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ABSTRACT 

Three Dimensional Variational data assimilation or analysis (3DVAR) is one of 

most classical methods for providing the initial values for numerical models. In this 

method, the dimensions of the background error covariance and the observational 

error covariance matrices are large. Therefore, it is difficult to get the inverse of the 

covariance matrices and to reduce the orders of these matrices without information 

loss. With the use of the Sylvester Equation, on the basis of a new linear regression, a 

new cost function for 3DVAR was given. For the first-guess m×n field, there is an 

approximate 1−(m
2
+n

2
)/(mn×mn) reduction with m>1 & n>1 by using the cost 

function. The results of the numerical experiments show that the effect of this 

algorithm is no worse than that of the old cost function for 3DVAR. 

Key words: 3DVAR; data assimilation; cost function; Sylvester equation 

1. Introduction 

Variational data assimilation is widely used all over the world (Chen et al., 2015; 

Kalnay, 2003; Kristian et al., 2009; Warner, 2011) in order to provide the first guesses 

(initial values) for atmospheric or oceanic numerical predictions, which is an initial 
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value problem. In these methods, the background error covariance and observational 

error covariance matrices have large dimensions (Kalnay, 2003; Warner, 2011). 

Reducing the order of the covariance matrices is still an important problem. 

It is well known that the structure or estimation of the covariance matrices in the 

cost function (Bannister, 2008a; Bannister, 2008b; Federico, 2013; Liu et al., 2010; 

Parrish et al., 1992) is the key to solving the variational analysis problem, but this type 

of matrix is nearly ill-conditioned in the large dimension case. In order to get a better 

estimation of these matrices, many algorithms (Bannister, 2008a; Bannister, 2008b; 

Cohn et al., 1996; Farrell et al., 2010) for these large matrices have been developed. 

Some of them are applied by many meteorological centers, such as the NMC (National 

Meteorological Center) method (Parrish et al., 1992). Naturally, reduction-order 

algorithms are also developed; proper orthogonal decomposition is one of these 

methods, and many works on reduction-order methods are based on it (Cao et al., 2007; 

Fang et al., 2014; Lawless et al., 2008). The others are based on statistical methods, 

such as empirical orthogonal function (EOF) decomposition (Frolov et al., 2009; Hoteit 

et al., 2006; Robert et al., 2005; Shen et al., 2014; Zhao et al., 2012) and the work of 

Kleist et al. (2008). By reducing the computational burden, more or less information of 

the covariance matrix is neglected. It is obvious that both keeping the covariance 

matrices’ information and reducing the computational burden are important. Although 

those methods are effective, fewer of them can truly reduce the dimensions of the 

covariance matrices. 
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In previous research (Chen et al., 2017; 2019), a more generalized linear 

regression model was developed. By using this method, Chen et al. (2019) found that 

the Sylvester Equation (SE) can be applied in data assimilation and that the SE can 

reduce the computational burden with less information loss. In this paper, the theory of 

the SE and the use of the SE to solve the Three Dimensional Variational analysis 

(3DVAR) problem are presented in section 2, some numerical experiments are 

presented in section 3, and the conclusions and a discussion are provided in section 4. 

2. Reduction-order algorithm 

2.1 The SE 

Eq. (1) in the m×n unknown matrix X is called the SE as follows: 

AX+XB+C=0,                                (1) 

where A and B are m×m and n×n square matrices, respectively, and C is m×n 

(Simoncini, 2013). Eq. (1) is a linear matrix equation and is widely used in controlling 

systems, numerical analysis and even image processing. 

Eq. (1) can be rewritten as the following linear vector equation: 

(In○×A+BT○× Im)vec(X)+vec(C)=0,                 (2) 

where In is the n×n identity matrix, ○×  is the Kronecker product notation, T 

represents the matrix transposition, and vec() stacks the columns of X into a column 

vector (Deif et al., 1995; Simoncini, 2013).  

2.2 The more generalized linear regression model 
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Chen et, al. (2017; 2019) proposed a more generalized linear regression model, 

whose basic features include non-commutative multiplication, equivalence to 

traditional linear regression as predictors in the model are scalars, analysis, extension, 

dimension-reduction, and robustness, etc., and applied this model in the 

hind-forecasting experiment of seasonal precipitation in China, the correlation 

coefficients of the precipitation from NCEP and from Chen’s model are greater than 

0.7 in the most areas, and the mean absolute errors are less than 0.8 in the most areas. 

So, this model is applicable in practice.  

For linear regression model, in a simple way, y=ax+b, we can estimate the 

coefficients a and b by least square method. Then it is easy and natural to extent the 

model to the both vector form: [y1, y2, y3, ... , ym]
T
=Am×n[x1, x2, x3, ... , xn]

T
+[b1, b2, 

b3, ... , bm]
T
, which can also be solved by least square method. But for more 

generalized linear regression model, this expression seems to be limited by its form. 

For the expression for the matrix-form data Ym×p and Xn×q, it is difficult to solving 

directly by using the least square method, but the most important principle is all the 

same that the error of the regression model must be smallest. 

So, for the matrix-form data Ym×p and Xn×q, the simplest regression model is 

Ym×p=A1m×nXn×qA2q×p+Bm×p. How to estimate the coefficients matrixes? Taking the 

most important principle about the error into consideration, here noting the matrix 

Ym×p in the model as Ŷm×p, as taking Ym×p as observations. The error of the model can 

be written as ∑(yij−ŷij)
2
, which is the sum of two matrixes’ trace of the expression: 

[Ym×p−Ŷm×p][Ym×p−Ŷm×p]
T
 and [Ym×p−Ŷm×p]

T
[Ym×p−Ŷm×p]. With using matrix differential 
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rule, we can get the expression of coefficients matrixes but nonlinear. By using the 

Sylvester Equation, it seems easier for solving: at first, giving the estimation of the 

coefficients matrixes A1 by the expression Ŷ1m×max(p,q)=A1m×nXn×max(p,q)+B1m×max(p,q), in 

which the elements in the part from min (p,q) to max(p,q) of matrix X or Y can be 

filled with random numbers. For example, p=min(p,q) and q=max(p,q), 

[Ŷ1m×p,Rm×(q−p)]=A1m×nXn×q+B1m×q, where matrix Rm×(q−p) is filled with random numbers. 

By the least square method and the Sylvester Equation, we can estimate A1 and B1. 

Then by the form Ŷm×p=[Ŷ1m×p,Rm×(q−p)]A2q×p+B2m×p, and by the same method, we can 

estimate the coefficients A2 and B2. At last, deleting the random part, the expression 

of more generalized linear regression model is Ym×p=A1m×nXn×qA2q×p+Bm×p, where 

Bm×p=B1m×qA2q×p+B2m×p.  

2.3 3DVAR 

In 3DVAR, the scale cost function J(x) is defined as follows: 

J(x)=(x−xb)
TB−1

(x−xb)+(y−H[x])
TR−1

(y−H[x]),             (3) 

where B is the background error covariance matrix, R is the observational error 

covariance matrix, x is the unknown vector, xb is the background or the first guess 

vector, y is the observation vector and H[] is the observation operator and assumed to 

be linear. The cost function can be defined as the distance between the analysis and 

the background, weighted by the inverse of the background error covariance, plus the 

distance to the observations, weighted by the inverse of the observations error 

covariance (Kalnay, 2003). And, Eq. (1) can be written as: 

J(x)=Trace[(x−xb)
TB−1

(x−xb)]+Trace[(y−H[x])
TR−1

(y−H[x])], 
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where Trace[] is the trace of the matrix in square brackets. Eq. (1) is minimized in 

order to obtain the analysis by solving the following equation: 

J(x)=2B−1
(x−xb)+2H

TR−1
H(x−xb)−2H

TR−1
(y−H[xb])≡0,       (4) 

after solving Eq. (4), the following equation is used to obtain the analysis vector: 

xa=xb+Δ,                           (5) 

where Δ=(B−1
+H

TR−1
H)

−1
H

TR−1
(y−H[xb]), one form of the solution of equation (4).  

Taking the one point situation into consideration, the cost function J(x) can be 

written as: 

J(x)=(x−xb)b
−1

(x−xb)+(y−x)r
−1

(y−x) 

taking the same views that the cost function is a quadratic function of the analysis 

increments (x−xb), then the gradient of the cost function J with respect to (x−xb) or 

equation (4) can be written as: 

J(x)=2b
−1

(x−xb)+2r
−1

(y−xb)≡0 

then the analysis can be written as: 

xa=(b
−1

+r
−1

)
−1

b
−1

xb+(b
−1

+r
−1

)
−1

r
−1

y 

which is minimum variance estimator and for the error (εa, εb, εo (for y)) expression, 

εa=(b
−1

+r
−1

)
−1

b
−1
εb+(b

−1
+r

−1
)
−1

r
−1
εo 

For the vector form, we can also get the form by set (b
−1

+r
−1

)
−1

b
−1

 and 

(b
−1

+r
−1

)
−1

r
−1

 of each elements in the verctor xb and y as element of the weight 

diagonal matrixes D1 and D2 in x=D1xb+D2H
−1

(y) respected to the elements in the 

vector, here H
−1

(y) just means we can get the point information, and with any other 

practical meaning. The errors of the analysis (ε) can be considered as the sum of the 
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errors of background (εb) and observation (εo):  1

1 2b o

 T H  D D . Then, what to 

do is just giving the estimation of the minimum variance. Same to the point situation, 

and just considering all errors’ distribution is same, we can give the coefficients a1 

and a2 in       1 1

1 2E E b o oa a   Tε ε ε ε H ε H ε , where a1+a2=1 and a1 and a2 are 

constants related to the variances of the errors with the assumption that the parameters 

of statistic characters in each grid and observation station are same.. 

All of this is easy, but difficult for the matrix form. So, by using the more 

generalized linear regression model, just give the forms with the more generalized 

linear regression model. On the basis of matrix theory and a more generalized linear 

regression model (Chen et al., 2017; 2019), the analysis X (x=vec(X), X is the analysis 

field and m×n) can be written as: 

X=E1XbE2+E3H−1
(Y)E4. 

where, Ei (i=1, 2, 3, 4) is the regression coefficient matrices, H[] is the observation 

operator and assumed to be linear, H−1
 is the generalized inverse to the H. Because X, 

Xb and H−1
(Y) are the different forms of the same field, the regression coefficient 

matrices are the identity matrices weighted a constant number and the E1E2+E3E4=1. 

The errors of the analysis (ε) can be considered as the sum of the errors of 

background (εb) and observation (εo): 

ε=E1εbE2+E3H−1
(εo)E4. 

The distance between the analysis and the truth field can be also written as 

Trace(ε 1

1

W εT
)+Trace(εT 1

2

W ε), where W1 and W2 are the expectations of εTε and εεT
. 

Taking the expectation of εTε as an example: 

E(εTε)=E[(E1εbE2+E3H−1
(εo)E4)

T
(E1εbE2+E3H−1

(εo)E4)], 
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on the basis of the assumptions above, the expectation can be written as: 

      2 2 1 1

1 2E E b b o oa a   Tε ε ε ε H ε H ε . 

where a1 and a2 are constants related to the variances of the errors; in addition, 

a1+a2=1, and both a1 and a2 are greater than zero. So, it is natural to rewrite the cost 

function as the following equation: 

J(X)=J1(X)+J2(X)+J3(X)+J4(X),                      (6) 

where 

     

     

       

       

1

1 1

1

2 2

1

3 1

1

4 2

Trace

Trace

Trace

Trace

b b

b b

J

J

J

J









    
 

      


   
 

    
  

T

T

T

T

X X X B X X

X X X B X X

X Y H X R Y H X

X Y H X R Y H X

,              (7) 

where B1 (with a dimension of m×m) and B2 (with a dimension of n×n) are the 

background error covariance matrices, R1 (with a dimension of m×m) and R2 (with a 

dimension of n×n) are the observational error covariance matrices, Y is the 

observation and with a dimension of m×n, here, we just fill the observation matrix Y 

with all observation data along the diagonal of the matrix which ensure the matrix is a 

nonsingular matrix, and the others in the matrix just filled with zero. For the vertical 

levels, just put them together as [X1;X2;X3;....;Xn], then use equation (6) to get the 

analysis. Therefore, the analysis can be conducted by minimizing Eq. (6). But, it 

should be noted that the cost function (Eqs.(6) and (7)) is not exactly the same as the 

regular cost function (Eq. (3)). 

2.4 Discussion in the Ideal Case 
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In the ideal case, the observational stations are located in each computational 

grid point; in another word, for the ideal case, in each grid, there are two values: the 

back ground value and the observation value. On the basis of matrix theory and a 

more generalized linear regression model, H[X] can be written as H[X]≡AXD, where A 

and D are the regression coefficient matrices (in the more generalized linear 

regression, if there is linear correlation between the two anomalies X and Y, the 

relation can be written as Y=AXD, Chen et al., 2017; 2019). 

Differentiating J1(X) in Eq. (7) with respect to X gives the following: 

 1 1 1 1 1

1 1 1 1b b

J    
   



T T
X

B X B X B X B X
X

,               (8) 

Similar to other terms, we substitute these equations into the following equation: 

 
       1 2 3 4

J
J J J J

 
      

X
X X X X

X X
,            (9) 

with 

Δ=X−Xb.                              (10) 

Then, Eq. (9) can be rewritten as follows: 

 
1 1 2 2 1 2

J
      



T T T T
X

B Δ A R AΔDD ΔB A AΔDR D F F 0
X

S S S S
,    (11) 

The other terms in Eq. (11) are as follows: 

 

1 1

1 1 1

1 1

1 1 1

1 1

1 1 1 1 1b b

 

 

 

  


 


   

T

T

T T T T T

B B B

R R R

F B X A R R GD A R AX DD

S

S

S S

,         (12) 

and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2019                   



10 
 

 

1 1

2 2 2

1 1

2 2 2

1 1

2 2 2 2 2b b

 

 

 

  


 


   

T

T

T T T T T

B B B

R R R

F X B A G R R D A AX DR D

S

S

S S

.         (13) 

with G=Y–AXbD. The analysis can be written as the solution to Eq. (11) plus the 

background as follows:  

Xa=Xb+Δ.                           (14) 

In the ideal case, A and D are the identity matrices. So the Eqs. (11-13) can be 

written as the SE as follows: 

       1 1 1 1

1 1 2 2 1 1 2 2

          T T T T

R R R RB B Δ Δ B B R R G G R R 0 ,     (15) 

with 
1 1

1 1 1

  RB B R  and 
1 1

2 2 2

  RB B R . Compared with the following vector form: 

(B−1
+H

TR−1
H)Δ−H

TR−1
g=0                     (16) 

with g=y−H[xb], the following matrix form is with vector form in Δ: 

         
T

T T 1T 1 1T 1

R1 R1 R2 R2 1 1 2 2vec vec                
   

0I B B B B I Δ R R G G R R . 

(17) 

For the case that errors made at different locations are uncorrelated and the variances 

(means) of the errors are same, Eq. (17) are similar to the Eq. (16) with a constant k: 

[Eq. (17)]=k[Eq. (16)], 

as all error covariance matrices in Eq. (17) are the identity matrices multiplied by the 

estimation of the variance of the errors, which means Eq. (15) is equivalent to Eq. 

(17). 

3. Numerical experiments 

3.1 Numerical Experiments in the Ideal Case 
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Figure 1a shows the ideal field with a dimension of 100×100. Figure 1b shows 

the background that is generated by the ideal field plus a normal distribution error (the 

background xb is generated by the command xb=peaks(100)+normrnd(μ,σ,m,n) in 

MATLAB with μ=1, σ= 0.3 , and the observation is generated in the same way with 

μ=0 and σ=rand(100)*sqrt(2/10). Here, peaks is a function of two variables, obtained 

by translating and scaling Gaussian distributions: 

     
2 22 22 22 1 13 5 1

3 1 e 10 e e , 3 , 3
5 3

x y x yx yx
z x x y x y

       
         

 
, and 

peaks(100) returns a 100×100 matrix. The function normrnd(μ,σ,m,n) generates 

random numbers from the normal distribution with mean parameter μ and standard 

deviation parameter σ, where scalars m and n are the row and column dimensions of 

output. The function rand(100) returns a 100×100 matrix containing pseudorandom 

values drawn from the standard uniform distribution on the open interval (0,1). The 

function sqrt returns the square root of input). The maximum absolute error (MAE) is 

2.5260, the root mean squared error (RMSE) is 0.6692, the mean absolute error 

(MAE1) is 0.5331, and the mean error (ME) is 0.0011. Figure 1c shows the 

observation. The MAE is 2.9656, the RMSE is 0.7176, the MAE1 is 0.5759 and the 

ME is –0.0015. Figure 1d shows the analysis that is obtained by Eq. (15). The MAE is 

2.0902, the RMSE is 0.4909, the MAE1 is 0.3908, and the ME is −0.0001. The results 

show that the analysis field provided by Eq. (15) is acceptable in practice. In order to 

compare Eq. (15) and (16), the experiment (table 1 shows the comparison) with a 

dimension of 40×40 was established. Both results show that the effect of Eq. (15) is 

acceptable. 
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Table 1. The numerical experiment’s results (with a dimension of 40×40) 

Fields MAE RMSE MAE1 ME 

background field 3.0050 0.8969 0.7132 −0.0221 

observation field 3.0241 0.8974 0.7215 −0.0117 

analysis field (Eq. (15)) 2.1370 0.6061 0.4828 −0.0172 

analysis field (Eq. (16)) 2.4254 0.6977 0.5538 −0.0092 

 

Figure 1.  The numerical experiment’s results (the ideal case). (a) The ideal field, (b) 

the background, (c) the observation, and (d) the analysis by Eq. (15). 

3.2 Numerical Experiments in the General Case  

In the general case, the observational stations cannot be at each the 

computational grid point. Therefore, there are two ways to resolve this situation. The 

first way is to interpolate the background onto the observation stations. Contrary to 
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the first way, the second way is to interpolate the observations onto the computational 

grid. 

The second way seems easier with respect to Eq. (15). The resulting interpolation 

function is given as follows: 

 

 

   

 

2
2 21

0 0

0 0
2

1

,

, 0
1,

, , . 0

q
i i

i i
i i iq

i i

i i i

f x y

d
d x x y y

p x y

d

f x y if d







     

 








,       (18) 

where p(x0,y0) is the estimation of the position (x0,y0), f(xi,yi) is the observation of the 

position (xi,yi), di is the distances that are arranged from small to large, and q is a 

constant. Using Eq. (18), we can get the statistical feature values of the observation at 

each computational grid point. 

Figure 2a shows the observation stations that are generated by random numbers. 

The position of each station is marked with an asterisk. The total number of sites is 

900, and the total number of computational grid points is 2500. 

In the numerical experiments, the observed error distribution of each station 

obeys a normal distribution. The mean is 0, and the variance of each point is a random 

number from 0 to 1. The error of the background field in each grid obeys a normal 

distribution. The mean value is 1, and the variance is a constant number that belongs 

to the interval (0,1). 

The estimation of the mean of the observed error at each computational point is 0. 

The mean values estimated distribution from Monte Carlo simulations is shown in 
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figure 2b, and the comparison of the estimation of the variance is shown in figure 2c. 

The others are the same as in figure 1 and the comparison is shown in table 2.  

Table 2.  The numerical experiment’s results (with a dimension of 50×50) 

Fields MAE RMSE MAE1 ME 

background field 2.8215 0.5477 1.0101 0.9960 

observation field 1.2196 0.2600 0.1816 −0.0008 

analysis field (Eq. (15)) 1.1933 0.2078 0.1479 0.0052 

analysis field (Eq. (16)) 2.1347 0.5144 0.4024 −0.0194 
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Figure 2.  The numerical experiment’s results (the general case). (a) the estimation 

of the mean values (vm) in each computational point: vm>0.2 for solid contours, 

vm<–0.2 for dashed contours, vm=0.2 for thick solid contours, vm=−0.2 for thick 

dashed contours, and the contour interval is 0.2; (b) the comparison between the 

estimation of the observed error’s variance using Eq. (18) and Monte Carlo 

experiments; (c) the background; (d) the observation; (e) the analysis of Eq. (15); and 

(f) the analysis of Eq. (16). 

By comparing the analysis field by Eqs. (15) and (16), the MAE, RMSE and 

MAE1 are smaller for the case with Eq. (15), which means that the errors are 

concentrated in a smaller interval: for this case in table 2. as an example, the 

maximum error is 1.1933, but another is 2.1347. The reason that the case in table 2. is 

better than both case in table 1 and another case in table 2. may be more information 

about each grid are taken into consideration than others. As the information of each 

grid are same, the cases in the table 1. are close to each other, but in the case with Eq. 

(15), the errors are concentrated in a smaller interval, too.  

The mean values by Eq.(18) is close to 0 in the figure 2a as the values of the 

most areas in the figure are on the interval (−0.2 0.2), the variance values of the 

observation and values gotten by Eq.(18) are mainly on the diagonal line in the scatter 

plot figure 2b, which means both values are similar. The results that are shown in both 

figures imply that the estimations of the statistical feature values are acceptable. Both 

figures 2c-g and the comparison results above show that the effects of this reduction 

algorithm are no worse than those of the directive scheme for 3DVAR. 
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4. Summary and discussion 

With the numerical results from section 3, the new cost function for 3DVAR 

within the SE significantly reduces the computational magnitude. The dimension of 

the covariance matrices Bi and Ri (i=1,2) in Eq. (6) is approximately 2×(m
2
+n

2
), and 

the dimension of the background error covariance matrix B in Eq. (3) is approximately 

m
2
×n

2
. The rate of both is 2×(m

2
+n

2
)/(m

2
×n

2
), which is a decreasing function of both 

m and n. For m=n=10, the rate is 0.04, which means that there is an approximately 

96% reduction. Without the loss of generality, by setting m≤n, the rate takes the 

following form of an inequality: 

 
2

2 2
2

2 2 2 2 2

2 224 4
, 2

m
m n n n m

n m n m m


     .              (19) 

Eq. (19) means that there is an approximate reduction of between 4/n
2
 and 4/m

2
. 

For a high-resolution limited area model or a global model with m, n>100, there is 

approximately a 99% reduction in and less information for the covariance matrices 

loss.  
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