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Abstract

We consider a random dynamical system arising in a model of as-
sociative memory. This system can be seen as a small (stochastic and
deterministic) perturbation of a determinstic system having two weak
attractors which are destroyed after the perturbation. We show, with a
computer aided proof, that the system has a kind of chaotic itineracy.
Typical orbits are globally chaotic, while they spend relatively long
time visiting attractor’s ruins.

Keywords: Chaotic itineracy, computer aided proof, neural net-
works.

1 Introduction

Chaotic itinerancy is a concept used to refer to a dynamical behavior in
which typical orbits visit a sequence of regions of the phase space called
“quasi attractors” or “attractor ruins” in some irregular way. Informally
speaking, during this itinerancy, the orbits visit a neighborhood of a quasi
attractor (the attractor ruin) with a relatively regular and stable motion, for
relatively long times and then the trajectory jumps to another quasi attrac-
tor of the system after a relatively small chaotic transient. This behavior
was observed in several models and experiments related to the dynamics of
neural networks and related to neurosciences (see [15]). In this itinerancy,
the visit near some attractor was associated to the appearance of some
macroscopic aspect of the system like the emergence of a perception or a
memory, while the chaotic iterations from a quasi attractor to another are
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associated to an intelligent (history dependent with trial and errors) search
for the next thought or perception (see [16]). This kind of phenomena was
observed in models of the neural behavior which are fast-slow systems or
random dynamical systems (sometimes modeling as a random system the
fast-slow behavior).

As far as we know the concept had not a complete mathematical for-
malization though in [17] some mathematical scenario is presented, showing
some situations in which these phenomena may appear. Often this phe-
nomenon is associated to the presence of a some kind of “weak” attractor,
as Milnor type attractors (see e.g. [17] or [14]) in the system and to small
perturbations allowing typical trajectories to escape the attractor. Chaotic
itinerancy was found in many applied contexts, a sistematic treatment of the
literature is out of the scope of this paper, we invite the reader to consult [15]
for a wider introduction to the subject and to its literature.

In this paper, our goal is to investigate and illustrate this concept from
a mathematical point of view in some meaningful example. We consider a
simple one-dimensional map derived by the literature on the subject (see
Section 3). This map is a relatively simple discrete time random dynamical
system on the interval, obtained from a neural network justified by the find-
ings of [12] on modeling the neurocortex with a variant of Hopfield’s asyn-
chronous recurrent neural network presented in [9]. In Hopfield’s network,
memories are represented by stable attractors and an unlearning mecha-
nism is suggested in [10] to account for unpinning of these states (see also,
e.g., [11]). In the network presented in [12], however, these are replaced by
Milnor attractors, which appear due to a combination of symmetrical and
asymmetrical couplings and some resetting mechanism. A similar map is
also obtained in [21], in the context of the BvP neuron driven by a sinu-
sodial external stimulus. They belong to a family known as Arnold circle
maps (named after [1]), which are useful in physiology (see [8, equation 3]).

The model we consider is made by a deterministic map T on the circle
perturbed by a small additive noise. For a large enough noise, its associated
random dynamical system exhibits an everywhere positive stationary density
concentrated on a small region (see [22] for an analytical treatment), which
can be attributed to the chaotic itinerancy of the neural network.

In the paper, with the help of a computer aided proof, we establish sev-
eral results about the statistical and geometrical properties of the above
system, with the goal to show that “the behavior of this system exhibit a
kind of chaotic itineracy”. We show that the system is (exponentially) mix-
ing, hence globally chaotic. We also show a rigorous estimate of the density
of probability (and then the frequency) of visits of typical trajectories near
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the attractors, showing that this is relatively high with respect to the den-
sity of probability of visits in other parts of the space. This is done by a
computer aided rigorous estimate of the stationary probability density of
the system. The computer aided proof is based on the approximation of the
transfer operator of the real system by a finite rank operator which is rigor-
ously computed and whose properties are estimated by the computer. The
approximation error from the real system to the finite rank one is then man-
aged using an appropriated functional analytic approach developped in [3]
for random systems (see also [4], [5] and [6] for applications to deterministic
dynamics or iterated functions systems).

The paper is structured as follows. In the first section, we review basic
definitions related to random dynamical systems, in particular, the Perron-
Frobenius operator, which will play a major role. In section 2, we present
our example along with an explanation of the method used to study it.
Numerical results are presented in section 3 and the mathematical model of
the neural network is presented in the appendix.
Aknowledgements R.B.L. was supported by CAPES post-graduate schol-
arship.

2 Random dynamical systems

This section follows [20] and [13]. We denote by (X,X , p) a probability space
and by (M,A, µ) the corresponding space of sequences (over N or Z), with
the product σ-algebra and probability measure. Also, we denote by f the
shift map on M , f({xi}i∈I) = {xi+1}i∈I , where I = N0 or Z.

Definition 1. Let (N,B) be a measurable space. Endow M ×N with the
product σ-algebra A⊗B. A random transformation over f is a measurable
transformation of the form

F : M ×N →M ×N, F (x, y) = (f(x), Fx(y)),

where x 7→ Fx depends only on the zeroth coordinate of x.

Suppose we have a (bounded, measurable) function φ : N → R. Given a
random orbit {yi}i∈I , for which we know the value of y0 = v ∈ N , we may
ask what is the expected value for φ(y1), that is, E(φ(y1)|y0 = v). Since the
iterate depends on an outcome x ∈M , which is distributed according to µ,
this can be calculated as

Uφ(v) =

∫
M
φ(Fx(v)) dµ(x).
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The equation above defines the transition operator associated with the ran-
dom transformation F as an operator in the space L∞(m) of bounded mea-
surable functions. Dually, we can consider its adjoint transition operator1

that acts in the space of probability measures η on N, defined by

U∗η(B) =

∫
(Fx)∗η(B) dµ(x) =

∫
η(F−1x (B)) dµ(x).

Of particular importance are the fixed points of the operator U∗.

Definition 2. A probability measure η for N is called stationary for the
random transformation F if U∗η = η.

We recall the deterministic concept of invariant measures.

Definition 3. If h : C → C is a measurable mapping in the measurable
space (C, C), we say ν is an invariant measure for h if ν(h−1(E)) = ν(E)
for any measurable E ⊂ C.

In the one-sided case (M = XN), invariant measures and stationary
measures for F are related by the following proposition.

Proposition 1 ( [20, proposition 5.4]). A probability measure η on N is
stationary for F if and only if µ× η is invariant for F .

Another concept from deterministic dynamical systems that can be nat-
urally extended to random dynamical systems is that of ergodicity.

Definition 4. Suppose η is stationary for F . We say that η is ergodic for
F if either

1. every (bounded measurable) function φ that is η-stationary, i.e. Uφ =
φ, is constant in some full η-measure set;

2. every set B that is η-stationary, i.e. whose characteristic function χB
is η-stationary, has full or null η-measure.

In fact, both conditions are equivalent (see [20, proposition 5.10]). In
the one-sided case, the following proposition relates ergodicity of a random
dynamical system with the deterministic concept.

Proposition 2. A stationary measure η is ergodic for F if and only if µ×η
is an ergodic F -invariant measure.

1These operators are related by
∫
φd(U∗η) =

∫
(Uφ) dη, for every bounded measurable

φ : N → R (see [20, lemma 5.3]).
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Suppose N admits a Lebesgue measure m. It’s useful to study the mea-
sures which are absolutely continuous to it by considering the effect of U∗

upon their densities. This is possible, for example, if (Fx)∗m is absolutely
continuous to m for every x ∈ X.

Definition 5. The Perron-Frobenius operator with respect to the random
transformation F is the operator2

L : L1(m)→ L1(m), Lf =
dU∗(fm)

dm
.

We can use the Perron-Frobenius operator to define a mixing property.

Definition 6. We say that a stationary measure η = h dm is mixing for F
if the Perron-Frobenius operator L satisfies

lim
n→∞

∫
Ln(f)g dm =

∫
f dm

∫
gh dm

for every f ∈ L1(m) and g ∈ L∞(m).3

Since L and U are dual, the mixing condition can be restated as

lim
n→∞

∫
Un(g)f dη =

∫
g dη

∫
f dη

for every f ∈ L1(η) and g ∈ L∞(η), which is similar to the usual definition
of decay of correlations.

If F is mixing, then F is ergodic for η (see [13, theorem 4.4.1]). In our
example, we shall verify the following stronger condition.

‖Ln|V ‖L1(m)→L1(m) → 0, V =
{
f ∈ L1(m) :

∫
f dm = 0

}
. (1)

Remark 1. It suffices to verify that ‖Ln|V ‖L1(m)→L1(m) < 1 for some n ∈ N,
because ‖Lξ‖L1 = 1.

Proposition 3. If the Perron-Frobenius operator L of a random dynamical
system F satisfies (1), then L admits a unique stationary density h and F
is mixing.

2This is an extension to the deterministic case, in which the Koopman operator Uf =
f ◦ F is used instead of the transition operator.

3This definition is adapted from [2, equation (1.5)].
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Proof. ‖L‖L1(m) = 1 because L is a Markov operator [13, remark 3.2.2].
Take a density f ∈ L1(m). We claim that Ln(f) → h for some density h.
On the contrary, there would be ε > 0 and a subsequence {Lnk(f)}k∈N such
that

∀k ∈ N : ‖Lnk+1(f)− Lnk(f)‖L1(m) ≥ ε.

Lnk+1−nk(f)−f ∈ V because Lnk+1−nk(f) is a density, and 2‖L|V ‖nkL1(m)
≥ ε

for every k ∈ N, a contradiction.
h is stationary because L is bounded, and unique because g−h ∈ V implies
‖Ln(g) − h‖L1(m) → 0 for any density g. Similarly, the mixing property
follows from f − (

∫
f dm)h ∈ V .

Remark 2. Any density f must converge exponentially fast to the stationary
density h. Precisely, given N and α < 1 such that ‖LN‖L1(m) ≤ α, the fact
that f − h ∈ V implies that ‖Ln(f) − h‖L1(m) ≤ Cλn for some C > 0 and

λ = α1/N < 1.

In the following, we will use (1) as the definition of mixing property.

3 A neuroscientifically motivated example

Figure 1: Data plot
suggesting the model
we studied ( [19]).

In [12], a neural network showing successive mem-
ory recall without instruction, inspired in Hopfield’s
asynchronous neural network and the structure of the
mammalian neocortex, is presented.

A macrovariable, related to the “activity” of the
network (see figure 1, similar plots appeared also in
[12] and [18]) was observed to evolve as a noisy one
dimensional map in the case that the network receives
no external stimulus.4 This was regarded in [18] as
a rule of successive association of memory, exhibiting
chaotic dynamics.

This behavior can be modeled as a random dynam-
ical system Tξ, with a deterministic component given by an Arnold circle
map (see figure 2) and a stochastic part given by a random additive noise.
The system can be hence defined as

xn+1 = T (xn) + ξn (mod 1), where T (v) = v +A sin(4πv) + C, (2)

4Its definition of can be found in [12, p. 6].
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for A = 0.08, C = 0.1 and ξn an i.i.d. sequence of random variables with a
distribution assumed uniform over [−ξ, ξ].

Figure 2: Determinis-
tic component of (2).

The Perron-Frobenius operator (definition 5) asso-
ciated to this system is given by Lξ = NξL (a proof can
be found in [13, p. 327]), where Nξ is a convolution
operator (equation 3) and L is the Perron-Frobenius
operator of T .

Nξf(t) = ξ−1
∫ ξ/2

−ξ/2
f(t− τ). (3)

It is well known that such an operator has an invariant
probability density in L1. In the following, we show

that Lξ can be rigorously approximated and a mixing property can be proved
using the numerical estimates.

Also, a rigorous approximation of the stationary density of Lξ is ob-
tained, from which we can conclude the existence of a kind of chaotic itin-
erancy.

3.1 Rigorous approximation

Here we show how we can study the behavior of the Perron-Frobenius op-
erator associated to (2) by approximating it by a finite rank operator. The
finite rank approximation we use is known in literature as Ulam’s method.
For more details, see [3].

Suppose we’re given a partition of S1 into intervals Iδ = {Ii}ni=1 and
denote the characteristic function of Ii by χi. An operator L : L1(S1) →
L1(S1) can be discretized by

Lδ : L1(S1)→ L1(S1), Lδ = πδLπδ,

where πδ : L1(S1)→ L1(S1) is the projection

πδh(x) =

n∑
i=1

E(h|Ii)χi.

This operator is completely determined by its restriction to the subspace
generated by {χ1, . . . , χn}, and thus may be represented by a matrix in this
base, which we call the Ulam matrix. In the following, we assume that δ > 0
and Iδ is a partition of [0, 1] (mod 1) ∼= S1 with diameter < δ.

For computational purposes, the operator Lξ is discretized as

Lδ,ξ = πδNξπδLπδ.
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This is simple to work with because it is the product of the discretized
operators πδNξπδ and πδLπδ.

Let V = {f ∈ L1(m) :
∫
f dm = 0} and denote by fξ and fξ,δ the sta-

tionary probability densities for Lξ and Lδ,ξ, respectively. Suppose ‖Lnδ,ξ‖ ≤
α < 1 for some n ∈ N. Since

‖Liξ|V ‖L1 ≤ ‖Liδ,ξ|V ‖L1 + ‖Liδ,ξ|V − Liξ|V ‖L1 (4)

and ( [3, equation 2])

‖fξ − fξ,δ‖L1 ≤
1

1− α
‖(Lnδ,ξ − Lnξ )fξ‖L1 , (5)

we search a good estimate of ‖(Lnδ,ξ − Lnξ )fξ‖L1 to prove both mixing of Tξ
and give a rigorous estimate of ‖fξ − fξ,δ‖L1 .

Since the calculus of ‖Liδ,ξ|V ‖ is computationally complex, an alternative
approach is used in [3] (see [7] for a previous application of a similar idea
to deterministic dynamics). First, we use a coarser version of the operator,
Lδcontr,ξ, where δcontr is a multiple of δ. Then, we determine ncontr ∈ N and
constants Ci,contr, for i < ncontr, and αcontr < 1 in order that

‖Liδcontr,ξ‖ ≤ Ci,contr, ‖Lncontr
δcontr,ξ

|V ‖ ≤ αcontr. (6)

Finally, the following lemma from [3] is used.

Lemma 1. Let ‖Liγ,ξ|V ‖L1 ≤ Ci(γ); let σ be a linear operator such that

σ2 = σ, ‖σ‖L1 ≤ 1, and σπγ = πγσ = πγ; let Λ = σNξσL. Then we have

‖(Lnγ,ξ − Λn)Nξ‖L1 ≤
γ

ξ
·
(

2
n−1∑
i=0

Ci(γ) + 1
)

(7)

It is applied to two cases.

1. γ = δcontr, σ = πδ and Λ = Lδ,ξ implies

‖(Lnδcontr,ξ − L
n
δ,ξ)Nξ‖L1 ≤

δ

ξ
·
(

2

n−1∑
i=0

Ci,contr + 1
)
.

This is used to obtain n ∈ N, α < 1 and Ci, i < n, such that

‖Liδ,ξ|V ‖ ≤ Ci, ‖Lnδ,ξ|V ‖ ≤ α. (8)
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2. γ = δ, σ = Id and Λ = Lξ implies

‖Ln+1
ξ |V ‖L1 ≤ ‖Lnδ,ξLξ|V ‖L1 + ‖(Lnξ − Lnδ,ξ)Lξ‖L1

≤ α+
δ

ξ

(
2
n−1∑
i=0

Ci(δ) + 1
)
.

By remark 1, we conclude that the mixing condition is satisfied when-
ever

λ = α+
δ

ξ

(
2
n−1∑
i=0

Ci(δ) + 1
)
< 1.

We remark that a simple estimate to (5) is given by ( [3, equation 4])

‖fξ − fξ,δ‖L1 ≤
1 + 2

∑n−1
i=0 Ci

2(1− α)
δξ−1 Var(ρ). (9)

The analysis of data obtained from the numerical approximation f̃ of fδ,ξ,
in particular its variance, allows the algorithm in [3] to improve greatly this
bound, using interval arithmetic. In table 1, the value l1apriori obtained
from the first estimate (9) and the best estimate l1err are compared.

4 Results

We verified mixing and calculated the stationary density for the one dimen-
sional system (2) using the numerical tools from the compinv-meas project
(see [3]), which implements the ideas presented in subsection 3.1. The data
obtained is summarized in table 1.

For an explanation of the values calculated, refer to subsection 3.1. In
the column l1apriori, we have the estimate (9) for the approximation
error of the stationary density in L1 and in l1err, the improved estimate
as in [3, section 3.2.5].

In every case, we used following sizes of the partition.

δ = 2−19 Used to calculate the invariant density.

δcontr = 2−14 Used to find the estimates in equation 6.

δest = 2−12 Used to estimate the L1 error of the invariant density.

In figure 3, stationary densities obtained with this method are shown.
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ξ ncontr αcontr α
∑
Ci l1apriori l1err

0.732× 10−1 126 0.027 0.05 56.64 0.313× 10−2 0.715× 10−4

0.610× 10−1 167 0.034 0.067 78.66 0.530× 10−2 0.105× 10−3

0.488× 10−1 231 0.051 0.1 120.56 0.106× 10−1 0.184× 10−3

0.427× 10−1 278 0.068 0.14 156.45 0.163× 10−1 0.268× 10−3

0.366× 10−1 350 0.087 0.19 213.17 0.273× 10−1 0.432× 10−3

0.305× 10−1 453 0.12 0.26 307.03 0.523× 10−1 0.813× 10−3

0.275× 10−1 532 0.14 0.32 380.64 0.776× 10−1 0.122× 10−2

0.244× 10−1 596 0.19 0.41 467.70 0.124 0.202× 10−2

Table 1: Summary of the L1 bounds on the approximation error obtained for the range
of noises ξ, where ncontr and αcontr are chosen in order to satisfy equation 6 so that
the values α and

∑
Ci obtained through lemma 1 attempt to minimize the error l1err

obtained through the algorithm in [3].

We also studied the system (2) in the case that A = 0.07 for the same
range of noises (table 2). In figure 4, stationary densities obtained in this
case are shown. We note that the same kind of “chaotic itinerancy” obtained
in the main case is observed.

ξ ncontr αcontr α
∑
Ci l1apriori l1err

0.732× 10−1 183 0.03 0.059 83.57 0.466× 10−2 0.255× 10−4

0.610× 10−1 237 0.046 0.089 119.31 0.822× 10−2 0.282× 10−4

0.488× 10−1 332 0.069 0.14 186.80 0.170× 10−1 0.323× 10−4

0.427× 10−1 406 0.087 0.18 244.95 0.267× 10−1 0.358× 10−4

0.366× 10−1 494 0.12 0.25 330.89 0.459× 10−1 0.419× 10−4

0.305× 10−1 500 0.3 0.46 419.92 0.974× 10−1 0.646× 10−4

0.275× 10−1 596 0.32 0.52 517.97 0.151 0.807× 10−4

0.244× 10−1 600 0.49 0.73 573.04 0.326 0.189× 10−3

Table 2: Summary of the L1 bounds on the approximation error obtained for the range
of noises ξ, for the system (2) with the alternative value A = 0.07.

5 Conclusion

We’ve shown how the numerical approach developed in [3] can be used to
study dynamical properties for a one dimensional random dynamical system
of interest in the areas of physiology and neural networks.

In particular, we established mixing of the system and a rigorous estimate
of its stationary density, which allowed us to observe that the trajectories
concentrate in certain “weakly attracting” and “low chaotic” regions of the
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(a) ξ = 0.732× 10−1 (b) ξ = 0.488× 10−1

(c) ξ = 0.305× 10−1 (d) ξ = 0.214× 10−1

Figure 3: Approximated stationary densities fξ,δ for Tξ, with δ = 2−19 and A = 0.08.

(a) ξ = 0.732× 10−1 (b) ξ = 0.488× 10−1

(c) ξ = 0.305× 10−1 (d) ξ = 0.214× 10−1

Figure 4: Approximated stationary densities fξ,δ for Tξ, with δ = 2−19 and A = 0.07
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space, in concordance with the concept of chaotic itinerancy. The concept
itself still had not a complete mathematical formalization, and deeper un-
derstanding of the systems where it was found is important to extract ist
characterizing mathematical aspects.

The work we have done is only preliminary, to get some first rigorous ev-
idence of the chaotic itineracy in the system. Further investigations are im-
portant to understand the phenomenon more deeply. In first place it would
be important to understand more precisely the nature of the phenomenon:
rigorously computing Lyapunov exponents and other chaos indicators. It
would be also important to investigate the robustness of the behavior of the
system under various kinds of perturbations, including the zero noise limit.
Another important direction is to refine the model to adapt it better to the
experimental data shown in Figure 1, with a noise intensity which depend
on the point.
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