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1 Abstract: In this paper we study the class of mixed-index time fractional differential equations in
> which different components of the problem have different time fractional derivatives on the left hand
s side. We prove a theorem on the solution of the linear system of equations, which collapses to the
+  well-known Mittag-Leffler solution in the case the indices are the same, and also generalises the
s solution of the so-called linear sequential class of time fractional problems. We also investigate the
s asymptotic stability properties of this class of problems using Laplace transforms and show how
»  Laplace transforms can be used to write solutions as linear combinations of generalised Mittag-Leffler
e functions in some cases. Finally we illustrate our results with some numerical simulations.

» Keywords: time fractional differential equations; mixed-index problems; analytical solution;
10 asymptotic stability

1 1. Introduction

"

1z Time fractional and space fractional differential equations are increasingly used as a powerful
1z modelling tool for understanding the role of heterogeneity in modulating function in such diverse areas
1« as cardiac electrophysiology [1-3], brain dynamics [4], medicine [5], biology [6], [7], porous media
15 [8], [9] and physics [10]. Time fractional models are typically used to model subdiffusive processes
1s  (anomalous diffusion [11], [12]), while space fractional models are often associated with modelling
17 processes occurring in complex spatially heterogeneous domains [1].

1z Time fractional models typically have solutions with heavy tails as described by the Mittag-Leffler
1o matrix function [13] that naturally occurs when solving time fractional linear systems. However such
20 models are usually only described by a single fractional exponent, &, associated with the fractional
a1 derivative. The fractional exponent can allow the coupling of different processes that may be occurring
22 in different spatial domains by using different fractional exponents for the different regimes. One
= natural application here would be the coupling of models describing anomalous diffusion of proteins
24 on the plasma membrane of the cell with the behaviour of other proteins in the cytosol of the cell. Tian
= etal [14] addressed this problem by coupling a stochastic model (based on the Stochastic Simulation
26 Algorithm [15]) for the plasma membrane with systems of ordinary differential equations describing
2z reaction cascades within the cell. It may also be necessary to couple more than two models and so in
2s  this paper we introduce a formulation that focuses on coupling an arbitrary number of domains in
20 which dynamical processes are occurring described by different anomalous diffusive processes. This
30 leads us to consider the r index time fractional differential equation problem in Caputo form
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.
Difyi =Y Ay + Fi(y), yi(0) =z, yieR™ i=1,--,r (1)
j=1
;1 or in vector form

Dfy=Ay+F(y).

2 Here the A;; are m; X m; matrices, while A is the associated block matrix of dimension 2;11 mj and

ss &= (g, &) hasall components a; € (0,1].

s« We believe that a modelling approach based on this formulation has not been fully developed before.
s We note that scalar linear sequential fractional problems have been considered whose solution can
s be described by multi-indexed Mittag-Leffler functions [16], and there are a number of articles on
sz the numerical solution of multi-term fractional differential equations [17-19], and while mixed index
ss problems can, in some cases, be written in the form of linear sequential problems, namely "X Df fy=
s f(y), we claim that it is inappropriate to do so in many cases.

s Therefore in this paper we develop a new theorem that gives the analytical solution of equations such
a1 as (1) that reduces to the Mittag-Leffler expansion in the case that all the indices are the same (section
«2 3) and generalises the class of linear sequential problems (section 3.1). We then analyse the asymptotic
43 stability properties of these mixed index problems using Laplace transform techniques (section 3.2),
4 relating our results with known results that have been developed in control theory. In section 3.2 we
4 also show that, in the case that the «; are all rational, the solutions to the linear problem can be written
46 as a linear combination of generalised Mittag-Leffler functions, again using ideas from control theory
«z and transfer functions. In section 3.3 we present some numerical simulations illustrating the results in
s this paper and give some discussion (in section 4) on how these ideas can be used to solve semi-linear
4 problems either by extending the methodology of exponential integrators to Mittag-Leffler functions,
so or by writing the solution as sums of certain Mittag-Leffler expansions.

51 2. Materials and Methods

s2  2.1. Analytical Solutions

ss  We consider the linear system given in (1) with » = 2. It will be convenient to let

A A

A=\t B v =0l 2 =) @)
B, B

s« Where A is m X m, m = my + mp. We will call such a system a time fractional index-2 system. Here

ss the Caputo time fractional derivative with starting point at t = 0 is defined (see Podlubny [20], for

ss example), as

a1 A
ty(t>_l“(1—uc)/() (t—s)"‘ds' 0<a<l

s»  Furthermore, given a fixed mesh of size h then a first order approximation of the Caputo derivative
ss [21]is given by
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Diyn = 55— ,ﬂZW“ = D) Vit = Yug).
so If B =« then the solution to (1) is given by the Mittag-Leffler expansion
(=] Z]'
— o —
v =B A0, BE =L i ®
]
e where I'(x) is the Gamma function

61

If the problem is completely decoupled
ez satisfies

say Ay = 0, then from (3) the solution to (1) and (2)

yi(t) Eq(t"A1) 21
Dfya = Baya+BiEa(t"Ay)z @)
es In order to solve (4), this requires us to solve problems of the form
Dfy2 = Baya + f(1). ®)
s« DBefore making further headway, we need some additional background material

65

Definition 1. Generalisations of the Mittag-Leffler functions are given by

=2
=
|
M 3

66

67

Remark 1. E,1(z) = Eq(2)
Lemma 1.

d n
(dz) Ea,/g(z) = Tl'En+l

tx,Bthxn( z), n € N.

68

Lemma 2. The Laplace transform of E, g(At") satisfies

=— 6
sP(st —)) (©)
eo Lemma 3. The Caputo derivatives satisfy the following relationships
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70 (i) DfI*y(t) = y(t)
= (i) I*"Dfy(t) = y(t) —y(0)
= (i) DYy(1) = gy Jy gageds = I'Diy(0).
»s»  Lemma 4. (See [20], for example.) The solution of the scalar, linear, non-homogeneous problem
Diy(t) = Ay(t) + f(t), y(0) =yo @)
7a IS
! 1
y() = Ex(Myo+ [ (8= )" Eua(A(t = 5)*) £ (5)ds. ®
s Proof. Using the integral form from Lemma 3, (7) can be rewritten as
At y(s) Lot fs)
t) = d ds.
Y =¥+ T I =i T I D
7e  We now apply a Picard-style iteration of the form
_ At yeeals) Lot f(s) _
ye(£) = yo(t) + (@) /O = S)H‘ds + () /O = S)H‘ds, k=1,2,
7z where yo(t) = yo, Vt.
7e It can be shown that this iteration will converge to (8) - see [16]. O
Lemma 5. ,
1 +/ As* VEuq (As*)ds = E4(As®).
0
7 Proof. Use Definition 1 and integrate the left hand side term by term. O
so Remark 2. The function multiplying f(s) in the integrand of (8), namely
Galt —5) = (t —8)* 1 Ea(A(t —5)%),
s1  can be viewed as a Green function. For example, when « =1, G1(t —s) = eME=s),
ez The generalisation of the class of problems given by (7) to the systems case takes the form
Diy(t) = Ay(t) + E(t), y(0) =yo, yeR™ ©)
s In the case that F(t) = 0 the solution of the linear homogeneous system is
y(t) = Ea(t*A)yo. (10)

s« From this we can prove

es Theorem 1. (See [20], for example.) The solution of (9) is given by
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y(t) = Ex(t*A)yo + /Ot(t — s)“*lEM((t —5)*A)F(s)ds. (11)

ss Proof. We can use the idea of a Green function. But first of all it is trivial to see from Definition 1 that

diZ(E“(Z“A)) = AZ" 1E (2% A). (12)

sz Now the solution of (9) can be written as

y(t) =yo+ /Ot Ga(t —s)(Ayo + E(s))ds,

ss where G, (t — s) is a matrix Green function, or alternatively

y(t) = (I + /Ot Gu(t —s)A ds) Yo+ /Ot Gu(t — s)F(s)ds.

e Finally it is clear from (12) that

Ga(t —s) = (t —8)* L Eu((t —5)*A)
% is the Green function and the result is proved by using Lemma 5. [J

o1 2.2. Asymptotic Stability of Multi-index Systems

o2 The first contribution to the asymptotic stability analysis of time fractional linear systems was by
s Matignon [24]. Given the linear system Djy(t) = Ay(t) in Caputo form, then taking the Laplace
9o« transform and using the definition of the Caputo derivative gives

s*X(s) —s*1X(0) = AX(s)

o5 O

X(s) = %(1 —s7*A)71X(0). (13)

o Here X(s) is the Laplace transform of y(t). If we write w = s*, then the matrix s*I — A will be

oz nonsingular if w is not an eigenvalue of A. In the w-domain this will happen if Re(c(A)) < 0, where

ss 0(A) denotes the spectrum of A. In the s-domain this will happen if |[Re(c(A))| > %F. That is, the

o eigenvalues of A lie in the complex plane minus the sector subtended by angle a7t symmetric about
10 the positive real axis - see Figure 1.

11 In fact Laplace transforms are a very powerful technique for studying the asymptotic stability of mixed
102 index fractional systems. Deng et al. [25] studied the stability of linear time fractional systems with
103 delays using Laplace transforms. Given the delay system

dﬂ(,‘y, m )
7‘,‘].1 = ];1 al]y](t - Tij)/ 1= 1/ cce,m (14)

10s  then the Laplace transforms results in


http://dx.doi.org/10.20944/preprints201802.0094.v1
http://dx.doi.org/10.3390/axioms7020025

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 February 2018 d0i:10.20944/preprints201802.0094.v1

6 of 28

stability region exterior
r to the wedge

b b b R ko 2« N w

s) = Diag(s",---,s"")—L (15)

Lij = Llijeisrij, l,] = 1, R (B

15 Hence, Deng et al. proved:

1s  Theorem 2. Ifall the zeros of the characteristic polynomial of A(s) have negative real part then the zero solution
w7 0f (14) is asymptotically stable.

1 Deng et al. also proved a very nice result in the case that all the indices a7, - - - , a;, are rational.

10 Theorem 3. Consider (14) with no delays and all the w; € (0,1) and are rational. In particular let

w; = %, ged(uj,vi) =1
1

1o and let M be the lowest common multiple of all the denominators and set v = ﬁ Then the problem will be
w asymptotically stable if all the roots, A, of

p(A) = Det(D — A) =0, D =diag(AM™,... A\Man)

uz  satisfy |arg(A)| > 5.

us Remark 3. Ifa; =«,i=1,---,m then Theorem 3 reduces to the result of Matignon. The proof of Theorem 3
ua  comes immediately from (15) where p(A) is the characteristic polynomial of A(s).

us  Remark 4. A nice survey on the stability (both linear and nonlinear) of fractional differential equations is given
ue i1 Li and Zhang [26], while Saberi Najafi et al. [27] has extended some of these stability results to distributed
uz order fractional differential equations with respect to an order density function. Zhang et al [28] consider the
us  stability of nonlinear fractional differential equations.

e Remark 5. Radwan et al. [29] note that the stability analysis of mixed index problems reduces to the study of
120 the roots of the characteristic equation

Y 6is%=0, 0<a <1 (16)
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121 In the case that the a; are arbitrary real numbers, the study of the roots of (16) is difficult. By letting
122 5 = €%, we can cast this in the framework of quasi (or exponential) polynomials (Rivero et al. [30]). The
123 zeros of exponential polynomials have been studied by Ritt [31].

12« The general form of an exponential polynomial with constant coefficients is

125 An analogue of the fact that a polynomial of degree k can have up to k roots is expressed by a Theorem
126 due to Tamarkin, P6lya and Schwengler (see [31]).

12z Theorem 4. Let P be the smallest convex polygon containing the values a1, - - -, ay and let the sides of P be
128 S1,-- - ,Sk. Then there exist k half strips with half rays parallel to the outer normal to b; that contain all the zeros

w20 of f. If |by| is the length of b;, then the number of zeros in the i*" half strip with modulus less than or equal to r is
r 1bil
27

130 asymptotically

131 3. Results

132 3.1. The Solution of Mixed Index Linear Systems

133 The main focus of this paper is to consider generalisations of (9) where there are differing values of
132« on the left hand side. In its general form, we willlety " = (y{,- -,y ) € R” where y; € R™ and
s m = YI_, m;. We will also assume F(t)" = (Fi(t)7,--+ ,F(t)7) and that A can be written in block
3¢ form A = (Aij){,jzl, Ajj € R™i*™j We will also let « = (aq,- -+ ,&,) and consider a class of linear,
137 non-homogeneous multi-indexed systems of FDEs of the form

ty(t) = Ay(t) + E(t) (17)
13¢  that we interpret as the system
o r
Dityi(t) = ) Ayyi(t) + F(t), i=1,---,r. (18)
j=1
130 The index of the system is said to be r.
In the case that F = 0, then by letting
E; = D% — Ay
140 we can rewrite (17) as
My =0, (19)

11 where M is the block matrix, whose determinant must be zero, with

ii = Eil Z.:1/"'17’

= =
I
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12z Thus, in the case all m; = 1, so that the individual components are scalar and so m = r, (19) implies
143 Det(M) Yr = 0.

12 For example, when r = 2 this becomes

(E1E; — Ap1A12) yo =0

145 O

(D¥1+%2 — Ay D% — Ay D* + Det(A)) yp = 0;

1ss  while for r = 3 this gives, after some simplification,

DUt yy A DT Y3 — Ap DM y3 — AysDMIT2 g
+ (ApAszz — ApAz)DY y3 + (A11Azz — A13A31)D*? y3
+ (AnnAxn — A;pAy)D™ y3 — Det(A) = 0.

1z Clearly there is a general formula for arbitrary  in terms of the cofactors of A. In particular, it can be
s fitted into the framework of linear sequential FDEs [16,20-23]. These take the form

P .
DFoyy(8) + Y a;DPys (1) = dya (8) + £(5), Bo>Br> -+ By (20)
j=1

140 However, this characterisation is not particularly simple, useful, or computationally expedient.
10 Furthermore when the m; are not 1, so that the individual components are not scalar, then there
11 1s no simple representation such as (20) and new approaches are needed. Before we consider this new
152 approach we note the converse, namely that (20) can always be written in the form of (17) for a suitable
153 matrix A with a special structure. In particular we can write (20) in the form of (17) with p =+ — 1 as
1« an r dimensional,  index problem with « = (Bo, 81, -+, Bp), and

d —a; —ap —ap

0o 1 0 0 .
A= . . F(t)=(f(#),0,---,0)

0 1

1ss  For completeness we note in the case that d = 0 and f(t) = 0, an explicit solution to this problem was
16 given in Podlubny [20]. This can be found by considering the transfer function (see section 3.2) given
157 by

1

H(s) = .
(®) sPo +agsPt + - -+ +apsPr

1se By finding the poles of this function and converting back to the untransformed domain, Podlubny
10 gives the solution as
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n = ), ( m') L ( ko-kp—2 ) - )
m=0 ko+ki+-+kpo=m g =0
ki >0

p—2
em(t, —a1; Bo — B1,Bo + Z(:)(ﬁl = Bp—j)kj+1)
=

160 Where

ex(ty;a p) = HTPIIEL S(ytY)
o (i+k)Z
Eepla) = ;)i!r(a(i+k)+,8)'

We now return to the index-2 problem (1) and (2). We first claim that the solution takes the matrix

161

162 form

o)

v = 0600+n;1]§)“"ff“r(1+n06+f(/3_"‘))z
(21)
tnzx-&-j(ﬁ—“)
= Boo+ ‘ K
¥2 Poo nZl]Zﬁmr 1+ na+j(B—a))

s where the a, ;, B, ; are appropriate matrices, of size m; x m and my x m, respectively, that are to be

16a determined.

1es  We now use the fact that

; procti(f—e) _ 1 pni=T)a+j(p—a)
F(1+na+j(—a)) F(1+(n—-Ta+j(B—a))
(22)
B pratj(p—a) _ 1 p(n=D)a+(j—1)(p—«)
"T(1+na+j(B—a)) T(1+(n—1a+(G-1)(B—a))

s Using (21) and (22) the left hand side of (1) is

-
o

t(n=T)a+j(p—a)

D¢ = 3 . - z

= 5 o )
o -l (n-T)a+](6-a)

B . t

Prve = L L P R G D 8
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16z that can be written in matrix form as
o . patj(p—a)
Z Xn+1,j+1 . . (23)
10 /=0 \ Brirjin ) T(L+na+j(B—a))
168 If we define
D‘n,n—&-l - 0/ ,BnO - Or n= 1/ 2/ tt (24)

10 then the right hand side of (1) is

®00 S T pratj(p—e)
A(( ﬁ00>+r;1]§< Bnj )F(1+na+j([3—uc)) % (25)

170 Equating (23) and (25) we find along with (24) that forn =0,1,2, - - -

®00 — 1, Xpn+1,5+1 —A Xnj+1 , j=01,---,n. (26)
Boo Bui1,+1 Bnj

11 In order to get a succinct representation of the solution based on (21) and (26), it will be convenient to

172 Write

g e p(n—1)a+p mp
put) = T(1+na) T(1+ (n—Da+p)  'T(1+np

T
)) ®Im/ n:llzr"'

w50 pu(t) € RMHDXm and let po(t) = I

17a  We will also define the matrices

&p1 Q2 v Xnn 0 1
L, = " c Rmxmntl) 19 ...
" < 0 ,Bnl T ﬁn n—1 ﬁnn >

Ly = In

175 where 0 represents appropriately-sized zero matrices. Now we note that the recursive relation (26) is
176 equivalent to

Kp1 - &an
=AL,, n=12,---. 27
<,Bnl ﬁnn) n—1 ( )

17z Thus we can state the following theorem.
Theorem 5. The solution of the fractional index-2 system
D y(e) = Ay(t), y(0) = 2

w7e 1S given by
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y(t) = Z Ly pu(t) z, (28)
n=0
1o whereforn=1,2,---
Xp1 Kp2 &nn 0 Xp1 - Qnn
L, = " , =AL, 4,
" ( 0 ﬁnl ,Bnnfl ,Bnn> (,Bnl ﬁnn) -
Ly = In
T
e pn=1)a+p mp ; -
) = |\ Tan) TaAT =Dat g 'Ta+ng) ) ©m @9)
10 Remark 6. In the case « = B,
ti’llX T
PO = i e ) S
e Oy
L t) = "
) = T ) ];( Buj )
181 and with
n ) n—1 .
("‘n] ) =AY ( fn-1j )
j=1 :an j=1 }gnfl,j
12 then (28) reduces, as expected, to
y(t) = Ex(t*A)z.
163 Remark 7. It will be convenient to define the matrix
P/x,ﬁ(t) = Z Lupn(t)
n=0
1sa 50 that the solution (28) can be expressed as
y(t) = Pup(t)yo- (30)
1ss  Remark 8. If the fractional index-2 system has initial condition y(ty) = z then the solution is
y(t) = Pop(t —to)z. (31)

1es  We note that in solving (9) an equivalent solution to (11) is
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y(t) = Ea(t"A)yo + L(Gu(t —5)F(s))ds,
Gu(t—s) = Eu((t—s)*A),
1ez where G is the Green function satisfying
DEGy(t —s) = AG(t —s). (32)

16 This leads us to give a general result on the solution of the mixed index problem with a time-dependent
s forcing function

DiPy(t) = Ay(t) +E(1),
100 but first we need the following definition.

w1 Definition 2. Let y(t) = (y{ (t),y, (t))7, then define

i
1Py(s)ds = (1] (s)ds, Ify3 (s)ds )

102 Theorem 6. The solution to the fractional index-2 problem

DiPy(t) = Ay(t) + (), y(0) =yo (33)

103 15 given by

y(t) = Pup(t)yo + 1} (Pup(t = s)F(s)ds) . (34)
s Proof. The result follows from D; & Py p(t) = AP, g(t), together with the above discussion. []

105 We now turn to analysing the asymptotic stability of linear fractional index-2 systems.

we  3.2. Study of Asymptotic Stability

17 Recalling Theorem 4, we note that if the «; are rational and with M the lowest common multiple of the
108 denominators, this reduces to the polynomial

M ) 1
Yy W =0, W=sm.
i=1

100 This leads us to think about stability from a control theory point of view. Thus given the system

]

n M
a;D%y =Y b;DPiy (35)
=0 j=0

200 wWhere
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ap > >w, Bm > Po
201 then the solution of (35) can be written in terms of the transfer function
Eitobis” Q)
G(S> - 720 ajsa]- T P(S) ’ (36)
202 Where s is the Laplace variable (see Rivero et al. [30], Petras [32]).
203 In the case of the so-called commensurate form in which
o =ka, PBr=kpB,
20¢ then
m b (sB)K B
Yr—oak(s%) P(s*)
205 Clearly, if g is rational with « > 8 and
p=1a f, w=sr
=-n, qpELT, w=sP
206 then (37) can be written as
Q(w1) +
= <n.
G(w) plwry’ P1E ZT, q<p
207 Cérmdk and Kisela [33] considered the specific problem
D% +aDPy+by =0, yeR, (38)

20s where & = pK, B = gK,Kreal € (0,1),p,q € Z*,p > q. In this case the appropriate stability
200 polynomial is P(A) := AP 4+ aA + b, where A = sX. Based on Theorem 3, (38) is asymptotically stable
210 if all the roots of P(A) satisfy |arg(A)| > K7.

2 By setting A = re’K% and substituting into P(A) = 0 and equating real and imaginary parts, it is easily
212 seen that

pKm gKm

r”’cosT—l—arqcosT—l—b =0
K K
r”sin% +arl sin% = 0.

=3 This leads to the following result, given in Cérmék and Kisela [33].

@

2 Theorem 7. Equation (38) is asymptotically stable with « > B > 0 real and B rational if
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B < 2, a—B<2

—sin &% a—p
b > 0, a> 2 b= .

(sin ﬁ%)g (sin %)#

25 We now follow this idea but for arbitrarily sized systems in our mixed index format, and this leads
ze o slight modifications to (38). We first make a slight simplification and take m; = mjy and we also
217 assume that Aj is nonsingular, then problem (1) leads to

y2=A;" (D" - Ay
zue  and substituting into the equation for y; gives

(D*P T — ByD¥ 1 — A;DP I+ ByA; — BiAy) Ayl y1 =0
A; = AT A A

210 This leads us to consider the roots of the characteristic function

P(A) := Det(D*"PI — B,D*I — A;DPI + ByA; — B1Ay) = 0. (39)

220 In the scalar case this gives an extension to (38) where the characteristic equation is

P(A) = A%TP — BoA® — A1AP + Det(A). (40)

22 Now reverting to Laplace transforms of (1) and (2) then

"Xy (S) — 5“71X1(0) = A1 Xy (S) + AxX5(s)
S/SXZ(S) — Sﬁ_1X2(O) = BiXj (S) + BzXz(S).

222 This can be written in systems form as

(D1 — A)X(s) = D,X(0), (41)
223 where
D, ( s"(;I 321 ) b, — ( S“:I 5/391[ )
224 oOr alternatively as
X(s) = %(1 — DT A)T1X(0). (42)

22 This can now be considered as a generalised eigenvalue problem. From (41) we require D; — A to be
226 nonsingular. That is
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st — Al —Az
v=0 = v=0.
( —-By sPI—B,
227 Let us write v = (v, v) )" and assume a > B and that sI — B, is nonsingular, so that from the
228 previous analysis this means

7T
Re(o(B2))| > BT, )
220 Hence
vy = (sPI—By) 'Bioy
((s"I — A1) — Ax(sPT = By) 'Bi)oy = 0.
230 Thus (43) and
Det((s*I — A1) — Aa(sPT — By)"'By) =0 (44)

21 define the asymptotic stability boundary - see also (39).

222 In order to make this more specific, let my = mp = 1 and

d b

A:ad

], d < 0. (45)

233 Note that ¢(A) = {d + v/ab}. Then (44) becomes

(s* —d)(sP —d) —ab=0. (46)
23« Furthermore, let b = —a = 6, so that the eigenvalues of A are d + i6 and (46) becomes
(s* —d)(sP —d) +6*=0. (47)
235 If we now assume that
s =re'?,

23s  which defines the asymptotic stability boundary (the imaginary axis) when « = = 1, then (47)
237 becomes

;T

92 _ —(1’“817 _ d) (T"B(i’i%ﬁ _ d) (48)

23e - Now since 0 and d are real, the imaginary part of the right hand side of (48) must be zero, so that

r* P sin #n = d(r" sin % + 1P sin ’877-[) (49)
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23 Hence

_ezzrﬂ‘*ﬁcos#n d(r® cos 2 +rﬁcos'8 ) +d2. (50)

2

20 Equations (49) and (50) will define the asymptotic stability boundary with 6 as a function of d. Rewriting
241 (49) as

B gin B
d= 2 o (51)

résin &% + B sin &

22 and substituting (50) leads after simplification to

62 1 . a+p 2P
ﬁ:r‘x+ﬁ(51na+'3 e sin — 7r(751nvc7r+751n,37r)
_ TB 2w 2% op . 2 PTT wip o AT P
cos — mT(r sin 5 Hrfsin® 5 +2r*"Psin 5 sin 2)
2a3  Using the relationships
. 2 1
sin“f = E(l—cost))
sinAsinB+cos AcosB = cos(A— B)
244 gives
92 1 2u Zﬁ a—ﬁ lX"’ﬁ
7 = 2r‘x+/3s1r12“J2rﬁn<(r +r )(cosTn—cos 5 7T)
B i B i BT oy 5+
4r"7F sin 5 sin —-cos — T . (52)
25 Since
x—p a+pB B
€OS —— 7T — C0s — n—Zsmzsm

2e6  and letting x = r*~B, then we can write (52) as

2 ﬁ
(9) _ sin &t sin (x +1 2cos“—2h87'c>. (53)

d in2 Y8 ¢ x
)

24z Furthermore, we can write (51) as

a— ﬁ +B
d— X sin . (54)

: [\ Y8
xsin 55 + sin 5
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2es It is easily seen that as a function of x the minimum of (53) is when x = 1. Thus

9 \/Zsm a7 gin BT
P > 2 1—cos
24/sin 8¢ - sin ﬁ2 sin “+ﬁ

x+p a+pB
4 4

2sin 7T COS 7T
sin 2 sin ﬁ Al
Cos H%

20 Thus we have proved the following result.

20 Theorem 8. Given the mixed index problem with A as in (45), the angle for asymptotic stability = arctan %)

a1 satisfies

o

. sin & sin B s
tanf € T I (55)
R
2 or in radians with § = L arctan(9)
| \/sin = sin &7
i 2 2 T
6 € — |arctan ST — arctan —
T Cos — - 7T 2
23 with the minimum occuring with
a+ﬁ
sin
d=——2 . (56)

A pr
SmT—FSIHT

2ss  Remark 9. We have the following results for  in three particular cases:

2 () a=PB: 0=aZ, sincein this case (§)? = tan? 4.
(i) e +p=1: 0€ (Vsinamr, %), a € [},1]. In the case « + B = 1 we see from (53) that

Q 2— in a7t x+1
i) ~—° 2x )

256 Letting & = % + € with € > 0 small, then x = r?¢. This means that "Z;Fl, as a function of r, is very
257 shallow apart from when r is near the origin or very large. Hence the asymptotic stability boundary will
258 be almost constant over long periods of d when « and B are close together.
 sin BT rcos BT
wo (i) a=2p: e[ 2ZVPT 1) e (0,1
COS —7—

260 Letting
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in &7 gin P
K:%, Lzzcosﬂn’quel
sin® Tﬁ T d
261 we can write (53) and (54) as
¢?
xz—aL+iQx+1:0 (57)
XOF —xdy—dg =0, (58)
262 Where
sin &% sin £%
dy=d—2—, dg=d—2—.
" sin #n P sin “erﬁ T

263 Due to the nonlinearities in (58) it is hard to determine an explicit simple relation between ¢ and d
2ea  except if & = 2. In this case we make use of the following Lemma.

2¢s Lemma 6. If x> —ax +b = 0and x> — cx +d = 0 then there is a solution

x=0, b=d
x> —ax+b=0, a=cb=d (59)
x:%, c#aand (d—b)> = (c —a)(ad — bc).

26 Proof. By subtraction of the two equations and substitution. []

267 In the case of (57) and (58) then (59) becomes

2
ﬂ+%f=@f%xMWM@,P:L+%,

26s  thatis
P2dg — Pdy(dg — 1) — (d5 + (1+dg)?*) =0.
260 Hence
ZdﬁP:d/x(d/g—l):t(1+dﬁ)1/d02¢+4d5. (60)
270 Note that
¢* =KP—KL

2n and

dodg = d* K.
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272 Some manipulation from (60) leads to
1 (dy\? | d d
2 ® B B
=== — - —2L—-—-].
¢ 2<d> (d,B 1:|:(1+d/5) 1+4d‘% d,x>
2z Now since & = 2, this reduces to
. 2 . B_ . 3B 38
1 [ sinfr 4 sin 57t sin =~ 7T Cos %71
2= S| === dg—1+(1+d \/1+ 2 2 o2
¢ 2 (sin3f7r> ( g ( 2 d  (sinpm)> cosgn
o B
sin 571
dg = d—75—. (61)
sin 5 7t

27a By taking § = arctan(¢) this gives an explicit relationship between § and d for the case a = 2.

275 Remark 10. Particular solutions are

(i)ﬁ:;,azl,tanéz\/(1+d)(1+,/1+§)
277 (ii)ﬁ:%,zx:%,tané:\/g\/(1+g),/1+3‘ii+§1.
iy

275 It is clear from (61) that when d = 0 and d = oo, then § = 7 and then the angle will make an
27e  excursion from 7 down to a minimum value and back to 7 as d increases. For example, in the case of
20 B =%, & =1we can see from Remark 10(i) that the minimum value of the angle is when

d=+v2-1, tanf= \/\f2+\/4+3\f2.

21 Returning to (41) and taking m; = mp = 1 and

ay az
A=

X(s) = Dei(s) <s“+ﬁ—1x(o)+< 72 )sﬁ—lxz(o)+ < _Zj )s“‘1X1(0)> (62)

2e2 then the Laplace transform in (42) is

2ss  Where

Det(s) = s“TP — 4P — bys® + Dy,
Dy = aiby —ayby = Det(A).

2sa  Now if & and B are rational (« < p)
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x = %, g = g, m<mn, p<gq, positiveintegers

and with z = s%ﬂ, then

Det(z) = 2™ — q12"P — bpyz™1 + D 4. (63)
Hence (62) gives
= ; np _ np—mq

Xi(z) = 20 miDet(2) (2" = b2)X1(0) + apz X2(0)) (64)
X5 (z) ! (b1X1(0) + (2" — a12"77"1)X5(0)) . (65)

- z(n=m)qDet(z)

From Descartes rule of sign, then (63) will have at most 4 real zeros if mg + np is even, and at most 5

real zeros if mq + np is odd.

Now factorise

Det(z) = Hjlil(z —Aj), N=mqg+np,

where there are at most 4 real zeros if N is even and at most 5 real zeros if N is odd. Then using (64)

and (65) we can write

. ‘
Xi(s) =~y A i=1,2
1 - ’ -
slfH”iﬂ j=1 s’%’% —A
where the A;i) can be found by writing
(i)
pi(z) :iAJ' P10
Det(z) oz Aj ’

where

pi1(z) = X1(0)z"F + X5(0)axz"P~™ — b, X;(0)

p2(z) =

Using Lemma 2 with

leads to the following result.

X5(0)2" — X5(0)a12"P~™ + b1 X1 (0).
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206 Theorem 9. The solution of the mixed index 2 problem with « = 1, B = %, m < n, p < qall positive integers
207 15, with N = mq + np, given by
N 1
y(t) = ), AjEnLqJ,HnLq (Ajtm) (66)
j=1
— (1) AT

208 where the A are the zeros of (63) and the A; are the coefficients in the partial fraction expansion.

200 Remark 11. In the case that & = B then (66) should collapse to the solution

y(t) = Eo(t*A)y(0), (67)

300 and this is not immediately clear. However, in this case, mq = np and so

D(z) = 22" — (a; + bp)z"" + D(A)

so1  which is a quadratic function in z"*P while the equivalent py and p, numerator functions are linear in z"P. Thus
s02 i (66) N is replaced by 2, niq is replaced by w, and 1 — a + niq becomes 1. Thus (66) reduces to

2
y(t) = Zi AjEqa(At")
i=

03 that then becomes (67). On the other hand if w is rational and B = Ka, K a positive integer, then

Det(s) = (s*)XF1 — aq(s*)K — bys® + D 4. (68)

If we factorise
Det(s) = H]K;ll(s“ —-Aj)

s and find ALV, AP, =1, K+1by

K+1A< 1 . 1 « KX 0 an " KilX 0 —by X1 (0 -
]; Ts« —Aj  Det(s) (s%)7X(0) + —a (") 2(0) + by 1(0) (69)

s0s  then we have the following Corollary.

s0s Corollary 1. The solution of the mixed index 2 problem with « rational and p = Ka, K a positive integer, is
s07  Qiven by

K+1
y(t) = Y AjE(At"),
j=1

s0s  Where the vectors Aj and “eigenvalues” A; satisfy (69).

s00 As a particular example, take K =2, a = 5, then the Aj and Ajin Corollary 1 satisfy
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D(z) := H?Zl (z—=4A)) = 22— 02 —byz+ Dy =0

s1.0 and

su  In other words

A1(z = A)(z — A3) + Ax(z — A1) (2 — A3) + As(z — Ap)(z — Ap)
= Xoz% + < 72 ) X,(0)z + < b ) X;(0)
—aq bl

Xo, ( S )Xz(o), ( _Zz )Xl(O)
a1 1

1T —(A2+A3) AAz
S=11 —(A1+A3) MAs
1 —(M+2A) MAy

[A] Ay A3] =

313 Wlth

sia Clearly in the case described by Corollary 1, writing the solution as a linear combination of
a5 generalised Mittag-Leffler functions makes the evaluation of the solution much more computationally
sie  efficient.

s1z 3.3. Simulations

ae In this section we give a variety of asymptotic stability and dynamics results for different parameter
a0 values of the linear mixed index models.
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Stability region for alpha = 0.5 and beta = 1 - stable if on and above blue curve

s - o
107 d, logarithmic scale 1°

Stability region for alpha = 0.5 and beta = 1 - zoom region of interest

Figure 2. Stability region, above the blue line, for choosing d and 6, when the

eigenvalues of A are d £i0, & =

1

5,8 = 1. The logarithmic scale is explored in

the right hand figure where the stability boundary dips below the angle 3@”.

05

Stability region for alpha = 1/3 and beta = 2/3 - stable if on and above blue curve

02

1010

10° - 10°
d, logarithmic scale

0265

Stability region for alpha = 1/3 and beta = 2/3 - zoom region of interest

Figure 3. Stability region, above the blue line, for choosing d and 6, when the

eigenvalues of A are d +if, o« =

1
5B

%. The logarithmic scale is explored in

the right hand figure where the stability boundary dips below the angle Z.
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1= 0.50,3=1.00

. . . . . . . . . . . . , . , .
0 1 2 3 4 5 time 6 7 8 9 10 0 1 2 3 4 5 time 6 7 8 9 10

Figure 4. System Dynamics with («,8) = (},1), top, and (¢, 8) = (%, %), bottom.
The left hand column shows sustained dynamics with d = 1 and 6 chosen so that
(d,0) lies on the stability boundary. The right hand column corresponds to the same
d but 0.3 has been added to the 6 value.

5 . . a=0. =1. 2 ; . q=1/3,3=2/3

Figure 5. Phase Plots of y; versus y; for the decaying solutions in the right hand
column of Figure 4.
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_ a=0158=095 . o 2=020,4=085

—
—

o 1 2 3 4 time 5 6 7 8 l o 1 2 3 4 time 5 O 7 ® o

=0.50, =0.95 1 =0.85, f=0.95

Figure 6. For A given by (71) withd = —1, 0 = % so that the eigenvalues are — %, — %,
showing the effect of variation of a with fixed  on the system dynamics.

s20 4. Discussion

sz In Figures 2 and 3 we plot the asymptotic stability boundary of the two dimensional, index-two
;22 problem given by (1) where

d -0
A:<9 d)’ d>0 (70)

s23 for the two cases considered in section 3.2, namely =1, a« = % (Figure 2) and 8 = %, n = % (Figure
224 3). Since the eigenvalues of A are d £ if), we plot on the vertical axis the angle 0 in radians, where
2 0 = Larctan(9), as a function of d. In Figure 2 we see that § € (1, 1) corresponding to an angle lying
226 between 45° and 90°, as expected from the theory. We also plot the angle, in green, corresponding to
sz the midpoint between these two extremes, i.e. %n. We see that for the most part the asymptotic stability
s2s  angle lies above this midpoint except for the values of d, as shown in the right hand figure.

s20  In the case of Figure 3, we give a similar plot as Figure 2. We also plot in green the midpoint between
330 the two lines subtended by angles %7’( and %71, namely }I”' As with Figure 2 there is a small range of d
ss1 for which the asymptotic stability angle drops beneath ;7. Furthermore, it is clear from Remark 9(ii)
sz that as « and B approach one another, the asymptotic stability boundary will be almost constant over
3 increasingly longer periods of d and will only asymptotically approach the angle 7 for very small and
;3¢ very large values of d.

a5 In Figure 4 we confirm the asymptotic stability analysis showing sustained and decaying oscillations

se witha = 1,8 = 1 (top panel) and « = 1,8 = 2 (bottom panel). In all four cases, d = 1 while for
2 PP 3 3 p

s»  the top panel we take § = {/2(1++/3), 8 = 1/2(1 + +/3) + 0.3, while for the bottom panel we take
s 0=Y3\/\33—1,0=3/\/33-1+03.
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330 In Figure 5 we present phase plots of y; versus y, for the two decaying oscillations cases. The figures
a0 confirm our theoretical results on the asymptotic stabiity boundary and also show the effects that the
s fractional indices have on the period of the solutions. As & approaches 8 we expect the oscillatory
s behaviour to disappear.

:a3 Finally, in Figure 6 we consider the problem

d o
A= d 71
< 0 4 ) , d<0 (71)
saa  in which case the eigenvalues of A are d £ 6. We take d = —1, 0 = 1 and present the solutions for four

sas  pairs of indices, namely («, B) = (0.85,0.95), (0.5,0.95), (0.2,0.05), (0.15,0.95). The simulations show
:es  that the components of the solution y; and vy, seem to pick up “energy" from one another due to the
a7 coupling and that as the distance between « and B grows there is a greater separation between the two
e components. Finally, as « gets smaller, the solutions appear to “flat-line" more quickly.

sa0 5. Conclusions

0 In this paper we have studied mixed index fractional differential equations with coupling between
s the different components. We find an analytical expression for the solution of the linear system that
2 generalises the Mittag-Leffler expansion of a matrix and the solution of linear sequential fractional
=3 differential equations. We can use this result to derive new numerical methods that generalise the
sss  concept of exponential methods used in the approximation of the Mittag-Leffler matrix function, see
s [34-36], for example, and exponential integrators [37], [38]. The second element would deal with
6 developing numerical techniques for the integration component that incorporates the integral of a
7 function times a Green function. We also use Laplace transform techniques to find the asymptotic
e stability domain in terms of the eigenvalues of the defining linear system. Finally we have also
0 used Laplace transforms to get analytical expansions of the mixed index problem in terms of a sum
s Of Mittag-Leffler or generalised Mittag-Leffler functions, in the case that the fractional indices are
se1  rational.
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