Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2018 d0i:10.20944/preprints201802.0031.v1

Article
Smartphones Magnetic Sensors within Physics Lab

Isabel Escobar !, Raquel Ramirez-Vazquez !, Jesus Gonzalez-Rubio 2, Augusto Belendez 3 and
Enrique Arribas 14*

! Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha,
Avda de Espana s/n, Campus Universitario, 02071 Albacete, Spain, isabelmaria.escobar@uclm.es,
raquel.ramirez5@alu.uclm.es, enrique.arribas@uclm.es

2 Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/ Almansa 14, 02071
Albacete, Spain, jesus.gonzalez@uclm.es

3 Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Carretera San
Vicente del Raspeig s/n - 03690 San Vicente del Raspeig, Alicante, Spain, a.belendez@ua.es

+ Albacete Associated Center, National Distance Education University (UNED), Travesia de la Igualdad 1,
02006 Albacete, Spain, earribas@albacete.uned.es

* Correspondence: enrique.arribas@uclm.es; Tel.: +34-967599200

Abstract: Current smartphones incorporate different types of sensors that allow us to know our
spatial position, they give us information about pressure, speed, acceleration, time, acoustic level,
and other different physical magnitudes. These smartphones measure each component of the
magnetic field, bearing in mind that any current perpendicular to a magnetic field produces a small
potential difference, transversal to the said current, being this voltage easily measurable by Hall
sensors. With the implementation of three Hall sensors, and an appropriate app, we can measure
the three components of the magnetic field vector, and with this we can obtain information and
deduce properties of the physical systems considered. In this paper we are exploring the use of
smartphones in a physics laboratory for freshman students. To do this, we have measured, using
Hall sensors, the magnetic field created by a linear quadrature, and we have obtained, first of all, its
dependence on the distance between the quadrupole and the magnetic sensor. The second purpose
of this work is to show that the laboratory is a powerful tool that increases the significant learning
of freshman students through advanced technological tools.
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1. Introduction

A transformation is required in the practice of teaching, learning and assessment of sciences in
general, and Physics in particular, to ensure that students acquire cognitive skills needed for the
construction of scientific concepts. Designing teaching strategies that allow students to solve complex
problems means that the teacher must develop didactic situations where the students play a more
active role in class, as an alternative to the simple memorization of procedural activities, considering
the specific needs of university students and taking into account the characteristics of the
environment in which they live as antecedents for instructional design [1]. To be able to learn
adequately, students must feel motivated and willing to actively participate in the learning process.

Hence the crucial point is to promote learning that is meaningful for the student, and preferably
using resources of easy access to students, both economically and in the domain of technology. Over
the past several decades, educators and researchers have sought many new pedagogical methods to
promote interactive learning [2-10] and demonstrated their effectiveness through a variety of tools
[11-17]. The active participation helps students understand the basic concepts of Physics or any other
science.

The carrying out of experiments and data analysis are effective ways to have an interactive and
collaborative environment, the application of their own resources and the measurement of the simple
phenomena of daily life can increase the students” interest, while allowing a precise analysis of the
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data, which can contribute to the generation of scientific thinking and provide a good opportunity
for inquiry learning [18]. A great variety of responses have emerged for improving laboratory
experiences within the physics curriculum [19-29].

With the emergence of technology, we can bring laboratory experiments closer to our students.
Mobile devices can provide meaningful assistance to users in their work, study and entertainment.
They have been widely used in recent years within the process of instruction in different disciplinary
fields [30-32], although the effects on learning [33-38] and the use given to them in the classroom are
still being studied. In education mobile devices are widely used to access, import, organize, edit,
simulate, design and share information extracted from the web; in addition to didactic applications
designed by the teacher for their use in the classroom they contribute to the reinforcement of the
teaching-learning-evaluation process. They allow to manage data collection tools, games/simulation,
learning management systems and productivity tools [39]. Due to the reasonable cost, size and
diverse functions of smartphones, and to the fact that the experimental configuration is simpler
compared to traditional measurement techniques, smartphones are becoming the data recorders of
portable physics laboratories for a variety of measurements in astronomy, mechanics,
thermodynamics, electromagnetism and optics among others, either using the internal sensors of cell
phones or diverse applications [40-50].

We are mainly interested in how the smartphones used for performing a physics laboratory
practice influenced the traditional learning of electromagnetism. Bearing this in mind, in this work
we are going to focus on the design of a laboratory experience to measure the dependence of the
magnetic field of a quadrupole on distance employing a smartphone.

2. Basic Theory

A linear electric quadrupole is a neutral charge system, formed by three charges: one with a
value -2g located at the origin of coordinates and two charges of value +q located symmetrically on
he x-axis, one at the point (-d, 0) and the other at (+d, 0) as shown in Fig. 1. The total width of the
system is 2d. The electric field of this quadrupole at an arbitrary point of the plane P has two
components, one radial and the other transversal. For greater simplicity, we will consider the point
P on the x-axis at a distance x from the origin of coordinates and then only the radial component that
becomes the component x survives. The electric field of this neutral charge system can be obtained
using the electric field of two opposite dipoles, one centered on (-d/2, 0) and the other one on (+d/2,
0) [41]. In the Appendix, we obtain, in two different ways, the electric and magnetic field of a linear

quadrupole of width 2d. The x component of the electric field is
6kpd
E, = : (1)

x4

To obtain this expression it has been assumed that x > d. Being p the electric dipole moment
of each of the two dipoles, p = qd, and k the Coulomb’s constant.
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Figure 1. An electric quadrupole is formed by two opposite electric dipoles, being d the separation between the
charges and P (x, 0) the point where the electric field is wanted to be calculated.

In fact, we want to study a magnetic quadrupole, for which two magnetic dipoles will be used
with the two south poles together, at the origin of coordinates, and with their north poles placed at
the points (-d, 0) and (+ d, 0), obtaining a system with zero magnetic dipole moment. A similar


http://dx.doi.org/10.20944/preprints201802.0031.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2018 d0i:10.20944/preprints201802.0031.v1

30f10

expression to Equation (1) can be written for the x-component of the magnetic field vector, replacing
the variables appropriately: k for x,, and p for m

_ bugmd

Bx 4 (2)

x4
tybeing the magnetic permeability of vacuum and m the magnitude of the magnetic dipole moment
vector of both magnets, which have previously had to be carefully selected so that they are equal and
the magnetic dipole moment is cancelled and the quadrupole moment survives. It is very important
that both magnets have the same geometrical and magnetic characteristics.

With this information we will proceed to design a Physics practice for first year students of all
Engineering and Science Degrees (STEM: Science, Technology, Engineering and Mathematics). The
practice is expected to be technologically simple, far from those types of practices in which almost
everything is monitored by a computer. Why is this done? Because learning is expected to be as
meaningful as possible, and therefore the student must manipulate the elements that form the
practice, and must understand the procedures that are being used. The student is not expected to
operate mechanically but to learn.

3. Magnetic sensor

Over the last decade, due to the accelerated proliferation in the smartphone market users
demand different functionalities that meet their needs, and they use smartphones not only to make
phone calls and send messages, but also for multiple activities [51-53].

Smartphones have several internal and external Hall sensors that allow to detect movements,
orientation, proximity, luminosity, gravity, environmental conditions and to gather information to
facilitate their use [54, 55].

The sensors of magnetic field based on the Hall effect are the most used magnetic sensors and
allow us to know the linear position, angular position, speed, rotation, current [56-59] and the three
components of the field magnetic [60-64].

It should be noted that the future trends of magnetic sensors should be discussed from these two
perspectives: physics and applications, since many of the phenomena exploited by sensors were
found in the 1800s and early 1900s, i.e., the Faraday effect, the Hall effect, superconductivity, etc. and
the possible routes to improve the performance of magnetic sensors are: new phenomena, new
applications of the existing phenomenon, improved materials, higher speed of processing and
manufacturing, and, fundamentally, cost [55].

4. Experimental procedure

Firstly, the magnetic quadrupole must be constructed, this is a system composed of two identical
dipoles of equal but oppositely directed moment, so that the magnetic moment of the system is zero,
see Figures 1 and 2. It is important to take into account that two identical magnets must be chosen as
possible in order to obtain results in line with the theoretical prediction.

(a) (b)

Figure 2. Magnetic quadrupoles used: a) Neodymium rings of 3.5 cm of diameter; b) ceramic magnets
of 1.5 cm of diameter
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On the other hand, to carry out this laboratory experience we must prepare the measuring
instrument, this is, the smartphone following the steps described in [41]. We need to install an
application that measures the three spatial components of the magnetic field on the smartphone. Out
of all the apps that allow to make these measurements on the internet, we recommend the
Magnetometer app, and Physics Toolbox Sensor Suite by Vieyra Software app for smartphone with
Android and iOS operating system, respectively [59,65]

Since the goal of the laboratory practice is to determine the dependency of the magnetic field on
distance, we will consider only a component of the magnetic field, for example, the x-component. In
Figure 3 the orientation of the spatial axes on a smartphone is shown. They can be determined
through a small discovery process which consists on bringing a small magnet near our phone from

different directions and observing the component that varies in the app which measures the magnetic
field.

Figure 3. Orientation of the spatial axes on a smartphone

Finally, the acquisition of data is completed as follows. The smartphone is placed on a sheet of
paper and we draw the corresponding x- and y-axis of the phone passing through the magnetic
sensor, Figure 4. Then, the y-axis should be oriented towards the geographic North in order to avoid
the magnetic field background coming from the terrestrial magnetic field. If it is impossible to exactly
cancel this background, it should be subtracted from our measurements. And lastly, the magnetic
quadrupole is placed at different distances and we can write down the value of the x-component of
the magnetic field provided by the application.

i
RN 0 ‘,.:‘—-u.__-ﬂ

Figure 4. Experimental assembly: a smartphone, a sheet of paper and two identical magnets pasted by their
two north poles.

5. Results

In this section, we will analyze the results obtained with an iPhone 5 smartphone with the
Magnetometer application for two magnetic quadrupoles, that is, they are composed of magnets of
different forms and magnetic moments (see Figure 2)

Figure 5 shows the graphical representation of the data taken with the magnetic sensor of the
smartphone for the x-component of the magnetic field B, in function of the x-distance. This figure also
shows the setting of the experimental data with EXCEL, using the option ‘potential adjustment’, the
equation that adjusts the experimental data (B as a function of x), and the correlation coefficient, R,
square. In the case of Figure 5a we have used a magnetic quadrupole composed of two neodymium
rings (Figure 2a). We have placed the quadrupole 2 cm to 20 cm away from the smartphone. In Figure
5b the results have been obtained with a magnetic quadrupole composed of two ceramic magnets
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(Figure 2b). In this case, we have placed the quadrupole 2 cm to 10 cm away from the smartphone
because the magnetic sensor of the smartphone didn’t detect the magnetic field of this quadrupole

for bigger distances.
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Figure 5. (*) Experimental measures of the magnetic field and (--) potential adjustment of the

experimental measures for: a) magnetic quadrupole composed of two neodymium rings; b) magnetic
quadrupole composed of two ceramic magnets

According to the theoretical model (Eq. (2)), the x-component of the magnetic field of the

quadrupole is given by

The value of n from the experimental data is approximately -4, this is -4.02 (ring quadrupole)

B, = 6u,mdx™

)

and -4.10 (ceramic quadrupole), which is in total agreement with the theoretical prediction if we
consider error calculation, see Table 1. Besides, it is possible to observe that both measurements with
different quadrupoles have a very squared correlation close to unit, 0.9976 (ring quadrupole) and
0.9966 (ceramic quadrupole), much higher than the minimum that we require in our student

laboratory practices, 0.95.

On the one hand, an objective which is considered sufficient is to be aware that the exponent n
is very close to -4. On the other hand, error calculation is an important task in experimental works.
For that reason, the students must carry out (calculate) an error analysis of the measurements and
results and they must fit the data using the least squared method. Consequently, we must linearize
the results obtained in Figure 5, taking decimal logarithms in Eq. (3), the following linear expression

is obtained

log B, = log (6,uomd) + nlog x .

If we represent log B, versus logx, we can obtain information on the exponent of x and its

(4)

absolute error, through the slope of the linear fitting. In Table 1, we show the results for the
corresponding adjustment by least squares to the two quadrupoles used in this practice.

Table 1. Experimental results of the value of the exponent of x after the corresponding adjustment by

least squares

n+eg,(n) & (m)
Ring quadrupole -4.02+0.07 1.7%
Ceramic quadrupole -4.10+0.14 3%

As we can see from the results shown in Table 1, the experimental values of the dependency of
the magnetic field with the distance are compatible with the expected theoretical value.

The argument of the logarithm (neperian or decimal) should be a dimensionless magnitude,
although that fact is discarded here, because it is not relevant. It is recommended to work in the
International System of units so as not to have problems with the interpretation of the results.
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The students do not know Eq. (3), they are told that B is a function of a negative power of the
variable x, which they themselves observe, because when decreasing x, B increases. Therefore,
students do not know that the exponent of x is -4, and they must obtain this result. Therefore, we
have learning by discovery. Students learn it in a highly significant way through their own experience
in the laboratory. The Physics laboratory allows meaningful learning as long as the practices are well
designed out and not overly sophisticated.

6. Conclusions

We have used the smartphone as a tool in the Physics laboratory for freshman students, and we
have been able to achieve this due to the three Hall sensors that are incorporated these phones.
Students are motivated with the use of new technologies, introducing the smartphone to measure the
magnetic field through the sensor that these phones usually have, along with a suitable and free app.
In fact, the most sophisticated device used is the smartphone, and since most students have one, the
practice is also very cheap.

The proliferation of smartphones, almost ubiquitous, and the new sensors that incorporate them
make them almost essential in a modern physics laboratory, therefore a simple laboratory practice
has been designed that allows freshman science and engineering (STEM) students to obtain results
which are quite accurate and compatible with the underlying electromagnetic theory [41].
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Appendix A

First, the electric field created by a linear quadrupole will be obtained. Afterwards, using the
analogy, the magnetic field of a linear quadrupole will be calculated. Taking into account Fig. 1, we
can write the x component of the electric field at the point P located on the x-axis

_ kq _& kq 1 1 _i
X7 (x=d)2 x2  (x+d)?2 q((x—d)2+(x+d)2 xZ)

d? Al
ok (22 1y _zta () o
- q (x2-d2)2  x2) x2 \ (x2-d2)2
For x much greater than the parameter d, it can be written
2kq 1+§ 2kq az 2d2
Ex:_z —xz—l E—Z[(1+—2)(1+—2)—1]

x dz x x x

(1-%) (42)

2kq (3d% | 2d*\ _ 6kqd®> _ 6kpd
x2 \ x2 xt) T x* T x4’

4 2
d da
where the term (;) versus (;) has been discarded, being d >» x, and electric dipole moment

p =qd has been used. If we use the electric quadrupole moment (which is measured in Cm?, Q =
(2d)?q = 4d?q. The above expression could be written as

6kqd? 3k
E, = %447 - 3¢
X 2x

(A3)

Another equivalent way of obtaining this result is through the use of the Legendre polynomials
[66,67]. The electric potential of the quadrupole of Fig. 1 at any point in space is given by
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V(T)=kq(_72+i+i)=k?q(_2+r%+%)' (A4)

where the detailed geometry appears in Fig. A.1. Making use of the generating function of the
Legendre polynomials we can write

V() =52+ 32, P(cos0) (2) + Ty Pu(cos 0) (2)'). (A5)

y P

d d

< » &
< 7K

Y

Figure A.1. Linear electric quadrupole: geometry necessary for the calculation of the electric potential at a
distance 7 from the center of the quadrupole. The angle 6 is the one that forms the vector 7 with the x-axis
and is the one that appears as an argument of the Legendre polynomials in the series development.

Due to the symmetry of the system, only the even polynomials survive
_ kq a\? a\*
V(r) = 7{—2 + 2P, + 2P,(cos 0) (;) + 2P,(cos 6) (;) + - } (A6)

On the x-axis the angle is zero and all Legendre polynomials are equal to 1 when the argument
is1, Py(1) =1,

2kq ((a\? | (a\* 2kqd? | 2kqd*
V() =—‘I{(—) + (%) +---}= ad’ | 2kad’ , .., (A7)
r r r r r
The first term is the most important, therefore
_ 2kqad?
V(r) =——. (A8)
Deriving from r and changing the sign we obtain the electric field
dav d qudz) 6kqd?  6kpd
E(r) dr dr ( r3 r4 rt’ (A9)

which matches the expression obtained above. Now, the magnetic field of a linear quadrupole can be
obtained by analogy with the electric field whose expression has just been obtained

6n,md
By(r) = —4— (A10)
where p, has been changed by k, and the magnetic dipole moment (m) by the electrical dipole

moment (p), showing the clear symmetry between the electric field and the magnetic field for this
case. With this, the Eqs (1) and (2) are justified.
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