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ABSTRACT 

This paper investigates the tank drainage problem of an isothermal, unsteady, incompressible 

electrically conducting Power law fluid. Analytic solution have been obtained from governing 

continuity and momentum equations subject to appropriate boundary conditions by using 

Perturbation method. The Power law fluid model solution without MHD is retrieved from this 

proposed model on substitution 0= . Declaration on behalf of velocity profile, volume flux, 

average velocity, connection of time with respect to length of the tank and requirement of time 

for whole drainage of fluid are acquired. Special effects of numerous emerging parameter’s on 

velocity profile vz and depth )(tH  of the fluid in the tank are graphically presented. 

Keywords: Tank drainage, Power law MHD fluid, Analytical solution. 

 

INTRODUCTION 

In current years, non-Newtonian fluids have increase significant consideration on account of 

their numerous biological, industrial and technological applications. Here few cases of non-

Newtonian fluids such as tooth paste, drilling mud, greases, paints, blood, polymer melts, clay 

coatings etc. It is an expansive class of fluids so; there is no any single model that can handle all 

the properties of such fluids as is done by the Newtonian fluids (described by the well-known 

Navier-Stokes equation). In this regard, several constitutive equations have been proposed to 

predict the physical structure and behavior of such types of fluids for different materials [1-2]. 
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Presently the class of non-Newtonian fluids, the power law model have been broadly 

concentrated on account of numerical effortlessness and far reaching modern applications. Amid 

the last four decades, critical advancement has been acknowledged in the improvement of 

diagnostic arrangement and numerical calculations of power law liquid stream issues [3-5]. 

The drainage of a fluid through pipe of a tank under the action of gravity is an old, 

however complicated problem. The tank may be drained by an attach pipe or may be drained 

through evenhanded hole “orifice situation”. The pipe possibly could be horizental or vertical or 

may contain a complete piping system with horizental extension and vertical drop with fittings 

and valve, etc. Usually tank has a shape of cylinderical contain a vertical wall however bottom 

may be conical hemisherical or by flat or might be additional shape. There is sometimes intrest 

in draining the tank should be totally dry in which situation the bottom shape needs to be 

accounted for and occasionally not. 

  Classifications of gravity draining fluid’s are used extensively throughout industries, a 

small number of such classifications are: draining condensate into storage, water distribution,  

waste water management and dams, retrieval of chemicals from tank farm. The generated model 

will accurately represent tank draining behavior for all tanks with a similar setup. End effects, 

accuracy of time measurement, accuracy of height measurements and friction losses will be 

taken into consideration [6].  

To day science due to practical concentration, the study of tank drainage flow has 

received significant consideration. Numerous analysts have pondered the break down these tpes 

of flows since their formulation. The power fluid’s model have been utilized for tank drainage 

flow by [11] to investigate and solve the problem exactly. For simple viscous fluid, the theory 

depicting the efflux time concerning a tank has been efflux time of a tank has been inferred by 

Crosby [7] and by Bird, Stewart, and Lightfoot [8], and additionally extended to systems with the 

installed fittings by Hanesian [9]. It is founder fact that, when fluid is drained by mean of hole 

from the tank, the equation of Torricelli’s is utilized to define the discharge velocity field and 

flow rate that is given [10-11], these types of the issues further revisited in [12]. For the turbulent 

flow at the exit pipe, the relation amongst the height of the fluid to the bottom of the exit pipe 

and the efflux time is calculated by [13]. Further a short note on mechanics of the slow draining 

for large tank is written by [14]. Two dimensional and two layer for rectangular tank draining 
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unsteady flows is given in [15] and three dimensional for two fluid in the circular tank is system 

by [16]. Efflux Time and comparison of cylindrical with differential is specified in [17-20] and 

slow draining under the action of gravity for large spherical tank is studied in [21], they have 

compare the mathematical and experimental values and establish to be in good arrangement with 

the model. Usage of polymer solution’s for drag reduction under the action of gravity is 

particular in [22-23]. 

 

In this article, we considered the problem of tank drainage for Power law MHD fluid. Analytical 

solutions of the consequential differential equations focus to boundary conditions, are found by 

using perturbation method and the substitution perturbation parameter 0 , we retrieve the 

results for Power law fluid without MHD [11]. Also relationships for velocity profile, flow rate, 

average-velocity, depth of fluid in the tank at any time and time requirement of time for to 

complete drainage are considered. As per the best of our insight, the solution of the problem has 

not been accounted for in the literature. 

 

This paper is structured by means of follows: Section number 2 provides basic governing 

equation’s for Power law MHD fluid. Section number 3 deals with formulation and the solution 

of problem. Section number 4 deals with “flow rate”, “average velocity”, relationships how does 

the length of fluid change’s with respect to time and requirement of time for to complete 

drainage. Results and discussion are specified in section number 5, finally conclusions are 

delivered in section number 6. 

 

2  Basic Equations 

 

Essential governing equations for incompressible Power law MHD fluid flow, disregarding 

thermal effects are: 

 ,0=V  (1) 

  

 ,)(= BJTb
V

  p
Dt

D
 (2) 
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The symbol   represents constant density, p  stand for the dynamic pressure, V  be the velocity 

vector, b  represent to the body force, T  stands for the extra stress tensor and the operator 
Dt

D
 

denotes the material derivative.  As a result Lorentz force per unit volume be  

 ],,0,0[ 2
0 zvBBJ  (3) 

where   is the electrical conductivity, ],0,0[ 0BB be the uniform magnetic field, here 0B  be 

the applied magnetic field and  J  be the current density J , which is 

 ,BVEJ                                                                 (4) 

.0JB                                          (5) 

Here E is the electric field which is not considered in this study and 0 be the magnetic 

permeability [24-27]. The extra stress tensor describing a Power law fluid [4-5] is made by: 

 ,= 1AT eff  (6)  

and  

 ,
2

:
=

1

11

n

eff

AA
  (7) 

here   represent consistency coefficient, n  is the power-law index and 1A  be the 1st Rivlin 

Ericksen tensor, represented as:  

 .)(=1
TVVA   

3  Tank drainage 

 

Think about a tank of cylindrical shape having an incompressible Power law MHD fluid. Let 

suppose the radius of the tank is TR , diameter of the tank be D  and 0H be the initial depth of the 

fluid in the tank. The fluid which is present in the tank, which is drained down through by 

cylindrical pipe having length L and radius be R . Promote all the more letting )(tH  be the 

depth of fluid in the tank at at all the time t . 

Our strategy is to determine the velocity, pressure, volume flux, average velocity, relationship 

how does the time fluctuate with length and the time required for finish drainage. Here we take 
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cylindrical coordinate’s ),,( zr   with r -axis normal to cylindrical pipe and z -axis along the 

center of the pipe in vertical direction. As the flow is only into the direction of z , the r  and   

component’s of  velocity field are equal to zero, 

 

  .),(0,0,=],,[= trvvvvV zzr   (8) 

 

                              

                           Figure 1: Geometry of the tank drainage flow down through pipe.  

 

Utilizing velocity field (8), the equation of continuity (1) is indistinguishably fulfilled and the 

momentum equation (2) dimenshion toward 

  

 0,=:
r

p
momentumofcomponentr




  (9) 

 0,=
1

:







p

r
momentumofcomponent  (10) 

.)(=: 2
0

1

rvBg
r

v

r

v
r

rrz

p

t

v
momentumofcomponentz z

z

n

zz  
































 (11) 

 

 

According to definition of magnitude needs that the result be a positive number. Thus we sellect 

of sign that produces 
r

vz




 in equation (11) depends on whether the derivative 
r

vz




 is positive or 

negative. In the current example as r  increases, the velocity decreases - the velocity is at its 

maximum at the center of the pipe. The derivative 
r

vz




 is negative, and therefore 
r

v

r

v zz








= . 
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From equations (9 - 10) we can see that the equation of motion is now quite simple, yielding that 

the pressure is only function of z  and t  and the equation to be solved for ),( trvz  is  

 .)(= 2
0 rvBg

r

v
r

rrz

p

t

v
z

n

zz  


































 (12) 

 Equation (12) is a partial differential equation for p  and zv . The velocity remains nearly 

constant with time in the pipe flow due to slow draining such that we may neglect time 

derivative 
t

vz




. Also flow be in the pipe is due to both hydrostatic pressure and gravity, at the 

pipe entrance and exit the pressure is,  

 ),(==0,= 1 tgHppzat   

 0,==,= 2ppLzat  

 so that  

 
L

tgH

z

p )(
=







 (13) 

The equation of motion (12) thus reduces to  

 .)(1
)(

=
1 2

0 rv
B

L

tHg

r

v
r

rr z

n

z











 



























 (14) 

 The related boundary conditions are 

 0,=0,=
dr

v
rat z  (15) 

 0=,= zvRrat  (16) 

 

Perturbation solution: 

We take 




2
0=

B
 to be a small parameter and velocity profile ),( rvz  can be stated as a power 

series given by, 

....)()()(),( 2
2

10  rvrvrvrvz                                                                            (17)  

 

By utizing equation (17) into the equation (14), (15) and (16) and equating coefficients of like 

power’s of  , we acquire the following set of problems along with their associated boundary 
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condition’s: 

zeroth order problem:  

   ,1
)(

=
1

: 00





 



























L

tHg

r

v
r

rr

n


                                                               (18) 

with related boundary conditions,  

       ,0=0=0 rat
dr

dv                                                                                              (19) 

         .=0=0 Rratv                                                                                             (20) 

 First order problem:  

   ,0==
1

: 0
1

1

01 v
dr

dv

dr

dv
rn

dr

d

r

n

















 






 




   

                                                              (21) 

 through belonging conditions, 

 ,0=0=1 rat
dr

dv                                                                                        (22) 

 .=0=1 Rratv                                                                                          (23) 

 

Velocity profile: 

 

Zeroth order solution: 

The solution of equation (18) by mean of boundary conditions from equations (19) and (20) is   

  .)(
21

1
1

1
1

1

0 




















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n
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L

g

n
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


            
 (24)

 

First-order solution: 

Replacing the zeroth order solution from equation (24), into  equation (21) and subject to 

conditions from equation (22) and (23) is specified by  
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21 )31(
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212
= nnnnn
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
     (25) 

Thus the solution with perturbation technique correct upto first order is,  
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(26) 

Here important note that if we select to the perturbation parameter 0= in equation (26), we get 
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the solution for same problem with Power law fluid without MHD [11] and for setting 

,10= nand  we get the solution for the Newtonian withought MHD fluid [28]. 

 

4  Flow rate, average velocity and time required for to complete drainage 

The “flow rate "Q  per unit width is specified through the formula 

              . ),(2=
0

drtrrvQ z

R

                                                                                                (27) 

Using velocity profile (26) in equation (27), one can calculate the flow rate 
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(28)  

We determine the average velocity, V  by utilising the formula 

.=
2R

Q
V

                                                                                                                  
(29) 

 After substituting the value of flow rate into equation (29), so the average velocity will be  
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Mass balance over the entire tank is  

               ).(=)(2 tQtHR
dt

d
T                                                                                         (31) 

Substituting flow rate from equation (28) into equation (31) and then separating variables on 

both sides of equation one obtains  
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 and the time required for complete drainage is obtained by taking 0=)(tH  in  
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Figure 2: Effect of  on velocity profile, 
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Figure 3: Effect of  on velocity profile, 
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Figure 4: Effect of )(tH  on velocity profile, 
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     Figure 5: Effect of R  on velocity profile,   
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     Figure 6: Effect of   on velocity profile,           

.25.0,1.0,20)(,10

,2.1,5,5.11

0 

BcmtHcmL

ncmRpoisewhen




 

 

          

     Figure 7: Effect of L  on velocity profile, 
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Figure 8: Effect of   on velocity profile, 
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Figure 9: Effect of n  on velocity profile, 
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Figure 10: Effect of )(tH  on flow rate, 
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Figure 11: Effect of n  on flow rate, when
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  Figure 12: Effect of n  on time w. r. to 
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 Figure 13: Effect of TR  on time w. r. to 
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5  Results and discussion 

In the overhead sections we contemplated tank drainage problem utilizing an incompressible 

Power law MHD fluid, Analytical solution’s for the nonlinear differential equation is acquires by 

using perturbation method. The variation of velocity profile zv , flow rate Q and time t  required 

for to complete drainage has been investigated on different parameters. The effects of the 

electrical conductivity , applied magnetic field 0B , dynamic viscosity , depth )(tH , length of 

pipe L , pipe radius R , density   and for Power law index n  on velocity profile are observed 

through figures (2) - (9) as well as effect of the depth )(tH and Power law index n  on flow rate 

are shown in figures (10) - (11) and effect of the radius of tank TR  as well as Power law index n  

on on time t  required to complete drainage is examined in figure (12) – (13). In figures (2) – (9) 

it is detected that the magnitude of velocity increases as the expansion of electrical conductivity

 , applied magnetic field 0B , depth )(tH , pipe radius R and density   and decreases for the 

increase of length of pipe L , dynamic viscosity  and Power law index n . From figure (9) we can 

summarized that as the fluid is becoming thinner the magnitude of velocity increases. In figures 

(10) - (11) for the increase )(tH we detected that flow rate increases and decrease for increasing 

n . Figures (12) – (13) are plotted for the time  t  required for to complete drainage with respect 

to depth, we point out that with increase of radius of tank TR and power law index n  then it will 

take a time for completely drain from the tank. It is evident from figure (12) that fluid descends 

more quickly as the value of n decreases. 

 

6  Conclusions 

We have presented results for unsteady, incompressible, isothermal tank drainage flow 

for the Power law MHD fluid and obtained exact solutions for “velocity profile, flow rate, 

average velocity, relation of depth of the tank and time required for complete drainage”. Here it 

is noted that for the perturbation parameter 0 , solution of the problem reduces to Power law 

fluid [11] and for substituting ,10= nand  we recover the solution concerning to Newtonian 

withought MHD fluid [28]. A relationship (33), how does the time shift with length is inferred. It 

is noticed that as the fluid is getting to be thicker, velocity of the fluid decreases and thinner for 

taking velocity vice versa. 
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