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Abstract: In this paper we study the class of mixed-index time fractional differential equations in1

which different components of the problem have different time fractional derivatives on the left hand2

side. We prove a theorem on the solution of the linear system of equations, which collapses to the3

well-known Mittag-Leffler solution in the case the indices are the same, and also generalises the4

solution of the so-called linear sequential class of time fractional problems. We also investigate the5

asymptotic stability properties of this class of problems using Laplace transforms and show how6

Laplace transforms can be used to write solutions as linear combinations of generalised Mittag-Leffler7

functions in some cases. Finally we illustrate our results with some numerical simulations.8

Keywords: time fractional differential equations; mixed-index problems; analytical solution;9

asymptotic stability10

1. Introduction11

Time fractional and space fractional differential equations are increasingly used as a powerful12

modelling tool for understanding the role of heterogeneity in modulating function in such diverse areas13

as cardiac electrophysiology [1–3], brain dynamics [4], medicine [5], biology [6], [7], porous media14

[8], [9] and physics [10]. Time fractional models are typically used to model subdiffusive processes15

(anomalous diffusion [11], [12]), while space fractional models are often associated with modelling16

processes occurring in complex spatially heterogeneous domains [1].17

Time fractional models typically have solutions with heavy tails as described by the Mittag-Leffler18

matrix function [13] that naturally occurs when solving time fractional linear systems. However such19

models are usually only described by a single fractional exponent, α, associated with the fractional20

derivative. The fractional exponent can allow the coupling of different processes that may be occurring21

in different spatial domains by using different fractional exponents for the different regimes. One22

natural application here would be the coupling of models describing anomalous diffusion of proteins23

on the plasma membrane of the cell with the behaviour of other proteins in the cytosol of the cell. Tian24

et al [14] addressed this problem by coupling a stochastic model (based on the Stochastic Simulation25

Algorithm [15]) for the plasma membrane with systems of ordinary differential equations describing26

reaction cascades within the cell. It may also be necessary to couple more than two models and so in27

this paper we introduce a formulation that focuses on coupling an arbitrary number of domains in28

which dynamical processes are occurring described by different anomalous diffusive processes. This29

leads us to consider the r index time fractional differential equation problem in Caputo form30
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Dαi
t yi =

r

∑
j=1

Aijyj + Fi(y), yi(0) = zi, yi ∈ Rmi , i = 1, · · · , r, (1)

or in vector form31

Dα
t y = A y + F(y).

Here the Aij are mi ×mj matrices, while A is the associated block matrix of dimension ∑r
j=1 mj and32

α = (α1, · · · , αr)> has all components αi ∈ (0, 1].33

We believe that a modelling approach based on this formulation has not been fully developed before.34

We note that scalar linear sequential fractional problems have been considered whose solution can35

be described by multi-indexed Mittag-Leffler functions [16], and there are a number of articles on36

the numerical solution of multi-term fractional differential equations [17–19], and while mixed index37

problems can, in some cases, be written in the form of linear sequential problems, namely ∑R
i=1 Dβi

t y =38

f (y), we claim that it is inappropriate to do so in many cases.39

Therefore in this paper we develop a new theorem that gives the analytical solution of equations such40

as (1) that reduces to the Mittag-Leffler expansion in the case that all the indices are the same (section41

3) and generalises the class of linear sequential problems (section 3.1). We then analyse the asymptotic42

stability properties of these mixed index problems using Laplace transform techniques (section 3.2),43

relating our results with known results that have been developed in control theory. In section 3.2 we44

also show that, in the case that the αi are all rational, the solutions to the linear problem can be written45

as a linear combination of generalised Mittag-Leffler functions, again using ideas from control theory46

and transfer functions. In section 3.3 we present some numerical simulations illustrating the results in47

this paper and give some discussion (in section 4) on how these ideas can be used to solve semi-linear48

problems either by extending the methodology of exponential integrators to Mittag-Leffler functions,49

or by writing the solution as sums of certain Mittag-Leffler expansions.50

2. Materials and Methods51

2.1. Analytical Solutions52

We consider the linear system given in (1) with r = 2. It will be convenient to let53

A =

(
A1 A2

B1 B2

)
, y> = (y>1 , y>2 ), z> = (z>1 , z>2 ) (2)

where A is m×m, m = m1 + m2. We will call such a system a time fractional index-2 system. Here54

the Caputo time fractional derivative with starting point at t = 0 is defined (see Podlubny [20], for55

example), as56

Dα
t y(t) =

1
Γ(1− α)

∫ t

0

y′(s)
(t− s)α

ds, 0 < α < 1.

Furthermore, given a fixed mesh of size h then a first order approximation of the Caputo derivative57

[21] is given by58
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Dα
t yn =

1
Γ(2− α)hα

n

∑
j=1

(j1−α − (j− 1)1−α)(yn−j−1 − yn−j).

If β = α then the solution to (1) is given by the Mittag-Leffler expansion59

y(t) = Eα(tα A) y(0), Eα(z) =
∞

∑
j=0

zj

Γ(1 + jα)
(3)

where Γ(x) is the Gamma function.60

If the problem is completely decoupled, say A2 = 0, then from (3) the solution to (1) and (2)61

satisfies62

y1(t) = Eα(tα A1) z1

Dβ
t y2 = B2y2 + B1Eα(tα A1) z1. (4)

In order to solve (4), this requires us to solve problems of the form63

Dβ
t y2 = B2y2 + f (t). (5)

Before making further headway, we need some additional background material.64

Definition 1. Generalisations of the Mittag-Leffler functions are given by65

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, Re(α) > 0

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, γ ∈ N0,

where (γ)k is the Pochhammer symbol66

(γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k− 1).

Remark 1. Eα,1(z) = Eα(z), E1
α,β(z) = Eα,β(z), E1(z) = ez.67

Lemma 1. (
d
dz

)n
Eα,β(z) = n!En+1

α,β+αn(z), n ∈ N.

Lemma 2. The Laplace transform of Eα,β(λtα) satisfies68

X(s) =
sα

sβ(sα − λ)
. (6)

Lemma 3. The Caputo derivatives satisfy the following relationships.69
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(i) Dα
t Iαy(t) = y(t)70

(ii) IαDα
t y(t) = y(t)− y(0)71

(iii) Dα
t y(t) = 1

Γ(1−α)

∫ t
0

y′(s)
(t−s)α ds = I1−αDty(t).72

Lemma 4. (See [20], for example.) The solution of the scalar, linear, non-homogeneous problem73

Dα
t y(t) = λy(t) + f (t), y(0) = y0 (7)

is74

y(t) = Eα(λtα)y0 +
∫ t

0
(t− s)α−1Eαα(λ(t− s)α) f (s)ds. (8)

Proof. Using the integral form from Lemma 3, (7) can be rewritten as75

y(t) = y0 +
λ

Γ(α)

∫ t

0

y(s)
(t− s)1−α

ds +
1

Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds.

We now apply a Picard-style iteration of the form76

yk(t) = y0(t) +
λ

Γ(α)

∫ t

0

yk−1(s)
(t− s)1−α

ds +
1

Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds, k = 1, 2, · · ·

where y0(t) = y0, ∀t.77

It can be shown that this iteration will converge to (8) - see [16].78

Lemma 5.

1 +
∫ t

0
λsα−1Eαα(λsα)ds = Eα(λsα).

Proof. Use Definition 1 and integrate the left hand side term by term.79

Remark 2. The function multiplying f (s) in the integrand of (8), namely80

Gα(t− s) = (t− s)α−1Eαα(λ(t− s)α),

can be viewed as a Green function. For example, when α = 1, G1(t− s) = eλ(t−s).81

The generalisation of the class of problems given by (7) to the systems case takes the form82

Dα
t y(t) = Ay(t) + F(t), y(0) = y0, y ∈ Rm. (9)

In the case that F(t) = 0 the solution of the linear homogeneous system is83

y(t) = Eα(tα A)y0. (10)

From this we can prove84

Theorem 1. (See [20], for example.) The solution of (9) is given by85
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y(t) = Eα(tα A)y0 +
∫ t

0
(t− s)α−1Eαα((t− s)α A)F(s)ds. (11)

Proof. We can use the idea of a Green function. But first of all it is trivial to see from Definition 1 that86

d
dz

(Eα(zα A)) = Azα−1Eαα(zα A). (12)

Now the solution of (9) can be written as87

y(t) = y0 +
∫ t

0
Gα(t− s)(Ay0 + F(s))ds,

where Gα(t− s) is a matrix Green function, or alternatively88

y(t) =
(

I +
∫ t

0
Gα(t− s)A ds

)
y0 +

∫ t

0
Gα(t− s)F(s)ds.

Finally it is clear from (12) that89

Gα(t− s) = (t− s)α−1Eαα((t− s)α A)

is the Green function and the result is proved by using Lemma 5.90

2.2. Asymptotic Stability of Multi-index Systems91

The first contribution to the asymptotic stability analysis of time fractional linear systems was by92

Matignon [24]. Given the linear system Dα
t y(t) = Ay(t) in Caputo form, then taking the Laplace93

transform and using the definition of the Caputo derivative gives94

sαX(s)− sα−1X(0) = AX(s)

or95

X(s) =
1
s
(I − s−α A)−1X(0). (13)

Here X(s) is the Laplace transform of y(t). If we write w = sα, then the matrix sα I − A will be96

nonsingular if w is not an eigenvalue of A. In the w-domain this will happen if Re(σ(A)) ≤ 0, where97

σ(A) denotes the spectrum of A. In the s-domain this will happen if |Re(σ(A))| ≥ απ
2 . That is, the98

eigenvalues of A lie in the complex plane minus the sector subtended by angle απ symmetric about99

the positive real axis - see Figure 1.100

In fact Laplace transforms are a very powerful technique for studying the asymptotic stability of mixed101

index fractional systems. Deng et al. [25] studied the stability of linear time fractional systems with102

delays using Laplace transforms. Given the delay system103

dαi yi
dtαi

=
m

∑
j=1

aijyj(t− τij), i = 1, · · · , m (14)

then the Laplace transforms results in104
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Figure 1. Stability region for single index problem

∆(s) X = b

∆(s) = Diag(sα1 , · · · , sαm)− L (15)

Lij = aije
−sτij , i, j = 1, · · · , m.

Hence, Deng et al. proved:105

Theorem 2. If all the zeros of the characteristic polynomial of ∆(s) have negative real part then the zero solution106

of (14) is asymptotically stable.107

Deng et al. also proved a very nice result in the case that all the indices α1, · · · , αm are rational.108

Theorem 3. Consider (14) with no delays and all the αi ∈ (0, 1) and are rational. In particular let109

αi =
ui
vi

, gcd(ui, vi) = 1

and let M be the lowest common multiple of all the denominators and set γ = 1
M . Then the problem will be110

asymptotically stable if all the roots, λ, of111

p(λ) = Det(D− A) = 0, D = diag(λMa1 , · · · , λMam)

satisfy | arg(λ)| > γ π
2 .112

Remark 3. If αi = α, i = 1, · · · , m then Theorem 3 reduces to the result of Matignon. The proof of Theorem 3113

comes immediately from (15) where p(λ) is the characteristic polynomial of ∆(s).114

Remark 4. A nice survey on the stability (both linear and nonlinear) of fractional differential equations is given115

in Li and Zhang [26], while Saberi Najafi et al. [27] has extended some of these stability results to distributed116

order fractional differential equations with respect to an order density function. Zhang et al [28] consider the117

stability of nonlinear fractional differential equations.118

Remark 5. Radwan et al. [29] note that the stability analysis of mixed index problems reduces to the study of119

the roots of the characteristic equation120

m

∑
i=1

θi sαi = 0, 0 < αi ≤ 1. (16)
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In the case that the αi are arbitrary real numbers, the study of the roots of (16) is difficult. By letting121

s = ez, we can cast this in the framework of quasi (or exponential) polynomials (Rivero et al. [30]). The122

zeros of exponential polynomials have been studied by Ritt [31].123

The general form of an exponential polynomial with constant coefficients is124

f (z) =
k

∑
j=0

aje
αjz.

An analogue of the fact that a polynomial of degree k can have up to k roots is expressed by a Theorem125

due to Tamarkin, Pólya and Schwengler (see [31]).126

Theorem 4. Let P be the smallest convex polygon containing the values α1, · · · , αk and let the sides of P be127

s1, · · · , sk. Then there exist k half strips with half rays parallel to the outer normal to bi that contain all the zeros128

of f . If |bi| is the length of bi, then the number of zeros in the ith half strip with modulus less than or equal to r is129

asymptotically r |bi |
2π .130

3. Results131

3.1. The Solution of Mixed Index Linear Systems132

The main focus of this paper is to consider generalisations of (9) where there are differing values of133

α on the left hand side. In its general form, we will let y> = (y>1 , · · · , y>r ) ∈ Rm where yi ∈ Rmi and134

m = ∑r
i=1 mi. We will also assume F(t)> = (F1(t)>, · · · , Fr(t)>) and that A can be written in block135

form A = (Aij)
r
i,j=1, Aij ∈ Rmi×mj . We will also let α = (α1, · · · , αr) and consider a class of linear,136

non-homogeneous multi-indexed systems of FDEs of the form137

Dα
t y(t) = Ay(t) + F(t) (17)

that we interpret as the system138

Dαi
t yi(t) =

r

∑
j=1

Aijyj(t) + Fi(t), i = 1, · · · , r. (18)

The index of the system is said to be r.139

In the case that F = 0, then by letting
Ei = Dαi − A1i

we can rewrite (17) as140

M y = 0, (19)

where M is the block matrix, whose determinant must be zero, with141

Mii = Ei, i = 1, · · · , r

Mij = −Aij, i 6= j.
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Thus, in the case all mi = 1, so that the individual components are scalar and so m = r, (19) implies142

Det(M) yr = 0.143

For example, when r = 2 this becomes144

(E1E2 − A21 A12) y2 = 0

or145

(Dα1+α2 − A22Dα1 − A11Dα2 + Det(A)) y2 = 0;

while for r = 3 this gives, after some simplification,146

Dα1+α2+α3 y3 − A11Dα2+α3 y3 − A22Dα1+α3 y3 − A33Dα1+α2 y3

+ (A22 A33 − A23 A32)Dα1 y3 + (A11 A33 − A13 A31)Dα2 y3

+ (A11 A22 − A12 A21)Dα3 y3 −Det(A) = 0.

Clearly there is a general formula for arbitrary r in terms of the cofactors of A. In particular, it can be147

fitted into the framework of linear sequential FDEs [16,20–23]. These take the form148

Dβ0
t y1(t) +

p

∑
j=1

ajD
β j
t y1(t) = dy1(t) + f (t), β0 > β1 > · · · βp. (20)

However, this characterisation is not particularly simple, useful, or computationally expedient.149

Furthermore when the mi are not 1, so that the individual components are not scalar, then there150

is no simple representation such as (20) and new approaches are needed. Before we consider this new151

approach we note the converse, namely that (20) can always be written in the form of (17) for a suitable152

matrix A with a special structure. In particular we can write (20) in the form of (17) with p = r− 1 as153

an r dimensional, r index problem with α = (β0, β1, · · · , βp), and154

A =


d −a1 −a2 · · · −ap

0 1 0 · · · 0
...

. . .
0 · · · 1

 , F(t) = ( f (t), 0, · · · , 0)>.

For completeness we note in the case that d = 0 and f (t) = 0, an explicit solution to this problem was155

given in Podlubny [20]. This can be found by considering the transfer function (see section 3.2) given156

by157

H(s) =
1

sβ0 + a1sβ1 + · · ·+ apsβp
.

By finding the poles of this function and converting back to the untransformed domain, Podlubny158

gives the solution as159
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y1(t) =
∞

∑
m=0

(−1)m

m! ∑
k0 + k1 + · · ·+ kp−2 = m

ki ≥ 0

(
m

k0 · · · kp−2

)
p−2

∏
i=0

(ap−i)
ki ×

εm(t,−a1; β0 − β1, β0 +
p−2

∑
j=0

(β1 − βp−j)k j + 1)

where160

εk(t, y; α, β) = tkα+β−1Ek
α,β(ytα)

Ek
α,β(z) =

∞

∑
i=0

(i + k)! zi

i! Γ(α(i + k) + β)
.

We now return to the index-2 problem (1) and (2). We first claim that the solution takes the matrix161

form162

y1 = α00 +
∞

∑
n=1

n−1

∑
j=0

αn,j+1
tnα+j(β−α)

Γ(1 + nα + j(β− α))
z

(21)

y2 = β00 +
∞

∑
n=1

n

∑
j=1

βn,j
tnα+j(β−α)

Γ(1 + nα + j(β− α))
z,

where the αn,j, βn,j are appropriate matrices, of size m1 ×m and m2 ×m, respectively, that are to be163

determined.164

We now use the fact that165

Dα
t

tnα+j(β−α)

Γ(1 + nα + j(β− α))
=

1
Γ(1 + (n− 1)α + j(β− α))

t(n−1)α+j(β−α)

(22)

Dβ
t

tnα+j(β−α)

Γ(1 + nα + j(β− α))
=

1
Γ(1 + (n− 1)α + (j− 1)(β− α))

t(n−1)α+(j−1)(β−α).

Using (21) and (22) the left hand side of (1) is166

Dα
t y1 =

∞

∑
n=1

n−1

∑
j=0

αn,j+1
t(n−1)α+j(β−α)

Γ(1 + (n− 1)α + j(β− α))
z

Dβ
t y2 =

∞

∑
n=1

n−1

∑
j=0

βn,j+1
t(n−1)α+j(β−α)

Γ(1 + (n− 1)α + j(β− α))
z

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2018                   doi:10.20944/preprints201802.0094.v1

Peer-reviewed version available at Axioms 2018, 7, 25; doi:10.3390/axioms7020025

http://dx.doi.org/10.20944/preprints201802.0094.v1
http://dx.doi.org/10.3390/axioms7020025


10 of 28

that can be written in matrix form as167

∞

∑
n=0

n

∑
j=0

(
αn+1,j+1
βn+1,j+1

)
tnα+j(β−α)

Γ(1 + nα + j(β− α))
z. (23)

If we define168

αn,n+1 = 0, βn0 = 0, n = 1, 2, · · · (24)

then the right hand side of (1) is169

A

((
α00

β00

)
+

∞

∑
n=1

n

∑
j=0

(
αn,j+1

βnj

)
tnα+j(β−α)

Γ(1 + nα + j(β− α))

)
z. (25)

Equating (23) and (25) we find along with (24) that for n = 0, 1, 2, · · ·170

(
α00

β00

)
= Im,

(
αn+1,j+1
βn+1,j+1

)
= A

(
αn,j+1

βnj

)
, j = 0, 1, · · · , n. (26)

In order to get a succinct representation of the solution based on (21) and (26), it will be convenient to171

write172

pn(t) =

(
tnα

Γ(1 + nα)
,

t(n−1)α+β

Γ(1 + (n− 1)α + β)
, · · · ,

tnβ

Γ(1 + nβ)

)>
⊗ Im, n = 1, 2, · · ·

so pn(t) ∈ Rm(n+1)×m, and let p0(t) = Im.173

We will also define the matrices174

Ln =

(
αn1 αn2 · · · αnn 0
0 βn1 · · · βn n−1 βnn

)
∈ Rm×m(n+1), n = 1, 2, · · ·

L0 = Im

where 0 represents appropriately-sized zero matrices. Now we note that the recursive relation (26) is175

equivalent to176

(
αn1 · · · αnn

βn1 · · · βnn

)
= A Ln−1, n = 1, 2, · · · . (27)

Thus we can state the following theorem.177

Theorem 5. The solution of the fractional index-2 system

Dα,β
t y(t) = A y(t), y(0) = z

is given by178
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y(t) =
∞

∑
n=0

Ln pn(t) z, (28)

where for n = 1, 2, · · ·179

Ln =

(
αn1 αn2 · · · αnn 0
0 βn1 · · · βn n−1 βnn

)
,

(
αn1 · · · αnn

βn1 · · · βnn

)
= A Ln−1,

L0 = Im

pn(t) =

(
tnα

Γ(1 + nα)
,

t(n−1)α+β

Γ(1 + (n− 1)α + β)
, · · · ,

tnβ

Γ(1 + nβ)

)>
⊗ Im. (29)

Remark 6. In the case α = β,180

pn(t) =
tnα

Γ(1 + nα)
(1, · · · , 1)> ⊗ Im,

Ln pn(t) =
tnα

Γ(1 + nα)

n

∑
j=1

(
αnj
βnj

)

and with181

n

∑
j=1

(
αnj
βnj

)
= A

n−1

∑
j=1

(
αn−1,j
βn−1,j

)

then (28) reduces, as expected, to182

y(t) = Eα(tα A)z.

Remark 7. It will be convenient to define the matrix183

Pα,β(t) =
∞

∑
n=0

Ln pn(t)

so that the solution (28) can be expressed as184

y(t) = Pα,β(t)y0. (30)

Remark 8. If the fractional index-2 system has initial condition y(t0) = z then the solution is185

y(t) = Pα,β(t− t0)z. (31)

We note that in solving (9) an equivalent solution to (11) is186
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y(t) = Eα(tα A)y0 + Iα(Gα(t− s)F(s))ds,

Gα(t− s) = Eα((t− s)α A),

where Gα is the Green function satisfying187

Dα
t Gα(t− s) = AGα(t− s). (32)

This leads us to give a general result on the solution of the mixed index problem with a time-dependent188

forcing function189

Dα,β
t y(t) = Ay(t) + F(t),

but first we need the following definition.190

Definition 2. Let y(t) = (y>1 (t), y>2 (t))
>, then define191

Iα,β
t y(s)ds =

(
Iα
t y>1 (s)ds, Iβ

t y>2 (s)ds
)>

.

Theorem 6. The solution to the fractional index-2 problem192

Dα,β
t y(t) = Ay(t) + F(t), y(0) = y0 (33)

is given by193

y(t) = Pα,β(t)y0 + Iα,β
t
(

Pα,β(t− s)F(s)ds
)

. (34)

Proof. The result follows from Dα,β
t Pα,β(t) = APα,β(t), together with the above discussion.194

We now turn to analysing the asymptotic stability of linear fractional index-2 systems.195

3.2. Study of Asymptotic Stability196

Recalling Theorem 4, we note that if the αi are rational and with M the lowest common multiple of the197

denominators, this reduces to the polynomial198

M

∑
i=1

θiWi = 0, W = s
1
M .

This leads us to think about stability from a control theory point of view. Thus given the system199

n

∑
j=0

ajD
αj y =

M

∑
j=0

bjD
β j y (35)

where200
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αn > · · · > α0, βM > · · · β0

then the solution of (35) can be written in terms of the transfer function201

G(s) =
∑m

j=0 bjs
β j

∑n
j=0 ajs

αj
:=

Q(s)
P(s)

, (36)

where s is the Laplace variable (see Rivero et al. [30], Petras [32]).202

In the case of the so-called commensurate form in which203

αk = kα, βk = kβ,

then204

G(s) =
∑m

k=0 bk(sβ)k

∑n
k=0 ak(sα)k :=

Q(sβ)

P(sα)
. (37)

Clearly, if β
α is rational with α ≥ β and205

β =
q
p

α, q, p ∈ Z+, w = s
α
p

then (37) can be written as206

G(w) :=
Q(wq)

P(wp)
, p, q ∈ Z+, q ≤ p.

Cěrmák and Kisela [33] considered the specific problem207

Dαy + aDβy + by = 0, y ∈ R, (38)

where α = pK, β = qK, K real ∈ (0, 1), p, q ∈ Z+, p ≥ q. In this case the appropriate stability208

polynomial is P(λ) := λp + aλq + b, where λ = sK. Based on Theorem 3, (38) is asymptotically stable209

if all the roots of P(λ) satisfy | arg(λ)| > K π
2 .210

By setting λ = reiK π
2 and substituting into P(λ) = 0 and equating real and imaginary parts, it is easily211

seen that212

rp cos
pKπ

2
+ a rq cos

qKπ

2
+ b = 0

rp sin
pKπ

2
+ a rq sin

qKπ

2
= 0.

This leads to the following result, given in Cěrmák and Kisela [33].213

Theorem 7. Equation (38) is asymptotically stable with α > β > 0 real and α
β rational if214
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β < 2, α− β < 2

b > 0, a >
− sin απ

2

(sin βπ
2 )

β
α (sin (α−β)π

2 )
α−β

α

b
α−β

α .

We now follow this idea but for arbitrarily sized systems in our mixed index format, and this leads215

to slight modifications to (38). We first make a slight simplification and take m1 = m2 and we also216

assume that A2 is nonsingular, then problem (1) leads to217

y2 = A−1
2 (Dα I − A1) y1

and substituting into the equation for y1 gives218

(Dα+β I − B2Dα I − Ā1Dβ I + B2 Ā1 − B1 A2) A−1
2 y1 = 0

Ā1 = A−1
2 A1 A2.

This leads us to consider the roots of the characteristic function219

P(λ) := Det(Dα+β I − B2Dα I − Ā1Dβ I + B2 Ā1 − B1 A2) = 0. (39)

In the scalar case this gives an extension to (38) where the characteristic equation is220

P(λ) = λα+β − B2λα − A1λβ + Det(A). (40)

Now reverting to Laplace transforms of (1) and (2) then221

sαX1(s)− sα−1X1(0) = A1X1(s) + A2X2(s)

sβX2(s)− sβ−1X2(0) = B1X1(s) + B2X2(s).

This can be written in systems form as222

(D1 − A)X(s) = D2X(0), (41)

where223

D1 =

(
sα I 0
0 sβ I

)
, D2 =

(
sα−1 I 0

0 sβ−1 I

)

or alternatively as224

X(s) =
1
s
(I − D−1

1 A)−1X(0). (42)

This can now be considered as a generalised eigenvalue problem. From (41) we require D1 − A to be225

nonsingular. That is226
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(
sα I − A1 −A2

−B1 sβ I − B2

)
v = 0 =⇒ v = 0.

Let us write v = (v>1 , v>2 )
> and assume α ≥ β and that sβ I − B2 is nonsingular, so that from the227

previous analysis this means228

|Re(σ(B2))| ≥
βπ

2
. (43)

Hence229

v2 = (sβ I − B2)
−1B1v1

((sα I − A1)− A2(sβ I − B2)
−1B1)v1 = 0.

Thus (43) and230

Det((sα I − A1)− A2(sβ I − B2)
−1B1) = 0 (44)

define the asymptotic stability boundary - see also (39).231

In order to make this more specific, let m1 = m2 = 1 and232

A =

[
d b
a d

]
, d < 0. (45)

Note that σ(A) = {d±
√

ab}. Then (44) becomes233

(sα − d)(sβ − d)− ab = 0. (46)

Furthermore, let b = −a = θ, so that the eigenvalues of A are d± iθ and (46) becomes234

(sα − d)(sβ − d) + θ2 = 0. (47)

If we now assume that235

s = rei π
2 ,

which defines the asymptotic stability boundary (the imaginary axis) when α = β = 1, then (47)236

becomes237

θ2 = −(rαei πα
2 − d) (rβei πβ

2 − d). (48)

Now since θ and d are real, the imaginary part of the right hand side of (48) must be zero, so that238

rα+β sin
α + β

2
π = d(rα sin

απ

2
+ rβ sin

βπ

2
). (49)
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Hence239

− θ2 = rα+β cos
α + β

2
π − d(rα cos

απ

2
+ rβ cos

βπ

2
) + d2. (50)

Equations (49) and (50) will define the asymptotic stability boundary with θ as a function of d. Rewriting240

(49) as241

d =
rα+β sin α+β

2 π

rα sin απ
2 + rβ sin βπ

2

. (51)

and substituting (50) leads after simplification to242

θ2

d2 =
1

rα+β(sin α+β
2 π)2

[
sin

α + β

2
π(

r2α

2
sin απ +

r2β

2
sin βπ)

− cos
α + β

2
π(r2α sin2 απ

2
+ r2β sin2 βπ

2
+ 2rα+β sin

απ

2
sin

βπ

2
)

]
.

Using the relationships243

sin2 θ =
1
2
(1− cos 2θ)

sin A sin B + cos A cos B = cos(A− B)

gives244

θ2

d2 =
1

2rα+β sin2 α+β
2 π

(
(r2α + r2β) (cos

α− β

2
π − cos

α + β

2
π)

−4rα+β sin
απ

2
sin

βπ

2
cos

α + β

2
π

)
. (52)

Since245

cos
α− β

2
π − cos

α + β

2
π = 2 sin

απ

2
sin

βπ

2

and letting x = rα−β, then we can write (52) as246

(
θ

d

)2
=

sin απ
2 sin βπ

2

sin2 α+β
2 π

(
x2 + 1

x
− 2 cos

α + β

2
π

)
. (53)

Furthermore, we can write (51) as247

d =
x

α
α−β sin α+β

2 π

x sin απ
2 + sin βπ

2

. (54)
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It is easily seen that as a function of x the minimum of (53) is when x = 1. Thus248

θ

d
≥

√
2 sin απ

2 sin βπ
2

sin α+β
2 π

√
1− cos

α + β

2
π

=
2
√

sin απ
2 sin βπ

2 sin α+β
4 π

2 sin α+β
4 π cos α+β

4 π

=

√
sin απ

2 sin βπ
2

cos α+β
4 π

.

Thus we have proved the following result.249

Theorem 8. Given the mixed index problem with A as in (45), the angle for asymptotic stability θ̂ = arctan( θ
d )250

satisfies251

tan θ̂ ∈


√

sin απ
2 sin βπ

2

cos α+β
4 π

, ∞

 , (55)

or in radians with θ̃ = 1
π arctan( θ

d )252

θ̃ ∈ 1
π

arctan

√
sin απ

2 sin βπ
2

cos α+β
4 π

, arctan
π

2


with the minimum occuring with253

d =
sin α+β

2 π

sin απ
2 + sin βπ

2

. (56)

Remark 9. We have the following results for θ̂ in three particular cases:254

(i) α = β : θ̂ = α π
2 , since in this case ( θ

d )
2 = tan2 απ

2 .255

(ii) α + β = 1 : θ̂ ∈ (
√

sin απ, π
2 ), α ∈ [ 1

2 , 1]. In the case α + β = 1 we see from (53) that(
θ

d

)2
= sin απ

(
x2 + 1

2x

)
.

Letting α = 1
2 + ε with ε > 0 small, then x = r2ε. This means that x2+1

2x , as a function of r, is very256

shallow apart from when r is near the origin or very large. Hence the asymptotic stability boundary will257

be almost constant over long periods of d when α and β are close together.258

(iii) α = 2β : θ̂ ∈ [
sin βπ

2

√
2 cos βπ

2

cos 3βπ
4

, π
2 ), β ∈ (0, 1

2 ].259

Letting260
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K =
sin απ

2 sin βπ
2

sin2 α+β
2 π

, L = 2 cos
α + β

2
π, φ =

θ

d
,

we can write (53) and (54) as261

x2 − x(L +
φ2

K
)x + 1 = 0 (57)

x
α

α−β − x dα − dβ = 0, (58)

where262

dα = d
sin απ

2

sin α+β
2 π

, dβ = d
sin βπ

2

sin α+β
2 π

.

Due to the nonlinearities in (58) it is hard to determine an explicit simple relation between φ and d263

except if α = 2β. In this case we make use of the following Lemma.264

Lemma 6. If x2 − ax + b = 0 and x2 − cx + d = 0 then there is a solution265

x = 0, b = d
x2 − ax + b = 0, a = c, b = d
x = d−b

c−a , c 6= a and (d− b)2 = (c− a)(ad− bc).
(59)

Proof. By subtraction of the two equations and substitution.266

In the case of (57) and (58) then (59) becomes267

(1 + dβ)
2 = (P− dα)(Pdβ + dα), P = L +

φ2

K
,

that is268

P2dβ − Pdα(dβ − 1)− (d2
α + (1 + dβ)

2) = 0.

Hence269

2dβP = dα(dβ − 1)± (1 + dβ)
√

d2
α + 4dβ. (60)

Note that270

φ2 = K P− K L

and271

dαdβ = d2 K.
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Some manipulation from (60) leads to272

φ2 =
1
2

(
dα

d

)2
dβ − 1± (1 + dβ)

√
1 + 4

dβ

d2
α
− 2L

dβ

dα

 .

Now since α = 2β, this reduces to273

φ2 =
1
2

(
sin βπ

sin 3β
2 π

)2
dβ − 1± (1 + dβ)

√
1 +

4
d

sin β
2 π sin 3β

2 π

(sin βπ)2 − 2
cos 3β

2 π

cos β
2 π


dβ = d

sin β
2 π

sin 3β
2 π

. (61)

By taking θ̃ = arctan(φ) this gives an explicit relationship between θ̃ and d for the case α = 2β.274

Remark 10. Particular solutions are275

(i) β = 1
2 , α = 1, tan θ̃ =

√
(1 + d)(1 +

√
1 + 2

d )276

(ii) β = 1
3 , α = 2

3 , tan θ̃ =
√

3
8

√
(1 + d

2 )
√

1 + 8
3d + d

2 − 1.277

It is clear from (61) that when d = 0 and d = ∞, then θ = π
2 and then the angle will make an278

excursion from π
2 down to a minimum value and back to π

2 as d increases. For example, in the case of279

β = 1
2 , α = 1 we can see from Remark 10(i) that the minimum value of the angle is when280

d =
√

2− 1, tan θ̃ =

√
√

2 +
√

4 + 3
√

2.

Returning to (41) and taking m1 = m2 = 1 and281

A =

(
a1 a2

b1 b2

)

then the Laplace transform in (42) is282

X(s) =
1

Det(s)

(
sα+β−1X(0) +

(
a2

−a1

)
sβ−1X2(0) +

(
−b2

b1

)
sα−1X1(0)

)
(62)

where283

Det(s) = sα+β − a1sβ − b2sα + DA,

DA = a1b2 − a2b1 = Det(A).

Now if α and β are rational (α ≤ β)284
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α =
m
n

, β =
p
q

, m ≤ n, p ≤ q, positive integers

and with z = s
1

nq , then285

Det(z) = zmq+np − a1znp − b2zmq + DA. (63)

Hence (62) gives286

X1(z) =
1

z(n−m)qDet(z)

(
(znp − b2)X1(0) + a2znp−mqX2(0)

)
(64)

X2(z) =
1

z(n−m)qDet(z)

(
b1X1(0) + (znp − a1znp−mq)X2(0)

)
. (65)

From Descartes rule of sign, then (63) will have at most 4 real zeros if mq + np is even, and at most 5287

real zeros if mq + np is odd.288

Now factorise289

Det(z) = ΠN
j=1(z− λj), N = mq + np,

where there are at most 4 real zeros if N is even and at most 5 real zeros if N is odd. Then using (64)290

and (65) we can write291

Xi(s) =
s

1
nq

s1−α+ 1
nq

N

∑
j=1

A(i)
j

s
1

nq − λj

, i = 1, 2

where the A(i)
j can be found by writing292

pi(z)
Det(z)

=
N

∑
j=1

A(i)
j

z− λj
, i = 1, 2

where293

p1(z) = X1(0)znp + X2(0)a2znp−mq − b2X1(0)

p2(z) = X2(0)znp − X2(0)a1znp−mq + b1X1(0).

Using Lemma 2 with294

α̃ =
1

nq
, β̃ = 1− α + α̃

leads to the following result.295
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Theorem 9. The solution of the mixed index 2 problem with α = m
n , β = p

q , m ≤ n, p ≤ q all positive integers296

is, with N = mq + np, given by297

y(t) =
N

∑
j=1

AjE 1
nq ,1−α+ 1

nq
(λjt

1
nq ) (66)

Aj = (A(1)
j , A(2)

j )>,

where the λj are the zeros of (63) and the Aj are the coefficients in the partial fraction expansion.298

Remark 11. In the case that α = β then (66) should collapse to the solution299

y(t) = Eα(tα A)y(0), (67)

and this is not immediately clear. However, in this case, mq = np and so300

D(z) = z2np − (a1 + b2)znp + D(A)

which is a quadratic function in znp while the equivalent p1 and p2 numerator functions are linear in znp. Thus301

in (66) N is replaced by 2, 1
nq is replaced by α, and 1− α + 1

nq becomes 1. Thus (66) reduces to302

y(t) =
2

∑
j=1

AjEα(λjtα)

that then becomes (67). On the other hand if α is rational and β = Kα, K a positive integer, then303

Det(s) = (sα)K+1 − a1(sα)K − b2sα + DA. (68)

If we factorise
Det(s) = ΠK+1

j=1 (sα − λj)

and find A(1)
j , A(2)

j , j = 1, · · · , K + 1 by304

K+1

∑
j=1

Aj
1

sα − λj
=

1
Det(s)

(
(sα)KX(0) +

(
a2

−a1

)
(sα)K−1X2(0) +

(
−b2

b1

)
X1(0)

)
(69)

then we have the following Corollary.305

Corollary 1. The solution of the mixed index 2 problem with α rational and β = Kα, K a positive integer, is306

given by307

y(t) =
K+1

∑
j=1

AjEα(λjtα),

where the vectors Aj and “eigenvalues" λj satisfy (69).308

As a particular example, take K = 2, α = p
q , then the λj and Aj in Corollary 1 satisfy309
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D(z) := Π3
j=1(z− λj) := z3 − a1z2 − b2z + DA = 0

and310

3

∑
j=1

Aj
1

z− λj
=

1
D(z)

(
X0 z2 +

(
a2

−a1

)
X2(0)z +

(
−b2

b1

)
X1(0)

)
.

In other words311

A1(z− λ2)(z− λ3) + A2(z− λ1)(z− λ3) + A3(z− λ1)(z− λ2)

= X0z2 +

(
a2

−a1

)
X2(0)z +

(
−b2

b1

)
X1(0)

or312

[A1 A2 A3] =

[
X0,

(
a2

−a1

)
X2(0),

(
−b2

b1

)
X1(0)

]
S−1

with313

S =

 1 −(λ2 + λ3) λ2λ3

1 −(λ1 + λ3) λ1λ3

1 −(λ1 + λ2) λ1λ2

 .

Clearly in the case described by Corollary 1, writing the solution as a linear combination of314

generalised Mittag-Leffler functions makes the evaluation of the solution much more computationally315

efficient.316

3.3. Simulations317

In this section we give a variety of asymptotic stability and dynamics results for different parameter318

values of the linear mixed index models.319
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Figure 2. Stability region, above the blue line, for choosing d and θ, when the
eigenvalues of A are d ± iθ, α = 1

2 , β = 1. The logarithmic scale is explored in
the right hand figure where the stability boundary dips below the angle 3π

8 .
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Figure 3. Stability region, above the blue line, for choosing d and θ, when the
eigenvalues of A are d ± iθ, α = 1

3 , β = 2
3 . The logarithmic scale is explored in

the right hand figure where the stability boundary dips below the angle π
4 .
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Figure 4. System Dynamics with (α, β) = ( 1
2 , 1), top, and (α, β) = ( 1

3 , 2
3 ), bottom.

The left hand column shows sustained dynamics with d = 1 and θ chosen so that
(d, θ) lies on the stability boundary. The right hand column corresponds to the same
d but 0.3 has been added to the θ value.
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Figure 5. Phase Plots of y1 versus y2 for the decaying solutions in the right hand
column of Figure 4.
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Figure 6. For A given by (71) with d = −1, θ = 1
2 so that the eigenvalues are − 3

2 , − 1
2 ,

showing the effect of variation of α with fixed β on the system dynamics.

4. Discussion320

In Figures 2 and 3 we plot the asymptotic stability boundary of the two dimensional, index-two321

problem given by (1) where322

A =

(
d −θ

θ d

)
, d > 0 (70)

for the two cases considered in section 3.2, namely β = 1, α = 1
2 (Figure 2) and β = 2

3 , α = 1
3 (Figure323

3). Since the eigenvalues of A are d± iθ, we plot on the vertical axis the angle θ̂ in radians, where324

θ̂ = 1
π arctan( θ

λ ), as a function of d. In Figure 2 we see that θ̂ ∈ ( 1
4 , 1

2 ) corresponding to an angle lying325

between 45◦ and 90◦, as expected from the theory. We also plot the angle, in green, corresponding to326

the midpoint between these two extremes, i.e. 3
8 π. We see that for the most part the asymptotic stability327

angle lies above this midpoint except for the values of d, as shown in the right hand figure.328

In the case of Figure 3, we give a similar plot as Figure 2. We also plot in green the midpoint between329

the two lines subtended by angles 1
3 π and 1

6 π, namely 1
4 π. As with Figure 2 there is a small range of d330

for which the asymptotic stability angle drops beneath 1
4 π. Furthermore, it is clear from Remark 9(ii)331

that as α and β approach one another, the asymptotic stability boundary will be almost constant over332

increasingly longer periods of d and will only asymptotically approach the angle π
2 for very small and333

very large values of d.334

In Figure 4 we confirm the asymptotic stability analysis showing sustained and decaying oscillations335

with α = 1
2 , β = 1 (top panel) and α = 1

3 , β = 2
3 (bottom panel). In all four cases, d = 1 while for336

the top panel we take θ =
√

2(1 +
√

3), θ =
√

2(1 +
√

3) + 0.3, while for the bottom panel we take337

θ =
√

3
4

√√
33− 1, θ =

√
3

4

√√
33− 1 + 0.3.338
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In Figure 5 we present phase plots of y1 versus y2 for the two decaying oscillations cases. The figures339

confirm our theoretical results on the asymptotic stabiity boundary and also show the effects that the340

fractional indices have on the period of the solutions. As α approaches β we expect the oscillatory341

behaviour to disappear.342

Finally, in Figure 6 we consider the problem343

A =

(
d θ

θ d

)
, d < 0 (71)

in which case the eigenvalues of A are d± θ. We take d = −1, θ = 1
2 and present the solutions for four344

pairs of indices, namely (α, β) = (0.85, 0.95), (0.5, 0.95), (0.2, 0.05), (0.15, 0.95). The simulations show345

that the components of the solution y1 and y2 seem to pick up “energy" from one another due to the346

coupling and that as the distance between α and β grows there is a greater separation between the two347

components. Finally, as α gets smaller, the solutions appear to “flat-line" more quickly.348

5. Conclusions349

In this paper we have studied mixed index fractional differential equations with coupling between350

the different components. We find an analytical expression for the solution of the linear system that351

generalises the Mittag-Leffler expansion of a matrix and the solution of linear sequential fractional352

differential equations. We can use this result to derive new numerical methods that generalise the353

concept of exponential methods used in the approximation of the Mittag-Leffler matrix function, see354

[34–36], for example, and exponential integrators [37], [38]. The second element would deal with355

developing numerical techniques for the integration component that incorporates the integral of a356

function times a Green function. We also use Laplace transform techniques to find the asymptotic357

stability domain in terms of the eigenvalues of the defining linear system. Finally we have also358

used Laplace transforms to get analytical expansions of the mixed index problem in terms of a sum359

of Mittag-Leffler or generalised Mittag-Leffler functions, in the case that the fractional indices are360

rational.361
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