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Abstract: Current smartphones incorporate different types of sensors that allow us to know our 

spatial position, they give us information about pressure, speed, acceleration, time, acoustic level, 

and other different physical magnitudes. These smartphones measure each component of the 

magnetic field, bearing in mind that any current perpendicular to a magnetic field produces a small 

potential difference, transversal to the said current, being this voltage easily measurable by Hall 

sensors. With the implementation of three Hall sensors, and an appropriate app, we can measure 

the three components of the magnetic field vector, and with this we can obtain information and 

deduce properties of the physical systems considered. In this paper we are exploring the use of 

smartphones in a physics laboratory for freshman students. To do this, we have measured, using 

Hall sensors, the magnetic field created by a linear quadrature, and we have obtained, first of all, its 

dependence on the distance between the quadrupole and the magnetic sensor. The second purpose 

of this work is to show that the laboratory is a powerful tool that increases the significant learning 

of freshman students through advanced technological tools.  
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1. Introduction 

A transformation is required in the practice of teaching, learning and assessment of sciences in 

general, and Physics in particular, to ensure that students acquire cognitive skills needed for the 

construction of scientific concepts. Designing teaching strategies that allow students to solve complex 

problems means that the teacher must develop didactic situations where the students play a more 

active role in class, as an alternative to the simple memorization of procedural activities, considering 

the specific needs of university students and taking into account the characteristics of the 

environment in which they live as antecedents for instructional design [1]. To be able to learn 

adequately, students must feel motivated and willing to actively participate in the learning process. 

Hence the crucial point is to promote learning that is meaningful for the student, and preferably 

using resources of easy access to students, both economically and in the domain of technology. Over 

the past several decades, educators and researchers have sought many new pedagogical methods to 

promote interactive learning [2–10] and demonstrated their effectiveness through a variety of tools 

[11–17]. The active participation helps students understand the basic concepts of Physics or any other 

science. 

The carrying out of experiments and data analysis are effective ways to have an interactive and 

collaborative environment, the application of their own resources and the measurement of the simple 

phenomena of daily life can increase the students´ interest, while allowing a precise analysis of the 
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data, which can contribute to the generation of scientific thinking and provide a good opportunity 

for inquiry learning [18]. A great variety of responses have emerged for improving laboratory 

experiences within the physics curriculum [19–29]. 

With the emergence of technology, we can bring laboratory experiments closer to our students. 

Mobile devices can provide meaningful assistance to users in their work, study and entertainment. 

They have been widely used in recent years within the process of instruction in different disciplinary 

fields [30–32], although the effects on learning [33–38] and the use given to them in the classroom are 

still being studied. In education mobile devices are widely used to access, import, organize, edit, 

simulate, design and share information extracted from the web; in addition to didactic applications 

designed by the teacher for their use in the classroom they contribute to the reinforcement of the 

teaching-learning-evaluation process. They allow to manage data collection tools, games/simulation, 

learning management systems and productivity tools [39]. Due to the reasonable cost, size and 

diverse functions of smartphones, and to the fact that the experimental configuration is simpler 

compared to traditional measurement techniques, smartphones are becoming the data recorders of 

portable physics laboratories for a variety of measurements in astronomy, mechanics, 

thermodynamics, electromagnetism and optics among others, either using the internal sensors of cell 

phones or diverse applications [40–50]. 

We are mainly interested in how the smartphones used for performing a physics laboratory 

practice influenced the traditional learning of electromagnetism. Bearing this in mind, in this work 

we are going to focus on the design of a laboratory experience to measure the dependence of the 

magnetic field of a quadrupole on distance employing a smartphone. 

2. Basic Theory 

A linear electric quadrupole is a neutral charge system, formed by three charges: one with a 

value -2q located at the origin of coordinates and two charges of value +q located symmetrically on 

he x-axis, one at the point (-d, 0) and the other at (+d, 0) as shown in Fig. 1. The total width of the 

system is 2d. The electric field of this quadrupole at an arbitrary point of the plane P has two 

components, one radial and the other transversal. For greater simplicity, we will consider the point 

P on the x-axis at a distance x from the origin of coordinates and then only the radial component that 

becomes the component x survives. The electric field of this neutral charge system can be obtained 

using the electric field of two opposite dipoles, one centered on (-d/2, 0) and the other one on (+d/2, 

0) [41]. In the Appendix, we obtain, in two different ways, the electric and magnetic field of a linear 

quadrupole of width 2d. The x component of the electric field is 

𝐸𝑥 =
6𝑘𝑝𝑑

𝑥4 . (1) 

To obtain this expression it has been assumed that 𝑥 ≫ 𝑑. Being 𝑝 the electric dipole moment 

of each of the two dipoles, 𝑝 = 𝑞𝑑, and k the Coulomb’s constant. 

 

 

Figure 1. An electric quadrupole is formed by two opposite electric dipoles, being d the separation between the 

charges and P (x, 0) the point where the electric field is wanted to be calculated. 

In fact, we want to study a magnetic quadrupole, for which two magnetic dipoles will be used 

with the two south poles together, at the origin of coordinates, and with their north poles placed at 

the points (-d, 0) and (+ d, 0), obtaining a system with zero magnetic dipole moment. A similar 
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expression to Equation (1) can be written for the x-component of the magnetic field vector, replacing 

the variables appropriately: k for 
0
, and 𝑝 for m  

𝐵𝑥 =
60𝑚𝑑

𝑥4  , (2) 


0

being the magnetic permeability of vacuum and m the magnitude of the magnetic dipole moment 

vector of both magnets, which have previously had to be carefully selected so that they are equal and 

the magnetic dipole moment is cancelled and the quadrupole moment survives. It is very important 

that both magnets have the same geometrical and magnetic characteristics. 

With this information we will proceed to design a Physics practice for first year students of all 

Engineering and Science Degrees (STEM: Science, Technology, Engineering and Mathematics).  The 

practice is expected to be technologically simple, far from those types of practices in which almost 

everything is monitored by a computer. Why is this done? Because learning is expected to be as 

meaningful as possible, and therefore the student must manipulate the elements that form the 

practice, and must understand the procedures that are being used. The student is not expected to 

operate mechanically but to learn. 

3. Magnetic sensor 

Over the last decade, due to the accelerated proliferation in the smartphone market users 

demand different functionalities that meet their needs, and they use smartphones not only to make 

phone calls and send messages, but also for multiple activities [51–53]. 

Smartphones have several internal and external Hall sensors that allow to detect movements, 

orientation, proximity, luminosity, gravity, environmental conditions and to gather information to 

facilitate their use [54, 55]. 

The sensors of magnetic field based on the Hall effect are the most used magnetic sensors and 

allow us to know the linear position, angular position, speed, rotation, current [56–59] and the three 

components of the field magnetic [60–64]. 

It should be noted that the future trends of magnetic sensors should be discussed from these two 

perspectives: physics and applications, since many of the phenomena exploited by sensors were 

found in the 1800s and early 1900s, i.e., the Faraday effect , the Hall effect, superconductivity, etc. and 

the possible routes to improve the performance of magnetic sensors are: new phenomena, new 

applications of the existing phenomenon, improved materials, higher speed of processing and 

manufacturing, and, fundamentally, cost [55]. 

4. Experimental procedure 

Firstly, the magnetic quadrupole must be constructed, this is a system composed of two identical 

dipoles of equal but oppositely directed moment, so that the magnetic moment of the system is zero, 

see Figures 1 and 2. It is important to take into account that two identical magnets must be chosen as 

possible in order to obtain results in line with the theoretical prediction. 

 
(a) 

 
(b) 

Figure 2. Magnetic quadrupoles used: a) Neodymium rings of 3.5 cm of diameter; b) ceramic magnets 

of 1.5 cm of diameter  
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On the other hand, to carry out this laboratory experience we must prepare the measuring 

instrument, this is, the smartphone following the steps described in [41]. We need to install an 

application that measures the three spatial components of the magnetic field on the smartphone. Out 

of all the apps that allow to make these measurements on the internet, we recommend the 

Magnetometer app, and Physics Toolbox Sensor Suite by Vieyra Software app for smartphone with 

Android and iOS operating system, respectively [59,65] 

Since the goal of the laboratory practice is to determine the dependency of the magnetic field on 

distance, we will consider only a component of the magnetic field, for example, the x-component. In 

Figure 3 the orientation of the spatial axes on a smartphone is shown. They can be determined 

through a small discovery process which consists on bringing a small magnet near our phone from 

different directions and observing the component that varies in the app which measures the magnetic 

field.  

  

Figure 3. Orientation of the spatial axes on a smartphone 

Finally, the acquisition of data is completed as follows. The smartphone is placed on a sheet of 

paper and we draw the corresponding x- and y-axis of the phone passing through the magnetic 

sensor, Figure 4. Then, the y-axis should be oriented towards the geographic North in order to avoid 

the magnetic field background coming from the terrestrial magnetic field. If it is impossible to exactly 

cancel this background, it should be subtracted from our measurements. And lastly, the magnetic 

quadrupole is placed at different distances and we can write down the value of the x-component of 

the magnetic field provided by the application. 

  

Figure 4. Experimental assembly: a smartphone, a sheet of paper and two identical magnets pasted by their 

two north poles. 

5. Results 

In this section, we will analyze the results obtained with an iPhone 5 smartphone with the 

Magnetometer application for two magnetic quadrupoles, that is, they are composed of magnets of 

different forms and magnetic moments (see Figure 2) 

Figure 5 shows the graphical representation of the data taken with the magnetic sensor of the 

smartphone for the x-component of the magnetic field B, in function of the x-distance. This figure also 

shows the setting of the experimental data with EXCEL, using the option ‘potential adjustment’, the 

equation that adjusts the experimental data (B as a function of x), and the correlation coefficient, R, 

square. In the case of Figure 5a we have used a magnetic quadrupole composed of two neodymium 

rings (Figure 2a). We have placed the quadrupole 2 cm to 20 cm away from the smartphone. In Figure 

5b the results have been obtained with a magnetic quadrupole composed of two ceramic magnets 
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(Figure 2b). In this case, we have placed the quadrupole 2 cm to 10 cm away from the smartphone 

because the magnetic sensor of the smartphone didn´t detect the magnetic field of this quadrupole 

for bigger distances. 

 
(a) 

 
(b) 

Figure 5. (•) Experimental measures of the magnetic field and (--) potential adjustment of the 

experimental measures for: a) magnetic quadrupole composed of two neodymium rings; b) magnetic 

quadrupole composed of two ceramic magnets  

According to the theoretical model (Eq. (2)), the x-component of the magnetic field of the 

quadrupole is given by 

𝐵𝑥 = 6
0

𝑚𝑑𝑥𝑛    . (3) 

The value of n from the experimental data is approximately -4, this is -4.02 (ring quadrupole) 

and -4.10 (ceramic quadrupole), which is in total agreement with the theoretical prediction if we 

consider error calculation, see Table 1. Besides, it is possible to observe that both measurements with 

different quadrupoles have a very squared correlation close to unit, 0.9976 (ring quadrupole) and 

0.9966 (ceramic quadrupole), much higher than the minimum that we require in our student 

laboratory practices, 0.95. 

On the one hand, an objective which is considered sufficient is to be aware that the exponent n 

is very close to -4. On the other hand, error calculation is an important task in experimental works. 

For that reason, the students must carry out (calculate) an error analysis of the measurements and 

results and they must fit the data using the least squared method. Consequently, we must linearize 

the results obtained in Figure 5, taking decimal logarithms in Eq. (3), the following linear expression 

is obtained  

log 𝐵𝑥 = log  (6
0

𝑚𝑑) + 𝑛𝑙𝑜𝑔 𝑥 . (4) 

If we represent log 𝐵𝑥  versus log 𝑥, we can obtain information on the exponent of x and its 

absolute error, through the slope of the linear fitting. In Table 1, we show the results for the 

corresponding adjustment by least squares to the two quadrupoles used in this practice. 

Table 1. Experimental results of the value of the exponent of x after the corresponding adjustment by 

least squares  

 𝒏 ± 𝜺𝒂(𝒏) 𝜺𝒓(𝒏) 

Ring quadrupole -4.02  0.07 1.7% 

Ceramic quadrupole -4.10  0.14 3% 

As we can see from the results shown in Table 1, the experimental values of the dependency of 

the magnetic field with the distance are compatible with the expected theoretical value. 

The argument of the logarithm (neperian or decimal) should be a dimensionless magnitude, 

although that fact is discarded here, because it is not relevant. It is recommended to work in the 

International System of units so as not to have problems with the interpretation of the results. 
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The students do not know Eq. (3), they are told that B is a function of a negative power of the 

variable x, which they themselves observe, because when decreasing x, B increases. Therefore, 

students do not know that the exponent of x is -4, and they must obtain this result. Therefore, we 

have learning by discovery. Students learn it in a highly significant way through their own experience 

in the laboratory. The Physics laboratory allows meaningful learning as long as the practices are well 

designed out and not overly sophisticated. 

6. Conclusions 

We have used the smartphone as a tool in the Physics laboratory for freshman students, and we 

have been able to achieve this due to the three Hall sensors that are incorporated these phones. 

Students are motivated with the use of new technologies, introducing the smartphone to measure the 

magnetic field through the sensor that these phones usually have, along with a suitable and free app. 

In fact, the most sophisticated device used is the smartphone, and since most students have one, the 

practice is also very cheap.  

The proliferation of smartphones, almost ubiquitous, and the new sensors that incorporate them 

make them almost essential in a modern physics laboratory, therefore a simple laboratory practice 

has been designed that allows freshman science and engineering (STEM) students to obtain results 

which are quite accurate and compatible with the underlying electromagnetic theory [41]. 
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Appendix A 

First, the electric field created by a linear quadrupole will be obtained. Afterwards, using the 

analogy, the magnetic field of a linear quadrupole will be calculated. Taking into account Fig. 1, we 

can write the x component of the electric field at the point P located on the x-axis 

𝐸𝑥 =
𝑘𝑞

(𝑥−𝑑)2 −
2𝑘𝑞

𝑥2 +
𝑘𝑞

(𝑥+𝑑)2 = 𝑘𝑞 (
1

(𝑥−𝑑)2 +
1

(𝑥+𝑑)2 −
2

𝑥2)  

= 2𝑘𝑞 (
𝑥2+𝑑2

(𝑥2−𝑑2)2 −
1

𝑥2) =
2𝑘𝑞

𝑥2 (
𝑥4(1+

𝑑2

𝑥2)

(𝑥2−𝑑2)2 − 1). 

(A1) 

For x much greater than the parameter d, it can be written 

𝐸𝑥 =
2𝑘𝑞

𝑥2 (
1+

𝑑2

𝑥2

(1−
𝑑2

𝑥2)
2 − 1) ≅

2𝑘𝑞

𝑥2 [(1 +
𝑑2

𝑥2) · (1 +
2𝑑2

𝑥2 ) − 1]  

=
2𝑘𝑞

𝑥2 (
3𝑑2

𝑥2 +
2𝑑4

𝑥4 ) ≅
6𝑘𝑞𝑑2

𝑥4 =
6𝑘𝑝𝑑

𝑥4 , 

(A2) 

where the term (
𝑑

𝑥
)

4
versus (

𝑑

𝑥
)

2
 has been discarded, being 𝑑 ≫ 𝑥, and electric dipole moment 

p = qd has been used. If we use the electric quadrupole moment (which is measured in C·m2, 𝑄 =

(2𝑑)2𝑞 = 4𝑑2𝑞. The above expression could be written as 

𝐸𝑥 =
6𝑘𝑞𝑑2

𝑥4 =
3𝑘𝑄

2𝑥4 . (A3) 

Another equivalent way of obtaining this result is through the use of the Legendre polynomials 

[66,67]. The electric potential of the quadrupole of Fig. 1 at any point in space is given by  
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𝑉(𝑟) = 𝑘𝑞 (
−2

𝑟
+

1

𝑟1
+

1

𝑟2
) =

𝑘𝑞

𝑟
(−2 +

𝑟

𝑟1
+

𝑟

𝑟2
), (A4) 

where the detailed geometry appears in Fig. A.1. Making use of the generating function of the 

Legendre polynomials we can write 

𝑉(𝑟) =
𝑘𝑞

𝑟
{−2 + ∑ 𝑃𝑛(cos 𝜃)∞

𝑛=0 (
𝑑

𝑟
)

𝑛
+ ∑ 𝑃𝑛(cos 𝜃)∞

𝑛=0 (
−𝑑

𝑟
)

𝑛
}. (A5) 

 

 

Figure A.1. Linear electric quadrupole: geometry necessary for the calculation of the electric potential at a 

distance 𝑟 from the center of the quadrupole. The angle θ is the one that forms the vector 𝑟 with the x-axis 

and is the one that appears as an argument of the Legendre polynomials in the series development. 

Due to the symmetry of the system, only the even polynomials survive 

𝑉(𝑟) =
𝑘𝑞

𝑟
{−2 + 2𝑃0 + 2𝑃2(cos 𝜃) (

𝑑

𝑟
)

2
+ 2𝑃4(cos 𝜃) (

𝑑

𝑟
)

4
+ ⋯ }. (A6) 

On the x-axis the angle is zero and all Legendre polynomials are equal to 1 when the argument 

is 1, 𝑃𝑛(1) = 1,  

𝑉(𝑟) =
2𝑘𝑞

𝑟
{(

𝑑

𝑟
)

2
+ (

𝑑

𝑟
)

4
+ ⋯ } =

2𝑘𝑞𝑑2

𝑟3 +
2𝑘𝑞𝑑4

𝑟5 + ⋯. (A7) 

The first term is the most important, therefore 

𝑉(𝑟) ≅
2𝑘𝑞𝑑2

𝑟3 . (A8) 

Deriving from r and changing the sign we obtain the electric field 

𝐸(𝑟) = −
𝑑𝑉

𝑑𝑟
= −

𝑑

𝑑𝑟
(

2𝑘𝑞𝑑2

𝑟3 ) =
6𝑘𝑞𝑑2

𝑟4 =
6𝑘𝑝𝑑

𝑟4 , (A9) 

which matches the expression obtained above. Now, the magnetic field of a linear quadrupole can be 

obtained by analogy with the electric field whose expression has just been obtained 

𝐵𝑥(r) =
60𝑚𝑑

𝑟4 , (A10) 

where 
0

 has been changed by k, and the magnetic dipole moment (m) by the electrical dipole 

moment (p), showing the clear symmetry between the electric field and the magnetic field for this 

case. With this, the Eqs (1) and (2) are justified.  
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