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Abstract: Chitosan is a cationic polysaccharide usually obtained by alkaline deacetylation of chitin 13 
poly(N-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive and non-toxic. These 14 
excellent biological properties make chitosan a good candidate as platform for developing drug 15 
delivery systems with improved biodistribution, increased specificity and sensitivity, and reduced 16 
pharmacological toxicity. In particular, chitosan nanoparticles have been found appropriate for non-17 
invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications 18 
are facilitated by the absorption-enhancing effect of chitosan. Many different procedures have been 19 
proposed for obtaining chitosan nanoparticles. Particularly, the introduction of hydrophobic 20 
moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance 21 
promoting self-assembling is a current and appealing approach. The grafting agent can be a 22 
hydrophobic moiety to form micelles that can entrap lipophilic drugs or it can be the drug itself. 23 
Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of 24 
polyelectrolyte complexes with polyanions. This paper reviews the main approaches developed for 25 
preparing chitosan nanoparticles by self-assembling by both procedures and illustrates the state of 26 
the art of their application in drug delivery. 27 
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 29 

1. Introduction 30 

Chitosan is a family of linear polysaccharides composed of glucosamine and N-31 
acetylglucosamine units linked together by β (1→4) glycosidic links (Figure 1). Chitosan is obtained 32 
by partial deacetylation of the naturally occurring polysaccharide, chitin, which is essentially poly(N-33 
acetylglucosamine). Depending on the natural source and the conditions used to isolate and 34 
deacetylate chitin, the resulting chitosan will have a degree of acetylation (DA) and molecular weight 35 
that will depend on the reaction parameters involved [1]. The molecular weight, the DA and even the 36 
pattern of acetylation (the distribution of glucosamine and N-acetylglucosamine units along the 37 
chitosan chain) will affect its chemical and biological properties [2, 3]. 38 

The degree of deacetylation (DD = 100 – DA) of chitosan is about 50% or higher. At this stage the 39 
polysaccharide becomes soluble in aqueous acid solutions because of the protonation of the free 40 
amino groups of the D-glucosamine units. In fact, the solubility of chitosan in 1% or 0.1M acetic acid 41 
is a simple practical criterion used to differentiate chitosan from chitin. In a protic solvent chitosan 42 
behaves as a cationic polyelectrolyte [4]. 43 
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 44 

Figure 1. Structural units of chitin and chitosan. (A) N-acetylglucosamine unit; (D) 45 
Glucosamine unit. In chitosan DA< 50. 46 

Chitosan is a biocompatible, biodegradable and non-toxic material. It exhibits other significant 47 
biological properties, such as wound healing capacity, antimicrobial, antibacterial and hemostatic 48 
activities. Chitosan is an excellent film former and can be processed into fibers, gels, microspheres-49 
microcapsules, micro/nanoparticles [5]. Also, because of the free –OH and –NH2 groups in its 50 
structure it is amenable to chemical modifications to potentiate some of its properties for a 51 
determined application. All these remarkable physical, chemical and biological properties have made 52 
chitosan an excellent candidate for applications in cosmetics, food industry, medicine and pharmacy 53 
[4]. 54 

Chitosan also shows mucoadhesive and absorption-enhancing properties. It can interact with 55 
mucus and epithelial cells resulting in opening of cellular tight junctions [6]. These properties make 56 
chitosan also an ideal candidate for the delivery of drugs and bioactive molecules in general. There 57 
are numerous reports on the applications of chitosan in drug delivery, with various reviews on the 58 
subject [7-9]. Applications include chitosan as excipient in tablets, chitosan hydrogels, films, fibers, 59 
micro/nanocapsules and micro/nanoparticles. 60 

Chitosan nanoparticles find applications in drug delivery, not only by the traditional routes of 61 
administration (eg. oral and parenteral routes) but also via mucosal (nasal, pulmonary, vaginal) and 62 
ocular routes [10]. Chitosan nanoparticles are as well used in designing non-viral vectors for gene 63 
delivery and the delivery of vaccines [11]. 64 

Chitosan nanoparticles have been produced using diverse approaches. Among them ionotropic 65 
gelation [12, 13], spray drying [14], water-in-oil emulsion cross-linking [15], reverse micelle formation 66 
[16, 17], emulsion-droplet coalescence [18, 19], nanoprecipitation [20] and by a self-assembling 67 
mechanism [21, 22]. 68 

Self-assembling has been described as the association of certain molecules, macromolecules or 69 
composite materials with themselves to form tridimensional networks or other structures with new 70 
distinguishing properties. The process of self-assembling can take place at molecular or 71 
supramolecular level [23, 24]. It can occur by self-association or by association with other different 72 
structures through interactions such as hydrogen bonding, van der Waals forces, ionic or 73 
hydrophobic interactions. It can also be caused by an inclusion/complexation mechanism, like the 74 
iodine inclusion complex with starch [24]. 75 

Chitosan self-assembled (also referred to as self-aggregated) nanoparticles (NPs) are particularly 76 
useful for encapsulating hydrophilic as well as lipophilic drugs [25]. Self-assembling can be provoked 77 
by the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a 78 
hydrophobic-hydrophilic balance. The grafting agent can be a hydrophobic moiety such as 79 
cholesterol [26], cholic [27] and deoxycholic acid [28] or 5β-cholanic acid [29], to form micelles that 80 
can entrap lipophilic drugs or it can be the drug itself. In many occasions instead of chitosan a soluble 81 
chitosan derivative, such as glycol chitosan [30] or succinyl chitosan [31] is used. Another suitable 82 
way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte 83 
complexes with polyanions [32]. The aim of the present article is to review the main approaches 84 
developed for preparing chitosan nanoparticles by self-assembling via both procedures and to 85 
illustrate the state of the art in drug delivery. 86 

2. Polyelectrolyte complexes 87 
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Polyelectrolyte complexes (PECs) are formed when the solutions of two polyelectrolytes 88 
carrying complementary charges (i.e. a polycation and a polyanion or their corresponding salts) are 89 
mixed together. PEC formation is mainly caused by the strong Coulomb interaction between the 90 
oppositely charged polyelectrolytes. The formation of complexes brings about at least a partial charge 91 
neutralization of polymers [9]. The obtained complexes (also called polysalts) generally precipitate 92 
or separate from the solution forming a complex rich liquid phase (coacervate). However, under 93 
certain conditions, polyelectrolytes with weak ionic groups and significantly different molecular 94 
weights at non-stoichiometric mixing ratios can generate water-soluble PECs on a molecular level 95 
[33, 34]. 96 

The formation of polyelectrolyte complexes is accompanied by the release of small counter-ions 97 
to the medium. The increase in entropy produced by the release of these low molecular weight 98 
counter-ions to the medium is the main driving force for PEC formation. Although the electrostatic 99 
interaction between the complementary ionic groups of polyelectrolytes is the responsible one for 100 
PEC formation, hydrogen bonds and hydrophobic interactions also contribute to complexing. The 101 
arrangement of chains in a PEC can be envisaged as a combination of a disordered scrambled egg-102 
like structure and a highly ordered ladder-like organization (Figure 2). Therefore, the actual structure 103 
possessing hydrophobic and hydrophilic regions makes PECs a particular class of physically cross-104 
linked hydrogels sensible to pH and to other environmental factors such as temperature and ionic 105 
strength. 106 

 107 
Figure 2. The structure of polyelectrolyte complexes. Scrambled egg and ladder arrangements 108 
illustrate extreme situations. The actual structure can be represented an intermediate one 109 
combining hydrophobic ladder-like segments coexisting with disordered hydrophilic regions.  110 
 111 
There are numerous factors affecting the structure and stability of PECs, such as the ionization 112 

degree of each one of the polyelectrolytes and their charge density, the charge distribution on the 113 
polymer chains, the polyelectrolytes concentration, the mixing ratio (Z), the mixing order, the nature 114 
of the ionic groups on the polymer chains, the molecular weight of the polyelectrolytes, the flexibility 115 
of the polymer chains, the time of interaction, the temperature and the ionic strength and pH of the 116 
medium [35]. 117 

As a cationic biopolymer, chitosan may react with negatively charged polyelectrolytes, giving 118 
rise to the formation of PECs [36, 37]. There are many reports of PECs between chitosan and 119 
carboxymethyl cellulose (CMC) [38, 39], alginate [40-44], poly(acrylic acid) [45, 46], pectin [47-50], 120 
carrageenans [51, 52], heparin [53] and various other polyions [54-60]. 121 
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2.1. Chitosan based PEC nanoparticles and their application in drug delivery 122 

Because of the recognised biological properties of chitosan already mentioned, many 123 
applications of these PECs have been proposed with biomedical purposes, with particular emphasis 124 
in drug delivery [61]. In this connection, researchers have shown special interest in the preparation 125 
of chitosan PEC nanoparticles for the delivery of drugs, proteins, genes and vaccines [35, 62, 63]. 126 

When chitosan PEC particles are formed, they tend to aggregate because of charge neutralization 127 
so that in order to avoid aggregation and to obtain nanoparticles at least two conditions are 128 
mandatory: the polyelectrolyte solutions must be diluted and one of the polyions must be in 129 
appropriate excess so that the charge ratio (n+/n-) ≠ 1. (Figure 3). 130 

 131 

Figure 3. Effect of the polyelectrolytes charge ratio on the size and charge of the PEC formed. 132 
When the charge ratio is different from unity nanoparticles charged with the same charge as the 133 
polyion in excess are formed. If the charge ratio is equal to unity, uncharged particles are formed 134 
producing large aggregates. 135 

Other conditions such as pH (particularly important in weak polyelectrolyes), ionic strength and 136 
rate of mixing should be adjusted to the particular pair chitosan-polyanion system selected, since 137 
these variables will also influence the size and charge of nanoparticles. 138 

Different preparation methodologies will result in diverse kinds of nanoparticles, which can be 139 
classified as nanoaggregates, nanocapsules or nanospheres. The particular procedure selected can be 140 
largely determined by the water solubility of the active agent to be encapsulated and the polyanion 141 
used. 142 

 143 
2.1.1. Chitosan-alginate PEC nanoparticles 144 
 145 

Alginates are a family of anionic polysaccharides extracted from brown algae. They are 146 
composed of α-L-guluronic acid (G) and β-D-mannuronic (M) acid units linearly linked by 1,4-147 
glycosidic bonds (Figure 4). The M/G ratio and their distribution along the chains (chain 148 
microstructure) are strongly dependent on the particular species of algae from which it was extracted 149 
[64]. Alginate is non-toxic, biocompatible and biodegradable, mucoadhesive and non-inmunogenic. 150 
The capacity of alginate to gel in the presence of calcium ions in the so-called “egg-box” model has 151 
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been extensively exploded to prepare gels, capsules, micro and nanoparticles for drug delivery [65]. 152 
The guluronic units are the responsible ones for the crosslinking reaction and therefore the properties 153 
of the beads formed such as strength and porosity will depend on the alginate source. Other 154 
parameters that can have an effect on the characteristics of beads are the alginate molecular weight, 155 
and the concentration of CaCl2 and alginate solutions [64]. 156 

 157 

Figure 4. (A) Structural units in alginate. (G) Guluronic acid; (M) Mannuronic acid. (B) 158 
Representation of two G-blocks forming an ‘egg box’ sequence with calcium ion. 159 

Chitosan-alginate PEC nanoparticles are usually prepared by one of the following three 160 
procedures. 161 
a) Plain complex coacervation by mixing dilute solutions of CS and ALG. The order of addition of 162 
one polysaccharide into the other, the CS/ALG ratio and the pH of the solutions are important factors 163 
determining relevant parameters of nanoparticles (size, particle charge, stability, encapsulation 164 
efficiency). 165 

This procedure was used to prepare negatively charged CS/ALG nanoparticles by dropping a 166 
CS solution over the ALG solution. It was found that particle sizes varied from 320 nm to 700 nm, 167 
depending on the pH and ionic strength of the solution. The Z-potential of NPs was also dependent 168 
on pH and varied from +6.34 mV at pH 3.0 to –44.5 mV at pH 10.0. The loading capacities of NPs for 169 
ibuprofen and dipyridamole were 14.18% and 13.03%, respectively. Drug release was governed 170 
simultaneously by the solubility of the drug and the permeability of the CS/ALG nanoparticles [66].  171 

In a modification of this procedure, a CS solution containing Tween 80 was dropped into a 172 
previously prepared solution of an alginate complex with doxorubicin (DOX). The NP suspension 173 
was stirred overnight and the doxorubicin loaded CS/ALG NPs were separated by centrifugation. 174 
The size of NPs was 100 ± 35 nm, the Z-potential 35 ± 4 mV and the encapsulation efficiency achieved 175 
was 95 ± 4% [67]. 176 

The reverse procedure was used to encapsulate amoxicillin in CS/ALG nanoparticles. Essentially 177 
a mixture of chitosan, Pluronic and amoxicillin was prepared in various concentrations of all the 178 
components. To this mixture, an aqueous solution of ALG was sprayed with stirring to form NPs. 179 
Both solutions were at PH 5.0. The process was optimized for variables such as pH and mixing ratio 180 
of polymers, concentrations of polymers, drug and surfactant, using 33 Box-Behnken design. The 181 
resulting particle size, surface charge, drug entrapment percent, in-vitro mucoadhesion and in-vivo 182 
mucopenetration of nanoparticles on rat models were inspected. The optimized formulation with 183 
particle size, zeta potential and encapsulation efficiencies 651 nm, +59.76 mV and 91.23%, 184 
respectively, showed comparative low in-vitro mucoadhesion with respect to plain chitosan 185 
nanoparticles, but excellent mucopenetration and localization [68]. 186 

A modified hybrid blending system was developed by Goycoolea et al., which combined 187 
complex coacervation of CS and ALG with ionotropic gelation of CS with trisodium tripoliphosphate 188 
(TTP). The purpose of this combination was to increase the stability in biological media and achieve 189 
better pharmacological performance than conventional CS-TPP nanoparticles. In this method, an 190 
ALG solution containing TPP was mixed under rapid stirring with the CS solution and the CS-TPP-191 
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ALG nanoparticles were formed. Insulin loaded CS-TPP-ALG nanoparticles were obtained by adding 192 
insulin to the ALG-TPP solution prior to mixing with the CS solution. The average size of the insulin-193 
loaded NPs was in the range from ∼273 to ∼396 nm, somewhat bigger than the unloaded ones (∼266 194 
to∼312 nm) and their Z-potentials were positive and ranged from ∼42 to ∼49 mV, providing 195 
increased stability to nanoparticles. Encapsulation efficiencies as high as 50.7% were attained [69].  196 
b) Ionotropic pregelation of alginate (usually with CaCl2, but other divalent ions might also be used) 197 
followed by complexation with chitosan. 198 

This a very common method in which the active agent can be dissolved or dispersed in the ALG 199 
solution or can be loaded into the resulting CS/ALG nanoparticles.  Azevedo et al. used this 200 
procedure setting the initial pH of the ALG and CS solutions to 4.9 and 4.6, respectively. In their 201 
formulation, the average size for CS/ALG NPs was 119.5 ± 49.9 nm with a Z-potential of −30.9 ± 0.5 202 
mV. Vitamin B2 loaded NPs were obtained by dissolving the compound in the ALG solution before 203 
the pregelation step. The average size of nanoparticles with vitamin B2 was 104.0 ± 67.2 nm with a Z-204 
potential of −29.6 ± 0.1 mV. The nanoparticles showed encapsulation efficiency and loading capacity 205 
values of 55.9 ± 5.6% and 2.2 ± 0.6%, respectively [70]. 206 
c) o/w microemulsion of alginate followed by ionotropic gelation and further complexation with 207 
chitosan. 208 

Bhunchu et al. employed this method to prepare CS/ALG NPs containing curcumin diethyl 209 
disuccinate (CDD).  CDD dissolved in acetone (1 ml) was added dropwise into 20 ml of a dilute ALG 210 
solution (0.6 mg/ml) containing a non-ionic surfactant (Pluronic F127, Cremophor RH40™ and 211 
Tween 80®). Afterwards of 4 ml of CaCl2 solution (0.67 mg/ml) of was added with stirring, followed 212 
by sonication. To the resultant pregel 4 ml of CS solution of various concentrations (0.15 - 0.45 mg/ml 213 
in 1% (v/v) acetic acid) was added with continuous stirring at 1000 rpm 30 min. After standing 214 
overnight for equilibration CDD loaded CS/ALG NPs were obtained as a dispersion in aqueous 215 
solution.  Pluronic F127 gave the smallest particle size, 414 ± 16 nm with the highest Z-potential, -22.1 216 
± 1.4 mV. The encapsulation efficiency and loading capacity of these NPs were 54.9 ± 1.3% and 3.33 ± 217 
0.08%, respectively. These NPs improved cellular uptake of CDD in Caco-2 cells, in comparison with 218 
free CDD [71]. 219 

A list of some selected examples of CS/ALG PEC nanoparticles based on the different 220 
`procedures mentioned above is given in Table 1. 221 

 222 

Table 1. Chitosan-Alginate PEC nanoparticles. The intervals shown generally indicate extreme values 223 

obtained with different preparation conditions.  224 

Procedure Active agent Particle size, nm  Z-potential, mV Ref. 

Complex coacervation     

CS added into ALG 

 

  

 

 CS into ALG-DOX 

Ibuprophen 

Dipyridamole 

320 to 700b ++6.34b to – 44.5b* [66] 

Gatifloxacina 347c +38.6c [72]  

Doxorubicin  100 ± 28b  

100 ± 35c  

36 ± 3b   

35 ±4c 

[67] 

ALG added into CS 

  

 

ALG into Thiolated CS          

Amoxicillina 264  to > 601   + 35  to + 61.9   [68]  

Fluorescein 

isothiocyanate 

Fluorescein 

isothiocyanate 

338.1 ± 15.9b 

265.7 ± 7.4c 

338.1 ± 15.9b  

265.7 ± 7.4c 

+33.8 ± 7.9b 

+29.5 ± 4.1c 

+33.8 ± 7.9b 

+29.5 ± 4.1c 

[73]  

ALG+TPP added into CS   Insulin 260 - 525  +41 to +50   [69] 
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Ionotropic pregelation of alginate plus PEC coating with CS 

CS into Ca/(ALG+drug)  Insulin 781 ± 61b 

748 ± 217 

-14.5 ± 2.09b 

-5.6 ± 1.9c 

[74]  

Vitamin-B2 119.5 ± 49.9b 

 104.0 ± 67.2c 

−30.9 ± 0.5b 

−29.6 ± 0.1c 

[70] 

Acetamiprid 201.5  −32.1   [75] 

CS+EGF into Ca/ALG  EGF-antisensea  194 - 1435    ~ +30  [76] 

CS+plasmid into Ca/ALG pEGFP plasmid 161   +29.3   [77]  

o/w ALG microemulsion followed by ionotropic gelation and further complexation with CS 

 Turmeric oil 522  - 667   -21.8 to -22.2 [78]  

 
A.A. 400    [79] 

 
CDD 414 ± 16  22.1 ± 1.4 [80] 

  LMWAlg + OligoCS  BSA 134 - 229   [81] 

aOptimization performed; bunloaded particle; cloaded particle; A.A., aminoacid derivatives; CDD, 225 

curcumin dietil disuccinate; *pH 3.0 226 

 227 
2.1.2. Chitosan-Pectin PEC nanoparticles 228 
 229 

Pectin is an anionic hetero-polysaccharide derived from plant cell walls, consisting primarily of 230 
1,4 linked α-D-galactopyranosyl uronic acid residues with 1,2-linked α-L-rhamnopyranose residues 231 
interspersed with varying frequency (Figure 5). Pectin structure presents also certain amount of 232 
neutral sugars (arabinose, galactose, rhamnose, xylose and glucose). A number of the galacturonic 233 
acid residues in pectin are methyl or acetyl esterified. The percentage of galacturonic acid residues 234 
that are esterified is known as degree of esterification (DE). 235 

 236 
Figure 5. Chemical structure of partially acetylated polygalacturonic acid in pectin. 237 

Pectin is hydrophilic, biocompatible and biodegradable with low toxicity. Similarly to alginate, 238 
pectin with low metoxyl content (DE <50%) has the ability to gel in the presence of Ca2+ ions 239 
generating junction zones between chains with an egg-box structure. Pectins with higher DE can also 240 
form gels, providing there are a sufficient number of blocks of non-esterified uronic acid residues per 241 
molecule to allow the formation of a sufficient number of junction zones to form a network. These 242 
properties of pectin have been employed to prepare diverse formulations for applications in drug 243 
delivery. 244 

Galacturonic acid provides pectin a negative charge in solutions with pH higher than 3.5 245 
permitting the formation of polyelectrolyte complexes with chitosan. The strength of the interaction 246 
is dependent on the degree of esterification of the pectin, with pectins of a relatively low DE (36%) 247 
readily forming PECs with CS [82]. PEC formation is also affected by the ratio of pectin to CS and the 248 
pH of the solutions [83].  249 
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CS-pectin PEC nanoparticles can be prepared by the same methods previously described for CS-250 
ALG PEC nanoparticles. Birch and Schiffman prepared nanoparticles by the complex coacervation 251 
technique adding pectin at the appropriate CS-to-pectin ratio to the CS solution. This way they 252 
obtained particles sizes ranging from 560 ± 10 nm to 1000 ± 40 nm. The Z-potential varied from +20 ± 253 
1 mV to +26 ± 1 mV.  When the addition order was reversed the particle size increased from 460 ± 20 254 
to 1110 ± 30 nm and the Z-potential ranged from +19 ± 1 to +28 ± 1 mV [84].   255 

Campino et al. prepared CS-pectin PEC nanoparticles by two different procedures: a) coating, 256 
adding a dispersion of low molecular weight CS NPs previously prepared by ionotropic gelation of 257 
CS with TPP to a pectin (from apple and citrus fruit) solution; and b) blending, adding a CS solution 258 
to a solution of pectin and TPP. Nanoparticles were charged with ovalbumin (OVA) and bovine 259 
serum albumin (BSA) as model proteins. They pointed out that the blending technique can be 260 
advantageous because being a one-step preparation, is highly desirable for a scale-up process. 261 
Additionally, it brings the possibility to tune the size and Z-potential by properly selecting the ratios 262 
of CS, pectin and TPP. However, they found that there was a decrease of the loading of BSA and OVA 263 
in the case of the blending technique due to the electrostatic interactions of CS with the protein and 264 
pectin, both negatively charged. Therefore, they concluded that the selected technique would depend 265 
on the physico-chemical characteristics of the polymer and protein involved [85]. Some of the 266 
parameters informed in their work are listed in Table 2, together with some selected examples of CS-267 
pectin preparation procedures reported by other authors. 268 

 269 

Table 2. Chitosan-Pectin PEC nanoparticles. The intervals shown generally indicate extreme values 270 

obtained with different preparation conditions.   271 

Procedure Active agent Particle size, nm  Ζ-potential, mV Ref. 

Complex coacervation 

 Pectin added into CS 

     

Insulin  441.3 ± 31.6a 

  580 – 896b 

*650.8 ± 86.4b   

 

    +62.3 ± 2.6b 

    +32.7 ± 3.8b 

[86] 

Curcumin   10-59 (dry NPs)  [87] 

Insulin  1175 – 2618a 

 964 – 2510b 

 -22.5 to +35.0a 

 -22.4 to +33.2b 

[22] 

Nisin  301 - 712b  [88] 

None  560 - 1000 +20 to +26 [84] 

 CS added into Pectin None  460 - 1110 +19 to +28 [84] 

Combined ionotropic gelation and complex coacervation   

 Pectin+TPP added into CS   Insulin  375 -7239  +10.6 to +32.7 [86]  

 CS added into Pectin+TPP OVA  250 -750a  −20 to −29a [85] 

 CS +TPP added into Pectin BSA  200 – 400a 

 700 - 1250b 

    -15 to -45a 

     -38b 

[85] 

Ionotropic pregelation of pectin plus PEC coating with CS 

 CS added into Pectin+CaCl2  OVA    419a 

 302 – 409b  

-30.4a 

 −21.9 to −26.0b 

[89] 

aunloaded particle; bloaded particle *The CS solution contained Ca2+ions  272 
 273 
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2.1.3. Chitosan-Dextran sulfate PEC nanoparticles 274 
 275 
Dextran sulfate (DS) is a biodegradable and biocompatible negatively charged branched 276 

polyanion able to interact with positively charged polymers. It is a high-molecular weight, branched-277 
chain polysaccharide polymer of D-glucose containing 17-20% sulfur. The straight chain consists of 278 
approximately 95% α-(1,6) glycosidic linkages. The remaining α- (1,3) linkages account for the 279 
branching of dextran (Figure 6). 280 

 281 

Figure 6. The chemical structure of dextran sulfate. 282 

DS has been used as an anticoagulant and has found applications in drug delivery. For instance, 283 
it was used to mask the positive charge of doxorubicin (DOX) before addition to a CS solution and 284 
nanoparticle formation by ionotropic gelation with TPP. This modification doubled DOX 285 
encapsulation efficiency relative to controls and enabled reaching loadings up to 4.0 wt-% DOX [90].   286 

CS-DS PEC nanoparticles are almost invariably prepared by simple coacervation. The factors 287 
affecting the mechanism of formation of these nanoparticles: the mode of addition, charge mixing 288 
ratio, pH and ionic strength of the media and the molar mass of both components have been 289 
thoroughly revised by Schatz et al. [91, 92]. 290 

There are numerous reports on the preparation of CS-DS PEC nanoparticles with potential 291 
application for delivery of proteins (insulin, BSA) growth factors [93-95], immunoglobulin-A [96] and 292 
vaccines [97, 98]. Recently fluorescein isothiocyanate loaded CS-DS nanoparticles (FCS-DS NPs; mean 293 
size 400 nm and surface charge +48 mV) were applied topically to the porcine ocular surface where it 294 
was retained for more than 4 h. After 6 h of topical FCS-DS NPs, particles accumulated in the corneal 295 
epithelium but were not found in the corneal stroma. However, when epithelium was removed, FCS-296 
DS NPs penetrated the stroma. These results indicate that FCS-DS NPs are potentially useful for 297 
drug/gene delivery to the ocular surface and to stroma when epithelium is damaged [99]. 298 

Most of nanoparticles formulations reported describe processing factors affecting the 299 
characteristics of CS–DS nanoparticles, including their physicochemical properties as well as the 300 
optimal conditions for their preparation. Some examples are listed in Table 3.  301 

Table 3. Chitosan-Dextran sulfate PEC nanoparticles. The intervals shown generally indicate extreme 302 

values obtained with different preparation conditions. 303 

Procedure Active agent Particle size, nm  Ζ-potential, mV Ref. 

Complex coacervation 

DS added into CS  

BSA 

Rhodamine 6G 

  >244a 

293 - 1138b 

245 - 3521b 

 -47.1 to -60a 

 -26.6 to +56.4b 

 -31.0 to +34.0b 

[100]  

CS added into DS Insulin 489 - 665b   -0.4 to -21.5b [101]  

  527 - 1577b  -20.6 to +11.5b [102]  

 Amphotericin B 616 - 891a     [94] 
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644 – 1040b    -27 to -37 

 REPIFERMIN®    239 

   306 

-18.4 

     -15.5 

[95] 

Mixing with agitation  Hydralazine 294,2 ± 57a 

338,1 ± 4,5b 

   -7.16 ± 3.69a 

-4.84 ± 1.38b 

[103] 

 aunloaded particle; bloaded particle  304 

PECs of soluble chitosan derivatives with DS have also been formulated to overcome the 305 

insolubility of chitosan in neutral and basic media. Glycol chitosan (GC) and DS solutions were mixed 306 

together to prepare GC-DS PEC nanoparticles loaded the antifolic agent methotrexate (MTX) aiming 307 

to increase its efficacy for the treatment of brain tumours.  The encapsulation efficiency was as high 308 

as 87%.  In vitro experiments indicated the potentiality for the controlled delivery of the drug to the 309 

brain [104].  310 

PEC nanoparticles of water soluble N,N,N-Trimethyl chitosan (TMC) and DS were prepared by 311 

adding DS solutions to TMC solutions at desired pH values (5, 8, 10, and 12). The optimized 312 

formulation (particle size, 255.2 ± 12.42 nm; Z-potential −3.9 ± 1.22 mV; drug load, 81.6 ± 2.21 %; 313 

encapsulation efficiency, 87.89 ± 0.57 %) was attained in alkaline conditions (pH 10), where the more 314 

stable PECs were formed. The release efficiency and ex-vivo nasal toxicity evaluation were assessed 315 

after loading a model drug, ropinirole hydrochloride into optimized PEC formulation (particle size, 316 

255.2 ± 12.42 nm; Z-potential, −3.9 ± 1.22 mV; DL, 81.6 ± 2.21 %; EE, 87.89 ± 0.57 %). Data indicated 317 

that the PECs fabricated at alkaline pH presents a reliable formulation for nasal administration and 318 

is biologically compatible with the mucosal surface, being potentially applicable as carriers for nose 319 

to brain drug delivery [105]. 320 

  321 
2.1.4. Chitosan-Carboxymethyl chitosan PEC nanoparticles 322 
 323 

O-Carboxymethyl chitosan (CMCS) is a water soluble amphiphilic derivative of chitosan that 324 
conserves the biological properties of native chitosan with increased antibacterial activity [106]. The 325 
structural unit of CMCS is shown in Figure 7. CMCS has found applications in biomedicine, 326 
especially in drug delivery where CMCS nanoparticles prepared by ionotropic gelation have 327 
demonstrated promising for drug [107, 108] and antigen delivery [109]. 328 

 329 
Figure 7. The structural unit of carboxymethyl chitosan. 330 

The pKa of CMCS is 2.0-4.0, so that at pH above 4 it is negatively charged and forms 331 
polyelectrolytes complexes with chitosan [110]. CS-CMCS PEC nanoparticles were produced by 332 
complex coacervation. Wang et al. developed insulin-loaded nanogels with opposite zeta potential 333 
by adding a previously prepared insulin-CMCS solution into a CS solution (particle size 260 ± 4.47 334 
nm, Z-potential +17.2 ± 0.49 mV for insulin:CMCS/CS-NGs(+)) or inversing the order of addition 335 
(particle size 243 ± 3.85 nm, Z-potential −15.9 ± 0.45 for insulin:CMCS/CS-NGs(-)), respectively. 336 
Encapsulation efficiencies around 75 % and loading capacities near 30 % were attained in both cases. 337 
They observed that negatively charged particles exhibited enhanced adhesion and permeation 338 
indicating the better performance of insulin:CMCS/CS-NGs(-) for blood glucose management than 339 
positive ones [111, 112].  340 
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CS-CMCS nanoparticles have also been prepared by combining ionotropic gelation and complex 341 
coacervation. CMCS and TPP at varying concentrations were blended with a previously prepared 342 
mixture of DOX and CS solutions. Nanoparticles within the range of 248 to 363 nm size and -27.6 to 343 
-42.2 mV with encapsulation efficiencies and loading capacities around 70.5 and 20 % respectively 344 
were obtained depending on the preparation conditions. Results from in vivo experiments indicated 345 
CS/CMCS-NPs were efficient and safe for oral delivery of DOX [113]. After some modification of the 346 
preparation procedure, positively charged CS/CMCS-NPs were obtained. Now the DOX aqueous 347 
solution was premixed with CMCS and subsequently, CS solution and TPP were blended with the 348 
mixture under agitation. Nanoparticles sizes were between 197 and 443 nm and the Z-potential 349 
varied from +12.2 to +37.6 mV, depending on the pH of the media. In vivo studies revealed that 350 
CS/CMCS-NGs had a high transport capacity by paracellular and transcellular pathways, which 351 
guaranteed excellent absorption of encapsulated DOX throughout the entire small intestine [114]. 352 
 353 
2.1.5. Chitosan- Chondroitin sulfate PEC nanoparticles  354 
  355 

Chitosan-chondroitin sulfate PEC NPs have been prepared by complex coacervation and the 356 
influence of the preparation conditions on the properties of nanoparticles was reported [115, 116]. 357 
Chondroitin sulphate is a linear glycosaminoglycan (GAG) composed of alternating D-glucuronate 358 
and N-acetyl-d-galactosamine-4- or 6-sulfate β(1,3) linked (Figure 8). It is found in cartilage, bone and 359 
connective mammalian tissue. Chondroitin sulphate (CHOS) has shown in vivo anti-inflammatory 360 
properties in animal models and in vitro regulation of chondrocyte metabolism, such as stimulation 361 
of proteoglycan and collagen synthesis, and inhibition of the production of cytokines involved in 362 
cartilage degradation [117]. Its biological properties have stimulated the preparation and evaluation 363 
of CS-CHOS nanoparticles for drug/gen delivery [118, 119] and delivery of platelet lysates [120]. CS-364 
CHOS nanoparticles have been suggested as a novel delivery system for the transport of hydrophilic 365 
macromolecules [121]. 366 

 367 

Figure 8. Chemical structure of chondroitin sulfate. 368 

2.1.6. Chitosan-Heparin and Chitosan-Hyaluronan PEC nanoparticles 369 
 370 

CS PECs with other two glycosaminoglycans, hyaluronic acid (hyaluronan, HA) and heparin 371 
(HEP) have also been used to prepare nanoparticles. HA is a high molecular weight linear 372 
polysaccharide composed of β(1, 3) linked D-glucuronate and N-acetyl-D-glucosamine units. It is 373 
present in all soft tissues of higher organisms and in particularly high concentrations in the synovial 374 
fluid and vitreous humor of the eye. It plays a vital role in many biological processes such as tissue 375 
hydration, proteoglycan organization, cell differentiation, angiogenesis, and acts as a protective 376 
coating around the cell membrane. For its part HEP has a more heterogeneous composition, but its 377 
main disaccharide unit is composed of D-glucuronate-2-sulfate (or iduronate-2-sulfate) and N-sulfo-378 
D-glucosamine-6-sulfate α(1,3) linked, which provides it with the highest negative charge density of 379 
any known biological macromolecule (Figure 9). HEP can be found primarily on the cell surface or 380 
in the extracellular matrix, attached to a protein core. Heparin is a well-known anticoagulant drug 381 
and is extensively used in medical practice [122]. The important bioactivity of both GAGs has 382 
stimulated the preparation of CS-HA and CS-HEP PEC nanoparticles for their high potential of 383 
applications as delivery systems for these macromolecules, particularly in tissue engineering [59, 123-384 
125]. 385 
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 386 

Figure 9. Chemical structures of (A) Hyaluronic acid and (B) Heparin 387 

2.1.7. Chitosan and γ-Polyglutamic acid PEC nanoparticles 388 
 389 

γ-Poly(glutamic acid) (γ-PGA) is an anionic, natural polypeptide made of D- and L-glutamic 390 
acid units, joined together by amide linkages between the α-amino and γ-carboxylic acid groups 391 
(Figure 10). PEC formation between CS and γ-PGA has been evaluated in terms of physical and 392 
chemical properties. In experimental trials, it has shown wound-healing efficacy with potential 393 
application as wound dressing material [126]. 394 

 395 

Figure 10. Chemical structures of (A) γ-Polyglutamic acid and (B) Poly(acrylic acid) 396 

PEC nanoparticles of γ–PGA and low molecular weight CS were obtained by complex 397 
coacervation by Lee et al. by adding an aqueous γ–PGA solution at pH 7.4 to a low molecular weight 398 
CS solution at different pH values. The NPs prepared at pH 6.0 and a CS/γ -PGA ratio of 4.5:1.0 (w/w) 399 
had a zeta potential of +32.1 ± 1.6 mV with a particle size of 145.6 ± 1.9 nm. Insulin loaded NPs were 400 
obtained by including insulin in the γ–PGA solution before its addition to the CS solution. 401 
Nanoparticles with mean sizes around 195 nm and Z-potential of +30 mV were obtained when the 402 
amount of insulin added was ≥ 84 μg/ml. The maximum loading efficiency and loading content were 403 
55.1 and 14.1%, respectively. Animal studies indicated that the insulin loaded NPs enhanced insulin 404 
adsorption and reduced the blood glucose level in diabetic rats [127]. Hajdu et al. [128] reported the 405 
effect of pH, polymer ratios, concentrations, and orders of addition on the physicochemical properties 406 
of NPs 407 

The same procedure was used to prepare exendin-4 loaded NPs, only that in this case the CS 408 
solution contained distinct metal ions (Cu2+, Fe2+, Zn2+ or Fe3+) to enhance the drug loading efficiency. 409 
Loading efficiency of 60.9 ± 2.0% was achieved for exendin-4 loaded NPs formed with Fe3+. Their 410 
particle size was 260.6 ± 26.4 nm [129]. 411 

Nanoparticles of γ–PGA and CS have also been prepared by the combination of ionotropic 412 
gelation and complex coacervation. To this end, the insulin and γ-PGA solutions were premixed. 413 
Afterwards, TPP and MgSO4 solutions were mixed together and added to the insulin and γ-PGA 414 
mixture. The resultant solution was then added by flush mixing with a pipette tip into the aqueous 415 
CS solution and the nanoparticles were formed. These NPs also resulted a promising carrier for 416 
improved trans mucosal delivery of insulin in the small intestine [130, 131]. 417 
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More recently Pereira et al. used the pregelation method to prepare CS/γ-PGA PEC nanoparticles 418 
to be used as a nanocarrier system for the plant growth regulator gibberellic acid (GA3). To this end, 419 
a CaCl2 solution was added to a solution of γ-PGA at pH 4.9. Then, a CS solution at pH 4.5 was added 420 
to the γ-PGA/CaCl2 solution under stirring, using a peristaltic pump. To prepare GA3 loaded NPs, 421 
the plant hormone was added to the γ-PGA/CaCl2 before addition of the CS solution. The unloaded 422 
γ-PGA/CS nanoparticles presented an average size of 117 ± 9 nm and Z-potential of −29 ± 0.5 mV at 423 
pH 4.4. The corresponding values for the GA3 loaded γ-PGA/CS nanoparticles were 134 ± 9 nm and 424 
0.35 ± 0.05, and −27.8 ± 0.5 mV at pH 4.4, respectively. The encapsulation efficiency of GA3 the 425 
particles was 61%. In laboratory experiments using Phaseolus vulgaris seeds, the γ-PGA/CS-GA3 NPs 426 
showed high biological activity, with enhanced rate of germination when compared with the free 427 
hormone. The encapsulated GA3 was also more efficient than the free GA3 in the increase of leaf area 428 
and the induction of root development, demonstrating the considerable potential of this system for 429 
use in the field [132]. 430 

 431 
2.1.8. Chitosan-Poly(acrylic acid) PEC nanoparticles 432 
 433 

Poly(acrylic acid) (PAA) is a biocompatible linear anionic polyelectrolyte that readily reacts with 434 
CS generating polyelectrolyte complexes by the electrostatic interaction between its COO- groups and 435 
the NH3+ groups of chitosan [32, 37]. 436 

Hu et al. prepared CS-PAA PEC nanoparticles by template polymerization of acrylic acid in 437 
chitosan solution using chitosan as the template. Positively charged NPs with mean size and Z-438 
potential of 206 ± 22 nm and +25.3 ± 3.2 mV, respectively were obtained with 70 % yield.  These NPs 439 
were loaded with silk peptide powder (SP) with an encapsulation efficiency of 82 %. Release 440 
experiments showed a marked pH dependence of the peptide release profile.  They also obtained 441 
CS-PAA PEC NPs by complex coacervation dropping the CS solution into the solution of PAA and 442 
vice versa, to study the effect of reversing the order of addition on the resulting nanoparticles. When 443 
CS was added to PAA, negatively charged particles were obtained with mean size 436 ± 78 nm and a 444 
Z-potential of -22.2 ± 3.6 mV. On the other hand, adding PAA solution into CS solution produced 445 
positively charged NPs with mean size and Z-potential of 358 ± 46 nm and +47.2 ± 2.8 mV, 446 
respectively. The order of addition also influenced the microstructure of NPs. Transmission electron 447 
micrographs of dry nanoparticles showed that NPs obtained by adding the CS solution over the 448 
solution of PAA had a hollow core, in contrast with nanoparticles obtained with the reverse addition 449 
method, which presented a compact core [133]. In a further study it was found that the nanoparticle 450 
size was affected by the molecular weight of CS and PAA, the ratio of amino group to carboxyl group 451 
(na/nc) and the incubation temperature [134]. 452 

Davidenko et al. examined the influence of some experimental parameters such as the pH of the 453 
polyelectrolyte solutions, their concentrations and the purification procedure on the dimensions of 454 
nanoparticles and their size distribution. NPs were formed by dropwise addition of an aqueous 455 
solution of PAA into the corresponding volume of an aqueous solution of CS of a determined 456 
concentration with high-speed magnetic stirring (ca. 1300 rpm). The ratio of primary amino groups 457 
in CS to carboxylic groups in PAA was fixed at 1.25. They showed that at concentrations below 0.1% 458 
it was possible to obtain nanometric particle suspensions. The most convenient pH values for 459 
obtaining CHI–PAA NPs with an optimum yield (nearly 90 %) are 4.5–5.5 for CS and 3.2 for PAA. 460 
With these conditions, the size of NPs was 0.477 ± 0.008 nm. Particle sizes of approximately 130-140 461 
nm were obtained at other pH values, but with yields lower than 45 %. It was found that purification 462 
by dialysis can provoke a drastic change both in the distribution profile and in the particle size of the 463 
complex. To avoid this the pH of the NPs dispersion should be as near as possible to the pH of the 464 
outer dialysis solution [135]. CS-PAA PEC nanoparticles obtained by this procedure were loaded 465 
with 5-fluoruracil (5-Fu) and the release profiles at pH 2 and 7.4 were obtained. At pH 2 almost 100% 466 
release was achieved after 2 hours, whereas at pH 7,4 only 65% of the loaded drug was released after 467 
9 hours. At this pH constant release was observed after the first 90 minutes [136]. 468 
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The complex coacervation procedure has also been used for preparing CS-PAA PECs nanofiber 469 
structures with fibre average diameters of 210 nm to 910 nm and Z-potentials of 39.1 ± 1.3 mV to -21.5 470 
± 3.1 mV, respectively. These parameters vary the preparation conditions (volume ratio of CS to PAA, 471 
final suspension pH, concentration and molecular weight of CS, incubation time and reaction 472 
temperature). Nanofibers can bind plasmid DNA very well and show potential to enhance gene 473 
transfer in tissue engineering applications [137, 138]. 474 

 475 
2.1.8. Chitosan PEC nanoparticles with other polyanions 476 
 477 

The preparation of CS PEC nanoparticles for the delivery of drug and therapeutic proteins is 478 
continuously increasing. They include other polyanions of natural origin, like carrageenan [139, 140], 479 
carboxymethyl gum kondagogu [141], and gum arabic [142], as well as synthetic ones. Examples of 480 
the latter are poly(malic acid) [143], poly(2-acrylamido-2-methylpropanesulfonic acid) [144], and 481 
polystyrene-block-poly(acrylic acid) [145]. The methods used for the preparation of these 482 
nanoparticles are based on the general techniques already described and therefore will not be 483 
discussed here. 484 

3. Hydrophobic modification of Chitosan and derivatives for self-assembly 485 

Hydrophobic modification of chitosan and chitosan derivatives allows achieving a proper 486 
hydrophilic/hydrophobic balance to promote self-assembly in aqueous or polar medium. This 487 
modification is usually achieved by grafting hydrophobic moieties to the polysaccharide chains. The 488 
hydrophobically modified chitosan chains self-aggregate in hydrophilic media as illustrated in Figure 489 
11. The following sections are devoted to illustration the state of the art of this method of chitosan 490 
and chitosan derivatives NPs preparation. 491 

 492 

Figure 11. Schematic representation of hydrophobically modified chitosan self-assembling. The 493 
aggregates can entrap hydrophobic drugs in their hydrophobic core. 494 

3.1 Chitosan and Chitosan Oligosaccharides hydrophobically modified. 495 

 496 

Deoxycholic acid-modified chitosan self-aggregates have been proposed as a gene delivery 497 
system for DNA transfection in cells [146, 147]. This system is based on complex formation between 498 
plasmid DNA and positively charged chitosan self-aggregates, which produces micelle-like 499 
nanoparticles with controlled dimensions for effective gene delivery to cells. The hydrophobic 500 
modification of chitosan was accomplished with deoxycholic acid mediated by carbodiimide 501 
coupling (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, EDC) for amide bond formation. Self-502 
aggregates obtained by varying the chitosan/deoxycholic acid ratio (degree of substitution of 503 
chitosan, DS from 0.02 to 0.1) and the molecular weight of reacting CS (molecular weight, MW from 504 
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5 to 200 kDa). They exhibited hydrodynamic sizes ranging from 132 to 300 nm. For CS molecular 505 
weights higher than 40 kDa a transition from a bamboo-like cylindrical structure to a poorly 506 
organized bird nest-like structure of self-aggregates was proposed. The DNA-CS complex formation 507 
had strong dependency on the size and structure of CS self-aggregates and significantly influenced 508 
the gene transfection efficiency (up to a factor of 10) [147].  509 

Similarly, Wang et al. prepared cholesterol-modified chitosan self-aggregates with succinyl 510 
linkages mediated by EDC coupling amidation of CS, attaining a DS of 0.073 and hydrodynamic 511 
diameters of 417.2 nm. Epirubicin was used as a model anticancer drug. It was physically entrapped 512 
into the cholesterol-CS self-aggregates forming almost spherical nanoparticles of 338.2 to 472.9 nm 513 
with the epirubicin loading content increasing from ca. 8 to 14%. Controlled release of epirubicin 514 
from the loaded nanoparticles was slow, reaching a total release of 24.9% in 48 h [148].  515 

CS-cholesterol self-aggregates were also synthesized with another approach. Prior 516 
phthaloylation of CS allowed achieving the esterification of the primary –OH group at C6 with 517 
EDC/N-Hydroxysuccinimide pre-activated cholesterol succinate. Later, CS deprotection afforded 6-518 
O-cholesterol-modified chitosans (DS of 0.017, 0.04 and 0.059) which self-assembled forming 519 
nanoparticles of 100-240 nm size. These NPs were capable to physically entrap all-trans retinoic acid 520 
with different drug loading contents, encapsulation efficiencies and particle sizes. Sustained release 521 
of all-trans retinoic acid extended over 72 h [149]. 522 

Chitosan oligosaccharides (low molecular weight CS produced by depolymerization) are 523 
usually preferred over high molecular weight CS for pharmaceutical applications [150]. Thus, Hu et 524 
al. prepared a CS oligosaccharide (ca. 19 kDa weight average molecular weight) hydrophobically 525 
modified with stearic acid and encapsulated paclitaxel or doxorubicin for their controlled delivery 526 
[150-153]. CS oligosaccharide (COS) modification was conducted with stearic acid by an EDC 527 
mediated amide linkage reaction achieving COS substitution degrees of 0.035, 0.05, 0.12, 0.255 and 528 
0.42 [150-153]. Further glutaraldehyde cross-linking of COS micelle shells prior and after paclitaxel 529 
physical entrapping allowed achieving drug loading contents of up to 94% and to control the micelle 530 
size and paclitaxel release rate [150]. It was observed a reduction of micelle diameters from 322.2 nm 531 
to 272.0 nm after glutaraldehyde cross-linking for the blank COS-stearic acid particles and from 355.0 532 
to 305.3 nm for the doxorubicin-loaded COS-stearic acid particles. Zeta potential of particles was 533 
reduced from +57.1 to +34.2 mV and from +69.1 to +51.8 mV, respectively [151]. Shell cross-linking of 534 
doxorubicin-loaded COS-stearic acid micelles also showed enhanced cytotoxicity to A549, LLC and 535 
SKOV3 cancer cell lines [151].  536 

To reduce the observed initial burst release during dilution of doxorubicin-loaded COS-stearic 537 
acid micelles by body fluid, stearic acid was also physically encapsulated into the micelle core [152]. 538 
Hydrodynamic diameter of stearic acid-loaded COS-stearic acid micelles increased significantly from 539 
27.4 nm up to ca. 60 nm for a 10 wt-% of stearic acid/COS-g-stearic acid micelles, while zeta potential 540 
decreased from +51.7 mV to ca. +35 mV [152]. The incorporation of stearic acid physically entrapped 541 
in the core of doxorubicin-loaded COS-g-stearic acid micelle significantly reduced the drug release 542 
rate.  543 

Hu et al. also studied the dual functionalization of COS with stearic acid and doxorubicin cis-544 
aconitate [153]. To this end, previously prepared COS-stearic acid conjugate (DS in stearic acid of ca. 545 
0.06) was further reacted with doxorubicin cis-aconitate by EDC mediated amidation. This afforded 546 
COS conjugates with doxorubicin contents of 3, 6 and 10%. DOX-g-COS-g-stearic acid self-aggregated 547 
in aqueous medium giving micelle sizes of 40.1, 70.7 and 105.8 nm respectively, and zeta potential 548 
values of +43.7, +40.2 and +32.0 mV, respectively [153].  549 

Chitosan has also been hydrophobically modified with different acyl groups mediated by amide 550 
linkage formation with different anhydrides and acyl chlorides such as DL-Lactide (PLA unit 551 
modifying the CS), propionic and hexanoic anhydrides, nonaoyl chloride, lauroyl chloride, 552 
pentadecanoyl chloride, stearoyl chloride [154, 155]. It was observed that micelle size of blank CS-553 
PLA increased with the increase of substitution degree with PLA units or with the increase of side 554 
chain length for the different acyl groups (propionate, hexanoate, nonanoate, etc.) while the zeta 555 
potential changed from +26.0 mV for propionyl chitosan to +10.2 mV for hexanoyl chitosan and 556 
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remained ca. +13 to +15 mV for the other acyl chitosans. Drug loading content and drug release rate 557 
were also influenced by the CS substitution degree or the chain length of the acyl substituents of CS. 558 
Rifampin loading content increased and drug release rate decreased with the increase of CS 559 
substitution with PLA units [154]. Vitamin C loading content increased and drug release rate 560 
decreased with the chain length of the acyl group modifying CS [155]. 561 

Water soluble chitosan N,O6-acetyl chitosan was prepared for future hydrophobic modification 562 
with different steroids and DL-α-tocopherol for the sustained release of agrochemicals, testosterone 563 
and vitamin E [156]. Drug content achieved values between 11.8 and 56.4 wt-%. The formed CS-564 
steroid and CS-tocopherol micelles showed hydrodynamic sizes of ca. 200 to 360 nm in phosphate 565 
buffered saline solution with zeta potential values varying from +7 to +22.7 mV in bi-distilled water. 566 
Sustained releases were achieved for the steroids and tocopherol from the CS particles and biological 567 
activity of released drug appeared unaffected [156].   568 

Amphiphilic block or graft copolymers of phthaloyl chitosan with different materials as 569 
poly(ethylene glycol), N-vinyl-2-pyrrolidone and ε-caprolactone are materials with a wide range of 570 
pharmaceutical applications [157-163]. For example, N-phthaloylchitosan-g-mPEG micelles have 571 
been physically loaded with camptothecin and all-trans retinoic acid for their controlled release [157-572 
159]. These micelles exerted a protective effect on the loaded drug from hydrolysis (camptothecin, 573 
which is sensitive to hydrolysis of the lactone group) or photodegradation (all-trans retinoic acid). 574 
Furthermore, continuous release without initial burst of prednisone acetate from N-575 
phthaloylchitosan-g-polyvinylpyrrolidone micelles was achieved [160].  576 

There are also various reports showing that chitosan-graft-polycaprolactone nanomicelles have 577 
been physically loaded with 7-ethyl-10-hydroxy-camptothecin, BSA, paclitaxel and 5-fluorouracil 578 
[161-164]. 579 

Another amphiphilic copolymer of CS was synthesized from N-acetyl histidine as the 580 
hydrophobic segment and arginine-grafted chitosan by EDC carbodiimide-mediated coupling for 581 
controlled delivery of doxorubicin [165]. The key finding was the effectivity of doxorubicin loaded 582 
N-acetyl histidine and arginine-grafted CS for suppression of both sensitive and resistant human 583 
breast tumor cell line (MCF-7) in a dose- and time-dependent pattern.  584 

More details of prepared chitosan and chitosan oligosaccharide hydrophobically modified 585 
conjugates can be found in Table 4. 586 

Table 4. Chitosan and Chitosan Oligosaccharides hydrophobically modified. 587 

Hydrophobic moiety Active agent Particle size, nm Z-potential, mV Ref. 

deoxycholic acid 

 

 

DNA 

 

 

162 ± 18a 

~ 300b 

130 – 300a 

 

 

 

[146] 

 

[147] 

cholesterol Epirubicin 417 ± 18a 

338 – 473b 

            [148] 

6-O-cholesterol All-trans 

retinoic acid  

100 – 240a 

192 – 222b 

+24.5 to +25.9a [149] 

 

stearyl Paclitaxel 

 

28.1 – 74.6a 

35.8 – 175.1b 

 +39.0 to +53.2a 

 +44.0 to +58.7b 

[150] 

 

 Doxorubicin 272 – 322a 

305 – 355b 

27.4 ± 2.4a 

20.4 ± 1.1b 

 +34.2 to +57.1a 

 +51.8 to +69.1b 

  +51.7 ± 3.0a 

  +53.1 ± 14.4b 

[151] 

 

[152] 

stearyl+doxorubicin Doxorubicin 40.1 – 105.8b  +32.0 to +43.7b [153] 

Acyl Rifampin 

 

154 – 181a 

163 – 210b 

 

 

[154] 
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 Vitamin C 444 – 487a 

216 – 288b 

 +10.2 to +28.9a 

+5.9 to +18.4b 

[155] 

N,O6-acetyl+steroid 

N,O6-acetyl+tocopherol 

Steroids 

Vitamin E 

197 – 358b 

275 ± 5b 

   +7 to +22.7b 

+14.9 ± 0.7b 

[156] 

phthaloyl Camptothecin 

 

 

~ 170a 

~ 200 – 267b  

~ 50 – 100a 

~ 100 – 250b 

 [157] 

 

[158] 

 

 All-trans 

retinoic acid 

Prednisone 

acetate 

~ 50 – 100a 

~ 80 – 160b 

89.8a 

143.3b 

 [159] 

  

[160] 

polycaprolactone, 

(Chitosan-grafted) 

7-Ethyl-10-

hydroxy-

camptothecin 

 47 – 113a 

 63 – 152b 

 

 +26.7 to +50.8a 

+25.6 to +48.8b 

 

[161] 

 

 BSA 

 

168.44b  

200.7b 

435 ± 25a 

 [162] 

 

 

 Paclitaxel 

 

408 – 529b 

61.4 – 108.6a 

 

+27.5 ± 1.1a 

+30.9 to +33.3b 

 

[163] 

 

 

 5-Fluorouracil 67.9 – 96.7b +18.9 to +43.1b [164] 

N-acetyl histidine  Doxorubicin 218a 

185.3 – 218.3b 

  +40.1 ± 2.8a 

+36.3 to +40.1b 

[165] 

aunloaded particle; bloaded particle; * 5 mg/mL 588 

3.2 Glycol chitosan hydrophobically modified 589 

 590 
The limited water solubility of chitosan and the precipitation of some self-aggregated chitosan 591 

conjugates, restricts its application in medical practice as a drug delivery system. In contrast, glycol 592 
chitosan (GCS) exhibits good water solubility at all pHs, biocompatibility and is widely applied as 593 
hydrophobic drug and gene carrier [166-173]. The structural units of GCS are shown in Figure 12.  594 

 595 
Figure 12. The chemical structure of glycol chitosan. 596 

GCS has been functionalized with cholanic acid, cholesterol, deoxycholic acid, vitamins, 597 
testosterone, doxorubicin and other hydrophobic compounds using mostly an EDC-mediated 598 
coupling reaction to achieve the amidation of CS amine groups with the desired carboxylic acid or 599 
acyl chloride of the hydrophobic substituent. Further physical encapsulation of anticancer drugs or 600 
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bioactive compounds in the core of self-assembled GCS hydrophobically-modified micelles is usually 601 
performed.   602 

Hwang et al. introduced cholanic acid in GCS. The resulting GCS-cholanic acid micelles can be 603 
easily loaded with the anticancer drug docetaxel [166]. Docetaxel loaded GCS-cholanic acid 604 
synthesized spontaneously self-assembled as 350 nm aggregates in aqueous medium. These 605 
docetaxel loaded nanoaggregates showed higher anticancer efficacy during in vivo experiments to 606 
A549 lung cancer cells-bearing mice and reduced the toxicity when compared to the free drug.  607 

The anticancer drug camptothecin has also been encapsulated into self-aggregates of GCS-608 
cholanic acid, with drug loading efficiency above 80% [167]. GCS-cholanic acid micelles protected the 609 
lactone ring of camptothecin from hydrolysis and camptothecin loaded micelles showed significant 610 
antitumor activity towards MDA-MB231 human breast cancer cells implanted in nude mice. 5β-611 
cholanic hydrophobic functionalization of both GCS and polyethylenimine and later mixing of both 612 
modified polymers allowed obtaining self-assembled nanoparticles of ca. 350 nm with zeta potential 613 
of +23.8 mV, for delivery of siRNA in tumor-bearing mice [168]. The siRNA-GCS-polyethylenimine 614 
complex transfected the B16F10 tumor cells, efficiently inhibiting the RFP gene expression of 615 
RFP/B16F10-bearing mice. Thus, GCS-polyethylenimine self-aggregates revealed as promising gene 616 
carrier for cancer treatment [168]. GCS-cholanic acid self-aggregates have also been proposed for 617 
delivery of RGD peptide and indomethacin [169, 170].  618 

Hydrophobic modification of GCS with deoxycholic acid and later physical encapsulation of 619 
palmityl-acylated exendin-4 peptide in formed self-assembled nanogels for long-acting anti-diabetic 620 
inhalation system was studied by Lee et al. [171]. The results achieved were promising, with ca. 72 h 621 
residence of administered anti-diabetic drug (palmityl-acylated exendin-4 peptide) in the lungs, good 622 
hypoglycemic response and acceptable toxicity.  623 

On another approach, the hydrophobic modification of GCS with the drug to be delivered has 624 
been explored. Quiñones et al. synthesized GCS hydrophobically-modified with ergocalciferol 625 
hemisuccinate, tocopherol hemiesters and testosterone 17β-hemisuccinate for controlled release of 626 
vitamin D2, vitamin E and testosterone [172-174]. Substitution degrees of GCS with the studied 627 
vitamins and testosterone achieved a value of 0.039 for vitamin D2, 0.21 to 0.36 for vitamin E and 628 
0.015 for testosterone. The GCS-vitamin and GCS-testosterone conjugates formed self-assembled NPs 629 
in aqueous medium with hydrodynamic sizes from 280 to 500 nm and zeta potential values of +7.7 to 630 
+36.5 mV. Sustained release of covalently linked vitamins and testosterone from the GCS self-631 
aggregates was observed in acidic medium for 3 to 4 days.  632 

The hydrophobic modification of GCS with N,N-diethylnicotinamide-based oligomer allowed a 633 
high paclitaxel loading content with encapsulation efficiency of up to 98% [175]. The hydrodynamic 634 
diameters of blank hydrophobically modified GCS was 313 ± 20 nm in PBS. Paclitaxel loaded 635 
modified GCS particles with a drug loading content of 9.8, 18.9 and 23.9 wt-% exhibited 636 
hydrodynamic sizes of 331 ± 25 nm, 354 ± 23 nm and 363 ± 32 nm respectively. Sustained release of 637 
paclitaxel from the GCS self-aggregates was observed. Overall, anticancer assessment of prepared 638 
paclitaxel loaded GCS particles appears promising in cancer therapy. 639 

Doxorubicin encapsulation in GCS-3-diethylaminopropyl self-aggregates and hydrophobic 640 
functionalization of GCS with doxorubicin was also accomplished for the evaluation of doxorubicin 641 
delivery systems for cancer therapy [176, 177]. The hydrodynamic parameters of GCS-based self-642 
aggregates discussed are summarized in the Table 5. 643 

Table 5. Glycol chitosan hydrophobically modified. 644 

Hydrophobic moiety Active agent Particle size, nm Z-potential, mV Ref. 

Cholanic acid 

 

 

Docetaxel 

Camptothecin 

 

siRNA 

 

350b 

254a 

279 – 328b 

350a 

250b 

 

 

+23.8 ± 0.9a 

+10.0 ± 0.8b 

[166] 

[167] 

 

[168] 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2018                   doi:10.20944/preprints201802.0012.v1

http://dx.doi.org/10.20944/preprints201802.0012.v1


 19 of 33 

 

RGD peptide 224a 

189 – 265b 

[169] 

Cholesterol Indomethacin 228a 

275 – 384b 

 [170] 

Deoxycholic acid Palmityl-acylated 

exendin-4 

~ 52 – 250a  [171] 

Ergocalciferol Vitamin D2 279 ± 7 (PBS) +7.7 ± 0.1  [172] 

DL- -tocopherol Vitamin E 284 – 496 (PBS) +11.7 to +36.5 [173] 

Testosterone Testosterone 332 ± 4 (PBS) +9.7 ± 0.6 [174] 

N,N-diethylnicotinamide- 

based oligomer 

Paclitaxel 313 ± 20a 

331 – 363b 

 [175] 

 

3-Diethylaminopropyl Doxorubicin 102ª -0.9ª [176] 

Doxorubicin Doxorubicin 238ª 

342b 

 [177] 

aunloaded particle; bloaded particle 645 

3.3 Carboxymethyl chitosan hydrophobically modified 646 

 647 
O-Carboxymethyl chitosan, typically named carboxymethyl chitosan (CMCS), has been 648 

hydrophobically modified with oleoyl chloride in pyridine/dichloromethane or with linoleic acid 649 
using an EDC-mediated amide linkage reaction [178-180].  650 

Oleoyl-modified CMCS formed self-aggregates in aqueous medium with average 651 
hydrodynamic diameters that were dependent on the molecular weight of chitosan used to prepare 652 
the CMCS [178, 179]. Hydrodynamic diameters of 157.4 nm (CS with molecular weight of 50 kDa), 653 
161.8 nm (CS with molecular weight of 38 kDa), 274.1 nm (CS with molecular weight of 170 kDa) and 654 
396.7 nm (CS with molecular weight of 820 kDa) have been reported for different oleoyl-modified 655 
CMCS. The zeta potential values observed for blank oleoyl-modified CMCS particles were +15.6 ± 1.1 656 
mV, +17.2 ± 0.9 mV and +19.6 ± 1.4 mV. Rifampicin and microbial antigens were physically entrapped 657 
in the oleoyl-modified CMCS micelles with drug loading efficiency of 20% for rifampicin and ca. 52 658 
to 62.5% for microbial antigens. Sustained release of encapsulated drugs was extended until 40-48 h 659 
[178, 179].  660 

Linoleic acid modified CMCS self-aggregated micelles were loaded with the anticancer drug 661 
adriamycin for sustained release [180]. The average hydrodynamic diameter of blank linoleic-662 
modified CMCS was 417.8 ± 17.8 nm. Adriamycin was slowly released from the micelles for about 3 663 
days. Results are summarized in the Table 6. 664 

Table 6. Carboxymethyl chitosan hydrophobically modified. 665 

Hydrophobic moiety Active agent Particle size, nm Z-potential, mV Ref. 

Oleoyl Rifampicin 

Microbial 

antigen 

 

161.8a 

157.4 – 396.7a 

237.6 – 482.3b 

331.6 – 573.9b 

 

+15.6 to +19.6a 

+14.2 to +17.1b 

+12.8 to +16.3b 

[178] 

[179] 

Acyl Adriamycin 417.8 ± 17.8a  [180] 

aunloaded particle; bloaded particle 666 

3.4 Succinyl chitosan hydrophobically modified 667 

 668 
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Water soluble succinyl chitosans have been prepared by amidation (N-succinyl chitosan) and 669 
esterification (O6-succinyl chitosan) of chitosan by reaction with succinic anhydride (Figure 13).  670 

 671 

 672 
Figure 13. The chemical structure of N-succinyl chitosan (A) and O6-succinyl chitosan (B). 673 

Xiangyang et al. reported the preparation of N-succinyl-N’-octyl chitosan micelles as 674 
doxorubicin carriers for effective anti-tumor activity [181]. Average hydrodynamic sizes of 675 
doxorubicin loaded modified succinyl chitosan (SCS), which was dependent on the amount of octyl 676 
chain and drug loading content, was between 100 to 200 nm. Doxorubicin loaded SCS particles 677 
showed sustained release and more cytotoxic against HepG2, A549, BGC and K562 cancer cell lines 678 
than parent doxorubicin. 679 

In another study on SCS, the interactions between the polymer and BSA in the formed 680 
nanoaggregates are studied using different techniques [182]. The authors concluded that no 681 
significant change on the conformation of BSA occurred during the chain entanglements between the 682 
protein and N-succinyl chitosan. The hydrodynamic sizes of the formed micelles are reported in 683 
Table 7.  684 

The synthesis of O6-succinyl chitosan involves phthaloyl protection of chitosan, reaction with 685 
succinic anhydride and deprotection (removal of phthaloyl groups). Further hydrophobic 686 
modification of free amine groups of O6-succinyl chitosan with tocopherol succinate mediated by an 687 
EDC activated coupling reaction, allowed the preparation of cationic self-assembled SCS 688 
nanoparticles with hydrodynamic diameters of 254 ± 4 nm and zeta potential value of +36.3 ± 0.9 mV 689 
[173]. Sustained release of covalently linked vitamin E (tocopherol) was extended up to 96 h. The 690 
results are shown in Table 7. 691 

Table 7. Succinyl chitosan hidrofobically modified. 692 

Hydrophobic moiety Active agent Particle size, nm Z-potential, mV Ref. 

Octyl Doxorubicin 130.4 – 150.1a 

155.4 – 170.1b 

 [181] 

Acyl BSA ~ 50 – 100a 

~ 100 – 200b 

 [182] 

DL-α-tocopherol Vitamin E 254 ± 4 +36.3 ± 0.9 [173] 

aunloaded particle; bloaded particle 693 

3.5 Trimethyl chitosan hydrophobically modified 694 

 695 

N,N,N-Trimethyl chitosan (TMC) is a water soluble derivative of chitosan prepared by 696 
exhaustive N-methylation of some free amine groups of CS using iodomethane.  697 

TMC has been hydrophobically modified with octyl, decanoyl, lauryl, lactose and palmitoyl 698 
substituents for hydroxycamptothecin and harmine encapsulation in the hydrophobic core [183-85]. 699 
N-octyl-N-trimethyl chitosan and N-lauryl-N-trimethyl chitosan self-assembled in aqueous medium 700 
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as micelles of 23.5 nm and 20.8 nm, while N-decanyl-N-trimethyl chitosan formed micelles with 701 
hydrodynamic diameter of 277.2 nm.  702 

Hydroxycamptothecin loaded N-alkyl-N-trimethyl chitosan micelles showed sustained release 703 
of the anticancer drug with improved pharmacokinetic properties and stability of the camptothecin 704 
lactone ring in vivo [183]. On the other hand, harmine loaded hydrophobically modified TMC 705 
released a 65.3% of encapsulated drug in 3 days at pH 7.4 [184]. 706 

Mi et al. investigated the preparation of self-assembled NPs by TMC and poly(γ-glutamic acid) 707 
for oral delivery of insulin [186]. The hydrodynamic diameters and zeta potential values of blank and 708 
insulin loaded TMC/poly(γ-glutamic acid) NPs are presented in Table 8. 709 

Table 8. Trimethyl chitosan hydrophobically modified. 710 

Hydrophobic moiety Active agent Particle size, nm Z-potential, mV Ref. 

Alkyl Hydroxy-

camptothecin 

20.8 – 277.2a 

26.0 – 273.1b 

 [183] 

Palmitoyl 

 

Harmine 193.4 ± 3.1b +26.67b [184] 

[185] 

Acyl Peptide drugs 101.3 – 106.3a 

522.4 ± 5.9b* 

+30.6 to +36.2a 

+14.2 ± 0.6b* 

[186] 

aunloaded particle; bloaded particle; *pH 7.4 711 

3.6 Other chitosan derivatives hydrophobically modified 712 

 713 

N-octyl-O-sulfate chitosan (NOSC) micelles have been prepared from chitosan for the sustained 714 
release of physically entrapped paclitaxel for cancer therapy [187-189]. Paclitaxel loaded N-octyl-O-715 
sulfate chitosan micelles showed hydrodynamic diameters of ca. 200 nm and zeta potential values of 716 
ca. -30 mV [187, 188]. On the other hand, the additional modification of N-octyl-O-sulfate chitosan 717 
with polyethylene glycol monomethyl ether, reduced the hydrodynamic sizes of paclitaxel loaded 718 
NOSC until ca. 100 nm [189]. The anticancer drug loaded NPs exhibited reduced toxicity and 719 
improved bioavailability of encapsulated paclitaxel [187-189].  720 

Pedro et al. synthesized N-dodecyl-N’-glycidyl(chitosan) for delivery of quercetin [190]. The 721 
hydrodynamic parameters of quercetin loaded hydrophobically modified CS micelles were 722 
measured by dynamic light scattering showing sizes from 140 to 260 nm and zeta potential values 723 
from +18.7 to +30.4 mV at pH 7.4. At pH 5.0 the sizes ranged from 150 to 300 nm and the zeta potential 724 
values varied from +14.1 to +29.9 mV, showing both parameters dependence on sample concentration 725 
at both pHs. pH was also found to play a key role on the quercetin release from the micelles. The 726 
results are summarized in Table 9. 727 

Table 9. Other chitosan derivatives. 728 

Hydrophobic moiety Active agent Particle size, nm Z-potential, mV Ref. 

Octyl Paclitaxel 

 

 ~ 200b  [187] 

200.8b -31.1a 

-28.8b 

[188] 

104.3 – 133.4b  [189] 

Acyl Quercetin 140 – 300a +14.1 to +30.4a [190] 

aunloaded particle; bloaded particle 729 

Conclusions 730 

A considerable amount of research is going on the preparation of chitosan nanoparticles by self-731 
assembling for applications in drug delivery. In particular, nanoparticle preparations by 732 
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polyelectrolyte complexation and by self-assembling of hydrophobically modified chitosan are able 733 
to encapsulate the drug under mild conditions without losing their stability and biocompatibility. 734 
Therefore chitosan based self-assembled nanoparticles have great potential and multiple application 735 
in future in the design of novel drug delivery systems. 736 
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