

1 Article

2 ChREBP-Knockout Mice Show Sucrose Intolerance 3 and Fructose Malabsorption

4 Takehiro Kato¹, Katsumi Iizuka^{1,2,*}, Ken Takao¹, Yukio Horikawa¹, Tadahiro Kitamura³, Jun Takeda¹

5 1Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu 501-1194,
6 Japan; bado_aberu@yahoo.co.jp (T.K.); kiizuka@gifu-u.ac.jp (K.I.); lamgerrpard@yahoo.co.jp (K.T.);
7 yhorikaw@gifu-u.ac.jp (Y.H.); jtakeda@gifu-u.ac.jp (JT).

8 2Gifu University Hospital Center for Nutritional Support and Infection Control, Gifu 501-1194, Japan

9 3Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University,
10 Gunma 371-8512, Japan; kitamura@gunma-u.ac.jp (T.K.)

11 *Correspondence: kiizuka@gifu-u.ac.jp; Tel: +81-58-230-6564; Fax: +81-58-230-6376

12

13 **Abstract:** We have previously reported that 60% sucrose diet-fed *ChREBP* knockout mice (KO)
14 showed body weight loss resulting in lethality. We aimed to elucidate whether sucrose and
15 fructose metabolism are impaired in KO. Wild type mice (WT) and KO were fed a diet containing
16 30% sucrose with/without 0.08% miglitol, an α -glucosidase inhibitor, and these effects on
17 phenotypes were tested. Furthermore, we compared metabolic changes of oral and peritoneal
18 fructose injection. Thirty percent sucrose diet feeding did not affect phenotypes in KO. However,
19 miglitol induced lethality in 30% sucrose-fed KO. Thirty percent sucrose plus miglitol diet-fed KO
20 showed increased cecal contents, increased fecal lactate contents, increased growth of
21 lactobacillales and *Bifidobacterium* and decreased growth of clostridium cluster XIVa. *ChREBP* gene
22 deletion suppressed the mRNA levels of sucrose and fructose related genes. Next, oral fructose
23 injection did not affect plasma glucose levels and liver fructose contents; however, intestinal
24 sucrose and fructose related mRNA levels were increased only in WT. In contrast, peritoneal
25 fructose injection increased plasma glucose levels in both mice; however, the hepatic fructose
26 content in KO was much higher owing to decreased hepatic *Khk* mRNA expression. Taken
27 together, KO showed sucrose intolerance and fructose malabsorption owing to decreased gene
28 expression.

29 **Keywords:** carbohydrate-responsive element-binding protein; ketohexokinase; fructose; glucose
30 transporter 5; glucose transporter 2

31

32 1. Introduction

33 Excess intake of high sucrose and fructose diet were thought to be associated with the
34 development of obesity, metabolic syndrome and diabetes [1,2]. Many experimental animal studies,
35 for example, experiments feeding 70% fructose-containing water, supported this hypothesis [2].
36 However, recent human epidemic data suggest that there is little association between metabolic
37 syndrome and consumption of sucrose and fructose [3,4].

38 Moreover, the mechanism of sucrose and fructose metabolism remains unclear. Sucrose is
39 a disaccharide composed of glucose and fructose, and is digested by intestinal sucrase-isomaltase
40 (SI), which is inhibited by miglitol, an α -glucosidase inhibitor [5]. Fructose is more potent and has
41 higher capacity of protein glycation than glucose, and thus is more harmful than glucose [6].
42 Fructose is metabolized in the intestine and liver. Previously, it has been considered that large
43 amounts of fructose are metabolized mainly in the liver [7]. However, portal fructose levels are 10

44 times lower and plasma fructose levels are 100 times lower than plasma glucose levels [8,9].
45 Moreover, excess intake of fructose can cause dietary fructose malabsorption and thereby irritable
46 bowel syndrome [10]. Taken together, we hypothesized that intestinal, but not hepatic, fructose
47 absorption regulates portal and plasma fructose levels [11].

48 To clarify the intestinal sucrose and fructose metabolism, we focused on the phenotypes of
49 high-sucrose diet-fed carbohydrate-responsive element-binding protein (*ChREBP*)-knockout (KO)
50 mice [12]. *ChREBP* is a glucose-activated transcription factor that regulates glucose and lipid
51 metabolism. We have formerly reported that high-sucrose diet-fed KO mice showed body weight
52 loss and eventually lethality, although high-glucose diet- and high-starch diet-fed KO mice did not
53 [12]. As SI is induced by sucrose, we wondered whether SI expression is decreased in KO mice [13].
54 Moreover, high-fructose diet-fed KO mice showed similar phenotypes (body weight loss and
55 appetite loss) [14,15,16]. *ChREBP* regulates the gene expression of glucose transporter 5 (*Glut5*) and
56 ketohexokinase (*Khk*), which regulate fructolysis [12,17,18]. Taken together, we speculated that
57 altered sucrose and fructose metabolism may contribute to the pathology of sucrose intolerance and
58 fructose malabsorption seen in KO mice.

59 In this study, we focused on the effect of *ChREBP* on sucrose and fructose metabolism in
60 the liver and intestine. We tested whether 30% sucrose plus miglitol (S+M) diet-fed KO mice show
61 phenotypes similar to sucrose intolerance. Furthermore, by comparing the results of oral and
62 peritoneal fructose injection, we tried to clarify the role of hepatic and intestinal *ChREBP* in fructose
63 metabolism. This study will be beneficial for understanding the mechanism of sucrose and fructose
64 metabolism.

65 2. Materials and Methods

66 2.1. Materials

67 Sucrose, fructose and glucose measurement kits were purchased from Wako Pure Chemicals
68 (Osaka, Japan). Lactate measurement kits were purchased from Kyowa Medex Co. (Tokyo, Japan).
69 Triglyceride and cholesterol measurement kits were purchased from Wako Pure Chemicals.
70 Glucose-6-phosphate dehydrogenase (G6PDH), phosphoglucose isomerase, hexokinase and NADP
71 were purchased from Roche Custom Biotech Inc. (Mannheim, Germany).

72 2.2. Animals, and sucrose and sucrose+miglitol diets

73 Animal experiments were carried out in accordance with the National Institutes of Health
74 guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978). All
75 animal care was approved by the Animal Care Committee of the University of Gifu. Mice were
76 housed at 23°C on a 12-h light/dark cycle. KO mice were backcrossed for at least 10 generations onto
77 the C57BL/6J background [19].

78 Mice had free access to water and were fed an autoclaved CE-2 diet (CLEA Japan, Tokyo,
79 Japan). Wild type (WT) and KO mice were housed separately with a total of three mice per cage. To
80 examine mortality and body weight changes, 12 weeks old male WT and KO mice were fed a 30%
81 sucrose diet (S; protein 17% kcal, carbohydrate 73% kcal, fat 10% kcal) or a 30% sucrose + 0.08%
82 miglitol diet (S+M; protein 17% kcal, carbohydrate 73% kcal, fat 10% kcal, miglitol 0.08%) for 8 weeks
83 [20]. To examine phenotypes (tissue weight, tissue metabolites, plasma profile, mRNA levels), 18
84 weeks old male WT and KO mice were fed S or S+M diets for 7 days. The diets were purchased from
85 Research Diets Inc. (New Brunswick, NJ, USA). Miglitol was gifted by Sanwa Kagaku Kenkyuusho
86 Co. (Nagoya, Aichi, Japan).

87 2.2. Liver glycogen, triglyceride, cholesterol and fructose contents, and plasma profile 88 measurements

89 The liver glycogen content was measured as previously reported [12,19]. Liver lipids were
90 extracted using the Bligh and Dyer method [21], and measured using triglyceride (Wako Pure
91 Chemicals) and cholesterol E-tests (Wako). Liver fructose contents were measured by enzymatic
92 methods [22]. Briefly, freeze-clamped tissues (100 mg) were homogenized in 2 ml of cold 6%

95 perchloric acid, neutralized and centrifuged. The assay is based on the oxidation of glucose as
96 glucose-6-phosphate (G6P) using G6PDH. Fructose-6-phosphate is converted to G6P by the
97 phosphoglucomutase enzyme, and subsequently oxidized by the G6PDH in the assay mixture.
98 The fructose concentration is determined as the difference in G6P concentration before and after
99 phosphoglucomutase treatment. All enzymes were purchased from Roche Custom Biotech Inc.
100 Blood plasma was collected from the retro-orbital venous plexus following *ad libitum* feeding or after
101 a 6-h fast. Blood glucose levels were measured using a FreeStyle Freedom monitoring system
102 (Nipro, Osaka, Japan). Plasma triglycerides and total cholesterol levels were determined using the
103 commercial kits, triglyceride E-test (Wako) and cholesterol E-test (Wako), respectively.
104

105 **2.3. Cecal contents weight, cecal lactate contents and intestinal bacterial flora**

106 Mice fed with S or S+M were sacrificed at 19 weeks of age by cervical dislocation. After tissue
107 weight, length of intestine and cecal contents were measured, the intestine and liver were
108 immediately snap-frozen in liquid nitrogen and stored at -80°C until further analysis of hepatic
109 triacylglycerol and cholesterol contents, and quantitative PCR. For measurement of cecal lactate
110 contents, frozen cecal content (20 mg) was homogenized in 80 µl of cold 6% perchloric acid,
111 neutralized and centrifuged. Supernatants were collected and measured by a lactate measurement
112 kit (Kyowa Medex). Terminal restriction fragment length polymorphism (T-RLFP) flora analysis of
113 cecal contents was performed by Techo Suruga Labo Inc. (Shizuoka, Shizuoka, Japan) [23].
114

115 **2.4. Oral and intraperitoneal fructose-loading test**

116 Fructose (3 g/kg BW) was orally or intraperitoneally injected into 14 weeks old male WT and
117 KO mice. Plasma glucose was measured at the indicated times. For liver fructose contents and
118 mRNA expression analyses, mice were sacrificed at 0, 1 or 4 h, and the liver and intestine were
119 removed and stored at -80°C until further analysis.
120

121 **2.5. RNA isolation and quantitative real-time PCR**

122 Total RNA isolation, cDNA synthesis and real-time PCR analysis were performed as previously
123 described [12,19]. Real-time PCR primers for mouse/rat *Chrebp*, liver type pyruvate kinase (*Pklr*),
124 glucose transporter 2 (*Glut2*), fibroblast growth factor-21 (*Fgf-21*) and RNA polymerase II (*Pol2*) have
125 been previously reported [19]. Primers used for *Glut5*, *Khk* and *Si* were as follows: *Glut5* Forward,
126 5'-CGGCTTCTCCACCTGCCTC-3', *Glut5* Reverse, 5'-CGTGTCCATTGACGTAGACAATGA-3';
127 *Khk-C* Forward, 5'-GCTGACTTCAGGCAGAGG-3', *Khk-C* Reverse,
128 5'-CCTTCTCAAAGTCCTTAGCAG-3'; *Si* Forward, 5'-TTGATATCCGGTCCACGGTTCT-3', *Si*
129 Reverse, 5'-CAGGTGACATCCAGGTTGCATT-3'. All amplifications were performed in triplicate.
130 The relative amounts of mRNA were calculated using the comparative CT method. *Pol2* expression
131 was used as an internal control.
132

133 **2.6. Statistical analysis**

134 All values are presented as means ± SD. Data were analyzed using Tukey's test. A value of *p* <
135 0.05 was considered statistically significant.
136

3. Results

137 **3.1. ChREBP shows intolerance to modest amounts of sucrose and miglitol diet**

138 We have reported that a high-sucrose diet (60% sucrose) caused decreased appetite and eventually
139 lethality in KO mice [12]. First, we investigated whether KO mice have any problems with sucrose
140 digestion. We tested whether a medium amount of sucrose (30%) feeding causes body weight loss. A
141 30% sucrose diet was not lethal, although the body weight gain of 30% sucrose-diet-fed KO (KO S)
142 mice was much lower than that of 30% sucrose-fed WT (WT S) mice (Figure 1A and B).
143

144

145 **Figure 1. 30% sucrose + 0.08% miglitol diet causes body weight loss and high lethality.**

146 Twelve weeks old male wild type (WT) mice and *ChREBP* knockout (KO) mice were fed a 30% sucrose (S) or
 147 30% sucrose plus 0.08% miglitol (S+M)-containing diet for 8 weeks. (A) Survival rate. (B) Body weight
 148 change. Data represented as mean±S.D. (n=12 per group). ¹WT S vs WT S+M, p<0.05, ²KO S vs KO S+M,
 149 p<0.05, ³WT S vs KO S, p<0.05, and ⁴WT S+M vs KO S+M, p<0.05.

150

151 Interestingly, addition of miglitol, which inhibits sucrose digestion in the upper intestine, caused
 152 decreased body weight and increased mortality (50% and 75% 4 and 8 weeks after feeding the
 153 specific diet, respectively; Figure 1A and 1B). Next, we examined the following parameters 1 week
 154 after feeding the specific diet. The body weight changes and food intake of KO S mice were similar to
 155 those of WT S mice (Table 1). However, the body weight and food intake of sucrose plus miglitol
 156 (S+M) diet-fed KO (KO S+M) mice were significantly decreased compared with WT S+M mice.
 157 Consistently, the liver, epididymal fat tissue and brown adipose tissue weight was decreased in KO
 158 S+M mice compared with WT S+M mice. (Table 1). In contrast, the locomotor activity was similar
 159 among the groups (Table 1).

160

161

162

163

164 **Table 1. The effect of 30% sucrose and 0.08% miglitol diet on wild type mice and ChREBP
165 knockout mice.**

	WT S	WT S+M	KO S	KO S+M
BW (g) before	31.0 \pm 1.77	29.8 \pm 1.83	27.7 \pm 1.62 ⁽³⁾	26.6 \pm 1.21 ⁽⁴⁾
BW (g) after	29.3 \pm 1.22	27.6 \pm 0.91 ⁽¹⁾	25.2 \pm 1.07 ⁽³⁾	20.9 \pm 1.00 ⁽²⁾⁽⁴⁾
BW (%) difference	-5.38 \pm 2.47	-7.5 \pm 3.88	-8.97 \pm 3.21	-21.5 \pm 2.14 ⁽²⁾⁽⁴⁾
Liver (%BW)	5.33 \pm 0.30	5.23 \pm 0.23	7.12 \pm 1.79 ⁽³⁾	4.97 \pm 0.57 ⁽²⁾
Epididymal fat weight (%BW)	1.78 \pm 0.55	1.69 \pm 0.32	1.35 \pm 0.30 ⁽³⁾	0.47 \pm 0.16 ⁽²⁾⁽⁴⁾
Brown adipose tissue (%BW)	0.40 \pm 0.09	0.38 \pm 0.05	0.30 \pm 0.07 ⁽³⁾	0.26 \pm 0.06 ⁽⁴⁾
locomotor activity(counts/day)	14550 \pm 3788	12778 \pm 2984	12875 \pm 2303	10800 \pm 2066
food intake(g/day)	2.51 \pm 0.63	2.33 \pm 0.26	2.53 \pm 0.17	1.77 \pm 0.30 ⁽²⁾⁽⁴⁾
Plasma glucose (mg/dL)	100.6 \pm 9.6	96.3 \pm 8.3	80.3 \pm 10.8 ⁽³⁾	57.6 \pm 6.8 ⁽²⁾⁽⁴⁾
Plasma triglyceride (mg/dL)	137.2 \pm 49.4	181.7 \pm 54.2	72.7 \pm 17.5	70.2 \pm 14.2 ⁽⁴⁾
Plasma T-Chol (mg/dL)	127.5 \pm 15.3	130.6 \pm 4.4	60.3 \pm 7.8	65.4 \pm 6.46 ⁽⁴⁾
Liver Glycogen content (mg/g liver)	38.6 \pm 14.3	50.4 \pm 17.4	83.5 \pm 36.2 ⁽³⁾	56.9 \pm 27.4
Liver Triglyceride content (mg/g liver)	6.60 \pm 1.97	5.54 \pm 1.50	2.72 \pm 0.84 ⁽³⁾	1.35 \pm 0.45 ⁽⁴⁾
Liver Cholesterol content (mg/g liver)	0.99 \pm 0.32	1.54 \pm 0.79	0.44 \pm 0.14	0.56 \pm 0.33 ⁽⁴⁾

166

167 30% sucrose fed wild type mice (WT S), 30% sucrose plus 0.08% miglitol fed wild type mice (WT
168 S+M), 30% sucrose fed ChREBP knockout mice (KO S), and 30% sucrose plus 0.08% miglitol fed
169 ChREBP knockout mice (KO S+M); BW : body weight;T-chol:total cholesterol.

170 Regarding the plasma profile, the plasma glucose levels were lowest in KO S+M mice. Plasma
171 triglyceride and total cholesterol levels in KO S and KO S+M mice were lower than those in WT S
172 and WT S+M mice (Table 1). The liver triglyceride and cholesterol contents in KO S and KO S+M
173 mice were also lower than those in WT S and WT S+M mice (Table 1). The liver glycogen content in
174 KO S mice was increased; however, in KO S+M mice it was decreased owing to appetite loss (Table
175 1). Thus, KO S+M mice showed sucrose intolerance similar to high-sucrose diet-fed KO mice.

176

177 *3.2. Sucrose plus miglitol diet-fed KO mice show cecum enlargement*

178 Next, we checked intestinal changes in WT and KO mice. The length of the small intestine was
179 comparable in WT S, WT S+M, KO S and KO S+M mice (Figure 2A). The cecal enlargement and cecal
180 contents in KO S mice were higher than those in WT S mice (Figure 2B and C). Although the
181 food-loading test was performed only for one week, the cecal content in KO S+M mice was about 3.5
182 times higher than that in WT S and WT S+M mice (Figure 2B and C). Moreover, analysis of the
183 intestinal flora and cecal contents showed that the ratios of *Bifidobacterium* and *lactobacillales*, and
184 the cecal lactate contents were the highest in KO S+M mice (Figure 2D-F). In contrast, the abundance
185 of *clostridium cluster XIVa* was dramatically diminished in KO S+M mice (Figure 2D).

186

(E)

(F)

187

188 **Figure 2. Sucrose plus miglitol diet-fed KO mice show cecal enlargement, higher lactate
189 contents and altered intestinal flora.**

190 Eighteen weeks old male wild type (WT) mice and *ChREBP*-knockout (KO) mice were fed a 30% sucrose (S)
191 or 30% sucrose plus 0.08% miglitol (S+M)-containing diet for 7 days. (A) Lengths (cm) of small intestine.
192 Representative image of intestinal enlargement. (C) Weight of cecal contents (% BW). (D, E) Gut microbes in
193 cecum contents of WT and KO mice are expressed as a percentage of total DNA sequences. (F) Cecal lactate
194 contents (mg/g). Data represented as mean±SD (n = 6 per group). *p < 0.05. ¹WT S vs WT S+M, p<0.05, ²KO
195 S vs KO S+M, p<0.05, ³WT S vs KO S, p<0.05, and ⁴WT S+M vs KO S+M, p<0.05. BW: body weight.

196

197 3.3. *Miglitol* affects the expression of ChREBP target genes in the intestine

198 Next, we tested the sucrose and fructose metabolism in relation to gene expression. In WT S mice,
 199 the expression of sucrose metabolism (*Si*), fructose metabolism (*Glut2*, *Glut5* and *Khk*), and *Chrebp*
 200 and its target genes was highest in the upper intestine (Figure 3). Upon addition of miglitol, the
 201 mRNA expression of these genes was highest in the middle and lower intestine. In the liver, the
 202 mRNA expression of these genes was not affected by the addition of miglitol. Interestingly, the
 203 expression of *Glut5* mRNA in the liver was much lower than in the intestine (Figure 3E). By contrast,
 204 the mRNA levels of the abovementioned genes were lower in the KO mice than in the WT and the
 205 effect of miglitol on these mRNA levels was suppressed in KO S mice (Figure 3A–F). As compared
 206 with *Glut5* expression, *SGLT1* mRNA levels were not affected by ChREBP gene deletion (data not
 207 shown). Thus, we concluded that ChREBP regulates sucrose and fructose metabolism through gene
 208 expression.

209

210

211 **Figure 3. Effect of miglitol and the *ChREBP* gene deletion on genes related to ChREBP,
212 fructose and sucrose metabolism.**

213 Eighteen weeks old male wild type (WT) mice and *ChREBP*-knockout (KO) mice were fed a 30% sucrose (S)
214 or 30% sucrose plus 0.08% miglitol (S+M)-containing diet for 7 days. The intestine was divided into three parts
215 (upper, middle and lower) and the mRNA levels were measured by real-time PCR. (A) *Chrebp*; (B) liver
216 pyruvate kinase (*Pklr*); (C) sucrase isomerase (*Si*); (D) ketohexokinase (*Khk*); (E) glucose transporter 5
217 (*Glut5*); (F) Glucose transporter 2 (*Glut2*). Data represented as mean \pm SD (n = 3 per group). ¹WT S vs WT
218 S+M, p<0.05, ²KO S vs KO S+M, p<0.05, ³WT S vs KO S, p<0.05, and ⁴WT S+M vs KO S+M, p<0.05.

219

220 **3.4. Fructose is difficult to metabolize in the intestine, but not in the liver**

221 As KO mice showed disturbance not only in sucrose metabolism but also in fructose metabolism, we
222 next tested the role of intestinal and hepatic ChREBP in fructose metabolism. After oral fructose
223 injection, fructose is absorbed in the intestine (Figure 4A). After peritoneal injection, fructose is
224 absorbed in the portal vein (figure 4B) [24]. In the oral fructose-loading test (3 g/kg BW), the plasma
225 glucose levels in WT mice only modestly increased to 120 mg/dL at 30 min (Figure 4A). In KO mice,
226 the plasma glucose levels at 30 min were slightly lower than those in WT mice (Figure 4A). By
227 contrast, in peritoneal fructose loading, the plasma glucose levels in WT mice increased to 200
228 mg/dL at 30 min (Figure 4B). In KO mice, the plasma glucose levels were lower than those in WT
229 mice, and the peak time shifted right (Figure 4B). Consistent with these results, the hepatic fructose
230 content in the oral fructose-loading test (at 0 h and 1 h) was undetectable (Figure 4C). Therefore, we
231 concluded that fructose is difficult to metabolize and absorb in the intestine. In contrast, the fructose
232 content after the peritoneal fructose-loading test at 1 h was measurable. Moreover, in KO mice, the

233 hepatic fructose content at 1 h was about 3 times higher than that in WT mice (Figure 4D). These
 234 results suggest that hepatic fructose metabolism was inhibited at the level of KHK in the liver of KO
 235 mice.

236

237 *Figure 4. Oral and peritoneal fructose injection test.*

238 *Oral (A) and peritoneal (B) injected fructose is absorbed in intestine and portal vein, respectively.*
 239 *Time course of glucose concentration after oral (C) or peritoneal (D) fructose injection. Liver*
 240 *fructose content at 0hr and 1hr after oral (E) or peritoneal (F) fructose injection. Data are presented*
 241 *as means \pm SD (n = 6 per group). +WT vs KO, p<0.05.*

242 *3.5. ChREBP regulates the expression of genes related to fructose metabolism in the intestine*

243 Finally, we examined whether fructose induces the expression of intestinal and hepatic ChREBP
 244 target genes. After oral fructose injection, the expression of intestinal ChREBP target genes (*Chrebp*,
 245 *Pklr*) and fructose metabolism genes (*Glut2*, *Glut5* and *Khk*) in WT mice increased in a
 246 time-dependent manner, while the mRNA expression of these genes was much lower in KO mice
 247 (Figure 5A-F). Consistent with the plasma glucose levels, the mRNA expression of the hepatic
 248 ChREBP target genes (*Chrebp*, *Pklr* and *Fgf-21*) and fructose metabolism genes (*Glut2*, *Glut5* and *Khk*)
 249 was not affected by fructose (Figure 5A-F). After peritoneal fructose injection, the hepatic mRNA
 250 expression of *Chrebp*, *Pklr*, *Glut2*, *Glut5* and *Khk* in WT mice increased in a time-dependent manner;
 251 however, this induction was diminished in KO mice. By contrast, the intestinal mRNA levels of these
 252 genes were not affected by fructose injection (Figure 5A-F). In the liver, *Fgf-21* mRNA levels in KO
 253 mice were lower than those in WT mice. However, the hepatic *Fgf-21* mRNA levels in WT mice were
 254 not induced by oral or peritoneal fructose injection (Figure 5C). Thus, we concluded that oral and
 255 peritoneal fructose injection mainly induced intestinal and hepatic fructose metabolism genes
 256 regulated by ChREBP, respectively.

257

258

259 **Figure 5. Effect of oral and peritoneal fructose injection on genes related to Chrebp and fructose
260 metabolism.**

261 After oral or peritoneal fructose injection (3 kg/kg BW), the mRNA expression of *Chrebp* (A), liver
 262 type pyruvate kinase (*Pk1r*) (B), fibroblast growth factor-21 (*Fgf21*), (C), ketohexokinase (*Khk*), (D),
 263 glucose transporter 5 (*Glut5*), (E) and glucose transporter 2 (*Glut2*) (F) in the intestine and liver was
 264 measured by real-time PCR analysis. n = 3 per group. ¹WT S vs WT S+M, p<0.05 group, ²KO S vs
 265 KO S+M, p<0.05, ³WT S vs KO S, p<0.05, and ⁴WT S+M vs KO S+M, p<0.05.

266 **4. Discussion**

267 In this study, we tried to identify the mechanism by which *ChREBP*-KO mice show sucrose
 268 intolerance. Thirty percent sucrose (30%) diet-fed KO mice did not present the body weight loss and
 269 lethality seen in 60% sucrose diet-fed KO mice; however, Si inhibition by miglitol successfully
 270 exhibited sucrose intolerance. Increased fecal lactate contents, and increased growth of
 271 lactobacillales and *Bifidobacterium*, consistent with increased lactate contents, was seen only in S+M
 272 fed KO mice. These findings were consistent with decreased expression of sucrose and fructose
 273 metabolism-related genes, which are regulated by ChREBP. Moreover, oral and peritoneal fructose
 274 injection mainly induced ChREBP-regulated intestinal and hepatic fructose metabolism genes,
 275 respectively. These results suggest that alternations in the expression of both sucrose and
 276 fructose-related genes contribute to sucrose intolerance and fructose malabsorption in KO mice
 277 (Figure 6).

278
 279

280 **Figure 6. The mechanism that ChREBP knockout mice showed sucrose intolerance and**
 281 **fructose malabsorption.**

282 (A) In 30% sucrose plus 0.08% miglitol diet fed wild type mice (WT), sucrose was digested into
 283 glucose and fructose in upper intestine. Glucose was almost absorbed in upper intestine. In
 284 contrast, fructose was partly absorbed and unabsorbed fructose was used for intestinal bacterial
 285 growth.
 286 (B) In 30% sucrose plus 0.08% miglitol diet fed ChREBP knockout mice (KO), owing to decreased
 287 sucrase-isomaltase (SI) expression or SI inhibition by miglitol, undigested sucrose was moving

288 into lower intestine. Moreover, fructose absorption in KO was also decreased due to decreased
289 intestinal glucose transporter 5 (*Glut5*), Glucose transporter 2 (*Glut2*), and ketohexokianse
290 (*Khk*) expression. Undigested sucrose and fructose in lower intestine and cecum caused to
291 affect intestinal bacterial flora (increased growth of lactobacillales and *Bifidobacterium* and
292 decreased growth of clostridium cluster XIVa).

293

294 We have formerly reported that 60% sucrose diet-fed KO mice showed body weight loss and
295 decreased food intake [12]. Despite the appetite loss, the cecum of dead 60% sucrose diet-fed KO
296 mice was enlarged (unpublished data), hence we wondered whether sucrose metabolism was
297 disrupted in KO mice. As miglitol is a well-known Si inhibitor, the addition of miglitol caused an
298 increased flux of undigested sucrose into the lower intestine. Consistent with these results, the
299 addition of miglitol caused sucrose intolerance in KO mice fed a 30% sucrose diet, which by itself did
300 not induce sucrose intolerance. Consistent with our hypothesis, KO S+M mice showed
301 malabsorption (body weight, food intake and diarrhea), similarly to the 60% sucrose diet-fed KO
302 mice. Therefore, the increased flux of undigested sucrose into the lower intestine was partly due to
303 the pathology of sucrose intolerance in KO mice.

304 S+M fed KO mice showed cecal enlargement in addition to body weight and appetite loss.
305 Moreover, the ratios of lactobacillales and *Bifidobacterium* increased and the ratio of clostridium
306 cluster XIVa reciprocally diminished in these mice. As the growth of these bacteria favors sucrose
307 and fructose, these results suggest that undigested sucrose was moving into the lower intestine and
308 cecum, and promoting the growth of lactobacillales and *Bifidobacterium* [25,26]. In contrast, the
309 abundance of clostridium cluster XIVa increased in mice fed with high-fat diets [27]. Our data
310 showed that Si inhibition did not change the gut microbiota in WT, which is consistent with the
311 finding that Si inhibition by inulin-type fructans did not change the total number of bacteria in the
312 cecal content and did not induce a bifidogenic effect [28]. However, the abundance of clostridium
313 cluster XIVa was diminished in KO S+M mice. As these changes in KO mice were caused by a 60%
314 sucrose diet and by an S+M diet, we concluded that sucrose intolerance was partly due to both Si
315 suppression and a large amount of sucrose intake, resulting in an increased flux of undigested
316 sucrose into the lower intestine.

317 These phenotypes were similar to those of human SI deficiency patients [29]. After weaning
318 from breast-feeding, human congenital SI deficiency patients experience stomach cramps, bloating,
319 excess gas production and diarrhea, resulting in failure to gain weight and malnutrition. Most
320 affected children have improved tolerance to sucrose and maltose as they get older. Moreover,
321 α -glucosidase inhibitors (miglitol, voglibose and acarbose) have gastrointestinal side effects such as
322 flatulence, diarrhea, soft stool and abdominal discomfort [30]. As S+M KO mice were sucrose
323 intolerant, KO mice may have another important metabolic defect such as fructose malabsorption.

324 Indeed, high-fructose diet-fed intestine-specific *ChREBP*-KO mice showed cecal enlargement
325 and body weight loss similar to high-fructose diet-fed *GLUT5^{-/-}* mice, a model of fructose
326 malabsorption [18,31]. These phenotypes appear similar to those of S+M KO mice. *GLUT5* is mainly
327 expressed in the intestine and kidneys, and much less in the liver [32]. Fructose absorption in mice
328 and humans appears to be limited at high fructose concentrations, which is consistent with the
329 limited absorption capacity of a facilitated transport system [33,34]. Moreover, in these *GLUT5*-KO
330 mice, fructose absorption was decreased by 75% in the jejunum and the concentration of serum
331 fructose was decreased by 90%, compared with WT mice [31]. Therefore, decreased "intestinal"
332 *Glut5* mRNA may contribute to the lower intestinal fructose absorption in KO mice, suggesting that
333 S+M-fed KO mice have not only sucrose intolerance, but also fructose malabsorption. From a clinical
334 viewpoint, metformin sometimes causes abdominal discomfort (diarrhea and vomiting) [35].
335 Considering metformin can inhibit ChREBP activity [36], abdominal side effects may be due to
336 suppression of ChREBP, and thereby decreased *Glut5* mRNA expression. If excess amounts of
337 carbohydrates are consumed by patients with diabetes mellitus, the combination therapy of
338 metformin and α -glucosidase inhibitor may increase abdominal side effects.

339 SI has important roles in the regulation of intestinal sucrose absorption [37]. SI is an enzyme
340 that digests sucrose into glucose and fructose. *Si* mRNA is induced by sucrose and fructose [13,38].
341 Moreover, it has been reported that glucose “negatively” regulates human *Si* gene expression
342 through two HNF binding sites in Caco-2 cells [39,40]. Therefore, it is reasonable that ChREBP does
343 not directly regulate SI. However, we found that *Si* mRNA levels in the intestine of KO mice were
344 lower than those in WT. We considered some potential pathways through which ChREBP indirectly
345 regulates *Si* mRNA expression. First, the amount of sucrose intake by KO mice may be lower than
346 the intake by WT because of appetite loss in KO mice. Second, intracellular metabolites derived from
347 sucrose may be a signal for induction of SI genes. As ChREBP regulates glucose and fructose
348 metabolism, intracellular metabolites may be decreased in KO mice. Interestingly, it has been
349 reported that independently of ChREBP, fructose uniquely induces *SREBP1c* and fatty acid synthesis
350 genes, resulting in impaired insulin signaling [41]. Although further investigation is still needed,
351 decreased *Si* mRNA levels in KO mice also partly contribute to the pathogenesis of sucrose
352 intolerance.

353 In addition to decreased sucrose metabolism, decreased fructose metabolism has a more
354 important role in the pathogenesis of sucrose intolerance in KO mice. We and other groups have
355 reported that ChREBP has an important role in regulating fructose metabolism [11,12,14-17]. Many
356 of the fructose metabolism genes (*Glut2*, *Glut5*, *Khk* and aldolase B) are ChREBP-target genes [12, 17,
357 18]. The mRNA levels of *Khk*, *Glut2* and *Glut5* in intestine-specific ChREBP-KO mice were much
358 lower than in WT mice after oral fructose injection [18]. Consistently, our data showed that the
359 mRNA levels of *Khk*, *Glut2* and *Glut5* in KO mice were much lower than in WT mice. Moreover, oral
360 fructose injection induced *Khk*, *Glut2* and *Glut5* mRNA levels in a time-dependent manner only in
361 WT mice. These results reconfirmed that ChREBP coordinately regulates intestinal fructose
362 metabolism by modulating *Khk*, *Glut2* and *Glut5* gene expression.

363 Hepatic KHK has important roles in liver fructose metabolism [42,43]. It has been reported that
364 the plasma fructose levels in *Khk*^{-/-} mice were 10 times higher than those in WT and *Glut5*^{-/-} mice [42].
365 Consistently, the hepatic fructose content in KO mice was much higher after peritoneal fructose
366 injection, which is consistent with decreased *Khk* mRNA levels in the liver of KO mice. As with
367 hepatic fructose transport, hepatic *Glut5* mRNA levels were much lower than in the intestine, which
368 is consistent with a previous study [32]. Considering that the plasma fructose levels in *Glut5*^{-/-} mice
369 were much lower than in *Khk*^{-/-} mice, other fructose transporters may regulate hepatic fructose
370 uptake. Our data suggest that hepatic *Khk* rather than *Glut5* regulates hepatic fructose metabolism.
371

372 5. Conclusions

373 In conclusion, both sucrose feeding and *Si* inhibitor caused sucrose intolerance and fructose
374 malabsorption in ChREBP-KO mice. ChREBP coordinately regulates sucrose and fructose
375 metabolism by modulating the mRNA expression of intestinal *Si* and *Glut5*, and hepatic *Khk*.
376 Considering intestinal absorption of fructose is more difficult than that of glucose, intestinal
377 ChREBP rather than hepatic ChREBP has an important role in the pathology of sucrose intolerance
378 and fructose malabsorption.

379 **Acknowledgments:** We thank Hiromi Tsuchida (Gifu University) and Wu Wudelehu (Gifu University) for
380 technical assistance. We thank Michal Bell, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a
381 draft of this manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan
382 Society for the Promotion of Science (Iizuka K: No. 17K00850, 26500005, Takeda J: No. 17K19902), research grants from
383 MSD, Novartis Pharma and Sanwa Kagaku Kenkyusyo Inc. (Iizuka K and Takeda J).

384 **Author Contributions:** Katsumi Iizuka conceived and designed the experiments; Takehiro Kato and Ken
385 Takao performed the experiments; Takehiro Kato and Katsumi Iizuka analyzed the data; Tadahiro Kitamura
386 and Yukio Horikawa gave a support in the literature review; Katsumi Iizuka and Jun Takeda wrote and
387 revised the paper. All the authors approved the final version of the manuscript.

388 **Conflicts of Interest:** The authors declare no conflicts of interest.

389

390 **References**

- 391 1. Elliott, S.S.; Keim N.L.; Stern, J.S.; Teff, K.; Havel, P.J. Fructose, weight gain, and the insulin resistance
392 syndrome. *Am. J. Clin. Nutr.* **2002**,*76*,911-922.
- 393 2. Samuel, V.T. Fructose induced lipogenesis: from sugar to fat to insulin resistance. *Trends. Endocrinol. Metab.* **2011**,*22*,60-65.
- 394 3. Macdonald, I.A. A review of recent evidence relating to sugars, insulin resistance and diabetes. *Eur. J. Nutr.* **2016**,*55*,17-23.
- 395 4. Khan, T.A.; Sievenpiper, J.L. Controversies about sugars: results from systematic reviews and
396 meta-analyses on obesity, cardiometabolic disease and diabetes. *Eur. J. Nutr.* **2016**, *55*, 25-43.
- 397 5. Mochizuki, K.; Hanai, E.; Suruga, K.; Kuranuki, S.; Goda, T. Changes in α -glucosidase activities along the
398 jejunal-ileal axis of normal rats by the α -glucosidase inhibitor miglitol. *Metabolism.* **2010**,*59*,1442-447.
- 399 6. Delbridge, L.M.; Benson, V.L.; Ritchie, R.H.; Mellor, K.M. Diabetic Cardiomyopathy: The Case for a Role of
400 Fructose in Disease Etiology. *Diabetes.* **2016**,*65*,3521–3528.
- 401 7. Douard, V.; Ferraris R.P. The role of fructose transporters in diseases linked to excessive fructose intake. *J Physiol.* **2013**,*591*,401-414.
- 402 8. Sugimoto, K.; Hosotani, T.; Kawasaki, T.; Nakagawa, K.; Hayashi, S.; Nakano, Y.; Inui, H.; Yamanouchi, T. Eucalyptus leaf extract suppresses the postprandial elevation of portal, cardiac and peripheral fructose
403 concentrations after sucrose ingestion in rats. *J. Clin. Biochem. Nutr.* **2010**,*46*,205-211.
- 404 9. Kawasaki, T; Akanuma, H.; Yamanouchi, T. Increased fructose concentrations in blood and urine in
405 patients with diabetes. *Diabetes Care.* **2002**,*25*,353–357.
- 406 10. DiNicolantonio, J.J.; Lucan, S.C. Is fructose malabsorption a cause of irritable bowel syndrome? *Med Hypotheses.* **2015**,*85*,295-297.
- 407 11. Iizuka, K. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose
408 Metabolism. *Nutrients.* **2017**,*9*,181.
- 409 12. Iizuka, K; Bruick, R.K.; Liang, G.; Horton, J.D.; Uyeda, K. Deficiency of carbohydrate response
410 element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. *Proc Natl Acad Sci U S A.* **2004**,*101*,7281-7286.
- 411 13. Broyart, J.P.; Hugot J.P.; Perret, C.; Porteu, A. Molecular cloning and characterization of a rat intestinal
412 sucrase-isomaltase cDNA. Regulation of sucrase-isomaltase gene expression by sucrose feeding. *Biochim Biophys Acta.* **1990**,*1087*,61-67.
- 413 14. Zhang, D.; Tong, X.; VanDommelen, K.; Gupta, N.; Stamper, K.; Brady, G.F.; Meng, Z.; Lin, J.; Rui, L.;
414 Omary, M.B.; Yin, L. Lipogenic transcription factor ChREBP mediates fructose-induced metabolic
415 adaptations to prevent hepatotoxicity. *J Clin Invest.* **2017**,*127*,2855-2867.
- 416 15. Fisher FM, Kim M, Doridot L, Cunniff JC, Parker TS, Levine DM, Hellerstein MK, Hudgins LC,
417 Maratos-Flier E, Herman MA. A critical role for ChREBP-mediated FGF21secretion in hepatic fructose
418 metabolism. *Mol Metab.* **2016**,*6*,14-21.
- 419 16. Kim, M.S.; Krawczyk, S.A.; Doridot, L.; Fowler, A.J.; Wang, J.X.; Trauger, S.A. ChREBP regulates
420 fructose-induced glucose production independently of insulin signaling. *J Clin Invest.* **2016**,*126*,4372–4386.
- 421 17. Ma, L.; Robinson, L.N.; Towle, H.C. ChREBP*MIx is the principal mediator of glucose-induced gene
422 expression in the liver. *J Biol Chem.* **2006**,*281*,28721-28730.
- 423 18. Kim, M.; Astapova, I.I.; Flier, S.N.; Hannou, S.A.; Doridot, L.; Sargsyan, A.; Kou, H.H.; Fowler, A.J.; Liang,
424 G.; Herman, M.A. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. *JCI Insight.* **2017**, *2*,
425 pii: 96703.
- 426 19. Wu, W.; Tsuchida, H.; Kato, T.; Niwa, H.; Horikawa, Y.; Takeda, J.; Iizuka K. Fat and carbohydrate in
427 western diet contribute differently to hepatic lipid accumulation. *Biochem. Biophys. Res. Commun.*
428 **2015**,*461*,681–686.
- 429 20. Sasaki, T.; Shimpuku, M.; Kitazumi, T.; Hiraga, H.; Nakagawa, Y.; Shibata, H.; Okamatsu-Ogura, Y.;
430 Kikuchi, O.; Kim, H.J.; Fujita, Y.; Maruyama, J.; Susanti, V.Y.; Yokota-Hashimoto, H.; Kobayashi, M.; Saito,
431 M.; Kitamura, T. Miglitol prevents diet-induced obesity by stimulating brown adipose tissue and energy
432 expenditure independent of preventing the digestion of carbohydrates. *Endocr J.* **2013**,*60*,1117-1129.
- 433 21. Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. *Can J Biochem Physiol.*
434 **1959**,*37*,911-917.
- 435 22. Kunst, A.; Draeger, B.; Ziegenhorn, J. in *Methods of Enzymatic Analysis* (Berg- meyer, H.U., ed.) 3rd ed.,
436 1984, VI, 163-172, Verlag Chemie, Weinheim, Deerfield Beach/Florida, Basel

444 23. Nagashima, K.; Hisada, T.; Sato, M.; Mochizuki, J. Application of new primer-enzyme combinations to
445 terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. *Appl*
446 *Environ Microbiol.* **2003**, 69, 1251-1262.

447 24. Lukas, G.; Brindle, S.D.; Greengard, P. The route of absorption of intraperitoneally administered
448 compounds. *J Pharmacol Exp Ther.* **1971**, 178, 562-564.

449 25. Gänzle, M.G.; Follador, R. Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review. *Frontiers*
450 *in Microbiology.* **2012**, 3, 340.

451 26. Pokusaeva, K.; Fitzgerald, G.F.; van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. *Genes &*
452 *Nutrition.* **2011**, 6, 285-306.

453 27. Yamada, S.; Kamada, N.; Amiya, T.; Nakamoto, N.; Nakaoka, T.; Kimura, M.; Saito, Y.; Ejima, C.; Kanai, T.;
454 Saito, H. Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in
455 murine high-fat diet-induced steatohepatitis. *BMC Gastroenterology.* **2017**, 17, 136.

456 28. Neyrinck A.M.; Pachikian, B.; Taminiau, B.; Daube, G.; Frédéric, R.; Cani, P.D.; Bindels, L.B.; Delzenne,
457 N.M. Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics. *PLoS*
458 *ONE.* **2016**, 11, e0160488.

459 29. Treem W.R. Clinical aspects and treatment of congenital sucrase-isomaltase deficiency. *J Pediatr*
460 *Gastroenterol Nutr.* **2012**, 55 Suppl 2, S7-13.

461 30. Johnston, P.S.; Coniff, R.F.; Hoogwerf, B.J.; Santiago, J.V.; Pi-Sunyer, F.X.; Krol, A. Effects of the
462 carbohydrate inhibitor miglitol in sulfonylurea-treated NIDDM patients. *Diabetes Care.* **1994**, 17, 20-29.

463 31. Barone, S.; Fussell, S.L.; Singh, A.K.; Lucas, F.; Xu, J.; Kim, C.; Wu, X.; Yu, Y.; Amlal, H.; Seidler, U.; Zuo, J.;
464 Soleimani, M. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of
465 fructose-induced hypertension. *J Biol Chem* **2009**, 284, 5056-5066.

466 32. Rand, E.B.; Depaoli, A.M.; Davidson, N.O.; Bell, G.I.; Burant, C.F. Sequence, tissue distribution, and
467 functional characterization of the rat fructose transporter GLUT5. *Am J Physiol.* **1993**, 264, G1169-1176.

468 33. Jones H.F.; Butler, R.N.; Brooks, D.A. Intestinal fructose transport and malabsorption in humans. *Am J*
469 *Physiol Gastrointest Liver Physiol.* **2011**, 300, G202-206.

470 34. Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. *Am J Physiol*
471 *Endo Metab* **2008**, 295, E227-E237.

472 35. Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: clinical use in type 2 diabetes. *Diabetologia*
473 **2017**, 60, 1586-1593.

474 36. Li, X.; Kover, K.L.; Heruth, D.P.; Watkins, D.J.; Moore, W.V.; Jackson, K.; Zang, M.; Clements, M.A.; Yan,
475 Y. New Insight Into Metformin Action: Regulation of ChREBP and FOXO1 Activities in Endothelial Cells.
476 *Mol Endocrinol* **2015**, 29, 1184-1194.

477 37. Gericke, B.; Amiri, M.; Naim, H.Y. The multiple roles of sucrase-isomaltase in the intestinal physiology.
478 *Molecular and Cellular Pediatrics* **2016**, 3, 2.

479 38. Kishi, K.; Tanaka, T.; Igawa, M.; Takase, S.; Goda, T. Sucrase-isomaltase and hexose transporter gene
480 expressions are coordinately enhanced by dietary fructose in rat jejunum. *J Nutr* **1999**, 129, 953-956.

481 39. Boudreau, F.; Zhu, Y.; Traber, P.G. Sucrase-isomaltase gene transcription requires the hepatocyte nuclear
482 factor-1 (HNF-1) regulatory element and is regulated by the ratio of HNF-1 alpha to HNF-1 beta. *J Biol*
483 *Chem* **2001**, 276, 32122-32128.

484 40. Gu, N.; Adachi, T.; Matsunaga, T.; Tsujimoto, G.; Ishihara, A.; Yasuda, K.; Tsuda K. HNF-1alpha
485 participates in glucose regulation of sucrase-isomaltase gene expression in epithelial intestinal cells.
486 *Biochem Biophys Res Commun.* **2007**, 353, 617-622.

487 41. Softic, S.; Gupta, M.K.; Wang, G.X.; Fujisaka, S.; O'Neill, B.T.; Rao, T.N.; Willoughby, J.; Harbison, C.;
488 Fitzgerald, K.; Ilkayeva, O.; Newgard, C.B.; Cohen, D.E.; Kahn, C.R. Divergent effects of glucose and
489 fructose on hepatic lipogenesis and insulin signaling. *J Clin Invest* **2017**, 127, 4059-4074.

490 42. Patel, C.; Sugimoto, K.; Douard, V.; Shah, A.; Inui, H.; Yamanouchi, T.; Ferraris, R.P. Effect of dietary
491 fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice. *Am J*
492 *Physiol Gastrointest Liver Physiol* **2015**, 309, G779-G790.

493 43. Ishimoto, T.; Lanaska, M.A.; Le, M.T.; Garcia, G.E.; Diggle, C.P.; Maclean, P.S.; Jackman, M.R.; Asipu, A.;
494 Roncal-Jimenez, C.A.; Kosugi, T.; Rivard, C.J.; Maruyama, S.; Rodriguez-Iturbe, B.; Sánchez-Lozada L.G.;
495 Bonthon, D.T.; Sautin, Y.Y.; Johnson, R.J. Opposing effects of fructokinase C and A isoforms on
496 fructose-induced metabolic syndrome in mice. *Proc Natl Acad Sci USA* **2012**, 109, 4320-4325.