

1 Article

2

Flow behavior characteristics and processing map of 3 Fe-6.5wt.%Si alloys during hot compression

4 **Shibo Wen, Chaoyu Han, Bao Zhang, Yongfeng Liang, Feng Ye* and Junpin Lin**5 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,
6 Beijing, 100083, China; wenshibo10@126.com (S. B. Wen); hancyfly@hotmail.com (C. Y. Han);
7 549979912@qq.com (B. Zhang); liangyf@skl.ustb.edu.cn (Y. F. Liang); yefeng@skl.ustb.edu.cn (F. Ye);
8 linjunpin@skl.ustb.edu.cn (J. P. Lin)

9 * Correspondence: yefeng@skl.ustb.edu.cn; Tel.: +86-10-6233-3899

10 **Abstract:** The flow behavior of Fe-6.5wt.%Si alloys during hot compression was investigated at
11 temperatures 650–950 °C and strain rates 0.01–10 s⁻¹. The results showed that the flow stress
12 depended distinctly on the deformation temperatures and strain rates. The flow stress and work
13 hardening rate increased with the decrease of temperature and the increase of strain rate. The
14 activation energy under all the deformation conditions was calculated to be 410 kJ/mol. The
15 constitutive equation with hyperbolic sine function and Zener–Hollomon parameter was
16 developed. The peak stress, critical stress, and steady-state stress could be represented as
17 $\sigma = A + B \ln(Z/A)$. Dynamic recrystallization occurred under the deformation conditions where the
18 values of Z were lower than 10²⁰. Processing maps were established to optimize the processing
19 parameters. The power dissipation efficiency decreased in the high temperature and low strain rate
20 region, increased in the high temperature and high strain rate region, and remained unchanged in
21 other regions with the increase of true strain. Furthermore, the unstable area expanded. The true
22 strain of 0.7 was the optimum reduction according to the processing map. Based on the analysis of
23 surface quality, microstructures, and ordered structures, the optimized processing parameters for
24 the Fe-6.5wt.%Si alloys were the temperature and strain rate of higher than 900 °C and 0.01–10 s⁻¹,
25 respectively, or 800–900 °C and lower than 0.4 s⁻¹, respectively.26 **Keywords:** Fe-6.5wt.%Si alloy; hot compression; processing map; microstructure; optimized
27 processing parameter
2829

1. Introduction

30 Fe-6.5wt.%Si alloy has been considered as a potential material for application in high-frequency
31 fields, such as transformers, power generators, and electric relays, as it is an excellent soft magnetic
32 material with high electrical resistance, high relative permeability, nearly zero magnetostriction, low
33 coercive force, and low iron loss [1–3]. However, ordered structures such as B2 (P_{m3m}) and D0₃ (F_{m3m})
34 are formed in this alloy [4, 5], which result in the strengthening of lattice resistance and formation of
35 anti-phase boundary. These lead to room-temperature fragility of the alloy. In order to avoid
36 room-temperature embrittlement, various techniques have been developed, such as chemical vapor
37 deposition [6], hot dipping [7], spray forming [8–10], rapid solidification [11–13], and direct powder
38 rolling [14]. Moreover, a hot-warm-cold rolling method combined with proper heat treatments was
39 reported for the fabrication of sheets of thickness 0.03–0.05 mm [15–17]. As indicated in previous
40 reports, the rolling parameters, including temperature, rolling reduction, and strain rate, control the
41 flow behavior [18] and microstructural evolution [19]. Moreover, other factors such as the degree of
42 ordering [20] are important in the rolling process. These factors determine the deformation
43 mechanisms of the alloy during the rolling process.44 Generally, softening mechanisms such as dynamic recovery (DRV) and dynamic
45 recrystallization (DRX) often occur during hot deformation such as rolling. Recently, Niu et al. [21]
46 reported that the softening mechanisms of the Fe-6.5wt.%Si alloy were DRV and DRX during hot

47 compression. Liang et al. [22] observed that DRX was the main softening mechanism above 900 °C,
48 whereas DRV was the main softening mechanism below 700 °C. However, the correlation between
49 the deformation mechanisms and rolling process should be clarified via further experiments. The
50 processing map (PM) technique based on the dynamic materials model (DMM) could be one of the
51 choices. PMs have been considered a useful approach to distinguish the feasibility of rolling process,
52 investigate the transformation of microstructures, and observe the formation of textures. Therefore,
53 these techniques can be used to optimize the rolling parameters and control the microstructures and
54 textures. PMs have been employed to evaluate the processing technology of various alloys, e.g.,
55 austenitic steels and Al–Cu–Mg–Ag alloys [23, 24]. However, there are no researches about the
56 processing map of the Fe-6.5wt.%Si alloys for simulating the rolling parameters. Thus, it is necessary
57 to analyze the flow behavior characteristics and processing map and to simulate the rolling
58 parameters to ensure the rolling stability for the industrialized production of the Fe-6.5wt.%Si alloys.

59 In this study, the effect of deformation conditions on the flow behavior and microstructural
60 evolution of the Fe-6.5wt.%Si alloy during compression was investigated. The constitutive equations
61 were established. PMs were generated to investigate the feasibility of the rolling process and observe
62 the microstructure corresponding to each region of the PM. Based on the analysis of the surface
63 quality, microstructures, and ordered structures, the optimized processing parameters were
64 obtained.

65 2. Materials and Methods

66 Fe-6.5wt.%Si alloy ingots were cast in a vacuum medium-frequency induction furnace by
67 melting pure iron (Fe=99.5 wt.%) and metallic silicon (Si=99 wt.%) above 1500 °C. The chemical
68 composition is presented in Table 1. After homogenization at 1050 °C for 50 h, the ingots were
69 die-forged into square billets with a cross-section of 24×24 mm² at 800–1100 °C.

70 **Table 1.** Chemical composition of Fe-6.5wt.%Si alloy (wt.%).

C	Si	Mn	S	P	Ti	B	Fe
0.009	6.510	0.015	0.0009	0.054	0.005	0.0004	Bal

71 Cylindrical specimens of Φ 6 mm×12 mm were machined from the square billets with equiaxed
72 grains. Isothermal compression tests were conducted using a GleebleTM thermo-mechanical test
73 frame (Gleeble-1500) at temperatures ranging from 650–950 °C and strain rates ranging from 0.01–10
74 s⁻¹. The height reductions were 50% and 80%, and hence, the corresponding true stains were 0.7 and
75 1.6, respectively. The specimens were heated to the required temperature at 20 °C/s, maintained for
76 180 s, compressed at a specified temperature, and finally quenched in water.

77 The compressed specimens were polished and etched with a solution of 5% HNO₃ in deionized
78 water. The microstructures of these specimens were observed using an Ernst Leitz Wetzlar optical
79 microscope.

80 The ordered structures of the specimens after deformation were observed using X-ray
81 diffraction (XRD, D/max2550HB+/PC). An electron backscattered diffraction detector (EBSD)
82 mounted on a ZEISS SUPRA 55 scanning electron microscope was used to detect recrystallization
83 fractions of the specimens. HKL Channel 5 programs were used for processing the data.

84 3. Results and Discussion

85 3.1. Flow behavior characteristics

86 The true stress–true strain curves of the Fe-6.5wt.%Si alloy at a total true strain of 1.6 under
87 various deformation conditions are shown in Figure 1. It can be observed that the flow stress
88 increased rapidly at the beginning of deformation, reached a steady state after a stress peak, and
89 increased slowly at the end in most of the curves e.g., in the curve indicating deformation at the
90

91 temperature of 750 °C and strain rate of 0.01 s⁻¹ (Figure 1a). It is also observed that the flow stress
 92 depended distinctly on the temperature, strain rate, and strain. The flow stress decreased with the
 93 increase of deformation temperature, and increased with the increase of strain rate. A peak stress
 94 was evident in most of the curves e.g., in the curve indicating deformation at the temperature of 650
 95 °C and strain rate of 0.1 s⁻¹ (Figure 1b).

96

97 **Figure 1.** True stress-true strain curves of the Fe-6.5wt.%Si alloy under various deformation
 98 conditions: (a) 0.01 s⁻¹; (b) 0.1 s⁻¹; (c) 1 s⁻¹; (d) 10 s⁻¹.

99 Hot compressive deformation is influenced by work hardening and dynamic softening. At the
 100 beginning of the deformation, dislocation multiplication leads to work hardening. It exceeds
 101 dynamic softening, which causes the increase of the flow stress. DRX begins when the strain reaches
 102 a critical value. This leads to dynamic softening and causes the decrease of the flow stress. As the
 103 deformation progresses, the dynamic softening offsets the work hardening, and consequently, the
 104 flow stress remains stable. This is called the DRX mold, as observed in the curve indicating
 105 deformation at the temperature of 750 °C and the strain rate of 0.01 s⁻¹. However, as the deformation
 106 progresses, the flow stress increases slowly or is in the steady state, and DRV but not DRX occurs,
 107 which is called the DRV mold, as observed in the case of the deformation at the temperature of 950
 108 °C and the strain rate of 0.01 s⁻¹. In contrast, the flow stress continues to decrease beyond peak stress,
 109 as in the case of the deformation at the temperature of 650 °C. The reason for this phenomenon is
 110 that the degree of ordering decreases gradually with deformation, and a disordered alloy is finally
 111 obtained. The deformation-induced disordering and DRV are the main softening mechanisms [20].

112 The work hardening rate during compression can be calculated using the equation ($\theta = \frac{\partial \sigma}{\partial \varepsilon} \Big|_{T, \dot{\varepsilon}}$)
 113 [25]. Notably, the effects of work hardening and softening mechanisms are considered during the

114 plastic deformation, and it is necessary to remove the elastic stage of the flow curves [26]. Figure 2
 115 shows the θ - ε and θ - σ curves of the Fe-6.5wt.%Si alloy at the true strain of 0–0.6.

116

117 **Figure 2.** θ - ε and θ - σ curves of the Fe-6.5wt.%Si alloy: (a) θ - ε ; (b) θ - σ .

118 The positive values of θ indicate that the work hardening exceeds the dynamic softening. The
 119 peak stress and corresponding strain can be obtained from the flow curve, whereas the true peak
 120 stress (σ_p) and strain (ε_p) can be calculated from the θ - ε and θ - σ curves when $\theta=0$ [26], as presented
 121 in Table 2.

122

Table 2. Peak stress (MPa) and corresponding strain of the Fe-6.5wt.%Si alloy.

Strain rate	650 °C	750 °C	850 °C	950 °C
0.01 s ⁻¹	251.8(0.2799)	75.2(0.1302)	22.9(0.2173)	-
0.1 s ⁻¹	370.7(0.1776)	139.2 (0.1490)	38.3(0.3759)	-
1 s ⁻¹	437.6(0.2481)	207.4(0.5935)	98.7(0.5020)	42.4(0.3641)
10 s ⁻¹	543.2(0.1728)	285.1(0.2274)	134.2(0.3410)	84.9(0.4121)

123

124 It can be observed that the work hardening rate increased with the decrease of temperature and
 125 increase of strain rate, as shown in Figure 2 (a). Similarly, the peak stress increased with the decrease
 126 of temperature and increase of strain rate, as shown in Figure 2 (b).

127

128 The DRX was initiated before the flow stress reached a peak. The critical stress (σ_c) and
 129 corresponding strain (ε_c) could satisfy the condition $\frac{\partial}{\partial \sigma} \left(-\frac{\partial \theta}{\partial \sigma} \right) = 0$ [27]. The critical stress and
 corresponding strain are listed in Table 3.

130

Table 3. Critical stress (MPa) and corresponding strain of the Fe-6.5wt.%Si alloy.

Strain rate	650 °C	750 °C	850 °C	950 °C
0.01 s ⁻¹	250.4(0.2022)	75.2(0.1302)	22.5(0.1490)	4.1(0.3072)
0.1 s ⁻¹	370.7(0.1776)	139.2 (0.1490)	35.7(0.1256)	17.9(0.3819)
1 s ⁻¹	430.5(0.1302)	188.3(0.2123)	73.9(0.1073)	35.5(0.1209)
10 s ⁻¹	542.7(0.1584)	270.8(0.0983)	120.9(0.1073)	70.8(0.1119)

131

3.2. Constitutive equation

132

133 A constitutive equation is usually used to describe the relationship among the flow stress,
 strain rate, and temperature.

134

$$\dot{\varepsilon} = A_1 \sigma^{n_1} \exp \left(-\frac{Q}{RT} \right), \quad (1)$$

135 $\dot{\varepsilon} = A_2 \exp(\beta\sigma) \exp\left(-\frac{Q}{RT}\right), \quad (2)$

136 $\dot{\varepsilon} = A[\sinh(\alpha\sigma)]^n \exp\left(-\frac{Q}{RT}\right), \quad (3)$

137 where $\dot{\varepsilon}$ is the strain rate, σ is the flow stress, A_1 , A_2 , A , n_1 , β , α ($=\frac{\beta}{n_1}$), and n are constants, R is the gas
 138 constant (8.314 Jmol⁻¹K⁻¹), T is the deformation temperature, and Q is the activation energy of the
 139 deformation. The value of Q reflects the relationship between the work hardening and dynamic
 140 softening during the hot compressive deformation, and it also describes the formability of the alloy.

141 The above three constitutive equations correspond to various conditions, i.e., the power
 142 function (1) corresponds to low stress, the exponential function (2) corresponds to high stress, and
 143 the hyperbolic sine function (3) corresponds to a wide range of flow stresses [28-30].

144 In addition, the relationship between the strain rate and temperature during compression can
 145 be represented by the Zener–Hollomon parameter [31].

146 $Z = \dot{\varepsilon} \exp\left(\frac{Q}{RT}\right) = A[\sinh(\alpha\sigma)]^n. \quad (4)$

147 These constants and the activation energy are calculated using the peak stress, steady-state
 148 stress, or another stress at a certain strain. The peak stress is usually favored, because it is useful in
 149 industrial production [32]. In this study, not all the peak stresses could be obtained. Therefore, the
 150 steady-state stress was also used. Applying logarithm on both sides of Equations (1), (2), (3), and (4),
 151 the new equations can be derived as follows:

152 $\ln\dot{\varepsilon} = n_1 \ln\sigma + \ln A_1 - \frac{Q}{RT}, \quad (5)$

153 $\ln\dot{\varepsilon} = \beta\sigma + \ln A_2 - \frac{Q}{RT}, \quad (6)$

154 $\ln\dot{\varepsilon} = n \ln[\sinh(\alpha\sigma)] + \ln A - \frac{Q}{RT}, \quad (7)$

155 $\ln[\sinh(\alpha\sigma)] = \frac{Q}{nRT} + \frac{1}{n} \ln\dot{\varepsilon} - \frac{\ln A}{n}. \quad (8)$

156 The slopes of curves of $\ln\dot{\varepsilon}$ vs. $\ln\sigma$ and σ represent the values of n_1 and β , respectively, as
 157 shown in Figure 3 (a) and (b). The value of α ($=\frac{\beta}{n_1}$) can also be calculated. The slope of curve of
 158 $\ln[\sinh(\alpha\sigma)]$ vs. $\ln\dot{\varepsilon}$ is the value of n , as shown in Figure 3 (c). The slope of curve of $\ln[\sinh(\alpha\sigma)]$ vs.
 159 $\frac{1}{T}$ is $\frac{Q}{nR}$, and the intercept is $\frac{1}{n} \ln\dot{\varepsilon} - \frac{\ln A}{n}$, as shown in Figure 3 (d). Therefore, the values of Q and A can
 160 be obtained, as listed in Table 4.

161

162

163

Figure 3. Plots of (a) $\ln \dot{\varepsilon}$ vs. $\ln \sigma$; (b) $\ln \dot{\varepsilon}$ vs. σ ; (c) $\ln[\sinh(\alpha\sigma)]$ vs. $\ln \dot{\varepsilon}$; (d) $\ln[\sinh(\alpha\sigma)]$ vs. $\frac{1}{T}$.

Table 4. Constants and activation energy of the Fe-6.5wt.%Si alloy.

Parameter	Value
$\alpha (\text{MPa}^{-1})$	0.01
N	3.02
A (s^{-1})	8.24×10^{19}
Q (kJ/mol)	410

164 The value of Q was 410 kJ/mol in the present study. Liang [22] reported that the activation
 165 energy of the Fe-6.5wt.%Si alloy varies from 211 kJ/mol (at 800–1100 °C) to 478 kJ/mol (at 500–700
 166 °C), depending on the crystalline structure and deformation temperature. Therefore, the constitutive
 167 equation with the hyperbolic sine function, Equation (3), and Zener–Hollomon parameter, Equation
 168 (4), is written as

$$169 \dot{\varepsilon} = 8.24 \times 10^{19} [\sinh(0.01\sigma)]^{3.02} \exp\left(-\frac{49274}{T}\right) \quad (9)$$

$$170 Z = \dot{\varepsilon} \exp\left(\frac{49274}{T}\right) = 8.24 \times 10^{19} [\sinh(0.01\sigma_p)]^{3.02}. \quad (10)$$

171 However, Kim [33] indicated that the peak stress could be expressed better as a function of $\frac{Z}{A}$
 172 than as a function of Z. Moreover, the critical stress (σ_c) for DRX [34] and the steady-state stress (σ_{ss})
 173 [33] could be also expressed as functions of $\frac{Z}{A}$. Figure 4 shows the relationship between stresses and
 174 $\ln(\frac{Z}{A})$ of the Fe-6.5wt.%Si alloy. The stresses are expressed as a function of $\ln(\frac{Z}{A})$, and the

175 relationships can be expressed using linear equations. When the value of $\ln(\frac{Z}{A})$ is higher than -2.5,
 176 the relationship between these stresses and the value of $\ln(\frac{Z}{A})$ can be written as

177
$$\sigma_p = 88 + 33\ln(\frac{Z}{A}), \quad (11)$$

178
$$\sigma_c = 91 + 33\ln(\frac{Z}{A}), \quad (12)$$

179
$$\sigma_{ss} = 95 + 28\ln(\frac{Z}{A}). \quad (13)$$

180 When the value of $\ln(\frac{Z}{A})$ is lower than -2.5, the equations can be written as

181
$$\sigma_p = 68 + 10\ln(\frac{Z}{A}), \quad (14)$$

182
$$\sigma_c = 48 + 5\ln(\frac{Z}{A}), \quad (15)$$

183
$$\sigma_{ss} = 49 + 5\ln(\frac{Z}{A}). \quad (16)$$

184
 185 **Figure 4.** Linear form of compression stress as functions of $\ln(\frac{Z}{A})$ for the Fe-6.5wt.%Si alloy.

186 When the value of $\ln(\frac{Z}{A})$ was lower than -2.5 (the shadowed areas of Tables 2 and 3), the
 187 dynamic softening offset the work hardening, and the flow stress remained stable without a peak,
 188 i.e., in the DRV mold, as observed in the curve indicating deformation at the temperature of 950 °C
 189 and strain rates of 0.01 s⁻¹ and 0.1 s⁻¹, as shown in Figure 1 (a-b) and Table 2. According to Equations
 190 (11)–(16), σ_c and σ_{ss} could be expressed using σ_p as $\sigma_c = \sigma_{ss} = 0.7\sigma_p$ ($\ln(\frac{Z}{A}) < -2.5$), or $\sigma_c = \sigma_p \approx$
 191 σ_{ss} ($\ln(\frac{Z}{A}) > -2.5$).

192 *3.3. Relationship between microstructures and Z parameters*

193 Figure 5 shows the microstructures before and after the deformation at the true strain of 1.6
 194 under various deformation conditions. The original grains were equiaxed with the grain size of 400
 195 µm, as shown in Figure 5 (a). When the specimen was deformed at the true strain of 1.6, temperature

196 of 650 °C, and strain rate of 0.01 s⁻¹, a few serrated boundaries (indicated by a black arrow) appeared
197 in the deformation zones, and fibril-shaped vimineous grains also appeared. The elongated grains
198 were spread across all the deformation areas, as shown in the inset of Figure 5 (b). With the increase
199 of temperature to 750 °C, the content of the fibrous grains decreased. Some dynamically
200 recrystallized grains appeared inside the elongated grains (indicated by a red arrow) and along the
201 serrated boundaries (indicated by the black arrow) after deformation at the strain rate of 0.01 s⁻¹, as
202 shown in Figure 5 (c). With the increase of strain rate to 0.1 s⁻¹ at 750 °C, the degree of DRX
203 decreased, and the grain sizes of the dynamically recrystallized grains became refined. Moreover,
204 the elongation grains and serrated boundaries remained unchanged, as shown in Figure 5 (d). The
205 specimen was deformed at the temperature of 850 °C and strain rate of 1 s⁻¹, some fibrous grains
206 disappeared, and irregular grain boundaries emerged, which indicated the initial stages of DRX
207 [35]. The nucleated fine grains (indicated by the red arrow) appeared, and some dynamically
208 recrystallized grains could be observed as shown in the inset of Figure 5 (e). Moreover, a few
209 elongated grains still existed in the Fe-6.5wt.%Si alloy. Figure 5 (f) shows the microstructure of the
210 specimen deformed at the temperature of 950 °C and strain rate of 10 s⁻¹, which is similar to that
211 deformed at the temperature of 850 °C and strain rate of 1 s⁻¹. The elongated grains and dynamically
212 recrystallized grains co-existed in the specimen. The serrated boundaries and straight boundaries
213 simultaneously existed in the deformation areas. In summary, higher temperature and lower strain
214 rate are beneficial to recrystallization.

215

216 **Figure 5.** Microstructures of the Fe-6.5wt.%Si alloy (a) before and after deformation at the true strain
 217 of 1.6 under various deformation conditions: (b) 650 °C and 0.01 s⁻¹; (c) 750 °C and 0.01 s⁻¹; (d) 750 °C
 218 and 0.1 s⁻¹; (e) 850 °C and 1 s⁻¹; (f) 950 °C and 10 s⁻¹.

219 The Z parameters under various deformation conditions are listed in Table 5, which are
 220 obtained from Equation (10). The values of Z in the frames correspond to the deformation conditions
 221 discussed above (in the box in Table 5) and demonstrate that DRX occurs under certain conditions.
 222 The dynamically recrystallized grains grow in the gray areas, which are zones of low Z values. It can
 223 be concluded that, when the values of Z are lower than 10²⁰ (the shadowed area in Table 5), DRX
 224 occurs in the deformation areas. Especially, a lower value of Z usually corresponds to a higher
 225 degree of DRX.

226

227

Table 5. Z parameters under various deformation conditions.

Strain rate	650 °C	750 °C	850 °C	950 °C
0.01 s ⁻¹	1.52×10 ²¹	8.26×10 ¹⁸	1.13×10 ¹⁷	3.13×10 ¹⁵
0.1 s ⁻¹	1.52×10 ²²	8.26×10 ¹⁹	1.13×10 ¹⁸	3.13×10 ¹⁶
1 s ⁻¹	1.52×10 ²³	8.26×10 ²⁰	1.13×10 ¹⁹	3.13×10 ¹⁷
10 s ⁻¹	1.52×10 ²⁴	8.26×10 ²¹	1.13×10 ²⁰	3.13×10 ¹⁸

228 3.4. Processing map

229 A PM based on the DMM is a very useful technique to investigate the deformation
 230 characteristics of metallic materials and alloys. PMs combined with microstructure evolution are
 231 beneficial to investigate the deformation mechanism, optimize the processing parameters, and
 232 control the microstructures. PMs are created with a power dissipation map and an instability map.
 233 The power dissipation map is drawn based on the value of power dissipation efficiency (η) at
 234 various deformation temperatures and strain rates. The value of η can indicate the deformation
 235 mechanism, such as DRV and DRX [36]. It can be calculated using the following equation:

$$236 \quad \eta = \frac{2m}{m+1}, \quad (17)$$

237 where m is the strain rate sensitivity parameter and is given as

$$238 \quad m = \left. \frac{\partial \ln \sigma}{\partial \ln \dot{\epsilon}} \right|_{T, \epsilon}. \quad (18)$$

239 Generally, the microstructure transformation become more stable and secure and the
 240 workability is improved with the increase of the value of η . Therefore, the deformation condition
 241 with the maximum value of η is usually adopted in the processing. Processing instability may
 242 become increasing during hot deformation. Prasad's criterion [37] is an effective method to
 243 distinguish whether an unstable flow occurs, and is given by

$$244 \quad \xi(\dot{\epsilon}) = \frac{\partial \ln[m/(m+1)]}{\partial \ln \dot{\epsilon}} + m < 0. \quad (19)$$

245 If $\xi < 0$, the unstable flow occurs during the hot deformation, which is harmful to the material
 246 processing. Depending on the value of ξ at various deformation temperatures and strain rates, the
 247 instability map can be obtained. The optimized deformation temperature and strain rate can be
 248 derived from the PMs based on the power dissipation map and instability map. The PMs at various
 249 true strains are shown in Figure 6. The power dissipation efficiency is represented by the black line,
 250 and instability levels are indicated by the colored areas.

251

252 **Figure 6.** PMs of the Fe-6.5wt.%Si alloy at various true strains: (a) 0.2; (b) 0.4; (c) 0.6; (d) 0.7; (e) 0.8; (f)
 253 1.0. The contour lines represent the values of the power dissipation efficiency. The colored areas and
 254 bar charts represent the instability levels.

255 A high value of η is observed in the regions with high temperatures, and the unstable area lies
 256 in the regions with low temperatures and high strain rates (Figure 6a). With the increase of strain
 257 from 0.2 to 1.0, as indicated from Figure 6 (a) to (f), the value of η decreased in the region with high
 258 temperatures and low strain rates, increased in the region with high temperatures and high strain
 259 rates, and remained unchanged in the other regions. Furthermore, the unstable areas expanded, and
 260 the unstable flow occurred even in the region with high temperature and low strain rate (Figure 6f),
 261 when the reduction ratio increased. Notably, the unstable areas were relatively smaller in the PM at
 262 the true strain of 0.7, and the values of η were between 0.4 and 0.6 in the stable regions, which can
 263 be adopted in the rolling processing. The true strain of 0.7 corresponds to the reduction ratio of
 264 approximately 50%, which is usually adopted in our rolling Fe-6.5wt.%Si alloy sheet because it
 265 provides a relatively high possibility of achieving good quality in statistics. These results

266 theoretically prove that the rolling reduction of 50% is favorable to the rolling stability of the
 267 Fe-6.5wt.%Si alloy.

268 The PM at the true strain of 0.7 can be divided into five domains, as shown in Figure 7. The
 269 deformation temperatures and strain rates corresponding to the five domains are presented in Table
 270 6. The hot deformation is unstable ($\xi < 0$) below 800 °C and above 1 s⁻¹ (Domain 1), and the
 271 representative sample was compressed at the temperature of 650 °C and strain rate of 10 s⁻¹.
 272 Conversely, some regions above 900 °C and below 0.1 s⁻¹ are stable ($\xi > 0$), where the values of η are
 273 the highest, i.e., less than 0.6 (Domain 2, 5). These regions are considered as reasonable regions for
 274 processing. The typical samples were deformed at the temperature of 950 °C and strain rate of 10 s⁻¹
 275 (Domain 2) and the temperature of 950 °C and strain rate of 0.01 s⁻¹ (Domain 5). The values of η also
 276 exhibited a peak in the temperature range of 800–900 °C and the strain rate range of 0.1–0.4 s⁻¹
 277 (Domain 3), and reached 0.55; further, the typical sample was compressed at the temperature of 850
 278 °C and strain rate of 0.2 s⁻¹. Other regions (Domain 4) below 800 °C and below 0.1 s⁻¹ were also
 279 stable, but the power dissipation efficiency was lower ($\eta < 0.35$), and the specimen was deformed at
 280 the temperature of 650 °C and strain rate of 0.01 s⁻¹.

281

282

Figure 7. Labeled PMs of the Fe-6.5wt.%Si alloy at the true strain of 0.7.

283

Table 6. Temperatures and strain rates corresponding to the five domains.

Domain	1	2	3	4	5
Temperature (°C)	650–800	900–950	800–900	650–700	900–950
Strain rate (s ⁻¹)	1–10	1–10	0.1–0.4	0.01–0.1	0.01–0.1

284 3.5. Optimization of processing parameters

285 The optimized processing parameters can be obtained depending on the PM. The processing
 286 parameters are chosen from the region with high power dissipation efficiency and stability.
 287 However, micro-cracking often occurs when the power dissipation efficiency is excessively high
 288 ($\eta > 0.6$). In general, DRX is the best choice for hot deformation in order to acquire good mechanical
 289 properties and proper microstructure. As the power dissipation efficiency is suitable ($0.5 \leq \eta \leq 0.55$, for
 290 high stacking fault energy materials), and hot deformation is stable [37], the deformation conditions
 291 in Domains 2, 3, and 5 are the theoretically optimized processing parameters for the Fe-6.5wt.%Si
 292 alloy, according to Figure 7. The corresponding temperatures and strain rates are above 900 °C and

293 0.01–10 s⁻¹, respectively, or 800–900 °C and below 0.4 s⁻¹, respectively. However, the ordered
 294 structures and ordering degree also influence the mechanical property [38]. Therefore, the surface
 295 quality, microstructures, and ordered structures should be investigated to verify the validity of the
 296 theoretical parameters.

297 Figure 8 shows the specimens before and after deformation at the true strain of 0.7 under
 298 various deformation conditions (corresponding to the five domains). It is observed that the
 299 specimen was distinctly unstable during hot deformation at the temperature of 650 °C and strain
 300 rate of 10 s⁻¹ (Domain 1, the unstable region). The shape of the specimen was barreled after
 301 deformation at the temperature of 650 °C and strain rate of 0.01 s⁻¹ (Domain 4, the region with low
 302 power dissipation efficiency), but the compression surfaces were non-parallel. Others (Domains 2, 3,
 303 and 5; the region with high power dissipation efficiency and stability) deformed stably, and no crack
 304 or deformation instability appeared.

305

306 **Figure 8.** Specimens before and after deformation at the true strain of 0.7 under various deformation
 307 conditions.

308 Figure 9 shows the XRD patterns of the specimens after deformation at the true strain of 0.7
 309 under various conditions. The peak corresponding to (200) is a characteristic reflection peak of the
 310 B2 structure. It is observed in Figure 9 that the B2 ordered phase and A2 disordered phase were
 311 present in all the specimens, whereas the D0₃ ordered phase was not formed. Li [39, 40] reported
 312 that the D0₃ ordered phase is extremely harmful to the mechanical property of the Fe-6.5wt.%Si
 313 alloy. However, the B2 structures have little effect on the mechanical property. Therefore, the five
 314 kinds of deformation conditions are considered feasible from the analysis of surface quality and
 315 ordered phases.

316

317 **Figure 9.** XRD patterns of the Fe-6.5wt.%Si alloy after deformation at the true strain of 0.7.

318 The Z parameters corresponding to the five domains are listed in Table 7. As the previous
 319 discussion and conclusion indicated, with the values of Z lower than 10^{20} , DRX occurs in the
 320 deformation areas. A lower value of Z often indicates a higher degree of DRX. Theoretically, very
 321 few dynamically recrystallized grains would appear in Domains 1 and 4, according to Table 7.
 322 Owing to the values of Z lower than 10^{20} , DRX occurs in Domains 2, 3, and 5. The investigation of
 323 each domain is described in detail as follows.

324 **Table 7.** Z values corresponding to the five domains.

Domain	1	2	3	4	5
Sample	$650\text{ }^{\circ}\text{C}\times 10\text{ s}^{-1}$	$950\text{ }^{\circ}\text{C}\times 10\text{ s}^{-1}$	$850\text{ }^{\circ}\text{C}\times 0.2\text{ s}^{-1}$	$650\text{ }^{\circ}\text{C}\times 0.01\text{ s}^{-1}$	$950\text{ }^{\circ}\text{C}\times 0.01\text{ s}^{-1}$
Z	1.5×10^{24}	3.1×10^{18}	2.3×10^{18}	1.5×10^{21}	3.1×10^{15}

325 Domain 1 indicates low power dissipation efficiency ($0 < \eta < 0.2$) and very high instability
 326 ($\xi < -0.2$), and is a highly unstable region in the PM. Figure 10 shows the corresponding
 327 microstructure and recrystallized fraction at the true strain of 0.7. The elongated grains were spread
 328 across all the deformation areas, and no DRX was observed in the inset of Figure 10 (a). The content
 329 of complete recrystallization (high-angle grain boundaries, misorientation angle $\theta > 15^{\circ}$) was
 330 approximately 0, as shown in Figure 10 (b). The content of partial recrystallization (low-angle grain
 331 boundaries, $15^{\circ} < \theta < 3^{\circ}$) occurring in the marginal area reached only 2.37%. The deformed grains
 332 occupied almost the entire region. Thus, the deformation conditions of Domain 1 are not
 333 appropriate for the Fe-6.5wt.%Si alloy.

334
 335 **Figure 10.** (a) Microstructure; (b) recrystallized fractions of Domain 1 at the true strain of 0.7.

336 Domain 2 indicates high power dissipation efficiency ($0.4 < \eta < 0.55$) and low instability ($\xi > 0$),
 337 and is a very stable region in the PM. Figure 11 shows the microstructure and recrystallized fraction
 338 of the specimen deformed at the true strain of 0.7, temperature of $950\text{ }^{\circ}\text{C}$, and strain rate of 10 s^{-1} .
 339 The deformed grains almost disappeared, and DRX occurred in the deformation area, as shown in
 340 Figure 11 (a). However, a small number of elongated grains still existed in the deformation region.
 341 The recrystallized fraction including complete and partial recrystallization reached 68.62%, and the
 342 content of deformed grains was almost 30%, as shown in Figure 11 (b). Therefore, these
 343 deformation parameters (Domain 2) are applicable for the Fe-6.5wt.%Si alloy.

344

345 **Figure 11.** (a) Microstructure; (b) recrystallized fractions of Domain 2 at the true strain of 0.7.

346 Domain 3 also indicates high power dissipation efficiency ($0.4 < \eta < 0.55$) and low instability
 347 ($\xi > 0$), and is a very stable region. The specimen was deformed at the temperature of 850 °C and
 348 strain rate of 0.2 s⁻¹. Figure 12 shows the microstructure and recrystallized fraction of the specimen
 349 at the true strain of 0.7. The deformed grains could be observed in the center area (indicated by the
 350 black arrow), and a few fine recrystallized grains were formed in this region (indicated by the red
 351 arrow), as shown in Figure 12 (a). The DRX fraction was 31%, and the content of deformed grains
 352 reached 70%, as shown in Figure 11 (b). These deformation parameters of Domain 3 are applicable
 353 for the Fe-6.5wt.%Si alloy.

354

355 **Figure 12.** (a) Microstructure; (b) recrystallized fractions of Domain 3 at the true strain of 0.7.

356 Domain 4 reveals a medium power dissipation efficiency ($0.2 < \eta < 0.35$) and low instability ($\xi > 0$),
 357 and is a stable region. Figure 13 shows the microstructure and recrystallized fraction of this
 358 specimen. The microstructure of this specimen was similar to that deformed at the temperature of
 359 650 °C and strain rate of 0.01 s⁻¹. It can be observed that the center region was filled with elongated
 360 grains, and small deformation grains occupied the corner region, as shown in Figure 13 (a). The
 361 complete DRX fraction in Domain 4 was similar to that in Domain 1, but the partial DRX fraction
 362 was 20%, which occurred in the marginal area. The content of deformed grains reached 80%, as
 363 shown in Figure 13 (b). Hence, Domain 4 is not applicable to the Fe-6.5wt.%Si alloy.

364

365 **Figure 13.** (a) Microstructure; (b) recrystallized fractions of Domain 4 at the true strain of 0.7.

366 Domain 5 indicates high power dissipation efficiency ($0.45 < \eta < 0.6$) and low instability ($\xi > 0$),
 367 and is a very stable region in the PM. Figure 14 shows the corresponding microstructure and DRX
 368 content at the true strain of 0.7. It can be observed that no deformed grains appeared in this region,
 369 which was filled with DRX grains, as shown in Figure 14 (a). The content of complete DRX was
 370 21%, and the partial DRX fraction reached 66%, as shown in Figure 14 (b). The degree of deformed
 371 grains was only approximately 10%. Thus, the deformation conditions of Domain 5 are very
 372 favorable to the Fe-6.5wt.%Si alloy.

373

374 **Figure 14.** (a) Microstructure; (b) recrystallized fractions of Domain 5 at the true strain of 0.7.

375 Based on the analysis of surface quality, microstructures, and ordered structures, it can be
 376 concluded that the Fe-6.5wt.%Si alloy is unstable under the deformation conditions of Domain 1.
 377 The order of Z corresponding to the five specimens is 3.1×10^{15} (Domain 5) $< 2.3 \times 10^{18}$ (Domain 3)
 378 $< 3.1 \times 10^{18}$ (Domain 2) $< 1.5 \times 10^{21}$ (Domain 4) $< 1.5 \times 10^{24}$ (Domain 1), and the order of the DRX fractions
 379 is 88% (Domain 5) $> 69\%$ (Domain 2) $> 31\%$ (Domain 3) $> 21\%$ (Domain 4) $> 3\%$ (Domain 1). DRX
 380 occurred in the deformation areas where the value of Z was lower than 10^{20} . The processing
 381 parameters of Domains 2 and 5 are very favorable to the Fe-6.5wt.%Si alloy, and those of Domain 3
 382 are applicable. Therefore, the optimized processing parameters for the Fe-6.5wt.%Si alloy are the
 383 temperature and strain rate of more than $900\text{ }^{\circ}\text{C}$ and $0.01\text{--}10\text{ s}^{-1}$, respectively, or $800\text{--}900\text{ }^{\circ}\text{C}$ and less
 384 than 0.4 s^{-1} , respectively, according to the PMs and the analysis of the surface quality, ordered
 385 phases, and microstructures.

386

4. Conclusions

387 The flow behavior of the Fe-6.5wt.%Si alloy during hot compression was investigated at
 388 temperatures ranging from $650\text{--}950\text{ }^{\circ}\text{C}$ and strain rates ranging from $0.01\text{--}10\text{ s}^{-1}$. PMs were
 389 established at various true strains. The following conclusions can be drawn:

390 (1) The activation energy of the Fe-6.5wt.%Si alloy was 410 kJ/mol at 650–950 °C. The constitutive
391 equation with the hyperbolic sine function and Zener–Hollomon parameter is written as: $Z =$
392 $\dot{\varepsilon} \exp\left(\frac{49274}{T}\right) = 8.24 \times 10^{19} \left[\sinh\left(0.01\sigma_p\right)\right]^{3.02}$.

393 (2) A linear relationship between the flow stress (σ_p , σ_c , σ_{ss}) and the value of $\ln\left(\frac{Z}{A}\right)$ was derived. In
394 addition, σ_c and σ_{ss} could be expressed using σ_p as $\sigma_c = \sigma_{ss} = 0.7\sigma_p$ ($\ln\left(\frac{Z}{A}\right) < -2.5$), or $\sigma_c = \sigma_p \approx$
395 σ_{ss} ($\ln\left(\frac{Z}{A}\right) > -2.5$).

396 (3) DRX occurred at the deformation areas with the values of Z lower than 10^{20} . Especially, a lower
397 value of Z usually corresponds to a higher degree of DRX.

398 (4) The value of η decreased in the region with high temperature and low strain rate, increased in the
399 region with high temperature and high strain rate, and remained constant in other regions with
400 the increase of true strain. Furthermore, the unstable areas expanded.

401 (5) The microstructure and formability of the Fe-6.5wt.%Si specimen were consistent with the PM.
402 The unstable areas were relatively small in the PM at the true strain of 0.7, and the values of η
403 were relatively high (0.4<0.6) in the stable regions. Very high DRX contents were observed in the
404 stable regions with high power dissipation efficiency.

405 (6) This study demonstrated that the true strain of 0.7 corresponds to the optimum reduction for
406 compressing the Fe-6.5wt.%Si alloy. The optimized processing parameters are the temperature
407 and strain rate of more than 900 °C and 0.01–10 s⁻¹, respectively, or 800–900 °C and less than 0.4
408 s⁻¹, respectively.

409 **Acknowledgments:** Financial supports from the Natural Science Foundation of China (51471031, U1660115)
410 and the State Key Laboratory for Advanced Metals and Materials (2016Z-17) are gratefully acknowledged.

411 **Author Contributions:** Shibo Wen conceived, designed and performed the experiments; Chaoyu Han and Bao
412 zhang contributed to the EBSD work; Shibo Wen wrote the manuscript; Yongfeng Liang, Feng Ye and Junpin
413 Lin supervised the work.

414 References

1. Arai, K.; Tsuya, N. Ribbon-form silicon-iron alloy containing around 6.5 percent silicon. *IEEE. Trans. Magn.* **1980**, *16*, 126–129, 10.1109/TMAG.1980.1060560.
2. Narita, K.; Teshima, N.; Mori, Y.; Enokizono, M. Recent researches on high silicon-iron alloys. *IEEE. Trans. Magn.* **1981**, *17*, 2857–2862, 10.1109/TMAG.1981.1061740.
3. Bozorth, R.M. *Ferromagnetism*, Van Nostrand, New York, 1951; pp. 50–52, 0-7803-1032-2.
4. Raviprasad, K.; Tenwick, M.; Davies, H.A.; Chattopadhyay, K. The nature of ordered structures in melt spun iron-silicon alloys. *Scripta. Mater.* **1986**, *20*, 1265–1270, 10.1016/0036-9748(86)90045-1.
5. Raviprasad, K.; Chattopadhyay, K. The influence of critical points and structure and microstructural evolution in iron rich Fe-Si alloys. *Acta. Metall.* **1993**, *41*, 609–624, 10.1016/0956-7151(93)90091-6.
6. Takada, Y.; Abe, M.; Masuda, S.; Inagaki, J. Commercial scale production of Fe-6.5wt.% Si sheet and its magnetic properties. *J. Appl. Phys.* **1988**, *64*, 5367–5369, 10.1063/1.342373.
7. Ros-Yanez, T.; Houbaert, Y.; Gómez Rodríguez, V. High-silicon steel produced by hot dipping and diffusion annealing. *J. Appl. Phys.* **2002**, *91*, 7857–7859, 10.1063/1.1449445.
8. He, X.D.; Li, X.; Sun, Y. Microstructure and magnetic properties of high silicon electrical steel produced by electron beam physical vapor deposition. *J. Magn. Magn. Mater.* **2008**, *320*, 217–221, 10.1016/j.jmmm.2007.05.030.
9. Machado, R.; Kasama, A.H.; Jorge, A.M.; Kiminami, C.S.; Fo, W.B.; Bolfarini, C. Evolution of the texture of spray-formed Fe-6.5wt.% Si-1.0wt.% Al alloy during warm-rolling. *Mater. Sci. Eng. A.* **2007**, *449*, 854–857, 10.1016/j.msea.2006.03.132.
10. Lima, C.C.; Da Silva, M.C.A.; Sobral, M.D.C.; Coelho, R.E.; Bolfarini, C. Effects of order–disorder reactions on rapidly quenched Fe-6.5%Si alloy. *J. Alloys. Compd.* **2014**, *586*, S314–S316, 10.1016/j.jallcom.2012.09.074.
11. Fish, G.E.; Chang, C.F.; Bye, R. Frequency dependence of core loss in rapidly quenched Fe-6.5 wt.% Si. *J. Appl. Phys.* **1988**, *64*, 5370–5372, 10.1063/1.342374.

438 12. Liang, Y.F.; Wang, S.; Li, H.; Jiang, Y.M.; Ye, F. Fabrication of Fe-6.5wt%Si ribbons by melt spinning
439 method on large scale. *Adv. Mater. Sci. Eng.* **2015**, *1*-5, 10.1155/2015/296197.

440 13. Wang, S.; Jiang, Y.M.; Liang, Y.F.; Ye, F.; Lin, J.P. Magnetic properties and core loss behavior of
441 Fe-6.5wt.%Si ribbons prepared by melt spinning. *Adv. Mater. Sci. Eng.* **2015**, *1*-6, 10.1155/2015/410830.

442 14. Li, R.; Shen, Q.; Zhang, L.; Zhang, T. Magnetic properties of high silicon iron sheet fabricated by direct
443 powder rolling. *J. Magn. Magn. Mater.* **2004**, *281*, 135-139, 10.1016/j.jmmm.2004.04.098.

444 15. Liang, Y.F.; Ye, F.; Lin, J.P.; Wang, Y.L.; Chen, G.L. Effect of annealing temperature on magnetic properties
445 of cold rolled high silicon steel thin sheet. *J. Alloys. Compd.* **2010**, *491*, 268-270, 10.1016/j.jallcom.2009.10.118.

446 16. Patterson, E.E.; Field, D.P.; Zhang, Y. Characterization of twin boundaries in an Fe-17.5Mn-0.56C twinning
447 induced plasticity steel. *Mater. Charact.* **2013**, *85*, 100-110, 10.1016/j.matchar.2013.08.016.

448 17. Liang, Y.F.; Ye, F.; Lin, J.P.; Wang, Y.L.; Zhang, L.Q.; Chen, G.L. Effect of heat treatment on mechanical
449 properties of heavily cold-rolled Fe-6.5 wt% Si alloy sheet. *Sci. China Technol. Sci.* **2010**, *53*, 1008-1011,
450 10.1007/s11431-010-0125-1.

451 18. Haghdadi, N.; Zarei-Hanzaki, A.; Abedi, H.R. The flow behavior modeling of cast A356 aluminum alloy at
452 elevated temperatures considering the effect of strain. *Mater. Sci. Eng. A.* **2012**, *535*, 252-257,
453 10.1016/j.msea.2011.12.076.

454 19. Samantaray, D.; Mandal, S.; Jayalakshmi, M.; Athreya, C.N.; Bhaduri, A.K.; Sarma, V.S. New insights into
455 the relationship between dynamic softening phenomena and efficiency of hot working domains of a
456 nitrogen enhanced 316L (N) stainless steel. *Mater. Sci. Eng. A.* **2014**, *598*, 368-375,
457 10.1016/j.msea.2013.12.105.

458 20. Li, H.; Liang, Y.F.; Yang, W.; Ye, F.; Lin, J.P.; Xie, J.X. Disorderering induced work softening of Fe-6.5wt%Si
459 alloy during warm deformation. *Mater. Sci. Eng. A.* **2015**, *628*, 262-268, 10.1016/j.msea.2015.01.058.

460 21. Niu, C.S.; Wang, Y.L.; Lin, J.P.; Lin, Z.; Chen, G.L. Dynamic recrystallization mechanisms of Fe3Si based
461 alloys. *Trans. Mater. Heat Treatment.* **2003**, *24*, 28-32, 10.3969/j.issn.1009-6264.2003.01.005.

462 22. Liang, Y.F.; Ge, J.W.; Fang, X.S.; Ye, F.; Lin, J.P. Hot deformation behavior and softening mechanism of
463 Fe-6.5wt% Si alloy. *Mater. Sci. Eng. A.* **2013**, *570*, 8-12, 10.1016/j.msea.2013.01.070.

464 23. Wang, Y.; Jiang, S.Y.; Zhang, Y.Q. Processing map of NiTiNb shape memory alloy subjected to plastic
465 deformation at high temperatures. *Metals*, **2017**, *7*, 328, 10.3390/met7090328.

466 24. Wu, J.; Lü, Z.D.; Zhang, C.J.; Han, J.C.; Zhang, H.Z.; Zhang, S.Z.; Hayat, M.; Cao, P. Investigation of the
467 deformation mechanism of a near β titanium alloy through isothermal compression. *Metals*, **2017**, *7*, 498,
468 10.3390/met7110498.

469 25. Ryan, N.D.; McQueen, H.J.; Evangelista, E. Dynamic recovery and strain hardening in the hot deformation
470 of type 317 stainless steel. *Mater. Sci. Eng.* **1986**, *81*, 259-272, 10.1016/0025-5416(86)90267-3.

471 26. Mirzadeh, H.; Cabrera, J.M.; Najafizadeh, A. Modeling and prediction of hot deformation flow curves.
472 *Metall. Mater. Trans. A.* **2012**, *43*, 108-123, 10.1007/s11661-011-0836-3.

473 27. Poliak, E.I.; Jonas, J.J. A one-parameter approach to determining the critical conditions for the initiation of
474 dynamic recrystallization. *Acta. Mater.* **1996**, *44*, 127-136, 10.1016/1359-6454(95)00146-7.

475 28. Xiang, L.; Tang, B.; Xue, X.Y.; Kou, H.C.; Li, J.S. Characteristics of the dynamic recrystallization behavior
476 of Ti-45Al-8.5 Nb-0.2 W-0.2 B-0.3 Y alloy during high temperature deformation. *Metals*, **2017**, *7*, 261,
477 10.3390/met7070261.

478 29. Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. *Acta. Metall.* **1966**, *14*, 1136-1138,
479 10.1016/0001-6160(66)90207-0.

480 30. Jonas, J.J.; Sellars, C.M.; Tegart, W.M. Strength and structure under hot-working conditions. *Met. Rev.* **1969**,
481 *14*, 1-24, 10.1179/mtlr.1969.14.1.1.

482 31. Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. *J. Appl. Phys.* **1944**, *15*, 22-32,
483 10.1063/1.1707363.

484 32. McQueen, H.J.; Ryan, N.D. Constitutive analysis in hot working. *Mater. Sci. Eng. A.* **2002**, *322*, 43-63,
485 10.1016/S0921-5093(01)01117-0.

486 33. Kim, S.I.; Yoo, Y.C. Prediction of dynamic recrystallisation behaviour of AISI type 4140 medium carbon
487 steel. *Mater. Sci. Technol.* **2013**, *18*, 160-164, 10.1179/026708301125000375.

488 34. Babu, K.A.; Mandal, S.; Athreya, C.N.; Shakthipriya, B.; Sarma, V.S. Hot deformation characteristics and
489 processing map of a phosphorous modified super austenitic stainless steel. *Mater. Design.* **2017**,
490 *115*, 262-275, 10.1016/j.matdes.2016.11.054.

491 35. Han, Y.; Liu, G.; Zou, D.; Liu, R.; Qiao, G. Deformation behavior and microstructural evolution of as-cast
492 904L austenitic stainless steel during hot compression. *Mater. Sci. Eng. A.* **2013**, *565*, 342-350,
493 10.1016/j.msea.2012.12.043.

494 36. Raj, R. Development of a processing map for use in warm-forming and hot-forming processes. *Metall.
495 Mate. Trans. A.* **1981**, *12*, 1089-1097, 10.1007/BF02643490.

496 37. Prasad, Y. Recent advances in the science of mechanical processing. *Indian. J. Technol.* **1990**, *28*, 435-451.

497 38. Lin, J.P.; Ye, F.; Chen, G.L.; Wang, Y.L.; Liang, Y.F.; Jin, J.N.; Liu, Y. Fabrication technology,
498 microstructures and properties of Fe-6.5wt.%Si alloy sheets by cold rolling. *Front. Sci.* **2007**, *13*-26,
499 10.3969/j.issn.1673-8128.2007.02.003.

500 39. Li, H.; Liang, Y.F.; Ye, F. Effect of heat treatment on ordered structures and mechanical properties of
501 Fe-6.5mass%Si alloy. *Mater. Trans.* **2015**, *56*, 759-765, 10.2320/matertrans.M2014451.

502 40. Li, H.; Liang, Y.F.; He, R.Q.; Lin, J.P.; Ye, F. Ordered structure and mechanical properties of Fe-6.5%Si alloy
503 fabricated by rapid quenching. *Acta. Metall. Sin.* **2013**, *49*, 1452-1456, 10.3724/SP.J.1037.2013.00521.