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Abstract: The regeneration of bone tissue is a main purpose of most therapies in dental medicine. 19 
For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- 20 
and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration 21 
processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, 22 
while it should be resorbed even in the time frame needed for complete regeneration up to the 23 
condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute 24 
materials have been frequently investigated and it has been shown that such materials strongly 25 
influence regenerative processes such as osteoblast growth or differentiation and also on osteoclastic 26 
resorption due to different physicochemical properties of the materials. However, the material 27 
characteristics needed for the required ratio between the formation of new bone tissue and material 28 
degradation has not been found until now. The addition of different substances such as collagen or 29 
growth factors and also of different cell types have already been tested but did not allow for 30 
sufficient or prompt application. Moreover, metals or metal ions are differently used as basis or as 31 
supplement for different materials in the field of bone regeneration. Moreover, it has already been 32 
shown that different metal ions are integral components of bone tissue playing functional roles in 33 
the physiological cellular environment as well as in the course of bone healing. The present review 34 
focuses on frequently used metals as integral parts of materials designated for bone regeneration 35 
with the aim to give an overview of currently existing knowledge about the effects of metals in the 36 
field of bone regeneration. 37 

Keywords: metals, dental regeneration, bioactivity, tissue regeneration, bone 38 
 39 

1. Introduction 40 
The regeneration of bone is of special interest, most notably, in dental medicine. For the 41 

regeneration of bone tissue of the jaw and also within the sinus cavity autografts are still the so-called 42 
“gold standard” due to their osteoinductive, osteogenic and osteoconductive regenerative capacities 43 
[1]. These properties are based on the different components of the transplanted bone tissue: Beside 44 
the calcified bone matrix, the different bone cell types, i.e., osteoblasts, osteocytes and osteoclasts, 45 
and the connective tissue including the vasculature and, thus, endothelial cells, as well as different 46 
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other cell types such as macrophages (so-called “osteomacs”) and fibroblasts amongst others are 47 
components of autografts [2]. Additionally, bone-associated proteins such as members of the bone 48 
morphogenetic protein (BMP) family or osteopontin, osteonectin and osteocalcin beside matrix- and 49 
cell-related metal ions are integral parts of autografts. Altogether, an autograft represents a 50 
physiologically active transplant as all of these components allow to support the bone regeneration 51 
process after implantation into a defect side [3, 4]. However, the application of autografts requires for 52 
harvest of healthy bone tissue from another part of the body, i.e., from extraoral locations such as the 53 
hip crest or intraoral localizations such as the mandibular ramus. Thus, one of the disadvantages of 54 
the application of bony autografts is the second defect side that is created for harvesting of the bone 55 
tissue. Beside different complications that could have been accompanied with this second surgical 56 
intervention, the amount of bone tissue from other locations is often limited and, thus, is not sufficient 57 
to fill a bone defect [5]. 58 

Beside autografts a variety of so-called bone substitute materials has been developed within the 59 
last decades to overcome the issues with bone autografts. In this context, two main material classes 60 
are differentiated: bone substitutes based on “natural” precursors and synthetic materials [6]. The 61 
natural-based bone substitute materials are mainly processed outgoing from human or animal bone 62 
(allo- and xenografts). For the manufacturing of allogenic bone substitutes bone tissue from living 63 
donors, i.e., from femoral heads, or of dead donors is used, while xenografts are mainly processed 64 
from bovine bone (or recently porcine bone). Furthermore, different natural-based materials based 65 
on a variety of biopolymers such as silk fibroin amongst many others have been analyzed for 66 
application as bone substitutes within the last decades [7, 8].  67 

Moreover, different synthetic bone substitute materials have been developed and most of these 68 
materials that are clinically applied are based on calcium phosphates such as hydroxyapatite (HAp) 69 
or beta tricalcium-phosphate (β-TCP) [9]. Even mixtures of this compounds have been shown to 70 
provide good healing results based on the combined degradation behavior. Moreover, a variety of 71 
other synthetic materials also combined with techniques such as three-dimensional printing 72 
procedures have been tested and have shown to be suitable for bone regeneration [10-12].  73 

However, the regenerative properties of all the afore-mentioned biomaterials are restricted 74 
particular in comparison to autografts as most of the bone substitute materials provide only a basis 75 
for osteoconductive bone growth [13]. Altogether, up to date no bone substitute material has been 76 
developed that features comparable regenerative capacities compared to autografts.  77 
Different strategies have been originated to overcome even this issue. A first group of concepts 78 
includes synthetic bone substitute materials with controllable material characteristics such as the 79 
porosity or the (nano-) topography of synthetic bone substitutes [14]. It has been suggested that even 80 
these special material properties, which have often stated to mimic the characteristics of the bony 81 
extracellular and calcified matrix and, thus, being “biomimetic”, allow for induction of bone growth 82 
[15]. Interestingly, many publications including in vitro studies and in vivo analyses within ectopic 83 
tissues such as the subcutaneous connective tissue describe osteoinductive properties of especially 84 
developed synthetic bone substitute materials [16]. However, the suspected osteoinductive 85 
properties of such materials have never been revealed in clinical studies indicating that such concept 86 
is still not tenable. 87 
A second concept group includes the addition of different biologically active agents such as collagen 88 
or hyaluronic acid or osteoinductive molecules such as members of the bone morphogenetic protein 89 
(BMP) family [17-20]. In this context, it has been shown that the combination of synthetic bone 90 
substitutes with extracellular matrix proteins such as collagen leads to diverse regenerative results. 91 
On the one hand, the polymer addition can allow to increase the bony integration behavior, while 92 
other results report about significantly lower bone growth rates for such a material composition 93 
compared to the bone substitute material alone [21-24]. In case of an addition of molecules such as 94 
BMPs different other issues have been realized, although a variety of studies has shown their 95 
exceptional regenerative properties [25-27]. This results from the facts that the underlying 96 
regenerative mechanisms of BMPs are not yet understood and possible side effects are not well-97 
known, especially since such molecules are usually administered in non-physiological doses 98 
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(thousands to millions times the amount normally found in the body) [28]. Additionally, such 99 
molecules are still very expensive although being also available as recombinant proteins compared 100 
to other bone substitute materials [27]. Additionally, the effect of the immobilized growth factor also 101 
depends on the amount released within a certain timeframe. Hence, the material properties such as 102 
porosity play a significant role [29].  103 
A further group of tissue engineering concepts includes the addition of different cell types to bone 104 
substitute materials. Most often osteoblasts and their precursor cells are used for such material-cell-105 
combinations even based on the fact that this cell type is mainly involved in bone regeneration by 106 
deposition of the organic extracellular matrix and its following mineralization [30]. In this context, 107 
also mesenchymal stem cells are of special interest as this cell type represents the earliest cellular step 108 
in osteoblastic differentiation [31]. Furthermore, also the additions of different other cell types that 109 
directly or indirectly support the bone growth process have been examined [32]. For example, the 110 
influence of different endothelial cell types such as human dermal microvascular endothelial cells 111 
(HDMEC) in mono- or co-culture with bone substitute materials have been analyzed as a fast and 112 
sufficient vascularization is an important factor for bone tissue regeneration [33, 34]. Additionally, 113 
blood cells or “inflammatory” cells such as cell types of the monocyte/macrophage line have been 114 
used to increase the regenerative properties of bone substitutes [35]. This concept is based on the 115 
assumption that such cell types express different molecules that are involved in (bone) tissue healing 116 
and might induce or at least increase the process of bone regeneration [36-38]. In this context, a broad 117 
spectrum of scaffolds combined different blood cells - for example platelet-rich plasma (PRP) or 118 
platelet-rich fibrin (PRF) - obtained by simple centrifugation from freshly drawn venous blood have 119 
also suggested to increase or even induce bone regeneration [39-41]. The assumption of such concepts 120 
is that both the obtained cells and moreover growth factors present within the blood should stimulate 121 
(bone) tissue regeneration [42]. However, all of these tissue engineering concepts also did not find 122 
their way into the clinic as they are either not applicable in acute surgical situations due to the long 123 
time spans needed for cell isolation and co-cultivation with a bone substitute or their clinical efficacy 124 
has still not been proven by scientific analyses such as in case of PRP or PRF concepts. 125 

A further concept is the application or the combination of different metals or metal ions with bone 126 
substitute materials in the field of bone regeneration. Different metal ions are essential components 127 
of different tissues such as calcium phosphates in case of the extracellular calcified bone matrix or 128 
integral component of cells or proteins that are regulating essential cellular processes such as 129 
proliferation or differentiation [43-45]. Altogether, the different metal ions have functional roles in 130 
the physiological cellular environment and also in the course of bone healing. Thus, the application 131 
of metal ions in combination with the above-mentioned bone substitutes or solely is of special interest 132 
for bone regeneration [46-48]. To give an overview of the regenerative potential of the different metal 133 
ions the present review summarizes the knowledge about their involvement in cellular processes and 134 
the bone healing process. Additionally, further focus is on studies that already analyzed the 135 
regenerative potential of bone substitutes including metals. 136 

2. Bone tissue healing and approaches for material-related support 137 

The process of bone tissue healing is based on different factors. Primarily, the bone related cells, i.e., 138 
osteoblasts and also osteoclasts and also their precursors, are involved in this process [49]. In this 139 
context, most bone substitute materials allow for the osteoconductive ingrowth of osteoblasts and 140 
mesenchymal progenitors acting as a scaffold structure [50, 51]. Hereafter, osteoblasts produce the 141 
extracellular organic bone matrix, which mainly consists of collagen type 1 and hydroxyapatite is 142 
crystallized on the collagen fibrils. Moreover, osteoblasts trigger and promote the crystallization by 143 
secretion and expression of various other proteins or receptors such as RANKL and GDF5 [52]. Thus, 144 
osteoblasts and their precursors are always a first starting point for different concepts that should 145 
improve bone healing [53]. Interestingly, also different ions such as Mg2+ ions have influence on 146 
osteoblastic growth, proliferation or differentiation (for further details see paragraph 3) [54, 55].  147 
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Moreover, influences on bone-resorbing cells and their precursors, i.e., multinucleated osteoclasts 148 
and hematopoietic stem cells as well as the different intermediate stages, are of great interest in the 149 
field of bone tissue regeneration [56]. This is based on the fact that a molecular cross-talk between 150 
osteoblast and osteoclasts has been revealed and additionally it has been shown that both cell types 151 
are organized in so-called [57, 58]. On the one hand, osteoblasts play an important role in 152 
osteoclastogenesis and bone resorption based on the expression of different molecules such as the 153 
receptor activator of NF-kB ligand (RANKL), the macrophage-colony stimulating factor (M-CSF), 154 
interleukin (IL)-1β, IL-6 and IL-11 amongst others [52, 59, 60]. Furthermore, osteoblasts also express 155 
different inhibiting molecules such as osteoprotegerin (OPG), the granulocyte–macrophage-colony-156 
stimulating factor (GM-CSF), IL-3, IL-12 and IL-18, which lead to the conclusion that a balanced 157 
control of bone remodeling is prevailed. On the other hand, different coupling factors are nowadays 158 
known that are expressed by osteoclasts such as the tartrate-resistant acid phosphatase (TRAP), 159 
sphingosine 1-phosphate (S1P), bone morphogenetic protein 6 (BMP-6), hepatocyte growth factor 160 
(HGF) and collagen triple helix repeat containing 1 (CTHRC1) amongst different others inducing 161 
osteoblastic growth or bone formation [61]. Thus, this cell type constitutes a further approach for 162 
enhancement of bone regeneration. In this context, it has already been shown that ions such as Sr2+ 163 
ions can influence bone formation via depression of osteoclast-mediated bone resorption (for further 164 
details see paragraph 3). 165 

Additionally, other cell types such as endothelial cells are involved in the process of bone tissue 166 
healing as a sufficient vasculature and the related transport of both nutrients and metabolic end 167 
products is a basic factor for bone formation [33]. Thus, this cell type and functional blood vessels are 168 
also a key factor in the regeneration process. In this context, both the process of bone healing and 169 
angiogenesis are directly coupled via different local factors [62]. Primarily, the so-called hypoxia-170 
inducible factor 1-alpha (HIF-1α) pathway is induced by local hypoxia affected by a bone injury as a 171 
key mechanism for coupling bone growth to angiogenesis [63]. The induction of this pathway results 172 
in an increased expression of the vascular endothelial growth factor (VEGF), one of the most 173 
important and strongest angiogenic cytokines, also expressed by osteoblasts and also by cell types 174 
such as macrophages [64]. The expression of VEGF leads to blood vessel ingrowth within the defect 175 
area and also has direct influence on osteoblast growth and proliferation as wells as matrix deposition 176 
[64].  177 

Moreover, the connection between the immune system and the bone tissue metabolism and 178 
regeneration has been recognized in more detail in the last years. In this context, it has been revealed 179 
that a special subtype of the macrophage line within bone tissue, so-called osteomacs, are a further 180 
key element for bone formation [65]. Interestingly, these osteal macrophages are also integrated into 181 
resting bone tissue and are enriched at sites of bone formation combined with the inflammatory 182 
process following bone injury [37]. Following their activation, osteomacs have shown to promote 183 
osteoblastogenesis and matrix deposition via the nuclear factor (NF)-κB signaling pathway which is 184 
important for their pro-osteogenic function [66]. Furthermore, it has been revealed that a direct cell-185 
cell-contact between osteomacs and osteoblasts takes place ensuring the osteoblastic maintenance 186 
and homeostasis via sequestosome 1/p62-dependent low-level activity of NF-κB [65, 67]. 187 

Finally, influence on different inflammatory cells even reacting to an implanted bone substitute 188 
allows for influence on the process of bone healing [68, 69]. Thus, research in the field of biomaterial-189 
induced inflammation is more and more in the focus of bone regeneration research. In this context, it 190 
has been revealed in the last decades that nearly all bone substitute materials induce an inflammatory 191 
cascade, the so-called “foreign body response to biomaterials”, after its application [70]. In this 192 
cascade the initial accumulation of proteins, which is highly specific for every biomaterial dependent 193 
on its respective physicochemical characteristics, causes the further binding of a first generation of 194 
different cells and following inductions of specific signaling pathways [71, 72]. This first generation 195 
of cells within an implantation bed furthermore guides the further cellular processes via expression 196 
if different molecules or cytokines [73]. Interestingly, it has been revealed that in this inflammatory 197 
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cascade macrophages and their fused end stages, the so-called multinucleated giant cells (MNGCs), 198 
are cellular key components [74, 75]. Those cell types have shown to express both pro- and anti-199 
inflammatory molecules such as VEGF that guide the integration behavior and factors such as the 200 
implant bed vascularization of bone substitute materials [64, 76]. Additionally, other cell types such 201 
as granulocytes or thrombocytes have supposed and revealed to have eminent influence on this tissue 202 
reaction cascade, which finally leads to different outcomes of the bone regeneration process. In this 203 
context, material factors such as the chemical composition or physical material properties such as the 204 
porosity or the surface structure but also the involvement of different ions such as Cu2+ ions have 205 
shown to allow for influence on the inflammatory tissue reaction to a bone substitute material (for 206 
further details see paragraph 3) [71, 77, 78]. 207 

 208 

3. Metal ions, their physiological functionalities and role in bone healing 209 
Metals are widely accepted as implant material since a few decades. Even when a solid metal is 210 
applied to physiological environment it is always in equilibrium with its ions. These metal ions are 211 
responsible for a variety of biochemical functions which are important for the different steps of bone 212 
regeneration as they influence the equilibrium between osteoblasts, osteoclasts and osteocytes. Thus, 213 
metals and their corresponding ions which have an influence on the process of bone healing should 214 
be mentioned here (Figure 1). We will also line out the impact on different states of tissue formation 215 
and the interplay between related metal ions in processes leading to bone regeneration. 216 

 217 
Figure 1: Influence of metal ions on the variety of processes involved in bone regeneration. 218 
 219 
3.1. Aluminum (Al3+) 220 

Aluminum does not belong to the group of trace elements, is not involved in any physiological 221 
functions and is consequently not essential for the human organism [79]. Intake of larger elevated 222 
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quantities of aluminum is associated with toxic effects leading to serious adverse reactions including 223 
anemia, encephalopathy and osteoporosis as Al3+ ions compete with essential ions like Fe2+ [80-82]. 224 
Investigation of the specific reaction of human neural cells to aluminum exposure for example 225 
showed that concentrations as little as 100 nM of aluminum sulfate significantly elevated atypical, 226 
pro-inflammatory and pro-apoptotic gene expression [83]. 227 

Reports about the functions of aluminum in bone formation are ambiguous. Positive impacts of 228 
aluminum supplementation on the osteogenesis in beagles as well as in osteopenic rats was 229 
previously demonstrated and initiated a further interest for the investigation of aluminum in tissue 230 
engineering [84, 85]. In contrast to these findings, expression of osteoblast activity markers was 231 
substantially lower while expression of apoptotic markers was increased when treated with 232 
aluminum, demonstrating impaired cellular activity and survival and a clear link between aluminum 233 
intoxication and compromised bone formation [86]. Quarles and colleagues put their findings on the 234 
positive impact of aluminum on de novo bone formation into context with the contradicting literature 235 
and suggested that aside from discrepancies in the applied model/organism, aluminum 236 
concentrations and time of exposure, a paradoxical impact of aluminum on mesenchymal progenitors 237 
and mature osteoblasts could be the main reason for these dissimilar observations [85]. This 238 
hypothesis was further supported by another group, which demonstrated that aluminum ions 239 
provoked a chemotrophic stimulus in preosteoblasts while having an inhibitory effect on osteoblasts 240 
[87].  241 
Negative impacts of aluminum on osteoblast function, however, are prevailing in the contemporary 242 
literature. An in vivo study in rats assessed the effects of aluminum exposure on the uptake of bone 243 
mineral elements, trace elements and bone mineral density. The level of analyzed trace elements were 244 
significantly lower with aluminum exposure and deposition of calcium, phosphorus and magnesium 245 
was decreased in comparison to the control population. Bone mineral density in the femur 246 
metaphysis of the aluminum-treated group was also significantly lower compared to the control, 247 
resulting in pronounced bone loss [88]. Altogether, aluminum does not seem to contribute to bone 248 
and tissue healing but to have a rather opposing impact in this process so that, aside from favorable 249 
mechanical properties, application of aluminum in implantable medical devices offers no 250 
scientifically evident benefits. Furthermore, other bioceramics such as zirconia oxide are 251 
progressively emerging as bioinert alternative to aluminum oxide [89]. 252 
 253 
3.2 Calcium (Ca2+) 254 

Calcium is an important functional component of biodegradable calcium phosphate-based 255 
biomaterials designated for bone regeneration in orthopedics, trauma surgery, and in dentistry (for 256 
reviews: [90-92]).  257 

Calcium is the most common mineral of the body and is primary stored in the skeleton [93]. Calcium 258 
homeostasis is tightly regulated by parathyroid hormone (PTH) and calcitonin which regulate 259 
calcium serum levels by stimulating (PTH) or inhibiting (calcitonin) bone resorption – mediated by 260 
osteoclasts. During bone remodeling bone resorbing osteoclasts can create local concentrations of 261 
extracellular calcium ions up to 40 mM [94]. These microenvironmental increases are known to 262 
inhibit resorption activity of osteoclasts, and to stimulate proliferation and differentiation of 263 
mesenchymal stromal cells [93, 95-99] and osteoblasts [100, 101].  264 

During the 1980s extracellular calcium was shown to activate an extracellular G-protein-coupled 265 
receptor, termed calcium sensor receptor (CaSR) [102]. The CaSR is expressed in cells of the 266 
hematopoietic lineage, such as in monocytes [103], and osteoclasts [104] as well as in cells of the 267 
mesenchymal lineage [93, 99, 101, 105, 106]. Regarding the high responsiveness of the cells of the bone 268 
to extracellular calcium, elevated levels enhance proliferation chemotaxis and osteogenic 269 
differentiation of bone marrow-derived mesenchymal stromal cells in a dose-dependent manner by 270 
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activating the CaSR [93, 99]. Downstream, the intracellular pathway induces phosphorylation of 271 
extracellular signal-regulated protein kinases 1 and 2 (ERK 1/2) [99] which are part of the MAPK 272 
signaling pathway playing an important role in regulating cell proliferation in various mammalian 273 
cells [107]. The activation of the CaSR in response to extracellular calcium levels also stimulates 274 
phospholipase C (PLC) and induces sustained increase of cytosolic calcium in rat calvarial osteoblasts 275 
[106]. The activation of PLC results in generation of inositol 1,4,5-trisphosphate (IP3) and triggers IP3-276 
receptor-mediated calcium release from endoplasmic reticulum. As a result, store operated calcium 277 
entry (SOCE) mediates extracellular calcium entry into the cells for endoplasmic reticulum -calcium 278 
store filling [108]. In addition to the effects mediated by the CaSR and the SOCE route voltage gated 279 
calcium channels may also serve as structural units accounting for calcium entry into osteoblasts 280 
[106], and osteogenic differentiation of osteoprogenitors [96, 109]. 281 

Given the superior significance to modulate cellular functions, variations of extracellular calcium in 282 
the milimolar range result in proliferation, survival and chemotaxis as well as in differentiation of 283 
osteoblasts [101, 106] and bone marrow derived mesenchymal stromal cells (MSCs) [93, 96, 99]. 284 
Optimal conditions to stimulate proliferation of rat calvarial osteoblasts include extracellular calcium 285 
concentration in the range of 3 mM and 10mM, respectively [101]. Proliferation of bone marrow 286 
derived MSCs harvested from different species (i .e. human, porcine, rat) is effectively supported by 287 
concentrations of 4mM [99], 7.8 mM [96], and 10 mM [93]. Additionally, osteogenic differentiation 288 
capacity of human bone-derived MSCs is stimulated in response to extracellular calcium 289 
concentrations in the range of 10 mM and 20 mM [98]. 290 

According to the pivotal role of calcium in cellular functions and to composition of natural bone, 291 
various calcium phosphate based materials have been developed for bone replacement therapies [90-292 
92]. Incorporation of the calcium phosphate phases modulates bioactivity of the biomaterials, and as 293 
pointed out in previous studies, high bioactivity is equivalent to calcium phosphate binding capacity 294 
and causes depletion of calcium in close vicinity to the biomaterial [97, 104, 110]. Calcium phosphate 295 
deposition along the surface of bone substitute materials represents an advantageous property to 296 
support osseointegration. However, the calcium deficient microenvironment in close vicinity to the 297 
materials remains obscure – especially considering the aforementioned calcium-dependent effects on 298 
osteoblasts and progenitor cells. It has been shown that osteoprogenitors – as in the case of bone-299 
derived MSCs – can overcome calcium deficiency when they are cultured in combination with highly 300 
bioactive xerogels [97]. The mechanism by which the cells maintain their functional integrity even in 301 
response to calcium levels next to zero is still not clear. Given the fact that the materials with high 302 
bioactivity are composites, it might be concluded that the beneficial effects on cell survival, 303 
proliferation and differentiation are mediated in large part by ionic dissolution products such as silica 304 
[97, 111] or phosphate ions [112, 113]. According to this, it has been postulated that best results of 305 
osteogenic differentiation of osteoblast progenitors along with bone formation may be expected when 306 
calcium phosphate based materials dissociate easily to calcium and phosphate ions [113].  307 

 308 
3.3 Chromium  309 

The physiological function of chromium in human is currently under debate. Though, some cellular 310 
functions of chromium have been reported, in 2014 the European food safety authority officially 311 
removed it from their list of essential micronutrients [114, 115]. The impact of chromium exposition 312 
on osteoblasts was investigated in several studies, whereby only toxic effects, causing reduced DNA, 313 
RNA and protein synthesis, were reported [116, 117]. Furthermore, chromium suppressed 314 
collagenase activity in osteoblasts, which reduced collagen formation and deposition and also 315 
negatively affects new bone formation [117]. 316 

In the field of reconstructive medicine, cobalt-chromium (CoCr) is one of the main alloys used for 317 
total hip arthroplasty. However, Co2+ ion release from CoCr surfaces has been reported to severely 318 
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impact mesenchymal stem cells by altering osteogenic gene expression, affecting osteogenic lineage 319 
differentiation and compromising the mineralization process [118]. The impairment of bone 320 
formation by chromium and cobalt was further analyzed by the effect of these ions on the expression 321 
of various TGF-β isoforms and mineralization in MG-63 and SaOs2 osteosarcoma cells as well as in 322 
primary human osteoblasts. While Co2+ decreased the expression of different TGF-β isoforms in all 323 
investigated cell types, Cr3+ had no impact in this manner. Cr3+ on the other hand strongly inhibited 324 
the mineralization process of these cells in vitro, whereas Co2+, within the range of the tested 325 
concentrations, showed no inhibitory effects on mineralization [119].  326 
 327 
3.4 Cobalt (Co2+) 328 

As cobalt is a compound of cobalamin, it is an essential trace element, which stimulates the 329 
production of red blood cells and promotes angiogenesis by activating hypoxia-inducible 330 
transcription factors (HIF) [120-122]. Previous studies demonstrated a rather unfavorable effect of 331 
Co2+ ions released from CoCr surfaces on osteogenic lineage differentiation of hMSCs, TGF-β isoform 332 
expression in osteoblasts and the mineralization process, whereby recent data indicates that the 333 
impaired mineralization reported by Schröck and colleagues rather results from Cr3+ ion release than 334 
from Co2+ ions [118, 119].  335 

The angiogenic capacities of cobalt ions sparked the idea of incorporating this metal into different 336 
materials used for bone healing in order to stimulate vascularization of implanted grafting materials, 337 
enhance remodeling processes and thus, support the overall regeneration process. The impact of Co2+ 338 
ions incorporated into calcium phosphate (CaP) coatings for poly-lactic acid (PLA) particles on new 339 
blood vessel formation was studied in an intramuscular implantation model in goats. The 340 
inflammatory reaction following a 12-week implantation course demonstrated no pathologic 341 
differences in PLA particles coated with solely CaPs or coated with Co2+ containing CaPs. Formation 342 
of blood vessels was significantly increased when Co2+ containing CaP coated PLA particles were 343 
implanted and vessel size was notably increased, suggesting a positive impact of Co2+ on 344 
vascularization in vivo [123].  345 

The impact of Co2+ containing CaPs on osteoporotic alveolar bone regeneration was further 346 
investigated in rats. Biocompatibility assessment of the material was approved for epithelial Caco-2 347 
and osteoblastic MC3T3-E1 cells, whereby no toxic effects in Caco-2 cells, however, considerable 348 
decrease in cell viability and impairment of cytoskeletal organization was observed in MC3T3-E1 349 
cells. Despite the negative impact of Co2+ ions on osteogenic cells, hydroxyapatite (HAp) 350 
nanoparticles doped with Co2+ demonstrated dose-dependent acceleration of osteogenesis, 351 
osteoporotic bone regeneration and graft material substitution in comparison to HA-nanoparticles 352 
without Co2+. The authors listed several hypothesis for their observations including increased 353 
transport of Ca2+ ions into the extracellular fluids facilitated by the moderate toxicity of Co2+ ions as 354 
well as increased cytokine production and release, which could potentially boost aminopeptidase 355 
activity together with migration and proliferation of endothelial cells [124].  356 

The combination of Co2+ HAp nanoparticles with blood or plasma rich in growth factors (PRGF) was 357 
shown to induce the generation of large quantities of osteoblasts, increased mineralization and 358 
accelerated bone regeneration [124]. Taking into consideration that recent studies demonstrated 359 
impaired growth factor expression and osteogenic lineage determination in hMSCs exposed to Co2+, 360 
these observations seem reasonable, as blood and PRGF may compensate this lower expression and, 361 
thus, enable proper osteogenic lineage differentiation [119]. Furthermore, the study implicates that 362 
bone mineral containing scaffolds as presented in this study are suitable for cobalt incorporation, as 363 
cobalt does not impair but rather seems to support the mineralization process [119, 124].  364 
Similar findings were made by another group who developed a hydrogel with incorporated Co2+ 365 
ions. Hydrogels solely doped with Co2+ did not increase the amount of regenerated bone volume, 366 
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bone surface and bone surface density in a rat model in vivo, whereas addition of BMP2 to the 367 
hydrogel did. The observed gain was even more pronounced with the simultaneous loading of Co2+ 368 
and BMP2 onto the hydrogel, which again favors the hypothesis of a synergistic effect of Co2+ in 369 
conjunction with growth factors in graft vascularization and bone regeneration [125]. Increased 370 
collagen deposition, new bone formation and bone hardness was also reported for cobalt-containing 371 
bioglasses compared to bioglasses without cobalt in critical size defects in the rabbit’s femur in vivo 372 
[126]. Additionally, the authors showed that inclusion of both strontium and cobalt into the bioactive 373 
glasses even further ameliorated the bone regeneration process. 374 

3.5 Copper 375 

While Cu2+ is the most stable oxidation state in aqueous solution it can also be present as Cu+ in 376 
human body exhibiting diverse properties and functions [127]. Together with iron and zinc, copper 377 
is one of the most important metals for humans and especially needed to generate Cu-proteins which 378 
have enzyme functions. Cu-proteins have three main functions in living organisms such as 379 
participation in electron-transfer reaction, transport of oxygen and transport or storage of the metal 380 
itself.  381 

Therefore, copper is involved in multiple physiological functions, the regulation of bone metabolism 382 
and turnover among them. Cu imbalances also affect the nervous system and can lead to vascular 383 
abnormalities in the human body. The impact of copper deficiency on skeletal growth and 384 
development was previously assessed in several studies [128, 129]. Copper caught attention in the 385 
field of bone regeneration because of its antibacterial properties and its ability to stimulate collagen 386 
fiber deposition and angiogenesis, which represents the first step towards the formation of vital and 387 
vascularized tissue [130-132]. The effect of copper-doped silicate bioceramics on vascularization was 388 
subjected to several studies and a positive impact on the expression of angiogenic growth factors in 389 
human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) in response 390 
to Cu2+ released from copper silicate bioceramics was recently reported by Kong and colleagues [133]. 391 
Thus, the release of Cu2+ ions from porous matrices like bioactive glass should facilitate the ingrowth 392 
of bone into the scaffold matrix [134]. 393 

Current data supports enhanced osteogenic differentiation of mesenchymal stem cells mediated by 394 
copper supplementation. Early studies on the effect of copper on MSCs derived from 395 
postmenopausal women demonstrated reduced proliferation, a 2-fold enhancement of differentiation 396 
into osteoblasts and increased calcium deposition, while alkaline phosphatase activity was 397 
considerably diminished in these cells but shiftes to an earlier timepoint [135]. Similar findings on the 398 
suppression of alkaline phosphatase activity mediated by copper exposition was observed in rat 399 
MSCs by Li and colleagues, whereby they reported a clear reduction in osteogenic differentiation of 400 
rat MSCs concomitant with the reduction of several osteogenic genes, alkaline phosphatase activity 401 
and bone nodule formation. In addition, cytoskeletal abnormalities during osteogenesis was found 402 
in these cells. The process of ectopic bone formation in a rat model was also significantly impaired 403 
by presence of copper and while vascularization in the regenerated soft tissue was promoted, 404 
collagen formation was strongly inhibited [136].  405 

These findings are supported by a study conducted with pre-osteoblastic MC3T3-E1 cells cultured 406 
on copper containing bioglasses. While no effects on proliferation and alkaline phosphatase activity 407 
of these cells was noted with scaffolds doped with 0.4 to 0.8 wt.% CuO, 2.0% showed a significant 408 
reduction on both. In an in vivo approach in rat calvarial defects showed that this higher 409 
concentration of Cu2+ ions also substantially reduced new bone formation from 46 ± 8% to 0.8 ± 0.7%, 410 
while lower concentrations showed no such impairment. On the other hand, the authors found a 411 
stimulatory effect on blood vessel formation in dependence of the copper content of the scaffolds 412 
with the biggest impact seen for the highest concentration of 2.0% CuO [137]. Benefits of copper 413 
supplementation in the regeneration of critical-sized calvarial defects in rats were further reported 414 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2018                   doi:10.20944/preprints201802.0051.v1

Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 826; doi:10.3390/ijms19030826

http://dx.doi.org/10.20944/preprints201802.0051.v1
http://dx.doi.org/10.3390/ijms19030826


 10 of 43 

 

by the comparison of chitosan scaffolds and chitosan scaffolds doped with copper. Analysis of micro-415 
CT scans after 4 weeks of healing indicated twice the amount of bone volume in the defects treated 416 
with copper containing chitosan scaffolds as compared to scaffolds without copper [138].  417 

 418 
3.6 Gallium (Ga3+) 419 

Gallium is a metal which serves no known essential functions in human. While currently being 420 
investigated in cancer treatment because of its anti-proliferative properties resulting from the 421 
interference with iron-dependent cellular functions, studies also demonstrated that short term 422 
gallium treatment reduces bone turnover in vivo and increases calcium content of bone in patients 423 
suffering from cancer-related hypercalcemia [139]. Furthermore, gallium has the potential to disrupt 424 
microbial iron utilization by interacting with iron-binding bacterial molecules called siderophores. In 425 
this manner, gallium downregulates the bacterial iron uptake and impairs their growth [140]. 426 
Gallium-EDTA coated titanium chips exhibited significant antimicrobial activity against Escherichia 427 
Coli for more than 28 days after coating, underscoring a promising application of gallium-based 428 
coatings for effective prevention of biofilm formation, which could be used in dental and orthopedic 429 
reconstructive surgery [141]. Additionally, gallium coated titanium implants showed superior 430 
antibacterial properties in vivo and consequently more effective prevention of biofilm formation than 431 
silver coatings [142]. 432 

Several studies analyzed the effect of gallium administration on osteoclasts and osteoblasts. While 433 
osteoclastic lineage differentiation and resorption activity was lowered by gallium, no impact on 434 
viability and proliferation of osteoblasts was noted [143]. In an in vivo approach using a rabbit 435 
femoral defect model, gallium-loaded calcium phosphate cements showed no superiority over 436 
calcium phosphate cements without gallium in terms of bone healing, whereby the authors implied 437 
that no effect was observed due to the little resorption of the material and consequently low release 438 
of Ga3+-ions [144]. In a subsequently conducted study the gallium release from Ga-CaP was optimized 439 
and re-evaluated for its beneficial properties in bone healing. Upregulation of osteoblastic marker 440 
expression was observed in primary human osteoblasts cultured on the Ga-CaP, whereby late 441 
osteoclastic markers were downregulated in primary human monocytes which were previously 442 
induced towards the osteoclast lineage.  443 
The in vivo properties of Ga-loaded CaPs in new bone formation were assessed in a murine bone 444 
defect healing model; aside from an enhanced total defect-fill, Ga-CaPs also promoted the synthesis 445 
of mature organized collagen [145]. With respect to the current literature, gallium holds a set of 446 
promising qualities for future applications in tissue engineering. 447 

 448 
3.7 Iron (Fe2+) 449 
Iron is one of the most important ions in the human organism as it is essential for a variety of cellular 450 
processes [146-148]. Different cellular effects such as the synthesis of deoxyribonucleic acid (DNA) 451 
and ribonucleic acid (RNS), proteins, electron transport processes, cellular proliferation and 452 
differentiation are related to iron ions [149, 150]. These effects are based on the involvement of iron 453 
ions mainly as components of enzyme molecules, such as oxidases, catalases, peroxidases, aconitases, 454 
ribonuleotide reductases and nitric oxide synthases amongst others [150-152]. As coordinating ion in 455 
the center of hemoglobin and myoglobin, iron is an essential trace element, required for oxygen 456 
transport und regulation of several metabolic enzymes [153, 154]. Further, iron is the loosely bound 457 
ion component of the procollagen proline hydroxylase and the procollagen lysine hydroxylase [155]. 458 
Both enzymes effect the hydroxylation of proline and lysine residues in precursors of collagen. Large 459 
amounts of iron released from iron-containing implants, however, may cause excessive iron levels in 460 
the blood. Here, the free iron can react with peroxides and trigger the formation of free radicals which 461 
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are highly reactive and damage lipids, proteins, DNA as well as cellular structures [156, 157]. 462 
Additionally, hemochromatosis has been demonstrated to result in osteoporosis mediated by 463 
increased ferroxidase activity of ferritin and in vitro experiments demonstrated inhibition of 464 
osteogenic lineage differentiation in human osteoblasts concomitant with decreased calcification 465 
caused by iron overload [158-160]. In vivo experiments in zebrafish larvae demonstrated that the 466 
mechanism by which iron-overload causes impaired osteoblast function and mineralization is based 467 
on the increased generation of reactive oxygen species. Application of deferoxamine, an iron chelator 468 
capable of removing whole-body iron, ameliorated the iron-induced negative effects on osteoblastic 469 
marker expression and mineralization [161]. Same was observed for hepcidin, a regulator of iron-470 
uptake, which is also capable of removing whole body iron. Likewise, hepcidin downregulation 471 
elevates iron level and causes iron-overload mediated interference with osteogenesis [162]. 472 
Iron exposure of human bone marrow mesenchymal stem cells (BMSCs) decreased their 473 
differentiation towards the osteogenic lineage as well as extracellular matrix mineralization with a 474 
total block of lineage commitment at a concentration of 50 µM. In vivo experiments in mice were able 475 
to reproduce these findings. The inhibitory effect of iron, however, was specific for osteogenic lineage 476 
differentiation, whereas no impact on chondrogenesis and adipogenesis was noted [163]. 477 
Furthermore, the promotion of osteoclast formation mediated by iron was previously reported, 478 
which additionally underscores the unfavorable features of iron for the purpose of biomedical tissue 479 
engineering [164]. In contrast to these previous results, Wang and colleagues reported positive impact 480 
of iron oxide nanoparticles (IONPs) on the osteogenic differentiation of human BMSCs in vitro 481 
mediated by MAPK signaling. The authors speculated that the negative impact of iron on 482 
osteogenesis observed in previous studies resulted from increased ROS formation and ferritin 483 
activity, whereby this process is proposed to be prevented by nanoparticle formulations [165]. 484 
Moreover, Zhao and colleagues analyzed both effects of excessive and low body iron conditions on 485 
osteoblast activity [166]. The results showed that an increased iron concentration inhibited 486 
osteoblastic activity in a concentration-dependent manner, while a mild iron deficiency lead to an 487 
increase of the cellular activity. In contrast, a severe low iron level completely inhibited osteoblastic 488 
differentiation. An enhanced osteoclast formation is one result of an increased iron concentration 489 
while osteogenic stimuli are blocked at the same conditions [167]. Thus, further studies will have to 490 
clearly determine the potential benefits of iron in tissue engineering. 491 

 492 
3.8 Lithium (Li+) 493 

Lithium is a non-essential trace element and consequently fulfills no known functions in the human 494 
organism. However, due to its beneficial impact in the treatment of psychological disorders, lithium 495 
has been widely introduced into medical applications [168]. Among the various mechanisms of action 496 
that have been proposed for lithium in this manner the stimulation of neural progenitor cell 497 
proliferation by the Wnt/β-catenin pathway, which leads to increase of the brains grey matter, is 498 
widely accepted [169, 170]. Interestingly, the proliferation of other cell types such as MSCs is also 499 
regulated by the Wnt/β-catenin pathway, suggesting that lithium might also modulate the 500 
proliferation of these cells [171]. In fact, a recent study reported increased proliferation of hMSCs 501 
stimulated by lithium-mediated Wnt/β-catenin signaling in vitro [172]. Additionally, previous 502 
studies reported this pathway to be a main regulator of osteoblastogenesis, which made lithium 503 
application in the field of tissue engineering even more appealing [173]. Though few studies reported 504 
beneficial impact of lithium supplementation on bone mineral density and a reduction of the risk of 505 
fracturing, the molecular mechanisms by which lithium facilitates these effects are not completely 506 
elucidated yet [174, 175]. In a transcriptome-based approach in order to identify the impact of lithium 507 
on osteoblastogenesis, Satija and colleagues reported diminishing proliferation of hMSCs treated 508 
with lithium, however, decreased expression of adipogenic and osteoclastogenic factors 509 
accompanied by the induction of osteoblastogenic markers associated to collagen-1 deposition and 510 
mineralization, whereby similar results were also reported by other groups [176-178]. Systemic 511 
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lithium application exhibited beneficial effects on bone healing following distraction osteotomy in 512 
the tibia of rats. Bone mineral density, quantity of newly formed mature bone tissue and bone mass 513 
regeneration were increased in rats who received a lithium solution through gastric gavage in 514 
comparison to those receiving a saline solution, pointing to accelerated callus ossification and bone 515 
healing mediated by lithium [179].  516 
To further utilize the beneficial effects of lithium on bone regeneration, various biodegradable lithium 517 
containing scaffolds have been developed and tested for their potential in bone regeneration, 518 
whereby preliminary experiments on lithium release, toxicity and osteoblastic cell activity on such 519 
scaffolds were promising [180, 181]. In vitro experiments comparing pure HAp with lithium-doped 520 
HAp scaffolds demonstrated increased osteoblast activity, resulting in accelerated material 521 
degradation, whereby the degradation products exhibited no toxic impacts on osteoblasts, however, 522 
enhanced their proliferation. Additionally, compressive strength testing revealed favorable 523 
mechanical properties of lithium-doped HAp scaffolds [182]. Further evidence on the beneficial 524 
impact of lithium incorporation into calcium phosphate cement scaffolds on bone healing was 525 
recently demonstrated. Lithium release from this material stimulated the proliferation and 526 
differentiation of osteoblasts in vitro by Wnt/β-catenin activation. Application of lithium-doped 527 
calcium phosphate cements significantly increased osteogenesis and defect repair in vivo and 528 
showed superior osteoconduction and osteointegration compared to pure calcium phosphate 529 
cements [183]. Overall, the literature emphasizes that lithium regulates growth and development of 530 
osteogenic progenies while suppressing osteoclast development, whereby identification of the exact 531 
mechanisms of lithium orchestrating either differentiation or proliferation of osteoblasts represents a 532 
pivotal goal for future clinical applications. Nonetheless, lithium seems to directly regulate and 533 
benefit osteogenic lineage cells, whereas other metallic ions, such as copper and cobalt, rather seem 534 
to impact bone regeneration by their impact on endothelial cells and accelerated vascularization. 535 
 536 
3.9 Magnesium (Mg2+) 537 

Magnesium is an alkaline earth metal and belongs to group 2 metals of the periodic table. The 538 
mammalian body consists of approximately 0.4 g magnesium/kg body weight [184]. More than 90 % 539 
is bound and stored in bone, muscle and non-muscular soft tissue[184, 185], while only a small 540 
amount (1% - 5%) [185] resides in extracellular fluids [186] in form of ionized / free magnesium (55-541 
70%) or is bound to proteins and anions [184].  542 

Magnesium is an important intracellular cation [185-187] as it is cofactor for more than 300 enzymatic 543 
reactions, essential for synthesis of proteins and nucleic acids [185, 188], and for transport of both, 544 
potassium and calcium ions [185]. Magnesium is also crucial for transphosphorylation of ATP, and 545 
changes of intracellular magnesium levels might influence several pathways [189].  546 

As magnesium maintains bone strength [185] and bone formation capacity [184] adequate dietary 547 
magnesium plays a major role in musculoskeletal health, and is relevant to prevent osteoporosis 548 
[190]. In contrast,  magnesium deficiency exerts negative effects on rat bone metabolism, systemic 549 
bone mass [191], and contributes to osteoporosis in humans [189]. It has been proposed that the effects 550 
of magnesium deficiency might be the result of increased levels of TNFα, IL-1 [192], and NF-κB ligand 551 
(RANKL), along with decreased serum levels of osteoprotegerin (OPG) [193].  552 

According to the superior role of magnesium in cellular functions, magnesium-based materials are 553 
regarded as promising candidates for bone replacement therapies due to stimulation capacity of bone 554 
cell differentiation in vitro [194-197] and bone formation in vivo [198-201]. Currently available 555 
materials include different magnesium containing compounds such as oxides, phosphates and 556 
silicates that are used as bone cements, bone scaffolds or implant coatings. Overviews of the different 557 
magnesium-based materials – such as bioceramics, e.g. magnesium phosphates (MgO-P2O5), 558 
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calcium magnesium phosphates (CaO-MgO-P2O5), and magnesium glasses (SiO2-MgO) [202] are 559 
given in recent systematic reviews [203-215]. 560 

Numerous in vitro studies attend to the effects of magnesium ions on cells of the bone, in terms of 561 
enhancing proliferation and migration as well as ALP activity of human osteosarcoma MG-63 cells 562 
[216], increasing viability and differentiation capacity of a human osteoblast cell line (hFOB1.19, 563 
ATCC) [217], cell proliferation of bone marrow derived stromal cells (BMSC), and expression of α2 564 
und α3 integrins [218]. However, additional data provide evidence that the effects of magnesium ions 565 
develop dose-dependently [217]. Concentrations of about 1- 3 mM Mg2+ stimulate gap junctional 566 
intercellular communication (GJIC) of osteoblasts [217], while viability, proliferation and 567 
differentiation of human BMSCs are ensured by concentrations in the range of 2.5 – 10 mM [216, 218-568 
220]. 569 

In contrast, decreased mineralization capacity and matrix deposition of BMSCs have been observed 570 
in response to magnesium concentrations higher than 1.3 mM Mg2+ [221-223]. According to the role 571 
of magnesium as a physiological calcium antagonist [222], it has been suggested that magnesium 572 
substitution for calcium in hydroxyapatite structure [224] and/or modulations of intracellular calcium 573 
oscillations with consecutive suppression of spontaneous ATP release and inactivation purinergic 574 
receptors are responsible for the decreased mineralization capacity of the cells [221]. Additionally, 575 
magnesium has a competitive role against Matrix gla protein (MGP) suggested as a potent inhibitor 576 
of HAp crystal growth during mineralization [225]. These results are consistent with emerging 577 
studies demonstrating significant suppression of mitochondrial accumulation of calcium ions in 578 
MSCs [222], and inhibition of excess calcium-induced mineralization in response to high extracellular 579 
magnesium [226]. Similarly, decreased intracellular calcium concentration and decreased calcium 580 
influx have been observed when MSCs have been cultured in presence of high magnesium 581 
concentration [223]. Competition between calcium and magnesium ions for same ion transporters, 582 
such as transient receptor potential cation channel, subfamily M, member 7 (TRPM7) [223] and/or 583 
inhibition of expression of calcium-sensing receptor (CaSR) [226] might be responsible for the 584 
decreased mineralization capacity. In terms of how high concentrations of Mg2+ ions modulate bone 585 
cell metabolism and bone cell function, the Wnt/β-catenin anti-calcifying pathway and the 586 
magnesium transporter SLC41A1 have been shown to be involved in magnesium-mediated signaling 587 
of BMSCs [223].  588 

The high grade of biodegradability which avoids second surgery for implant removal and prevents 589 
formation of foreign body giant cells in close vicinity of permanent implants has been designated as 590 
a major advantage of the magnesium-based materials [227]. As architecture and pore structural 591 
conditions of magnesium-enriched scaffolds greatly influence bone formation and remodeling 592 
activities [228] hydrogen gas released during degradation of magnesium-enriched scaffolds enlarges 593 
pre-existing pores, and expands the space for invading cells and blood vessels [201]. Given these 594 
beneficial effects, magnesium-based materials have emerged as a new class of biodegradable 595 
biomaterials for bone tissue engineering – referred to as next-generation biomaterials [227]. 596 

However, considering the rapid degradation rates, magnesium-based implants are still not 597 
commonly used in clinical practice [212, 227, 229]. The “high magnesium microenvironment” created 598 
by rapid corrosion of magnesium alloys might disturb calcium-dependent processes and physiology 599 
of the cells localized in close vicinity to the implants [222]. Therefore, the balance between calcium 600 
and magnesium ions is not only crucial for bone physiology [222] but also for successful 601 
osseointegration of magnesium-based materials.  602 
Additionally, due to rapid corrosion rates magnesium-based implants hold the risks of structural 603 
failure and toxic responses immediately after implantation [227]. In the course of degradation 604 
magnesium hydroxide and hydrogen gas are produced both of which cause detrimental effects on 605 
cells and tissue localized close to the implant [188, 230]. Controllable in vivo corrosion rates, in terms 606 
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of establishing sufficient corrosion protection methods on different levels might represent promising 607 
tools to overcome these disadvantages [188, 212, 227, 229, 230]. 608 
 609 
3.10 Manganese (Mn2+) 610 

Manganese is an essential element and crucial for the proper function of multitudinous enzymes in 611 
living organisms [231]. Divalent cations such as Mn2+ are furthermore known to influence cell 612 
migration by modulating focal adhesion organization via integrins and actin stress fiber formation 613 
[232, 233]. These properties make manganese an interesting candidate for improving ingrowth and 614 
integration of bone grafts and other implantable materials alike. The impact of manganese on MG-63 615 
osteoblastic cells was evaluated in order to confirm this theoretical benefit of manganese 616 
supplementation in the process of new bone formation. Manganese supplementation reduced cell 617 
proliferation, migration, ERK/MAPK-signaling and collagen I as well as alkaline phosphatase 618 
expression in a dose-dependent manner. Interestingly, mRNA level of bone sialo protein (BSP) were 619 
increased by manganese exposition, whereas BSP protein level were not elevated [234]. 620 
Interestingly, doping alumina tubes with manganese significantly enhanced tissue maturation and 621 
osteogenesis in vivo in rats, whereby the authors noted that the surface structure of the alumina tubes 622 
was altered by manganese incorporation which made it impossible to distinguish whether the 623 
observations resulted from the phase composition or the surface topography modification [235]. 624 
However, manganese is also reported to hold insulin-mimetic properties and other substances within 625 
this class such as VAC increased fracture site vascularization by local application, which lead to the 626 
hypothesis that manganese might also accelerate fracture healing [236, 237]. In fact a group reported 627 
significant increase in mechanical properties of bone, mineralized tissue formation and VEGF-628 
expression in a rat femoral fracture model when manganese chloride (MnCl2) was supplemented. 629 
Additionally, blood vessel density was dramatically increased by MnCl2 treatment, suggesting 630 
increased vascularization, fracture healing and osteogenesis and implicating a potential function for 631 
manganese in tissue engineering [238]. 632 
 633 
3.11 Silver (Ag+) 634 

Due to its antimicrobial properties, silver has a long-time history in application for medical purposes, 635 
whereas the investigation of potential functions of silver in bone regeneration is a quite recent 636 
occurrence [239]. Analysis of the tissue response to silver acetate coated Dacron vascular grafts 637 
implanted into the dorsal skinfold chamber in mice revealed higher functional capillary density 638 
without affecting inflammatory host tissue response, collagen formation, apoptosis and cell 639 
proliferation as compared to uncoated grafts [240]. Furthermore, functionalization of silver 640 
nanoparticles in tissue regeneration has already been introduced into commercially available wound 641 
dressings, as the exhibit outstanding anti-microbial and anti-inflammatory properties [241-243]. 642 
Additional arguments for utilization of silver nanoparticles instead of other silver formulations like 643 
silver nitrate in tissue engineering were recently reported by Quin and colleagues [244]. They showed 644 
that the lowest toxic concentration of silver nanoparticles on urine derived stem cells was 645 
substantially higher than that assessed for silver nitrate. More interestingly, however, was the 646 
reported promotion of osteogenic lineage induction and actin polymerization of these cells, which 647 
was only observed for AgNPs, however, not for AgNO3 [244]. In fact, stimulatory impact of AgNPs 648 
on the mineralization of MC3T3-E1 osteoblastic cells maintained by miRNA mediated increased 649 
expression of genes associated with bone formation was previously reported [245]. 650 
In order to identify putative impacts of AgNPs in the process of osteogenic lineage induction, the 651 
entire transcriptome of MC3T3-E1 cells in response to AgNP exposure was analyzed. Here the 652 
authors found that, aside from the upregulation of different bone morphogenic proteins important 653 
for osteogenesis, the enhancement of osteoclastic marker expression was the most pronounced 654 
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transcription-based alteration [246]. Based on the stimulatory properties of AgNPs on keratinocyte 655 
proliferation and migration and fibroblast differentiation, which contributes to the promotion of 656 
wound contraction, the impact of AgNPs on proliferation and differentiation of MSCs was analyzed 657 
[247, 248]. AgNPs successfully promoted MSC proliferation and osteogenic differentiation in vitro. 658 
In vivo experiments using a femoral fracture model in mice supports the preliminary observations, 659 
as AgNPs encapsulated in collagen were able to accelerate callus formation and fracture gap closure. 660 
Though the exact impact of AgNPs in this process remains elusive, the authors suggested possible 661 
chemotactic impact of AgNPs on MSCs and fibroblasts as well as induction of MSC proliferation and 662 
osteogenic differentiation to be responsible for the observed effects [249]. Despite the here reported 663 
beneficial impacts of AgNPs hard-and soft-tissue related cells, further studies will have to elucidate 664 
the clinical practicability relevance of AgNPs application in promotion of osteogenesis. 665 
 666 
3.12 Strontium (Sr2+) 667 

Strontium (Sr) is an alkaline earth metal and belongs to the group 2 elements of the periodic table. 668 
Although it is considered as a non-essential element there is growing interest concerning the effects 669 
of Sr on cells of the bone. This interest is based upon the fact that strontium ranelate is used in Europe 670 
as a therapeutic drug for treatment of osteoporosis since 2004. Osteoporosis is a serious systemic 671 
skeletal disorder, and is becoming a major health problem due to rapid population aging. As 672 
osteoporosis leads to dramatic changes of the skeleton in terms of markedly decreased bone mass 673 
and reduced bone quality as well as altered architecture on the macroscopic and microscopic level 674 
the disease is associated with high incidence of osteoporotic fractures.  675 

The use of Sr for the treatment of osteoporosis is based upon its dual mode of action: Sr influences 676 
both, osteoblasts and osteoclast, and gives rise to increased bone formation capacity of osteoblasts, 677 
and decreased bone resorption activity of osteoclasts [250-254]. Due to its similarity with calcium, the 678 
effects of Sr are mediated in large part by the calcium sensing receptor (CaSR) which is a membrane-679 
bound receptor expressed in osteoblasts and osteoclasts [255-258]. In response to Sr, intracellular 680 
signaling pathways are activated resulting in enhanced proliferation and differentiation of 681 
mesenchymal stem cells and osteoblasts along with increased mineralization and deposition of 682 
extracellular matrix [250, 255, 259] – at least by activating the Wnt/Catenin signal pathway [250, 260]. 683 
Additionally, in response of activating this pathway, OPG (osteoprotegerin) levels of osteoblasts and 684 
their precursors increase whereas RANKL (receptor activator of nuclear factor κB ligand) expression 685 
of the cells decreases [261]. The expression patterns in favor of OPG suppress differentiation of 686 
osteoclasts and limit the extent of bone resorption. Similar effects are observable in the course of 687 
direct interaction of Sr with the extracellular domain of the CaSR: downstream cascades stimulate 688 
diacylglycerol (DAG9-protein kinase C (PKC) βII which in turn induces osteoclast apoptosis [257]. In 689 
a recent in vitro study Sr could be detected by means of mass spectrometry within the cytoplasm of 690 
osteoclasts which were cultivated in combination with a Sr-enriched calcium phosphate cement. Cell 691 
differentiation of the osteoclasts was obviously delayed [262]. However, the mechanism by which the 692 
ions enter the cells, and to what extent intracellular Sr deposition influences cell signaling must still 693 
be clarified.  694 

Beside the beneficial effects on bone metabolism, systemic administration of strontium ranelate 695 
increases the risk of cardiovascular diseases [263]. Therefore, its use is restricted to patients who show 696 
no signs of heart and circulatory diseases. 697 
For the benefit of osteoporotic patients and in the light of the effects of Sr on bone remodeling, 698 
combination of Sr with bone substitutes might represent a successful approach to overcome the 699 
adverse effects of systemic administration of strontium ranelate. Accordingly, Sr is used for apatite 700 
coatings of orthopedic and dental implants [264-266], and is incorporated into different bone cements 701 
[262, 267-273]. Because of their subsequent substitution by natural bone in the course of physiological 702 
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remodeling, it has been proposed that calcium phosphate-based cements ensure the local release of 703 
Sr [274], and therefore might represent ideal bone substitutes for the osteoporotic bone. According to 704 
this suggestion, stable incorporation of Sr into the crystal lattice of the bone mineral is based upon 705 
remodeling activities of osteoblasts and osteoclasts (for a review see [275]), and Sr uptake is especially 706 
high in newly formed bone tissue [276]. So placed at the disposal of the bone cells, Sr might locally 707 
regulate their activities as well as the bone healing process in the course of further remodeling. 708 
 709 
3.13 Vanadium (V+) 710 

Vanadium is a trace element present in basically all living organisms and is predominantly stored 711 
within the bone tissue [277]. Because of its growth factor mimicking properties, it was previously 712 
suggested that vanadium might positively influence osteogenesis [278, 279]. An early study 713 
analyzing the impact of vanadium derivatives on osteoblast-like UMR106 cells reported enhanced 714 
proliferation, alkaline phosphatase activity and even differentiation [280]. As insulin 715 
supplementation ameliorates negative effects of diabetes on bone regeneration and local insulin 716 
treatment enhances fracture healing in healthy rats, the insulin-mimetic properties of vanadium are 717 
currently being investigated as safe and cost-efficient alternative to insulin supplementation [281, 718 
282].  719 
Intramedullary delivery of an organic vanadium salt (vanadyl acetylacetonate) in a rat femoral 720 
fracture model significantly promoted cell proliferation, vascular endothelial growth, callus cartilage 721 
formation and mineralization and considerably increased torque to failure compared to treatment 722 
with saline control solutions [236]. A vanadium-loaded collagen scaffold was recently described by 723 
Cortizo and colleagues; although vanadium loading increased membrane permeability, no changes 724 
in the collagen structure were observed. Furthermore, attachment, growth and osteoblastic as well as 725 
chondrocytic differentiation of rBMPCs was improved by loading vanadyl acetylacetonate onto 726 
collagen membranes [283]. Vanadium coating of titanium implants was also shown to enhance 727 
fibroblast attachment and proliferation, which suggests potential benefits in soft tissue healing by 728 
vanadium treatment [284]. Taken together, published data demonstrates vanadium to be an 729 
interesting metal with great potential in regulating both angiogenesis and osteogenesis, however, 730 
further studies are required to support these preliminary findings. 731 
 732 
3.14 Zinc (Zn2+) 733 
Zinc is an essential trace element which is pivotal for proper immune system functioning, cell division 734 
and for skeletal development and therefore has been implemented into biomaterials for orthopedic 735 
and dental applications [285-287]. Further, zinc and zinc alloys are promising biomaterials as load-736 
bearing scaffolds as they hold similar mechanical properties like mamalian bone. Especially Zn2+ ions 737 
have a multitude of physiological functions. Zinc led to increased ECM mineralization in hMSC 738 
culture by promoting the expression of ALP and osteopontin [288]. Also for SMCs a concentration-739 
dependent behavior was found in presence of Zn2+ in vitro. In the range 80-120 µM a change in 740 
biological response was observed by inhibition of viability and proliferation [289]. When Zn was used 741 
in different titan coatings the measured expression of Zn-transporters (ZnT1 and ZIP1) suggests that 742 
cells prefer Zn2+ present at the biomaterial interface rather than plain diffusion of Zn2+ ions in the 743 
sourrounding medium [290]. Additional studies on the actions of zinc supplementation in 744 
osteogenesis reported enhanced collagen deposition and mineralization of osteoblast like MC3T3-E1 745 
cells, antagonizing effects on osteoclastogenesis with simultaneous promotion of osteoblastogenic 746 
differentiation and increased osteoblast activity mediated by zinc supplementation in a 747 
concentration-dependent manner [291-293]. Zinc phosphate-loaded barrier membranes showed 748 
excellent anti-microbial properties, capable of inhibiting bacterial colonization upon membrane 749 
exposure and avoiding potential infections [294]. To further analyze beneficial properties of zinc in 750 
GBR procedures, cross-linked gelatin membranes loaded with zinc hydroxyapatite powder were 751 
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compared to cross-linked collagen membranes in a rat calvarial defect model. After a period of 6 752 
weeks, bone defect fill was 80 ± 2 %, 60 ± 5 % and 40 ± 2 % for the zinc-loaded gelatin membrane, the 753 
collagen membrane and the unfilled control group, respectively, demonstrating the tremendous 754 
potential for the application of zinc in bone regeneration approaches [295]. Antibacterial effects, 755 
excellent biocompatibility and stimulatory impact on the activity of osteoblast-like MG63 cells was 756 
also recently reported for nanocomposites of carboxylated graphene oxide sheets decorated with zinc 757 
oxide nanoparticles, emphasizing the potential application of zinc in nanoparticle formulations for 758 
tissue engineering [296].  759 
Zinc ions released from zinc-doped tricalcium phosphates were able to enhance TRAP and ALP 760 
activity of hBMSCs and to regulate multinuclear giant cell formation and activity of RAW264.7 761 
macrophages [297]. De novo bone formation in a canine ectopic implantation model was only 762 
induced by the addition of zinc to TCPs, however, not by TCPs alone, whereby the rate of new bone 763 
formation was coherent with zinc concentration [297]. Zinc is also an attractive candidate for the 764 
development of coatings in order to promote the integration of implants. Regarding this matter, a 765 
study analyzed rBMSC activity in response to zinc-loaded titanium oxide coatings and the impact of 766 
zinc-supplementation on osseointegration in a rat implantation model. In comparison to TiO2 767 
coatings without zinc, osteogenic gene expression was upregulated in rBMSCs cultivated on zinc-768 
doped TiO2 coatings and early-stage new bone formation as well as bone contact ratio were increased 769 
in vivo [290]. Yu and colleagues further reported increased osteogenic differentiation and 770 
mineralized matrix deposition in rat bone marrow-derived pericytes (BM-PCs) and significant 771 
promotion of new bone formation around titanium implants in osteopenic rabbits with the 772 
application of zinc-modified calcium silicate coatings. Molecular analysis revealed that zinc exerts 773 
these actions by regulating the TGF-β/Smad signaling pathway, which is pivotal for 774 
osteoblastogenesis [298]. Reports about zinc in biomedical applications for tissue engineering, 775 
especially with regards to the positive impacts on osteoblastogenesis, osteoblast activity and tissue 776 
mineralization, are promising for improving implant osseointegration, accelerating bone 777 
regeneration and inhibiting biofilm formation. 778 
 779 
3.15 Others 780 

There are other metals and their corresponding ions which have been demonstrated to have an effect 781 
onto bone regeneration process [195]. Webster et al. have shown a higher adsorption of calcium, 782 
vitronectin and collagen on yttrium-doped HAp [299]. Further, zirconium and also molybdenum are 783 
used in different metal alloys which are used for orthopedic and dental applications [300]. The latter 784 
metals are primarily used to achieve specific material properties. There are additional metals which 785 
play a role as implant material especially titanium which builds up a very stable oxide layer, and 786 
thus, can be considered almost inert in physiological conditions [301]. Nevertheless, for titanium and 787 
its alloys it was shown that released titanium enhanced the release of bone resorbing cytokines from 788 
LPS-stimulated monocyte cultures [302]. Long-term in vivo studies in baboons revealed an increased 789 
titanium ion concentration in urine as well as enhanced levels in tissues [303]. Nevertheless, no toxic 790 
effects were observed up to 8 years of implantation. 791 

4. Conclusions 792 
The existing bone substitute materials only provide osteoconductive healing capacities and most 793 

of the newly developed tissue engineering strategies are still not applicable in the daily clinical 794 
routine. The presented overview of the physiological mode of action of different metal ions and their 795 
influence on the process of bone tissue regeneration has shown that their addition to existing bone 796 
substitute materials may to alter different issues like inflammation and foreign body response or the 797 
onset of bone regeneration as well as material durability. Another important problem is the 798 
availability and the cost of suitable bone grafting material for the increasing need of an aging 799 
population. 800 
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It is obvious that different parameters play an important role for the use or the combination of metals 801 
with existing biomaterials. Further, it has been demonstrated that the concentration of the released 802 
metal ions plays a crucial role for the bone formation process. Thereby, it would be beneficial to have 803 
the ions present in close vicinity of the implanted biomaterial as bone regeneration should preferably 804 
occur directly at the implant site. On the other hand metals can be incorporated to scaffolds which 805 
support a continuous release to support early induction of osteoblast differentiation as they can 806 
control transcriptional regulators like Runx2 and therefore osteogenesis. 807 
There is still ongoing work investigating specific effects as well as possible synergistic effects of metal 808 
ions with other synthetic materials on the differentiation into osteogenic lineage. Therefore, it is 809 
necessary to plan and run additional experiments and studies in almost every scientific field to 810 
develop the suitable biomaterial for the patients need. 811 
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