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Myeloperoxidase as an Active Disease Biomarker: Its Recent Biochemical and Pathological 
Perspectives  

 

Abstract 

Myeloperoxidase (MPO) belong to the family of heme containing peroxidases, produced mostly 

from polymorphonuclear neutrophils. The active enzyme (150 kD) is the product of MPO gene 

located on long arm of chromosome 17. The primary gene product undergoes several 

modifications like removal of introns and signal peptide and leads to the formation of 

enzymatically inactive glycosylated apoproMPO which complexes with chaperons, producing 

active proMPO by the insertion of heme moiety. The active enzyme is a homodimer of heavy and 

light chain protomers. This enzyme is released into extracellular fluid after oxidative stress and 

different inflammatory responses. MPO is the only type of peroxidase using H2O2 to oxidize 

several halides and pseudohalides to form different hypohalous acids. So the antibacterial activities 

of MPO involve the production of reactive oxygen and reactive nitrogen species. Controlled MPO 

release at the site of infection is of prime importance for its efficient activities. Any uncontrolled 

degranulation exaggerates the inflammation that can also lead to tissue damage even in absence of 

inflammation. Several types of tissue injuries and pathogenesis of several other major chronic 

diseases like rheumatoid arthritis, cardiovascular diseases, liver diseases, diabetes and cancer have 

been reported to be linked with myeloperoxidase derived oxidants. So the enhanced level of MPO 

activity is one of the best diagnostic tool of inflammatory and oxidative stress biomarkers among 

these commonly occurring diseases.  

Keywords: myeloperoxidase, leukocytes, inflammation, oxidative stress, chronic diseases, 

disease biomarker 

1. Introduction 

Myeloperoxidase (MPO) (EC 1.11.1.7) is a member of subfamily of peroxidases, most 

abundantly expressed in immune cells such as neutrophilic polymorphonuclear leukocytes 

(neutrophils) and lymphocytes [1,2], monocytes and macrophages [3] and also produced from 

other body cells. MPO is stored in cytoplasmic membrane bound azurophilic granules and during 

stimulation; these granules are secreted out to extracellular space by degranulation or exocytosis  
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[4,5]. The complete biochemical mechanism of neutrophil degranulation is not yet clear, but 

oxidative stress plays a key role for the release of MPO from these cells [6,7].  

Neutrophils are well known WBCs playing a pivotal role in innate immunity and frontline 

defense against microbial attacks [8]. In addition to MPO, antimicrobial properties of neutrophils 

are also expressed by different proteins or enzymes e.g., defensins, serine proteases, cathepsin G, 

alkaline phosphatase, lysozyme, NADPH oxidase, collagenase, lactoferrin, cathepsin and 

gelatinase etc. [9]. Among all these antimicrobial agents, MPO is the most abundant and 

constitutes 5% dry weight of neutrophils and 25% of the azurophilic granular proteins  [10]. 

Normally, the neutrophils degranulate at the infection site to combat different types of 

microbial activities and help to cure the diseases. But any unusual expression and release of MPO 

from activated neutrophils intensify the inflammation and tissue damage and may result in several 

other diseases, even in the absence of infection [8,11].  

This review article mainly focusses on the recent advances in the biochemical and the 

pathological aspects of myeloperoxidase and its significance as a disease biomarker in some 

commonly occurring chronic diseases. 

2. Biochemistry of MPO  

MPO gene is located on long arm, segment q12-24 of chromosome 17 and the primary 

transcriptional product of this gene consists of 11 introns and 12 exons [12,13]. After some 

modifications like signal peptide removal and glycosylation with mannose-rich side chains, it 

produces apoproMPO [14]. This protein product is enzymatically inactive and further forms 

complex with some chaperons like calreticulin and calnexin in endoplasmic reticulum [15,16]. 

Enzymatically active, proMPO is formed from apoproMPO by the insertion of heme moiety [17]. 

Furthermore, removal of some N-terminal amino acids results in production of 72-75 kD protein 

which undergoes further cleavage to produce α and β subunits. The α-subunit is heavy, 57 kD and 

consists of 467 amino acids, while the β-subunit is light, 12 kD and consist of 112 amino acids 

(Fig. 1) 
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Figure 1: Sequential steps involved in the synthesis of myeloperoxidase 

Mature MPO consist of a cationic homodimer heavy-light chain protomers and is about 

150 kD by weight. Each heavy subunit of mature MPO is covalently linked with a heme group and 

a mannose rich moiety [18,19]. On the basis of the size of heavy chains in MPO, three isoforms 

have been observed as MPO I, MPO II, and MPO III [20]. MPO also contains a calcium-binding 

site, which is important for active site structure [21].  

2.1. Activation and release of MPO by neutrophils 

Although the coordination of MPO release by the degranulation of neutrophils is not fully 
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understood, evidences support that increased levels of oxidative stress by reactive oxygen species 

(ROS) and the activation of Src and p38MAP kinase signaling pathway performs a prominent role 

[22].  

A fine coordination is necessary between different biochemical pathways like neutrophil 

activation, production of ROS by superoxide generating NADPH oxidase and MPO release by 

exocytosis. All these organized reactions lead to eliminate the bacterial invasion. Invading bacteria 

initiate enhanced production of H2O2 by superoxide dismutase (SOD), which is utilized by MPO 

for the production of chloramine and hypochlorite. Both of these products are highly toxic for the 

invading bacteria [8,23]. This biochemical phenomenon is also termed as respiratory burst. A clear 

illustration of the role of MPO is also observed in MPO knockout mice, which are highly 

susceptible for infections by Klebsiella and Candida and show persistent inflammation [24,25]. 

Various pro-inflammatory factors also trigger the release of MPO and ROS from 

neutrophils. During bacterial infection, one of the important mediators for this cascade is 

formylated peptide, which also work as chemoattractants. Neutrophils get activated via formyl 

peptide receptor (fPR), a G-protein coupled receptor [26]. Some more proteins involved in 

antibacterial activities include phospholipases, protein kinases as; mitogen-activated protein 

kinases (MAPK), protein kinase C (PKC) [27-29]. During different pathological situations or by 

the influence of several drugs, this signaling cascade gets impaired and finally leads to neutrophil 

dysfunction. These aberrations can be detrimental to host-defense against several diseases or 

disease causing microorganisms [26,30,31].  

2.2. Reaction mechanism of MPO 

Activated neutrophils, monocytes and some tissue macrophages release MPO at the sites 

of inflammation, using hydrogen peroxide (H2O2) to oxidize several substrates like halides (Cl-, 

Br- and pseudohalides (thiocyanate, SCN-) to form hypohalous acid, hypochlorous acid (HOCl-), 

hypobromous acid (HOBr), and hypothiocyanous acid (HOSCN) [32]. MPO is able to interact 

with diverse ionic, atomic and molecular entities via interface with H2O2, including HOCl, 

hydroxyl radicals, singlet oxygen, ozone, chloramines and aldehydes [33-35]. These species are 

potent oxidants, which under normal and controlled circumstances are toxic to several 

microorganisms and play an important role in immune system [36-38]. However, any excessive or 
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unregulated production of theses oxidants can even lead to damage of host cells and result in 

several diseases. 

MPO produces the reactive oxidants and free radicals through its peroxidase and 

chlorinating activities. It is the only type of peroxidase, which facilitates the oxidation of chloride 

to HOCl by consuming H2O2. During its reaction cycles, MPO is converted to many transitional 

forms with different half-lives. MPO contains ferric heme (MPO-Fe(III) in its resting state. During 

peroxidase cycle, compound I is formed by the reaction with H2O2 [39]. In absence of Cl-, this 

intermediate, [MPO-Fe(IV)=O] in presence of peroxide, is reduced back to ferric state in two 

sequential steps. The first step leads to the formation of Compound II. This compound is reduced 

to compound III by second equivalent AH2 [40,41]. During the halogenation cycle, MPO-

compound I exclusively oxidize Cl- to HOCl and no further intermediates are formed in this 

reaction, as compound I directly gets converted to its native form (Fig. 2).  

The fate of H2O2 as a substrate of MPO via peroxidation or chlorination reaction depends 

upon the concentration of chloride and the reducing substrates. A number of sources like NADPH 

oxidase, xanthine oxidase and NO synthase are the sources of H2O2 for the MPO reaction, which 

also enhances the oxidative potential of H2O2 [42]. 

 A strong antimicrobial cascade of reactions (respiratory burst), takes place in presence of 

NADPH oxidase [43]. The initial products of this reaction are superoxide anion (O2¯·) produced 

as, NADPH + O2           O2¯ + NADP+ + H+. 
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Figure 2: Reaction mechanism of Myeloperoxidase in presence of different substrates 

2.3. Inhibitors and activators of MPO 

Even though a strong correlation has been found between atherosclerosis, inflammatory 

diseases and the MPO release, little work has been done to inhibit MPO to suppress these diseases. 

Several naturally occurring compounds possess the inhibitory activities against MPO, which 

include polyphenols, melatonin, flavonoids etc. [44].  

Like other peroxidases, MPO is inhibited by benzoic acid hydrazide-containing 

compounds, but the proper mechanism of its inhibition is still unknown [45]. MPO reaction is also 

inhibited by general peroxidase inhibitors like azide and there are some specific inhibitors of MPO 

as well like 4-amino benzoic acid hydrazide (4-ABH) [46]. Ceruloplasmin, an acute phase plasma 

protein, produced from hepatocytes and activated macrophages, is a physiologic inhibitor of MPO 

[47]. Niacin can also inhibit cellular ROS production and the MPO release through some complex 

signaling mechanisms [48]. 

In addition to the above compounds, some naturally occurring anti-inflammatory, 

antioxidants, antihistaminic compounds possess inhibitory activities against MPO which includes: 

nonsteroidal anti-inflammatory drugs (NSAIDs), e.g. diclofenac, ferulic acid, caffeic acid, 

resveratrol, indomethacin, flufenamic acid, chalcones, and gallic acid [49-51]. 
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As compared to inhibitors, little is known about the activators of MPO. MPO is present as inactive 

or partially active form in resting granulocytes. Activation of MPO occurs by different factors. 

Granulocyte macrophage colony stimulating factor (GM-CSF), enhances the MPO activity. In 

addition to this, N-formyl-methionyl-leucyl-phenylalanine (fMLP), a chemo-attractant, has been 

observed to activate MPO from neutrophils [52]. 

2.4. Biochemical functions of Myeloperoxidase  

During normal conditions, the antibacterial activities of MPO involve the production of 

different reactive oxygen and nitrogen species (ROS and RNS), These ROS and RNS can also 

cause lipid peroxidation, protein nitration and protein carbomylations. MPO plays role in oxidative 

and chemical modifications of different lipoproteins as well. MPO also mediates protein 

nitrosylation and dityrosine crosslinking and 3-chlorotyrosine formation [53,54]. 

MPO also oxidize tyrosine to tyrosyl radical with the help of H2O2. Neutrophils use tyrosyl 

radicals and hypochlorous acid (HOCl) as cytotoxic agents against different types of bacteria and 

other pathogens [55]. As a signaling molecule, HOCl can activate several pathways, which later 

induces cellular senescence or apoptosis [56]. 

Due to its polycationic protein nature, MPO binds to negatively charged surfaces of 

pathogens and by its enzymatic activity, cause cell membrane destructions, which ultimately leads 

to cell death [57]. MPO can even bind to the surfaces of epithelial cells [58], fibroblasts [59], 

endothelial cells [60,61], macrophages [62], platelets [63,64], neutrophils [60,65], LDL and VLDL 

lipoproteins in addition to pathogens [66]. Binding of MPO to the cell surface alters some 

functional properties, for example, MPO interaction with neutrophil integrins causes enhanced 

tyrosine phosphorylation of some proteins. This activates protein tyrosine kinase resulting in 

degranulation and also the respiratory burst [65]. Binding of MPO to platelets causes 

reorganization of platelet cytoskeleton and alters the aggregation activities [67]. MPO also oxidize 

a variety of aromatic compounds by a 1-elelctron mechanism to produce substrate radicals (R ̇ ) 

[68,69]. 

In addition to this, HOCl derived from MPO has high chemical reactivity as it diffuses 

across cell membrane and interacts with many cytoplasmic enzymes like creatine kinase, lactate 
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dehydrogenase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase etc. and inactivates them 

[70]. 

Moreover, MPO is a major concern for some clinicians who are interested to use carbon 

nanotubes for drug delivery as it suddenly breaks down these drug delivery vehicles [46] so limits 

its applications. 

3. Role of MPO in different diseases 

Besides the antipathogenic or bactericidal role of MPO derived HOCl during normal 

conditions, under some pathological circumstances, overproduction of these oxidizing agents 

cause oxidative damage of proteins and DNA of the host cells as well. Several types of tissue 

injuries and pathogenesis of various chronic diseases like atherosclerosis, cancer, renal disease, 

lung injury, multiple sclerosis; Alzheimer’s and Parkinson’s disease have been reported to be 

directly/indirectly linked with MPO derived oxidants [8] (Table 1). So the enhanced level of MPO 

is one of the best inflammatory and oxidative stress markers among these commonly occurring 

diseases [71,72].  

S. 
No. Name of disease Brief etiology and possible role of MPO  Reference 

1. CVD and 
Atherosclerosis 

Raised level of MPO cause RBC deformability, accumulation of 
cholesterol and its esters, ruptures atherosclerotic plaque  [8], [67] 

2. Neurodegenerative 
diseases 

Release of neurotoxic mediators by many factors spearheaded by 
MPO from neurons, astrocytes, microglia cells [11] 

3. Cancer 
MPO derived ROS/RNS react with major biomolecules causing 
mutagenesis, gene polymorphism, SNPs, acrolein-protein adduct 
formation 

 [73-75]  

4. Diabetes/Diabetic 
retinopathy 

Neutrophil activation and release of MPO in vessels and retina, 
upregulation of leukocyte adhesion molecules, increased 
production of anti-MPO antibodies 

 [76,77] 

5. Renal diseases 
MPO initiated HOCl-modified proteins in glomerular peripheral 
basement membranes   [78] 

6. Liver diseases Neutrophil infiltration, hepatic fibrosis by activation of Kupffer 
cells cause production of oxidants, impaired signaling events  [79,80] 

7. Lung injury Activation and expression of proinflammatory cytokines and 
mediators by MPO  [5] 

8. Cystic fibrosis Bacterial infiltration especially P. aeruginosa and infiltrating 
neutrophils  [81] 
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9. Multiple sclerosis MPO generated ROS cause axonal damage by proteolytic enzymes 
and cytotoxic oxidants by activated immune cells and glia  [82] 

10. Alzheimer’s disease 

Increased production of oxidants like advanced glycation end 
products, o,o′-dityrosine, lipid oxidation products, protein 
carbonyls, oxidized DNA, and 3-nitrotyrosine in neuronal tissues 
proposed by increased expression of MPO. 

 [83] 

11. Parkinson’s disease Upregulation of MPO and its by-product, 3-chlorotyrosine in 
ventral midbrain  [84] 

12. Tuberculosis 
Enhanced MPO expression along with TNF-α and IL-12 
activation  [85] 

13. Asthma  Excessive MPO release from neutrophils in lower respiratory 
tract cells  [86] 

14. Rheumatoid arthritis Inflamed synovium intervened by lymphocytes and neutrophils 
leads to release of proinflammatory mediators  [87,88];  

15. Chronic sinusitis Enhanced level of MPO and IL-8 in sinuses  [89] 

16. Peptic ulcer Free radicals formation initiated by MPO  [90] 

17. Ulcerative colitis Neutrophil accumulation and enhanced expression of MPO in 
inflamed intestinal mucosa  [91] 

18. Chronic periodontitis Increased MPO activity in gingival crevicular fluid   [92] 

 

Table 1: Brief etiology and the direct/indirect involvement of MPO in different types of diseases 

The description of some of the diseases through the perspective of MPO is reviewed here as under. 

3.1. Inflammation 

Inflammation results during the response of body’s challenge for self-protection to remove 

harmful stimuli like damaged cells, irritants or pathogens. Vascular permeability is increased by 

the activation of various inflammatory mediators, which results in the influx of immunoglobulins 

and serum proteins at the site of inflammation [93,94]. This cascade of inflammatory process also 

motivates the migration of polymorphonuclear neutrophils which result in the release of MPO 

[95,96].  

Inflammatory processes are triggered by lipid peroxidation and the synthesis of 

eicosanoids. Cytochrome P450, lipoxygenase and cyclooxygenase play a prominent role in these 

events. MPO generates reactive intermediates that stimulate lipid peroxidation. This oxido-
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reductase can oxidize tyrosine and nitrite to form tyrosyl radical and nitrogen dioxide (・NO2), 

respectively. These reactive intermediate can oxidize lipids in plasma and cell membrane [97]. 

Lipoprotein phospholipid peroxidation of membrane is linked to their interference, leading to 

cellular dysfunctions. Lipid peroxidation can be normal physiological activity or a potential 

contributor to pathophysiological consequence of acute and chronic inflammatory diseases 

[98,99]. 

Tyrosyl radical, formed by MPO initiates lipid peroxidation and also forms phenolic cross-

links on proteins. A typical molecular fingerprint, protein-bound dityrosine, is enhanced during 

atheroma and other sites of inflammation [100].  

Lipid peroxidation also occurs by nitrogen dioxide (・NO2), which is formed by MPO 

enzymatic action. Post-translational modification of proteins, which results in the formation of 

nitrotyrosine, can also occur in the presence of ・NO2 [101,102]. 

Some of the common examples of diseases and conditions with chronic inflammation are: 

tuberculosis, asthma, rheumatoid arthritis, chronic sinusitis, chronic hepatitis, peptic ulcer, 

ulcerative colitis and chronic periodontitis etc.  

3.2. Rheumatoid arthritis 

Chronically inflamed synovial joints with some destruction of cartilage and bones are a 

common characteristics of rheumatoid arthritis (RA) [103]. Several factors have been proposed 

for this disease among which oxidative stress is a leading hypothesis [104,105]. Inflamed 

synovium is often intervened by B and T lymphocytes, macrophages and neutrophils. Intrusion of 

these cells in synovium during RA leads to the release of multiple pro-inflammatory mediators. 

Degranulation of neutrophils leads to the release of enzymes and peptides, leading to respiratory 

burst and oxidative stress [106-109]. Overproduction of ROS are potential tissue damaging agents 

which are further formed by the cascades of reactions by HOCl produced from the activated 

neutrophils present in synovial fluid [110,88]. This has been verified from the inflamed cartilages 

of the patients suffering from RA [87]. Currently, a firm hypothesis is believed that the enhanced 

levels of MPO in inflamed cartilages of RA are causally associated in compelling the disease 

progression lifelong. 
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3.3. Cardiovascular diseases and Atherosclerosis 

The alliance of coronary artery diseases (CAD) and MPO level was first reported in 2001 

[111]. Since that time, MPO is considered as a circulating marker of such related diseases like 

acute coronary syndrome, CAD, and chronic heart failure [112-115]. Patients with coronary artery 

diseases, unstable angina and acute myocardial infarction have been observed with raised levels 

of circulating MPO [8,116-118]. Still, little is known about the clinical utility of anti MPO 

antibodies against some microvascular diseases. 

In patients with combined ischemic heart disease and diabetes, a strong correlation has 

been observed between circulating MPO level and the RBCs rigidity index. Band-3 protein and 

glycophorins, many changes in the RBCs cellular morphology and biophysical properties like cell 

size, hemolysis sensitivity, cellular deformability, transmembrane potential, plasma membrane 

fluidity, intracellular Ca2+ [67]. 

Atherosclerosis is the major cause of cardiovascular diseases (CVD). Neutrophils and 

monocytes play a key role during atherosclerosis leading to chronic inflammatory problems. 

Different events and sequences occur during CVD, which include endothelial dysfunction besides 

formation and rupture of atherosclerotic plaque [119]. In arterial wall subendothelial region, all 

these stages occur during inflammation, which ultimately leads to accumulation and deposition of 

altered lipids [120]. 

Atherosclerosis leads to the accumulation of cholesterol and cholesteryl esters on arterial 

walls, which are derived from low density lipoproteins (LDL). Besides this, LDL retention on 

these walls triggers an immune response, resulting in cascade of production of oxidants and 

inflammation [121,122]. Plasma LDL interacts with circulating MPO, which has been reported to 

be higher from the patients suffering from atherosclerosis [123]. It has been reported that in some 

patients, undergoing hemodialysis, the HOCl reacts with LDL, which promotes atherogenesis 

[78,124]. Macrophage exposure to HOCl-LDL results in accumulation of cholesterol and its esters 

and the production of lipid-rich foam cells [125].  

3.4.  Neurodegenerative diseases 
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Oxidative stress is also proposed to be responsible for the release of neurotoxic mediators 

commanded by MPO derived from cells like neurons, astrocytes and activated microglia as well 

as peripheral inflammatory cells [11]. In brain, out of the different neurotoxic oxidants, HOCl is 

stable, highly reactive and predominant one. This acid is involved in a number of 

neurodegenerative diseases which includes stroke, epilepsy, multiple sclerosis, Parkinson’s and 

Alzheimer’s disease, multiple sclerosis etc. [126].  

In addition to inflammation and oxidative stress, MPO is related to depression, which is an 

emotional disorder affecting a vast majority of population [127]. Furthermore, patients suffering 

from bipolar disorders, anti-inflammatory drugs such as lithium and valproate are used, indicating 

some links with MPO [128]. A complete mechanism for the role of myeloperoxidase biochemistry 

in neuronal diseases is still awaiting. 

3.5.  Diabetes/Diabetic Retinopathy 

Diabetes mellitus and its complication, diabetic retinopathy (DR) is also known as a disease 

with subclinical inflammation measured by neutrophil activation [76]. During diabetic retinopathy, 

retinal structural and biochemical alterations cause activation of neutrophils [129]. Increased 

expression of various types of growth factors and cytokines including TNFα occurs due to 

biochemical modifications during DR. Inflammatory mediator priming causes MPO translocation 

and interaction with anti-MPO antibody.  

In the vessels of diabetic retina, upregulation of leukocyte adhesion molecules occurs and 

leukocytes are also observed in the lumen of human microaneurysm. Furthermore, patients with 

DR, the vitreous samples show elevated levels of CD4/CD8 and T lymphocytes [77].  

Chronic inflammation during diabetic retinopathy is sustained by cytokine-producing B-

lymphocytes. There is a correlation between the activity of proliferative DR (PDR) and the 

increased lymphocyte infiltration [130]. Increased vascular permeability due to leukocytosis leads 

to retinal abnormalities, endothelial injury and capillary occlusion [131-133]. Neutrophils and 

monocytes can be activated by Proteinase-3 antineutrophilic cytoplasmic antibody (PR3-ANCA) 

and MPO antinutrophilic cytoplasmic antibody (MPO-ANCA), to release acute inflammatory 

mediators, which cause endothelial cell injuries [134,135]. Priming by proinflammatory factors 
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like cytokines, TNFα and microbial products like bacterial formyl peptides etc. triggers circulating 

neutrophils to express more ANCA antigens.  

3.6.  Liver diseases 

Among several types of liver disease like fibrosis, necrosis, inflammation and steatosis 

respectively; alcoholic cirrhosis denotes a major cause of mortality with an estimated 3.8% of all 

worldwide deaths [136,137]. Cirrhosis is closely related with immune dysfunctions, thus inability 

of the host to protect against various infections [138]. In several types of liver injuries like 

alcoholic steatohepatitis in human beings or in animal models, neutrophils contribute to the 

pathogenesis of cirrhosis [139]. Infiltration of neutrophils in liver is good for predicting the 

forecast of the disease [80] as these cells increase the intracellular oxidative stress during liver 

injury [140]. In addition to this, the stellate macrophages or Kupffer cells, located in the liver, also 

synthesize MPO. Activation of these cells results in hepatic fibrosis which is proposed to be 

developed by the local release of oxidants and the cytokines [141,79].  

Neutrophils employ their favorable effects through different factors like granulopoiesis 

(Eash at al, 2009) [142], production of hepatocyte growth factor [143], and collagen degradation. 

Granulocyte colony stimulating factor (G-CSF) therapy has been observed to be beneficial in cases 

with severe alcoholic hepatitis [144]. Patients with cirrhosis have impaired neutrophilic ROS 

production, phagocytotic and the microbicidal activities [145-147]. Post-hepatic cirrhosis has also 

been observed closely related to diminished ROS production in some recipients of liver transplant 

[148]. The mechanism of impaired signaling events of the neutrophils in relation with alcoholic 

cirrhosis is not fully understood. Several researchers have observed an erroneous MAPK-

dependent phosphorylation of p47phox, an important component of NADPH oxidase [29]. 

3.7.  Cancer 

The knowledge about the precise biochemical relationship between the inflammatory 

response and specific malignancy is a vast field to be understood but a growing evidence links 

between the relationships of MPO, inflammation and cancer [149,75,150]. Cancer progression 

advances by the biochemical alterations of different biomolecules and genes by various oxidative 

species, ultimately produced through MPO. 
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DNA damage can be caused by the oxidants directly or indirectly produced by the MPO, 

which can lead to mutagenesis [73]. An abnormal MPO expression and greater risks of different 

forms of cancers are directly associated with MPO gene polymorphism [151]. In the promoter 

region of this peroxidase gene, single nucleotide polymorphisms (SNPs) can possibly affect the 

transcription and the protein level [152,74]. In addition to this, substitution of thymidine for 

cytosine in codon 569 cause substitution of amino acid from arginine to tryptophan, which may 

also cause some genetic defects of MPO [153].  

In addition to gene polymorphism, MPO induces cancer through the activation of genotoxic 

intermediates and the procarcinogens through an indirect implication of MPO [154,155]. 

Metabolism of unsaturated fats and some amino acids like serine and threonine can form 

byproducts like acrolein, which in turn forms acrolein-protein adducts [156]. In humans, these new 

protein adducts can transform colon tumor from benign to malignant state [157]. Still, little 

information is available about such proteins which form adducts with the acrolein or their role in 

progression of tumor. 

Several reports are available about the relationship between breast cancer and the increased 

serum MPO level as compared to the control groups. Promotion of this cancer is also enhanced by 

the inflammatory leukocytes, which produce ROS, chemo and cytokines, proteases, histamine and 

other mediators [158]. Various types of DNA damages and genomic instability occur by the MPO 

synthesized ROS [149,159]. So, in premenopausal women, suffering from breast cancer, MPO acts 

as one of the efficient markers [160]. So risks of the development of cancer are directly linked to 

the endogenous production of high MPO levels [161]. 

3.8.  Cystic fibrosis 

Cystic fibrosis (CF), a disease of the respiratory tract, is characterized by severe bacterial 

infections especially P. aeruginosa and huge numbers of infiltrating neutrophils [162]. Neutrophils 

are also thought to contribute the lung damage instead of eliminating bacteria from the respiratory 

tract [81]. CF patient’s sputum contains high concentration of MPO and human neutrophil elastase 

(HNE) and these levels correlate with the severity of the lung disease [163,164]. The clear 

mechanism for the release of inflammatory mediators like HNE, extra cellular DNA and MPO 

from neutrophils during CF is not known. However, neutrophil extracellular traps gather a 
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potential mechanism for the release of these mediators [165].   

4. Myeloperoxidase deficiency 

Several studies have shown that in USA and Europe, the partial or complete MPO 

deficiency is relatively common among human population (affecting 1 in 2000 to 1in 4000) 

[166,167]. But, there is a geographic heterogeneity between the frequencies of hereditary MPO 

deficiency in different populations as well reported I in 55000 in Japan [168-170]. Generally, the 

MPO deficiency results in modest increase of either inflammatory problems or infectious 

complications [171]. MPO deficient neutrophils exhibit impaired bactericidal and candidacidal 

activities against S. aureus and many species of Candida [172,173].  

The deficiency of MPO is a hereditary problem that disposes to immune deficiency as well 

[174]. Several different types of autoantibodies have also been observed raised against MPO in 

various types of vasculitis. The three clinically most prominent vasculitis forms of this type are 

granulomatosis with polyangitis, eosinophilic granulomatosis with polyangitis (EGPA and 

microscopic polyangitis. The autoantibodies against neutrophils also known as anti-neutrophil 

cytoplasmic antibodies (ANCAs) have also been detected in perinuclear region staining [175].    

5. Conclusion 

MPO is a heme-containing homodimer of heavy-light chain protomers mostly present in 

the immune cells especially neutrophils. It is released from these cells by proinflammatory factors 

and during oxidative stress at the site of infection to combat different types of microbial activities. 

The antibacterial activities of MPO involve the production of different reactive oxygen and 

nitrogen species. MPO also plays role in chemical modifications of different lipoproteins, protein 

nitrosylation, tyrosyl radical formation and dityrosine crosslinking etc. Any unusual expression 

and release of MPO from activated neutrophils due to oxidative stress imbalance intensify the 

inflammation and tissue damage and may result in several diseases, even in the absence of 

infection. MPO is a well-known marker of several inflammatory diseases like rheumatoid arthritis, 

cardiovascular diseases, neurodegenerative diseases, diabetic retinopathy, liver diseases, cancer 

etc. Deficiency of MPO has also been reported in some human populations, which may result in 

modest increase either in inflammatory or infectious complications. 
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