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Abstract 

Numerical weather prediction is an initial-value problem, for determination of the initial 

conditions, there are many methods and one of the most classical methods is variational methods 

in three dimensions, or 3D-Var. In this approach, with a defined cost function proportional to the 

square of the distance between the analysis and both the background and the observations, one can 

obtain the analysis. In the cost function, the background and the observations are reshaped to 

vectors; within this step, the order of the background error covariance matrix and the 

observational error covariance matrix becomes huge, which is not convenient to one to obtain the 

analysis. In this paper, according to the matrix analysis approach, we put forward some possible 

improvements to the dimension-reduction algorithm of 3D-Var, so that provide some references 

for data assimilation. 
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1. Introduction 

On the basis of Bayes’ theorem, Lorenc (1986) gave an analysis method for estimating the 

initial-value, which is now known as 3D-Var and widely used all over the world (Chouinard, 2003; 

Brousseau et al., 2015; Liu et al., 2016; Zaripov et al., 2016; Wang et al., 2017). In his paper, 

Lorenc laid the mathematical foundation of 3D-Var. In this famous approach, the cost function is 

defined as: 

           1 1

b bJ       
TT

x x x x x y x y xB H R H ,             (1) 

where B is the background error covariance matrix, R is the observational error covariance matrix, 

x is the vector of the analysis, xb is the vector of the background or the first guess, y is the vector 

of the observation and H[] is the observation operator. The cost function is minimized directly to 
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obtain the analysis of the atmospheric or oceanic state at a given time. As the dimension of B and 

R is too large, there are a lot of papers (Bannister, 2008a; Bannister, 2008b; Cohn et al., 1996; 

Farrell et al., 2010) for solving equation (1); some of these methods are applied by many centers, 

such as NMC (National Meteorological Center) method (Parrish et al., 1992), which is used for 

estimating the forecast error covariance. 

The minimum of cost function in equation (1) is attained for x = xa (the vector of analysis), 

the analysis is given by the solution of: 

        1 1 12 2 2b b bJ          T T
x x x x x y x 0B H R H H R H . 

By solving this equation, we can obtain xa: 

a b x x  , 

where   1 1 12 2 2 b

     T T
y x 0B H R H H R H  . 

In general, all of these methods mentioned in the papers cited above or not are without 

dimension-reduction of B and R, so the dimension of the matrixes is also too large. For example, 

in 3D-Var, a variance field of dimension (m×n) is corresponded to the matrix B of dimension 

(mn×mn); for the global model or high resolution model, this dimension is a “terrible” magnitude. 

 

2. Dimension-reduction algorithm 

By analyzing the structure of the cost function, equation (1), we can find that, the cost 

function J(x) can be rewritten as J(X):  

         1 2 3 4J J J J J   X X X X X ,                    (2) 

where, Ji(X) (i=1,2,3,4) is the trace of the function of the background or the observation, for 

example: 

     1

1 1Trace b bJ    
 

T
X X X B X X ,                    (3) 

where the operator “Trace[]” is used for calculating the trace of the matrix; and J2(X) is similar to 

J1(X), J3(X) and J4(X) are similar and used for calculating the trace for the part of observations. On 

the basis of this thought, we can transform the processes for solving the equation (1) to solving the 

equation (2), in which the background error covariance matrixes are of a dimension similar to the 

background. So, there are four convariance matrixes: two background error covariance matrixes 
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(B1 and B2) and two observational error covariance matrixes (R1 and R2). All matrixes are square 

matrixes, for example, for a variance of a dimension (m×n), the matrix B1 is of a dimension (m×m), 

the matrix B2 is of a dimension (n×n), and same to the matrixes R1 and R2. For the observation 

operator H, on the basis of matrix theory and more generalized linear regression model (Chen et 

al., 2017), we can set that, H[x] ~ H[X] (which means H[X] is equivalent to H[x]), and for a linear 

observation operator, H[X] can be written as H[X] ≡ AXD. 

In Hilbert space, we can make a reasonable assumption that there must be observation 

operators A and D, background error covariance matrixes B1 and B2, observational and 

representative error covariance matrixes R1 and R2, which satisfy equation (2), with the same 

analysis, which is the solution of equation (1). 

In this paper, we will discuss a simple situation, in which the observation is adopted at each 

point in the calculating grids. So, for a variance observation of a dimension (m×n), the matrix R1 is 

of a dimension (m×m), and the matrix R2 is of a dimension (n×n). 

 

2.1 Discussion in the simple situation 

The key point for obtaining the analysis from equation (2) is to get the derivative of Ji(X) 

(i=1,2,3,4).  

Differentiating equations (3) with respect to X gives: 

 1 1 1 1 1

1 1 1 1b b

J
   


   



T T
X

B X B X B X B X
X

. 

Similar to other terms, and substituting these equations following equation: 

 
       1 2 3 4

J
J J J J

 
      

X
X X X X

X X
, 

we can get: 

 
2 2 1 2+

J
    



T T T T T

1S 1S D S A S

X
B X A R AXU Λ U XB V Λ VXDR D FU V F

X
, 

where G = Y – AXbD, DDT = UTΛDU, ATA = VTΛAV, UTU = VTV = UUT = VVT = I (I is unit matrix), 

and the other terms are: 
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The analysis can be obtained by equation (4): 

 2 2 2+    T T T T T T

1S S 1S S 1GS GS
B Δ ΔB A R AΔDD A AΔDR D A R R D ,      (4) 

where 
b Δ X X . Equation (4) is similar to Sylvester equation (AX+XB+C=0), and we can adopt 

the iterative approach for solving this equation, then we can get the analysis Xa, Xa = Xb + Δ. 

Sylvester equation is a matrix equation of the form (AX+XB+C=0); with the given matrixes A, 

B, and C, the problem is to find the possible matrixes X that obey this equation. This equation has a 

wide range of applications in many fields, such as cybernetics. In the simple case, where the 

observation operators are unit matrix, equation (4) can be reduced to Sylvester equation. In section 

2.2, we will show this situation, and a numerical experiment based on Sylvester equation will be 

given in section 2.3. 

 

2.2 Equation (4) in the simple situation (A = D = I)  

In the simple situation, we can take Y – Xb as G, as A = D = I. So the equation (4) can be 

written as: 

       1 1 1 1

1 1 2 2 1 1 2 2

          T T T T

R R R R
B B Δ Δ B B R R G G R R 0 ,         (5) 

where, 
b Δ X X , 1 1

1 1 1

  
R

B B R  and 1 1

2 2 2

  
R

B B R . Equation (5) is Sylvester equation with 

given matrixes 
1 1 T

R R
B B , 

2 2 T

R R
B B , and    1 1 1 1

1 1 2 2

      T TR R G G R R  as matrixes A, B, and 

C in Sylvester equation (AX+XB+C=0, here the matrixes A, B, and C are not matrixes in the 

observation operator). The problem of obtaining the analysis satisfies the cost function is 

transformed to solve the equation (5). 

With MATLAB, we can adopt the function “lyap” for solving Sylvester equation, then, we 

can get the analysis, Xa = Xb + Δ. There are a lot of methods for solving this equation, and here we 

will not go into details. 

In the simple situation and equation (1), we can get the analysis with vector form: 
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 1 1 1    g 0B R RΔ ,                             (6) 

where Δ = x – xb, and g = y – xb. Using the Kronecker product notation and the vectorization 

operator “vec”, we can rewrite Sylvester equation in the form: 

         1 1 1 1

1 1 2 2 1 1 2 2vec vec               
   

T
T T T T

R R R RI B B B B I Δ R R G G R R ,    (7) 

in this form, the equation can be seen as a linear system of dimension (mn×mn), where the 

variance X is of a dimension (m×n). We can find that both equations (6) and (7) are similar. 

For a data assimilation system with 3D-Var or 4D-Var, it is important to estimate the 

background error covariance matrix(es). By estimating the background error covariance matrix(es), 

we can use these matrix(es) to solving equation (5) or (6).  

When running a numerical weather prediction system for a small forecast region, or with low 

resolution, equation (6) can be applied. For example, with a dimension of (50×50), in this case, the 

matrixes (B and R) are of dimension (2500×2500), and most personal computers can work well in 

this situation. When we set the dimension as (100×100), the matrixes (B and R) are of dimension 

(10000×10000), for most personal computers, it is hard to allocate enough memory for 

calculating. 

For the high resolution global numerical models, the resolution can reach 0.125°. The 

dimension of the computing grid in these models can be larger than (2880×1441); in this situation, 

the matrixes (B and R) in equation (6) are with a dimension of (4150080×4150080). So, for 

supercomputer, it is also hard to allocate memory for these matrixes, and there is no direct method 

to solve equation (6) in this case. But, the matrixes (B1, B2, R1, R2, A and D) are with a dimension 

of (2880×1441), which means that if the model can be run, the 3D-Var approach can also be 

adopted with equation (5) through a direct method. 

 

2.3 Numerical experiments in the simple situation (A = D = I)  

In this section, we will present numerical experiments in the simple situation (A = D = I). On 

the basis of equation (5) (also known as Sylvester equation), the result are shown in Fig. 1 and 

table 1. As mentioned above, this situation means that the observation is adopted at each point in 

the calculating grids. The background error statistics on 3D-Var is a very important issues (Rakesh 

& Goswami, 2011; Sahu et al., 2014), here as the covariance matrixes is un-similar to the matrixes 
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in equation(1), we will apply the way to construct the error covariance matrixes (Bi, Ri, i = 1, 2) 

which can be found by this work (Chen et al. 2017). 

In Fig. 1, the ideal field is produced by “peaks” in MATLAB with a dimension of (100×100) 

(the result is shown in table 1, where MAE represents the maximum absolute error, RMSE 

represents the root mean square error, MAE1 represents the mean absolute error, and ME 

represents the mean error; the comparison of equations (5) and (6) are shown in table 2 with a 

dimension of (40×40)), and shown in a in Fig. 1; the background is shown in b, which is produced 

by superimposed random error of normal distribution on the ideal fields (same to experiments in 

table 2); the observation is shown in c, which is also produced by superimposed random error of 

normal distribution on the ideal fields (same to experiments in table 2); the analysis is shown in d, 

which obey equation (5). 

 

 

Fig. 1  The result of numerical experiment with a dimension of (100×100) 
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Table 1  The result of numerical experiment with a dimension of (100×100) 

 MAE RMSE MAE1 ME 

background field 2.7890 0.6756 0.5400 -0.0121 

observation field 2.9519 0.7196 0.5756 0.0061 

analysis field 1.8670 0.4927 0.3925 -0.0036 

 

Table 2  The result of numerical experiment with a dimension of (40×40) 

 MAE RMSE MAE1 ME 

background field 2.9268 0.8902 0.7135 -0.0029 

observation field 2.9832 0.9196 0.7422 -0.0173 

analysis field (eqution (5)) 2.0961 0.6437 0.5174 -0.0173 

analysis field (eqution (6)) 2.5018 0.7282 0.5851 -0.0169 

 

The result (in table 1 and 2) shows that, for the similar type of error, equation (5) is 

applicable. In table 1, comparing the analysis and the observation, the RMSE dropped about 0.23, 

the MAE1 dropped about 0.18; comparing the analysis and the background, the RMSE dropped 

about 0.19, the MAE1 dropped about 0.14. The analysis’ mean error is near to zero, and there is 

no significant abnormal value distribution in the analysis with comparing to the ideal field. In 

table 2, the comparison results show that the analysis obtained by equation (5) is better than the 

one obtained by equation (6).  

The dimension of all matrixes in equation (5) is only (100×100), which can be run with 

personal computers. As discussion above, the dimension of background error covariance matrix is 

with a dimension of (10000×10000) in equation (6), which is hard for a personal computer to 

allocate memory for computing. 

 

3. Summary 

As discussed above, equation (2) is very practical, and this equation is more applicable for 

grid observation and can be also applied in data assimilation with conventional observation. With 

the calculation results in section 2.3, the assimilation effect is achieved in the numerical 

experiments based on equation (2), which significantly reduces the computational magnitude. But, 

there are also some problems (Bannister, 2008a; Bannister, 2008b): how to construct the 

background error covariance matrixes B1 and B2 and observational error covariance matrixes R1 

and R2 is also an important problem.  
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