the sequence {𝐿(𝜃(𝑡))}
𝑡=1

+∞
=

𝐿(𝜃(1)), 𝐿(𝜃(2)), … , 𝐿(𝜃(𝑡)), … is strictly increasing, which in turn causes that the sequence 

{𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is strictly monotonous. This means: 

𝜃1 < 𝜃2 < ⋯ < 𝜃𝑡 < 𝜃𝑡+1 < ⋯ < 𝜃
∗ 
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Or 

𝜃1 > 𝜃2 > ⋯ > 𝜃𝑡 > 𝜃𝑡+1 > ⋯ > 𝜃
∗ 

It implies 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
< 1, ∀𝑡 

So we have 

𝑆𝑒
∗ = 1 −𝑀𝑒

∗ = 1 − lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
> 0 

From equation 3.29, we deduce that D2L(θ*) = Le
* = Qe

*Se
* < 0 where Qe

* = D20Q(θ* | θ*) < 0. 

However, this contradicts the converse assumption “there always exists li
* ≥ 0 for some i when 

Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t))”. Therefore, if Q(M(Θ(t)) | Θ(t)) > Q(Θ(t) | Θ(t)) then, li
* < 0 for all 

i. In other words, at that time, D2L(Θ*) = Le
* is negative definite. Recall that we proved that 

DL(Θ*) = 0 for corollary 3. Now we have D2L(Θ*) negative definite, which means that Θ* is a 

local maximizer of L(Θ*) in corollary 3. In other words, corollary 3 is proved. 

Recall that L(Θ) is the log-likelihood function of observed Y according to equation 2.3. 

𝐿(Θ) = log(𝑔(𝑌|Θ)) = log( ∫ 𝑓(𝑋|Θ)d𝑋

𝑿(𝑌)

) 

Both –D20H(Θ* | Θ*) and –D20Q(Θ* | Θ*) are Fisher information matrices (Zivot, 2009, pp. 7-

9) specified by equation 3.31. 

𝐼𝐻(Θ
∗) = −𝐷20𝐻(Θ∗|Θ∗) 

𝐼𝑄(Θ
∗) = −𝐷20𝑄(Θ∗|Θ∗) 

(3.31) 

IH(Θ*) measures information of X about Θ* with support of Y whereas IQ(Θ*) measures 

information of X about Θ*. In other words, IH(Θ*) measures observed information whereas 

IQ(Θ*) measures hidden information. Let VH(Θ*) and VQ(Θ*) be covariance matrices of Θ* with 

regard to IH(Θ*) and IQ(Θ*), respectively. They are inverses of IH(Θ*) and IQ(Θ*), according to 

equation 3.32. 

𝑉𝐻(Θ
∗) = (𝐼𝐻(Θ

∗))
−1

𝑉𝑄(Θ
∗) = (𝐼𝑄(Θ

∗))
−1 (3.32) 

Equation 3.33 is a variant of equation 3.17 to calculate DM(Θ*) based on information matrices: 

𝐷𝑀(Θ∗) = 𝐼𝐻(Θ
∗) (𝐼𝑄(Θ

∗))
−1

= (𝑉𝐻(Θ
∗))

−1
𝑉𝑄(Θ

∗) (3.33) 

If f(X | Θ), g(Y | Θ) and k(X | Y, Θ) belong to exponential family, from equations 3.14 and 3.16, 

we have: 

𝐷20𝐻(Θ∗|Θ∗) = −𝑉(𝜏(𝑋)|𝑌, Θ∗) 
𝐷20𝑄(Θ∗|Θ∗) = −𝑉(𝜏(𝑋)|Θ∗) 

Hence, equation 3.34 specifies DM(Θ*) in case of exponential family. 

𝐷𝑀(Θ∗) = 𝑉(𝜏(𝑋)|𝑌, Θ∗)(𝑉(𝜏(𝑋)|Θ∗))
−1

 (3.34) 

Equation 3.35 specifies relationships among VH(Θ*), VQ(Θ*), V(τ(X) | Y, Θ*), and V(τ(X) | Θ*) 

in case of exponential family. 

𝑉𝐻(Θ
∗) = (𝑉(𝜏(𝑋)|𝑌, Θ∗))

−1

𝑉𝑄(Θ
∗) = (𝑉(𝜏(𝑋)|Θ∗))

−1  (3.35) 

 

4. Variants of EM algorithm 
The main purpose of EM algorithm (GEM algorithm) is to maximize the log-likelihood L(Θ) 

= log(g(Y | Θ)) with observed data (incomplete data) Y by maximizing the condition expectation 

Q(Θ’ | Θ). Such Q(Θ’ | Θ) is defined fixedly in E-step. Therefore, most variants of EM algorithm 
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focus on how to maximize Q(Θ’ | Θ) in M-step more effectively so that EM is faster or more 

accurate. 

 

4.1. EM algorithm with prior probability 

DLR (Dempster, Laird, & Rubin, 1977, pp. 6, 11) mentioned that the convergence rate DM(Θ*) 

specified by equation 3.17 can be improved by adding a prior probability π(Θ) in conjugation 

with f(X | Θ), g(Y | Θ) or k(X | Y, Θ) according to maximum a posteriori probability (MAP) 

method (Wikipedia, Maximum a posteriori estimation, 2017). For example, if π(Θ) in 

conjugation with g(Y | Θ) then, the posterior probability π(Θ | Y) is: 

𝜋(Θ|𝑌) =
𝑔(𝑌|Θ)𝜋(Θ)

∫ 𝑔(𝑌|Θ)𝜋(Θ)dΘ
Θ

 

Because ∫ 𝑔(𝑌|Θ)𝜋(Θ)dΘ
Θ

 is constant with regard to Θ, the optimal likelihood-maximization 

estimate Θ* is a maximizer of g(Y | Θ)π(Θ). When π(Θ) is conjugate prior of the posterior 

probability π(Θ | X)  (or π(Θ | Y)), both π(Θ) and π(Θ | X) (or π(Θ | Y)) have the same 

distributions (Wikipedia, Conjugate prior, 2018); for example, if π(Θ) is distributed normally, 

π(Θ | X) (or π(Θ | Y)) is also distributed normally. 

For GEM algorithm, the log-likelihood function associated MAP method is ℒ(Θ) specified 

by equation 4.1.1 with note that π(Θ) is non-convex function. 

ℒ(Θ) = log(𝑔(𝑌|Θ)𝜋(Θ)) = 𝐿(Θ) + log(𝜋(Θ)) (4.1.1) 

It implies from equation 3.2 that 

𝑄(Θ′|Θ) + log(𝜋(Θ′)) = 𝐿(Θ′) + log(𝜋(Θ′)) + 𝐻(Θ′|Θ) = ℒ(Θ′) + 𝐻(Θ′|Θ) 

Let, 

𝑄+(Θ
′|Θ) = 𝑄(Θ′|Θ) + log(𝜋(Θ′)) (4.1.2) 

GEM algorithm now aims to maximize Q+(Θ’ | Θ) instead of maximizing Q(Θ’ | Θ). The proof 

of convergence for Q+(Θ’ | Θ) is not changed in manner but determining the convergence matrix 

Me for Q+(Θ’ | Θ) is necessary. Because H(Θ’ | Θ) is kept intact whereas Q(Θ’ | Θ) is replaced 

by Q+(Θ’ | Θ), we expect that the convergence rate m* specified by equation 3.26 is smaller so 

that the convergence speed s* is increased and so GEM algorithm is improved with regard to 

Q+(Θ’ | Θ). Equation 4.1.3 specifies DM(Θ*) for Q+(Θ’ | Θ). 

𝐷𝑀(Θ∗) = 𝐷20𝐻(Θ∗|Θ∗)(𝐷20𝑄+(Θ
∗|Θ∗))

−1
 (4.1.3) 

Where Q+(Θ’ | Θ) is specified by equation 4.1.2 and D20Q+(Θ’ | Θ) is specified by equation 

4.1.4. 

𝐷20𝑄+(Θ
′|Θ) = 𝐷20𝑄(Θ′|Θ) + 𝐷20𝐿(𝜋(Θ′)) (4.1.4) 

Where, 

𝐿(𝜋(Θ′)) = log(𝜋(Θ′)) 
Because Q(Θ’ | Θ) and π(Θ’) are smooth enough, D20Q(Θ* | Θ*) and D20L(π(Θ*)) are symmetric 

matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018). 

Thus, D20Q(Θ* | Θ*) and D20L(π(Θ*)) are commutative: 

D20Q(Θ* | Θ*)D20L(π(Θ*)) = D20L(π(Θ*))D20Q(Θ* | Θ*) 

Suppose both D20Q(Θ* | Θ*) and D20L(π(Θ*)) are diagonalizable then, they are simultaneously 

diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a (orthogonal) 

eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) (StackExchange, 

2013): 

𝐷20𝑄(Θ∗|Θ∗) = 𝑉𝑄𝑒
∗𝑉−1

𝐷20𝐿(𝜋(Θ∗)) = 𝑉Π𝑒
∗𝑉−1

 

Where Qe
* and Πe

* are eigenvalue matrices of D20Q(Θ* | Θ*) and D20L(π(Θ*)), respectively. 

Note Qe
* and its eigenvalues are mentioned in equation 3.20. Because π(Θ*) is non-convex 

function, eigenvalues π1
*, π2

*,…, πr
* of Πe

* are non-positive. 
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Π𝑒
∗ = (

𝜋1
∗ 0 ⋯ 0
0 𝜋2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜋𝑟

∗

) 

From equation 4.1.2, D20Q+(Θ* | Θ*) is decomposed as below: 

𝐷20𝑄+(Θ
∗|Θ∗) = 𝐷20𝑄(Θ∗|Θ∗) + 𝐷20𝐿(𝜋(Θ∗)) = 𝑉𝑄𝑒

∗𝑉−1 + 𝑉Π𝑒
∗𝑉−1 = 𝑉(𝑄𝑒

∗ + Π𝑒
∗)𝑉−1 

So eigenvalue matrix of D20Q+(Θ* | Θ*) is (Qe
* + Πe

*) and eigenvalues of D20Q+(Θ* | Θ*) are 

qi
* + πi

*, as follows: 

𝑄𝑒
∗ + Π𝑒

∗ = (

𝑞1
∗ + 𝜋1

∗ 0 ⋯ 0
0 𝑞2

∗ + 𝜋2
∗ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑟

∗ + 𝜋𝑟
∗

) 

According to equation 3.19, the eigenvalue matrix of D20H(Θ* | Θ*) is He
* fixed as follows: 

𝐻𝑒
∗ = (

ℎ1
∗ 0 ⋯ 0
0 ℎ2

∗ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ𝑟

∗

) 

Due to DM(Θ*) = D20H(Θ* | Θ*)D20Q+(Θ* | Θ*), equation 3.21 is re-calculated: 

𝐷𝑀(Θ∗) = (𝑈𝐻𝑒
∗𝑈−1)(𝑈(𝑄𝑒

∗ + Π𝑒
∗)𝑈−1)−1 = 𝑈𝐻𝑒

∗𝑈−1𝑈(𝑄𝑒
∗ +Π𝑒

∗)−1𝑈−1

= 𝑈(𝐻𝑒
∗(𝑄𝑒

∗ + Π𝑒
∗)−1)𝑈−1 

As a result, the convergence matrix Me
* which is eigenvalue matrix of DM(Θ*) is re-calculated 

by equation 4.1.5. 

𝑀𝑒
∗ = 𝐻𝑒

∗(𝑄𝑒
∗ + Π𝑒

∗)−1 =

(

 
 
 
 
 
𝑚1
∗ =

ℎ1
∗

𝑞1
∗ + 𝜋1

∗ 0 ⋯ 0

0 𝑚2
∗ =

ℎ2
∗

𝑞2
∗ + 𝜋2

∗ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑚𝑟
∗ =

ℎ𝑟
∗

𝑞𝑟∗ + 𝜋𝑟∗)

 
 
 
 
 

 (4.1.5) 

The convergence rate m* of GEM is re-defined by equation 4.1.6. 

𝑚∗ = max
𝑚𝑖
∗
{𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑟

∗}  where 𝑚𝑖
∗ =

ℎ𝑖
∗

𝑞𝑖
∗ + 𝜋𝑖

∗ (4.1.6) 

Because all hi
*, qi

*, and πi
* are non-positive, we have: 

ℎ𝑖
∗

𝑞𝑖
∗ + 𝜋𝑖

∗ ≤
ℎ𝑖
∗

𝑞𝑖
∗  , ∀𝑖 

Therefore, by comparing equation 4.1.6 and equation 3.26, we conclude that m* is smaller with 

regard to Q+(Θ’ | Θ). In other words, the convergence rate is improved with support of prior 

probability π(Θ). In literature of EM, the combination of GEM and MAP with support of π(Θ) 

results out a so-called MAP-GEM algorithm. 

 

4.2. EM algorithm with Newton-Raphson method 

In the M-step of GEM algorithm, the next estimate Θ(t+1) is a maximizer of Q(Θ | Θ(t)), which 

means that Θ(t+1) is a solution of equation D10Q(Θ | Θ(t)) = 0T where D10Q(Θ | Θ(t)) is the first-

order derivative of Q(Θ | Θ(t)) with regard to variable Θ. Newton-Raphson method (McLachlan 

& Krishnan, 1997, p. 29) is applied into solving the equation D10Q(Θ | Θ(t)) = 0T. As a result, 

M-step is replaced a so-called Newton step (N-step). 

N-step starts with an arbitrary value Θ0 as a solution candidate and also goes through many 

iterations. Suppose the current parameter is Θi, the next value Θi +1 is calculated based on 

equation 4.2.1. 
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Θ𝑖+1 = Θ𝑖 − (𝐷
20𝑄(Θ𝑖|Θ

(𝑡)))
−1

(𝐷10𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

 (4.2.1) 

N-step converges after some ith iteration. At that time, Θi+1 is solution of equation D10Q(Θ | Θ(t)) 

= 0 if Θi+1=Θi. So the next parameter of GEM is Θ(t+1) = Θi+1. The equation 4.2.1 is Newton-

Raphson process. Recall that D10Q(Θ | Θ(t)) is gradient vector and D20Q(Θ | Θ(t)) is Hessian 

matrix. Following is a proof of equation 4.2.1. 

According to first-order Taylor series expansion of D10Q(Θ | Θ(t)) at Θ = Θi with very small 

residual, we have: 

𝐷10𝑄(Θ|Θ(𝑡)) ≈ 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) + (Θ − Θ𝑖)

𝑇 (𝐷20𝑄(Θ|Θ(𝑡)))
𝑇

 

Because Q(Θ | Θ(t)) is smooth enough, D20Q(Θ | Θ(t)) is symmetric matrix according to 

Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018), which implies: 

D20Q(Θ | Θ(t)) = (D20Q(Θ | Θ(t)))T 

So we have: 

𝐷10𝑄(Θ|Θ(𝑡)) ≈ 𝐷10𝑄(Θ𝑖|Θ
(𝑡)) + (Θ − Θ𝑖)

𝑇𝐷20𝑄(Θ𝑖|Θ
(𝑡)) 

Let Θ = Θi+1 and we expect that D10Q(Θi+1 | Θ
(t)) = 0T so that Θi+1 is a solution. 

𝟎𝑇 = 𝐷10𝑄(Θ𝑖+1|Θ
(𝑡)) ≈ 𝐷10𝑄(Θ𝑖|Θ

(𝑡)) + (Θ𝑖+1 − Θ𝑖)
𝑇𝐷20𝑄(Θ𝑖|Θ

(𝑡)) 
It implies: 

(Θ𝑖+1)
𝑇 ≈ (Θ𝑖)

𝑇 −𝐷10𝑄(Θ𝑖|Θ
(𝑡)) (𝐷20𝑄(Θ𝑖|Θ

(𝑡)))
−1

 

This means: 

Θ𝑖+1 ≈ Θ𝑖 − (𝐷
20𝑄(Θ𝑖|Θ

(𝑡)))
−1

(𝐷10𝑄(Θ𝑖|Θ
(𝑡)))

𝑇

∎ 

Rai and Matthews (Rai & Matthews, 1993) proposed a so-called EM1 algorithm in which 

Newton-Raphson process is reduced into one iteration, as seen in table 4.2.1 (Rai & Matthews, 

1993, pp. 587-588). Rai and Matthews assumed that f(x) belongs to exponential family but their 

EM1 algorithm is really a variant of GEM in general. In other words, there is no requirement 

of exponential family for EM1. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.6. 

M-step: 

The next parameter Θ(t+1) is: 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.2) 
 

Table 4.2.1. E-step and M-step of EM1 algorithm 

Rai and Matthews proved convergence of EM1 algorithm by their proposal of equation 4.2.2. 

Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ = Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

Where Θ0
(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡))

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡))

− (Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

By substituting equation 4.2.2 for Q(Θ(t+1) | Θ(t)) – Q(Θ(t) | Θ(t)) with note that D20Q(Θ | Θ(t)) is 

symmetric matrix, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇
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−𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

(Due to ((𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

)
𝑇

= ((𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

)
−1

= (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

) 

Let, 

𝐴 = (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

 

Because Q(Θ’ | Θ) is smooth enough, D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are symmetric 

matrices according to Schwarz’s theorem (Wikipedia, Symmetry of second derivatives, 2018). 

Thus, D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are commutative: 

D20Q(Θ(t) | Θ(t))D20Q(Θ0
(t+1) | Θ(t)) = D20Q(Θ0

(t+1) | Θ(t))D20Q(Θ(t) | Θ(t))  

Suppose both D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)) are diagonalizable then, they are 

simultaneously diagonalizable (Wikipedia, Commuting matrices, 2017). Hence there is a 

(orthogonal) eigenvector matrix V such that (Wikipedia, Diagonalizable matrix, 2017) 

(StackExchange, 2013): 

𝐷20𝑄(Θ(𝑡)|Θ(𝑡)) = 𝑊𝑄𝑒
(𝑡)𝑊−1

𝐷20𝑄(Θ0
(𝑡+1)|Θ(𝑡)) = 𝑊𝑄𝑒

(𝑡+1)𝑊−1
 

Where Qe
(t) and Qe

(t+1) are eigenvalue matrices of D20Q(Θ(t) | Θ(t)) and D20Q(Θ0
(t+1) | Θ(t)), 

respectively. Matrix A is decomposed as below: 

𝐴 = (𝑊𝑄𝑒
(𝑡)𝑊−1)

−1

∗ (𝑊𝑄𝑒
(𝑡+1)𝑊−1) ∗ (𝑊𝑄𝑒

(𝑡)𝑊−1)
−1

 

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑊−1𝑊𝑄𝑒
(𝑡+1)𝑊−1𝑊(𝑄𝑒

(𝑡))
−1

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑄𝑒
(𝑡+1)𝑄𝑒

(𝑡)𝑊−1 

= 𝑊(𝑄𝑒
(𝑡))

−1

𝑄𝑒
(𝑡)𝑄𝑒

(𝑡+1)𝑊−1 = 𝑊𝑄𝑒
(𝑡+1)𝑊−1 

(Because Qe
(t) and Qe

(t+1) are commutative) 

Hence, eigenvalue matrix of A is also Qe
(t+1). Suppose D20Q(Θ0

(t+1) | Θ(t)) is negative definite, A 

is negative definite too. We have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐴 ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Because D20Q(Θ(t) | Θ(t)) is negative definite, we have: 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))
−1

∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

< 0 

Because A is negative definite, we have: 

𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐴 ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

< 0 

As a result, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0, ∀𝑡∎ 

Hence, EM1 surely converges to a local maximizer Θ* according to corollary 3 with assumption 

that D20Q(Θ0
(t+1) | Θ(t)) and D20Q(Θ(t) | Θ(t)) are negative definite for all t. 

Rai and Matthews made experiment on their EM1 algorithm (Rai & Matthews, 1993, p. 

590). As a result, EM1 algorithm saved a lot of computations in M-step. In fact, by comparing 

GEM (table 2.2) and EM1 (table 4.2.1), we conclude that EM1 increases Q(Θ | Θ(t)) after each 

iteration whereas GEM maximizes Q(Θ | Θ(t)) after each iteration. However, EM1 will 

maximizes Q(Θ | Θ(t)) at the last iteration when it converges. EM1 gains this excellent and 

interesting result because of Newton-Raphson process specified by equation 4.2.2. 
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Because equation 3.17 is not changed with regard to EM1, the convergence matrix of EM1 

is not changed. 

𝑀𝑒 = 𝐻𝑒𝑄𝑒
−1 

Therefore, EM1 does not improve convergence rate in theory as MAP-GEM algorithm does 

but EM1 algorithm really speeds up GEM process in practice because it saves computational 

cost in M-step. 

In equation 4.2.2, the second-order derivative D20Q(Θ(t) | Θ(t)) is re-computed at every 

iteration for each Θ(t). If D20Q(Θ(t) | Θ(t)) is complicated, it can be fixed by D20Q(Θ(1) | Θ(1)) 

over all iterations where Θ(1) is arbitrarily initialized for EM process so as to  save 

computational cost. In other words, equation 4.2.2 is replaced by equation 4.2.3 (Ta, 2014). 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Θ(1)|Θ(1)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.3) 

In equation 4.2.3, only D10Q(Θ(t) | Θ(t)) is re-computed at every iteration whereas D20Q(Θ(1) | 

Θ(1)) is fixed. Equation 4.2.3 implies a pseudo Newton-Raphson process which still converges 

to a local maximizer Θ* but it is slower than Newton-Raphson process specified by equation 

4.2.2 (Ta, 2014). 

Newton-Raphson process specified by equation 4.2.2 has second-order convergence. I 

propose to use equation 4.2.4 for speeding up EM1 algorithm. In other words, equation 4.2.2 

is replaced by equation 4.2.4 (Ta, 2014), in which Newton-Raphson process is improved with 

third-order convergence. Note, equation 4.2.4 is common in literature of Newton-Raphson 

process. 

Θ(𝑡+1) = Θ(𝑡) − (𝐷20𝑄(Φ(𝑡)|Θ(𝑡)))
−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Where, 

Φ(𝑡) = Θ(𝑡) −
1

2
(𝐷20𝑄(Θ(𝑡)|Θ(𝑡)))

−1

(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

(4.2.4) 

The convergence of equation 4.2.4 is same as the convergence of equation 4.2.2. Following is 

a proof of equation 4.2.4 by Ta (Ta, 2014). 

Without loss of generality, suppose Θ is scalar such that Θ = θ, let 

𝑞(𝜃) = 𝐷10𝑄(𝜃|𝜃(𝑡)) 

Let r(θ) represents improved Newton-Raphson process. 

𝜂(𝜃) = 𝜃 −
𝑞(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

Suppose ω(θ) has first derivative and we will find ω(θ). According to Ta (Ta, 2014), the first-

order derivative of η(θ) is: 

𝜂′(𝜃) = 1 −
𝑞′(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

+
𝑞(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

According to Ta (Ta, 2014), the second-order derivative of η(θ) is: 

𝜂′′(𝜃) = −
𝑞′′(𝜃)

𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃))
 

+
2𝑞′(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  
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−
2𝑞(𝜃) (𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))

2

(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))
2

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
3  

+
𝑞(𝜃)𝑞′′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(1 + 𝜔′(𝜃)𝑞(𝜃) + 𝜔(𝜃)𝑞′(𝜃))

2

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

+
(𝑞(𝜃))

2
𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))𝜔′′(𝜃)

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

+
𝑞(𝜃)𝑞′′(𝜃 + 𝜔(𝜃)𝑞(𝜃))(2𝜔′(𝜃)𝑞′(𝜃) + 𝜔(𝜃)𝑞′′(𝜃))

(𝑞′(𝜃 + 𝜔(𝜃)𝑞(𝜃)))
2  

If �̅� is solution of equation q(θ) = 0, Ta (Ta, 2014) gave: 

𝑞(�̅�) = 0

𝜂(�̅�) = �̅�

𝜂′(�̅�) = 0

𝜂′′(�̅�) =
𝑞′′(�̅�)

𝑞′(�̅�)
(1 + 2𝜔(�̅�)𝑞′(�̅�))

 

In order to achieve 𝜂′′(�̅�) = 0, Ta (Ta, 2014) selected: 

𝜔(𝜃) = −
𝑞(𝜃)

2𝑞′(𝜃)
, ∀𝜃 

According to Ta (Ta, 2014), Newton-Raphson process is improved as follows: 

𝜃(𝑡+1) = 𝜃(𝑡) −
𝑞(𝜃(𝑡))

𝑞′ (𝜃(𝑡) −
𝑞(𝜃(𝑡))

2𝑞′(𝜃(𝑡))
)

 

This means: 

𝜃(𝑡+1) = 𝜃(𝑡) −
𝐷10𝑄(𝜃|𝜃(𝑡))

𝐷20𝑄 (𝜃(𝑡) −
𝐷10𝑄(𝜃|𝜃(𝑡))

2𝐷20𝑄(𝜃|𝜃(𝑡))
|𝜃(𝑡))

 

As a result, equation 4.2.4 is a generality of the equation above when Θ is vector. 

I propose to apply gradient descent method (Ta, 2014) into M-step of GEM so that Newton-

Raphson process is replaced by gradient descent process with expectation that descending 

direction which is the opposite of gradient vector D10Q(Θ | Θ(t)) speeds up convergence of GEM. 

Table 4.2.2 specifies GEM associated with gradient descent method, which is called GD-GEM 

algorithm. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.6. 

M-step: 

The next parameter Θ(t+1) is: 

Θ(𝑡+1) = Θ(𝑡) − 𝛾(𝑡) (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 (4.2.5) 

Where γ(t) > 0 is length of the descending direction. As usual, γ(t) is selected such that 

𝛾(𝑡) = argmax
𝛾

𝑄(Φ(𝑡)|Θ(𝑡)) (4.2.6) 

Where, 

Φ(𝑡) = Θ(𝑡) + 𝛾𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) 
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Table 4.2.1. E-step and M-step of GD-GEM algorithm 

Note, gradient descent method is used to solve minimization problem but its use for solving 

maximization problem is the same. Second-order Taylor series expending for Q(Θ | Θ(t)) at Θ 

= Θ(t+1) to obtain: 

𝑄(Θ|Θ(𝑡)) = 𝑄(Θ(𝑡+1)|Θ(𝑡)) + 𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1))

+ (Θ − Θ(𝑡+1))
𝑇
𝐷20𝑄(Θ0

(𝑡+1)|Θ(𝑡))(Θ − Θ(𝑡+1)) 

Where Θ0
(t+1) is on the line segment joining Θ and Θ(t+1). Let Θ = Θ(t), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡))

= −𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡))

− (Θ(𝑡+1) − Θ(𝑡))
𝑇
𝐷20(Θ0

(𝑡+1)|Θ(𝑡))(Θ(𝑡+1) − Θ(𝑡)) 

By substituting equation 4.2.5 for Q(Θ(t+1) | Θ(t)) – Q(Θ(t+1) | Θ(t)), we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) 

= 𝛾(𝑡)𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

−(𝛾(𝑡))
2
𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) ∗  𝐷20(Θ0

(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

 

Due to: 

𝐷10𝑄(Θ(𝑡+1)|Θ(𝑡)) ∗ (𝐷10𝑄(Θ(𝑡)|Θ(𝑡)))
𝑇

≥ 0

Suppose 𝐷20(Θ0
(𝑡+1)|Θ(𝑡)) is negative definite

𝛾(𝑡) > 0

 

As a result, we have: 

𝑄(Θ(𝑡+1)|Θ(𝑡)) − 𝑄(Θ(𝑡)|Θ(𝑡)) > 0, ∀𝑡∎ 

Hence, GD-GEM surely converges to a local maximizer Θ* according to corollary 3 with 

assumption that D20Q(Θ0
(t+1) | Θ(t)) is negative definite. 

It is not easy to solve the maximization problem with regard to γ according to equation 

4.2.6. So if Q(Θ | Θ(t)) satisfies Wolfe conditions (Wikipedia, Wolfe conditions, 2017) and 

concavity and D10Q(Θ | Θ(t)) is Lipschitz continuous (Wikipedia, Lipschitz continuity, 2018) 

then, equation 4.2.6 is replaced by equation 4.2.7 (Wikipedia, Gradient descent, 2018). 

𝛾(𝑡) =
(𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐷10𝑄(Θ(𝑡)|Θ(𝑡−1))) (Θ(𝑡) − Θ(𝑡−1))

|𝐷10𝑄(Θ(𝑡)|Θ(𝑡)) − 𝐷10𝑄(Θ(𝑡)|Θ(𝑡−1))|
2  (4.2.7) 

Where |.| denotes length or module of vector. 

 

4.3. EM algorithm with Aitken acceleration 

According to Lansky and Casella (Lansky & Casella, 1992), GEM converges faster by 

combination of GEM and Aitken acceleration. Without loss of generality, suppose Θ is scalar 

such that Θ = θ, the sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … is monotonous. From equation 

3.23 

𝐷𝑀(𝜃∗) = lim
𝑡→+∞

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
 

We have the following approximate with t large enough (Lambers, 2009, p. 1): 

𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≈
𝜃(𝑡+2) − 𝜃∗

𝜃(𝑡+1) − 𝜃∗
 

We establish the following equation from the above approximation, as follows (Lambers, 2009, 

p. 1): 
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𝜃(𝑡+1) − 𝜃∗

𝜃(𝑡) − 𝜃∗
≈
𝜃(𝑡+2) − 𝜃∗

𝜃(𝑡+1) − 𝜃∗
 

⇒ (𝜃(𝑡+1) − 𝜃∗)
2
≈ (𝜃(𝑡+2) − 𝜃∗)(𝜃(𝑡) − 𝜃∗) 

⇒ (𝜃(𝑡+1))
2
− 2𝜃(𝑡+1)𝜃∗ ≈ 𝜃(𝑡+2)𝜃(𝑡) − 𝜃(𝑡+2)𝜃∗ − 𝜃(𝑡)𝜃∗ 

⇒ (𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡))𝜃∗ ≈ 𝜃(𝑡)(𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)) − (𝜃(𝑡+1) − 𝜃(𝑡))
2
 

Hence, θ* is approximated by (Lambers, 2009, p. 1) 

𝜃∗ ≈ 𝜃(𝑡) −
(𝜃(𝑡+1) − 𝜃(𝑡))

2

𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)
 

We construct Aitken sequence {𝜃(𝑡)}
𝑡=1

+∞
= 𝜃(1), 𝜃(2), … , 𝜃(𝑡), … such that (Wikipedia, Aitken's 

delta-squared process, 2017) 

𝜃(𝑡) = 𝜃(𝑡) −
(𝜃(𝑡+1) − 𝜃(𝑡))

2

𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡)
= 𝜃(𝑡) −

(∆𝜃(𝑡))
2

∆2𝜃(𝑡)
 (4.3.1) 

Where Δ is forward difference operator, 

∆𝜃(𝑡) = 𝜃(𝑡+1) − 𝜃(𝑡) 
And 

∆2𝜃(𝑡) = ∆(∆𝜃(𝑡)) = ∆(𝜃(𝑡+1) − 𝜃(𝑡)) = ∆𝜃(𝑡+1) − ∆𝜃(𝑡)

= (𝜃(𝑡+2) − 𝜃(𝑡+1)) − (𝜃(𝑡+1) − 𝜃(𝑡)) = 𝜃(𝑡+2) − 2𝜃(𝑡+1) + 𝜃(𝑡) 

When Θ is vector as Θ = (θ1, θ2,…, θr)
T, Aitken sequence {Θ̂(𝑡)}

𝑡=1

+∞
= Θ̂(1), Θ̂(2), … , Θ̂(𝑡), … is 

defined by applying equation 4.3.1 into its components θi (s) according to equation 4.3.2: 

𝜃𝑖
(𝑡) = 𝜃𝑖

(𝑡) −
(∆𝜃𝑖

(𝑡))
2

∆2𝜃𝑖
(𝑡)

, ∀𝑖 = 1,2, … , 𝑟 (4.3.2) 

Where, 

∆𝜃𝑖
(𝑡) = 𝜃𝑖

(𝑡+1) − 𝜃𝑖
(𝑡)

 

∆2𝜃(𝑡) = 𝜃𝑖
(𝑡+2) − 2𝜃𝑖

(𝑡+1) + 𝜃𝑖
(𝑡)

 

According theorem of Aitken acceleration, Aitken sequence {Θ̂(𝑡)}
𝑡=1

+∞
 approaches Θ* faster 

than the sequence {Θ(𝑡)}
𝑡=1

+∞
= Θ(1), Θ(2), … , Θ(𝑡), … with note that the sequence {Θ(𝑡)}

𝑡=1

+∞
 is 

instance of GEM. 

lim
𝑡→+∞

𝜃𝑖
(𝑡) − 𝜃𝑖

∗

𝜃𝑖
(𝑡) − 𝜃𝑖

∗
= 0 

Essentially, the combination of GEM and Aitken acceleration is to replace the sequence 

{Θ(𝑡)}
𝑡=1

+∞
 by Aitken sequence {Θ̂(𝑡)}

𝑡=1

+∞
 as seen in table 4.3.1. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current Θ(t), according to equation 

2.6. Note that t = 1, 2, 3,… and Θ(0) = Θ(1). 

M-step: 

Let Θ(t+1) = (θ1
(t+1), θ2

(t),…, θr
(t+1))T be a maximizer of Q(Θ | Θ(t)). Note Θ(t+1) will become 

current parameter at the next iteration ((t+1)th iteration). 

Aitken parameter Θ̂(𝑡−1) = (𝜃1
(𝑡−1), 𝜃2

(𝑡−1), … , 𝜃𝑟
(𝑡−1))

𝑇

 is calculated according to 

equation 4.3.2. 
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𝜃𝑖
(𝑡−1) = 𝜃𝑖

(𝑡−1) −
(∆𝜃𝑖

(𝑡−1))
2

∆2𝜃𝑖
(𝑡−1)

 

If Θ̂(𝑡−1) = Θ̂(𝑡−2) then, the algorithm stops and we have Θ̂(𝑡−1) = Θ̂(𝑡−2) = Θ∗.  
Table 4.3.1. E-step and M-step of GEM algorithm combined with Aitken acceleration 

Because Aitken sequence {Θ̂(𝑡)}
𝑡=1

+∞
converges to Θ* faster than the sequence {Θ(𝑡)}

𝑡=1

+∞
 does, the 

convergence of GEM is improved with support of Aitken acceleration method. 

In equation 4.3.2, parametric components θi (s) converges separately. Guo, Li, and Xu (Guo, 

Li, & Xu, 2017) assumed such components converges together with the same rate. So they 

replaced equation 4.3.2 by equation 4.3.3 (Guo, Li, & Xu, 2017, p. 176) for Aitken sequence 

{Θ̂(𝑡)}
𝑡=1

+∞
. 

Θ̂(𝑡) = Θ(𝑡) −
|∆Θ(𝑡)|

2

|∆2Θ(𝑡)|
∆2Θ(𝑡) (4.3.3) 

 

4.4. ECM algorithm 

Because M-step of GEM is complicated, Meng and Rubin (Meng & Rubin, 1993) proposed a 

so-called Expectation Conditional Expectation (ECM) algorithm in which M-step is replaced 

by several computationally simpler Conditional Maximization (CM) steps. Each CM-step 

maximizes Q(Θ | Θ(t)) on given constraint. ECM is very useful in the case that maximization 

of Q(Θ | Θ(t)) with constraints is simpler than maximization of Q(Θ | Θ(t)) without constraints 

as usual. 

Suppose the parameter Θ is partitioned into S sub-parameters Θ = {Θ1, Θ2,…, ΘS} and there 

are S pre-selected vector function gs(Θ): 

𝐺 = {𝑔𝑠(Θ); 𝑠 = 1,2, … , 𝑆} (4.4.1) 

Each function gs(Θ) represents a constraint. Support there is a sufficient enough number of 

derivatives of each gs(Θ). In ECM algorithm (Meng & Rubin, 1993, p. 268), M-step is replaced 

by a sequence of CM-steps. Each CM-step maximizes Q(Θ | Θ(t)) over Θ but with some function 

gs(Θ) fixed at its previous value. Concretely, there are S CM-steps and every sth CM-step finds 

Θ(t+s/S) that maximizes Q(Θ | Θ(t)) over Θ subject to the constraint gs(Θ) = gs(Θ
(t+(s–1)/S)). The 

next parameter Θ(t+1) is the output of the final CM-step such that Θ(t+1) = Θ(t+s/S). Table 4.4.1 

(Meng & Rubin, 1993, p. 272) shows E-step and CM-steps of ECM algorithm. 

E-step: 

As usual, Q(Θ | Θ(t)) is determined based on current Θ(t) according to equation 2.6. 

CM-steps: 

There are S CM-steps. In every sth CM step (s =1, 2,…, S), finding 

Θ(𝑡+
𝑠
𝑆
) = argmax

Θ
{𝑄(Θ|Θ(𝑡)) with subject to 𝑔𝑠(Θ) = 𝑔𝑠 (Θ

(𝑡+
𝑠−1
𝑆
))} (4.4.2) 

The next parameter Θ(t+1) is the output of the final CM-step (Sth CM-step): 

Θ(𝑡+1) = Θ(𝑡+
𝑆
𝑆
)
 (4.4.3) 

Note, Θ(t+1) will become current parameter at the next iteration ((t+1)th iteration). 

Table 4.3.1. E-step and CM-steps of ECM algorithm 

ECM algorithm stops at some tth iteration such that Θ(t) = Θ(t+1) = Θ*. CM-steps depend on how 

to define pre-selected functions in G. For example, if gs(Θ) consists all sub-parameters except 

Θs then, the sth CM-step maximizes Q(Θ | Θ(t)) with regard to Θs whereas other sub-parameters 

are fixed. If gs(Θ) consists only Θs then, the sth CM-step maximizes Q(Θ | Θ(t)) with regard to 

all sub-parameters except Θs. Note, definition of ECM algorithm is specified by equations 4.4.2 

and 4.4.3 

From equations 4.4.2 and 4.4.3, we have: 
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𝑄(Θ(𝑡+1)|Θ(𝑡)) = 𝑄(𝑀(Θ(𝑡))|Θ(𝑡)) ≥ 𝑄(Θ(𝑡)|Θ(𝑡)), ∀𝑡 
Hence, the convergence of ECM is asserted according to corollary 3. However, Meng and 

Rubin (Meng & Rubin, 1993, pp. 274-276) provided some conditions for convergence of ECM 

to a maximizer of L(Θ). 

 

5. Discussions 
The main purpose of EM algorithm (GEM algorithm) is to maximize the log-likelihood L(Θ) 

= log(g(Y | Θ)) with observed data (incomplete data) Y. However, it is too difficult to maximize 

log(g(Y | Θ)) because g(Y | Θ) is not well-defined when g(Y | Θ) is integral of f(X | Θ) given a 

general mapping function. DLR solved this problem by an iterative process which is an instance 

of GEM algorithm. The lower-bound (Sean, 2009, pp. 7-8) of L(Θ) is maximized over many 

iterations of the iterative process so that L(Θ) is maximized finally. Such lower-bound is 

determined indirectly by the condition expectation Q(Θ | Θ(t)) so that maximizing Q(Θ | Θ(t)) is 

the same to maximizing the lower bound. Suppose Θ(t+1) is a maximizer of Q(Θ | Θ(t)) at tth 

iteration, which is also a maximizer of the lower bound at tth iteration. The lower bound is 

increased after every iteration. As a result, the maximizer Θ* of the final lower-bound after 

many iterations will be expected as a maximizer of L(Θ) in final. 

For more explanations, let lb(Θ | Θ(t)) be lower bound of L(Θ) at the tth iteration (Sean, 2009, 

p. 7). From equation 3.2, we have: 

lb(Θ | Θ(t)) = Q(Θ | Θ(t)) – H(Θ(t) | Θ(t)) 

Due to equations 3.2 and 3.3 

L(Θ) = Q(Θ | Θ(t)) – H(Θ | Θ(t)) 

H(Θ | Θ(t)) ≤ H(Θ(t) | Θ(t)) 

We have: 

lb(Θ | Θ(t)) ≤ L(Θ) 

The lower bound lb(Θ | Θ(t)) has following property (Sean, 2009, p. 7): 

lb(Θ(t) | Θ(t)) = Q(Θ(t) | Θ(t)) – H(Θ(t) | Θ(t)) = L(Θ(t)) 

Therefore, the two steps of GEM is interpreted with regard to the lower bound lb(Θ | Θ(t)) as 

seen in table 5.1. 

E-step: 

The lower bound lb(Θ | Θ(t)) is re-calculated based on Q(Θ | Θ(t)). 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) which is also a maximizer of lb(Θ 

| Θ(t)) because H(Θ(t) | Θ(t)) is constant. Note that Θ(t+1) will become current parameter at 

the next iteration so that the lower bound is increased in the next iteration. 

Table 5.1. An interpretation of GEM with lower bound 

Because Q(Θ | Θ(t)) is defined fixedly in E-step, most variants of EM algorithm focus on how 

to maximize Q(Θ’ | Θ) in M-step more effectively so that EM is faster or more accurate. 

The convergence of GEM is based on the assumption that Q(Θ’ | Θ) is smooth enough but 

Q(Θ’ | Θ) may not be smooth in practice when f(X | Θ) may be discrete probability function. 

For example, when f(X | Θ) and k(X | Y, Θ) are discrete, equation 2.6 becomes 

𝑄(Θ′|Θ) = 𝐸(log(𝑓(𝑋|Θ′))|𝑌, Θ) = ∑ 𝑘(𝑋|𝑌, Θ)log(𝑓(𝑋|Θ′))

𝑿(𝑌)

 

This discussion section goes beyond traditional variants of GEM algorithm when Q(Θ’ | Θ) is 

not smooth. Therefore, heuristic optimization methods which simulate social behavior, such as 

particle swarm optimization (PSO) algorithm (Poli, Kennedy, & Blackwell, 2007) and artificial 

bee colony (ABC) algorithm, are useful in case that there is no requirement of existence of 

derivative. Moreover, these heuristic methods aim to find global optimizer. I propose an 

association of GEM and PSO which produces a so-called quasi-PSO-GEM algorithm in which 
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M-step is implemented by one-time PSO (Wikipedia, Particle swarm optimization, 2017). 

Given current tth iteration, Θ(t) is modeled as swarm’s best position. Suppose there are n 

particles and each particle i has current velocity Vi
(t), current positions Ψi

(t), and best position 

Φi
(t). At each iteration, it is expected that these particles move to swarm’s new best position 

which is the next parameter Θ(t+1). The swarm’s best position at the final iteration is expected 

as Θ*. Table 5.2 is the proposal of quasi-PSO-GEM algorithm. 

E-step: 

As usual, Q(Θ | Θ(t)) is determined based on current Θ(t) according to equation 2.6. 

M-step includes four sub-steps: 

1. Calculating the next velocity Vi
(t+1) of each particle based on its current velocity Vi

(t), 

its current positions Ψi
(t), its best positions Φi

(t), and the swarm’s best position Θ(t): 

𝑉𝑖
(𝑡+1)

= 𝜔𝑉𝑖
(𝑡)
+ 𝑟𝜙1(Φ𝑖

(𝑡)
−Ψ𝑖

(𝑡)
) + 𝑟𝜙2(Θ

(𝑡) −Ψ𝑖
(𝑡)
) (5.1) 

Where ω, ϕ1, and ϕ2 are particular parameters of PSO (Poli, Kennedy, & Blackwell, 

2007, pp. 3-4) whereas r is a random number such that 0 < r < 1 (Wikipedia, Particle 

swarm optimization, 2017). 

2. Calculating the next position Ψi
(t+1) of each particle based on its current position Ψi

(t) 

and its current velocity Vi
(t): 

Ψ𝑖
(𝑡+1) = Ψ𝑖

(𝑡) + 𝑉𝑖
(𝑡)

 (5.2) 

3. If Q(Φi
(t) | Θ(t)) < Q(Ψi

(t+1) | Θ(t)) then, the next best position of each particle i is re-

assigned as Φi
(t+1) = Ψi

(t+1). Otherwise, such next best position is kept intact as Φi
(t+1) 

= Φi
(t). 

4. The next parameter Θ(t+1) is the swarm’s new best position over the best positions of 

all particles: 

Θ(𝑡+1) = argmax
Φ𝑖
(𝑡)

{𝑄(Φ1
(𝑡)|Θ(𝑡)), 𝑄(Φ2

(𝑡)|Θ(𝑡)), … , 𝑄(Φ𝑛
(𝑡)|Θ(𝑡))} (5.3) 

If the bias |Θ(t+1) – Θ(t)| is small enough, the algorithm stops. Otherwise, Θ(t+1) and all 

Vi
(t+1), Ψi

(t+1), Φi
(t+1) become current parameters in the next iteration. 

Table 5.1. E-step and M-step of the proposed quasi-PSO-GEM 

At the first iteration, each particle is initialized with Ψi
(1) = Φi

(1) = Θ(1) and uniformly distributed 

velocity Vi
(1). Note, Θ(1) is initialized arbitrarily. Other termination criteria can be used, for 

example, Q(Θ | Θ(t)) is large enough or the number of iterations is large enough. 

We cannot prove mathematically convergence of quasi-PSO-GEM but we expect that Θ(t+1) 

resulted from equation 5.3 is an approximation of Θ* at the last iteration after a large enough 

number of iterations. However, quasi-PSO-GEM tendentiously approaches global maximizer 

of L(Θ), regardless of whether L(Θ) is concave. Hence, it is necessary to make experiment on 

quasi-PSO-GEM. 

There are many other researches which combine EM and PSO but the proposed quasi-PSO-

GEM algorithm has different ideology when it one-time PSO is embed into M-step to maximize 

Q(Θ | Θ(t)) and so the ideology of quasi-PSO-GEM is near to the ideology of Newton-Raphson 

process. With different viewpoint, some other researches combine EM and PSO in order to 

solving better a particular problem instead of improving EM itself. For example, Ari and Aksoy 

(Ari & Aksoy, 2010) used PSO to solve optimization problem of the clustering algorithm based 

on mixture model and EM. Rajeswari and Gunasundari (Rajeswari & Gunasundari, 2016) 

proposed EM for PSO based weighted clustering. Zhang, Zhuang, Gao, Luo, Ran, and Du 

(Zhang, et al., 2014) proposed a so-called PSO-EM algorithm to make optimum use of PSO in 

partial E-step in order solve the difficulty of integrals in normal compositional model. 

Golubovic, Olcan, and Kolundzija (Golubovic, Olcan, & Kolundzija, 2007) proposed a few 

modifications of the PSO algorithm which are applied to EM optimization of a broadside 

antenna array. Tang, Song, and Liu (Tang, Song, & Liu, 2014) proposed a hybrid clustering 
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method based on improved PSO and EM clustering algorithm to overcome drawbacks of EM 

clustering algorithm. Tran, Vo, and Lee (Tran, Vo, & Lee, 2013) proposed a novel clustering 

algorithm for image segmentation by employing the arbitrary covariance matrices that uses 

PSO for the estimation of Gaussian mixture models. 
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