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Abstract: The second law of thermodynamics states the increase of entropy, S > 0, for real processes from 

state A to state B at constant energy from chemistry over biological life and engines to cosmic events. The 

connection of entropy to information, phase‐space and heat is helpful, but does not immediately convince 

observers of the validity and basis of the second law.  This gave grounds for finding a rigorous, but more 

easily acceptable reformulation. Here we show using statistical mechanics that this principle is equivalent 

to a force  law 〈〈ࢌ〉〉 ൐ 0  in systems where mass centres and forces can be  identified. The sign of this net 

force ‐ the average mean force along a path from A to B ‐ determines the direction of the process. The force 

law  applies  to  a  wide  range  of  processes  from  machines  to  chemical  reactions.  The  explanation  of 

irreversibility by a driving force appears more plausible than the traditional formulation as it emphasizes 

the cause instead of the effect of motions. 
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1. Introduction 

The second  law of  thermodynamics (SLT)  is a fundamental and general empirical  law of physics  that  is 

being discussed since it was articulated by Clausius [1] long time ago. It states the permanent growth of 

entropy  in  the dynamics of all macroscopic  systems  from  chemistry over biological  life and engines  to 

cosmic  events  and  thus  claims  the  existence  of  an  arrow  of  time which  seems  to  contradict  the  time‐

reversibility of classical and quantum mechanical theory. A second difficulty lies in the abstractness of the 

entropy  concept.  The  connection with  information  and  phase‐space  volume  is  still  too  far  apart  from 

typical real processes. The increase of that volume after release of a constraint can be considered as self‐

evident  [2]. Mathematically  it was  in  fact  shown  that  the  onset  of motion  after  release  of  a  constraint 

follows  the SLT  [3], but  this glance at a particular situation does hardly  increase  the plausibility  for  the 

fact that the increase of entropy represents the dynamical background of the everyday macroscopic world. 

 

The SLT represents a universal dynamic  law of macroscopic systems without explicitly referring  to any 

force. Entropic forces, however, are known to be responsible for the isothermal pressure of an ideal gas, 

elasticity  of  rubber  [4]  and macromolecular  structure  via  internal  fluctuations  [5].  In  these  examples, 

entropy essentially provides static forces stabilizing equilibria. This also holds for entropic hydrophobic 

force  in  aqueous  solutions which,  however,  is  also  qualitatively  considered  as  a  cause  of  the  protein 

folding process [6]. 

 

It was  the aim of  this study  to  find a clear, general and didactically accessible relationship between  the 

change of entropy and a driving force that can be made responsible for the process. Such a relationship is 

not a theoretical proof of the second law, but it leads to an alternative formulation as a force law. The new 

look at the second law is also elucidating the occurrence of irreversibility.  

 

The  concept  of  a  force  is,  of  course,  restricted  to  classical  mechanics.  Therefore  the  following 

considerations  apply  from macroscopic processes down  to molecular motions  and  reactions  as  long  as 

they  occur  in  the  electronic  ground  state where,  according  to  the  Born‐Oppenheimer  approximation, 

nuclei effectively move on a potential energy surface. It is also assumed that classical statistical mechanics 

applies, which will  be  discussed  later  in  the  context  of  chemical  reactions.  The  generalization  to  real 

quantum phenomena seems possible, but is beyond the scope of this work. 

2. General approach	
Let us consider a small system S characterized by a only a few coordinates   1... Mx xx  like the position 

of pistons or similar moving parts, but also of interatomic distances involved in a chemical reaction. The 

composite system consists of a large number of  N M  particles where the environment has spatial and 

momentum  coordinates     1 3 1 3... , ...N M N Mq q p p  q p   that  are  to be  treated  statistically.  It  is  assumed 

that there is a Hamiltonian function  

   

       , ; , , ,H K v q p x q p q p x   (1) 

  

with   1... Mx xx   as parameters  and  a  classical  treatment  is  suited  to  treat  equilibria  and processes. 

 ,K q p   is  the kinetic  and   , ,v q p x   the potential  energy.  Sometimes  the Hamiltonian  can be written 

       , ; , , ,s se eH H v H  q p x x q p x q p where  eH   is  the  Hamiltonian  of  the  environment,  sev   the 
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interaction with  the  system  S  and  eH   the  internal  energy  of  the  system. At macroscopic  systems,  for 

instance,  sH describes  gravity  and  internal  interactions  of  moving  parts.  At  chemical  reactions  the 

decomposition  is not useful as we will  consider  composite  systems with global energy or  temperature, 

and no separate energy can be attributed to the parameters of the small system S.  

 

For  the  time  being, we  define  states  like A,  B  by  representative  configurations  x , while  a  process  is 

defined as a transitionA  B , for  instance. Fig. 1  illustrates the existence of a few states near the starting 

state A and pathways connecting them.  

 

 

Figure 1. Pathways including state A.  For possible processes, the arrows show the preferential 

direction which can be derived from the second law of thermodynamics or the new force law. 

 

The  Hamiltonian  , ;H q p x yields  forces    , ; , ;xH F q p x q p x .  The  average  behaviour  is 

determined by the potential of mean force (PMF)    x  via the mean force itself,     x
  F x x , 

which arises from integration over   ,q p  in the statistical ensemble   , examples will be given below. It 

vanishes at a stable thermodynamic state which may be due to a constraint or occurs spontaneously and 

enables definition of thermodynamic potentials.  

 

We now consider a process where the system follows a path from A to B which is defined by  

( ),0l l L x ,  (0)A x x   and  ( )B Lx x   being  representative  positions.  The  definition  allows 

simultaneous and/or subsequent motions of mass centres. The direction is given by increasing l, and L is 

the  length  of  the  path  as  / 1d dl x .  The  component  of  the  force  in  the  direction  of  the  path  is

 ( ) , ; ꞏ /f l d dl F q p x x . The average along the path of the corresponding mean force  ( )f l

 becomes 

 

        1 1

0
ꞏ /

L

B A ABAB

d
f L dl L L

dl
 

 
      

x
F x x x .  (2) 

Note that the dot product here denotes the M‐dimensional inner product. Interestingly, the average mean 

force is independent of the pathway itself and depends only on the difference of the PMF at the end points 

and the direction of the process, 
BA AB

f f
 

  . The crucial result is the equivalency 
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  0  0ABAB
f      .  (3) 

  

This  is  the  very  general  form  of  the  force  law  which,  for  the  sake  of  clarity, will  be  illustrated  by 

considering two important ensembles. 

 

3. Results 

3.1 Microcanonical ensemble: the force law and the increase of entropy 

For an (NVE) ensemble entropy can be written 

 

 

    ( ) ln , ;B V
S k d E H  x q p x .  (4) 

The differential phase volume  is    3 3 3/N M N M N Md dq dp h      for non‐identical particles  and has  to be 

adapted for other cases,  h  the Planck constant and  Bk  the Boltzmann constant. At chemical reactions, it is 

possible  to  deal with  constant  particle  numbers in and  iN n when  not molecules,  but  nuclei  are 

treated as different kinds of particles. 

 

   is  the  Heaviside  jump  function  the  derivative  of  which  is  the  functional   . When  entropy  is 

differentiated  with  respect  to x ,  one  obtains ( ) ( ) )/ (x NVE
S T x F x x .  The  positive  quantity 

  1
/T dS dE

 is the temperature of the complete system and can, therefore, be considered as constant in 

the thermodynamic limit of large environments. The PMF delivering the mean force is    ( )TS  x x  

and finally yields according to eq. (3) the crucial statement  

 

  0  0ABNVE AB
f S    .  (5) 

  

Notoriously the claim of the SLT for a real process is an increase of entropy,  0ABS  . This is apparently 

equivalent  to  the  force  law  for  a  real  process,  0
NVE AB

f  , which  claims  a  positive  net  force,  i.e. 

average mean force along any pathwayA B . 

It is easily seen that the force law eq. (5) holds even at processes in small environments where temperature 

does not remain constant, when the average eq. (2) along the path is taken with weights proportional to

1/ ( )T x . 

3.2 Isobaric‐isothermal ensemble: the force law and the decrease of Gibbs energy 

In life science and chemistry the (NPT) ensemble applies to the majority of cases where temperature T and 

pressure P are maintained by the environment. Here the PMF is known to be the Gibbs energy[7] defined 

as 

 

    ( ) ln exp , ;BG k T d dV H PV    x q p x .  (6) 
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In  fact  differentiating  eq.  (6)  shows  that  the  ensemble mean  of  the  force  is  ( ) ( )xNPT
G F x x   and 

therefore  the PMF equals  the Gibbs energy   ( )G x x . Then  it  follows from  (3)  that a real process  is 

characterized by two equivalent assertions 

 

  0  0 ABNPT AB
f G    .  (7) 

Here  the  force  law  is  equivalent  the well‐known  claim  for Gibbs  energy  that  it will decrease  at  a  real 

process, which is a consequence of the SLT for the (NVE) ensemble. 

 

Interestingly,  the mean  force can be measured either experimentally  in  the case of macroscopic systems 

like engines, or computationally  for microscopic systems  like protein nanomachines or even atoms at a 

chemical  reaction.  The  principle  is  like  this:  the  system  is  stopped  at  some  position  x   and  the  force 
required for that purpose, the so‐called mean constraint force  cF ,  is measured which coincides with the 

negative mean force as [7‐9] 

 

     c 
 F x F x   (8) 

at Cartesian or distance coordinates  [10]. The constraint  force usually exhibits strong  fluctuations and a 

convergence towards the mean that depends on relaxation processes of the environment. 

 

3.3 Irreversibility 

It was shown above  that  the  integral over  the mean  force along any path  from A  to B yields  the same 

increase or decrease  AB  in the PMF, but the course of    l x  and the length of the path can be very 

different. This is illustrated in Fig. 2 for two different pathways. 

 

 

Figure 2. Alternative pathways from A to B (left) with respective profiles of the potential of mean 

force. In either case the identical decrease of the PMF implies that the average mean force ‐ i.e. the 

negative derivative ‐ along the path is positive and drives the motion from A to B. Likewise the 

positive average mean force implies the decrease of the PMF. 
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According to theories of activated processes like chemical reactions, the rate for a transition is determined 

by the profile of the PMF, for instance    / BTS k x  or   G x , and the starting conditions. The maximum 

rate  k  depends on the height of the maximum barrier, and therefore certain pathways will be taken more 

often  than others due  to bottleneck barriers  that are hardly overcome. Comparing  the  rates  for process 

A B  and the reverse process B A  between equilibrium states one has, for instance in the isobaric‐

isothermal case, the familiar relation  

 

    exp /BA
AB B

AB

k
G k T

k
  .  (10) 

  

Since  for a  real spontaneous process 0ABG  ,  there  is  in general a  time‐asymmetry with a  lower  rate 

BAk   for  the  reverse  process. Many  chemical  reactions  are  called  irreversible  in  the  sense  that  back‐

reactions plays practically no role, but there are also reactions with considerable back‐reaction rates that 

result  in  observable  equilibriaA  B .  Factual  irreversibility  arises  at macroscopic  transitions.  If  for 

instance, a  realistic  ABG  of  ‐1  Joule  is measured and a  rate of one per hour at 300 K,  then  the back‐

reaction  is  in  actual  fact  impossible  since  20 1exp 2 10BAk h   .  Thus macroscopic  processes with 

typical change in entropy or Gibbs energy are irreversible. The force law eq. (7) indicates that the cause is 

an unfavourable net force that opposes the back‐reaction. 

4. Discussion 

We have  addressed  the  SLT using  the  concept  of pathways  and  their  characterization  by mean  forces 

depending  on  the  ensemble  chosen.  As  a  result  we  propose  a  new  force  law  stating  that  a  real 

thermodynamic  process  is  based  on  a  net  force with  the  right  sign.  This  alternative  and  equivalent 

formulation of the SLT holds for processes from machines down to chemical reactions as long as they can 

be parametrized by motions of a  few mass centres of a much  larger system. Heat conduction  itself and 

photochemical  reactions  are  not  included  as  forces  do  not  enable  a  reasonable  formulation  of  such 

processes.  

 

The application  to chemical reactions  including processes of biological  life  like enzyme catalysis, where 

bonds  are  broken  and  others  are  formed,  deserves  particular  consideration.  For  a  given  Born‐

Oppenheimer  potential  energy  function  (BOP)  quantum  mechanics  still  requires  consideration  of 

tunnelling  and  transmission  coefficients when  calculating  transition  rates  [11],  zero‐point  energies  and 

entropies  when  calculating  equilibrium  quantities  as  we  do  here.  Without  quantum  mechanical 

correction, BOP would yield negative entropy [12] and too low energy for chemical bonds and is only an 

approximation to the classical force field   , ,v q p x  that produces correct Gibbs bond energies. This force 

field will differ from BOP by shallower potential wells for chemical bonds (and bond angles) and slightly 

depend on temperature. Considerable efforts are still made to construct such force fields [13]. For the force 

law discussed here it only matters that quantum mechanics suggests the existence of a classical force field 

that yields the correct PMF in eq. (2). 

 

Newton’s second law connects force with acceleration by a rigorous analytic relation independent of the 

direction of  the motion.  It  is  time‐reversible  since  it holds  for  either direction and does not  imply  that 
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motion follows the force. The new force law 0f  , however, which is equivalent to the SLT  0S   

in  the world  of mass  centres,  is  a  statistical  statement  that  reflects  the  behaviour  for  the  underlying 

ensemble. Given two states A and B, it gives preference to a particular direction, the other direction being 

drastically  suppressed  in macroscopic  circumstances. On  the  average, motion  follows  the mean  force. 

Apparently  the  arrow of  time  is  represented by  the  arrow  of  the net  force originating  from  a  realistic 

ensemble. The deeper reason for irreversibility is, of course, the occurrence of relaxation which is always 

tacitly assumed when using ensembles and mean values. 

 

The counterexample of a time‐reversible system connected with an unrealistic probability distribution is 

the completely undamped pendulum. There  it  is easily  seen  taking  the  time average  that  the system  is 

preferably  found  at high potential  energy. Only  if damping  is  introduced  by  coupling  to  a heat  bath, 

reversibility is lifted and a realistic distribution emerges.  

 

Despite the mathematical equivalency, there is a clear difference between the traditional form of the SLT 

and  the  force  law. While  the SLT  talks about entropy as  the characteristic product of a real process,  the 

force  law  emphasizes  the  cause  of  real  processes  by  stating  that  a  net  driving  force  is  needed  and 

determines the direction. It offers the didactical advantage of clarifying much of the SLT on the familiar 

basis of forces before introducing entropy as a concept of statistics or information theory. One may hope 

that the SLT as a force law is a more plausible and more easily acceptable explanation of reality. 
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