Compounds from African medicinal plants with activities against protozoal diseases: schistosomiasis, trypanosomiasis and leishmaniasis

Conrad V. Simobena, Fidele Ntie-Kang, Sergi H. Akone and Wolfgang Sippl

An absolute configuration of 5R seems to decrease activity of the compound.

methoxy group bound to the N-atom is important for activity.

1. Introduction
2. Alkaloids
 2.1. Naphthoisoquinolines ...
 2.2. Aporphines ...
 2.3. Quinones ...
 2.4. Indoles and other alkaloids ...
3. Terpenoids
 3.1. Sesquiterpenoids
 3.2. Carvotacetone derivatives ...
 3.3. Diterpenoids
 3.4. Triterpenoids
4. Other compound classes
 4.1. Amides ...
 4.2. Diarylhepanoids ...
 4.3. Benzophenones and xanthones ...
 4.4. Taccalonolides ...
 4.5. Quinones and klaivanolide ...
 4.6. Flavonoids ...
 4.7. Phytosterols ...
5. Conclusions ...
Acknowledgments ...
Conflicts of Interest ...
References ...
Compounds from African medicinal plants with activities against protozoal diseases: schistosomiasis, trypanosomiasis and leishmaniasis

Conrad V. Simobena a, Fidele Ntie-Kang a,b,* Sergi H. Akone c,d and Wolfgang Sippl a

a Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany.
b Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea 00237, Cameroon.
c Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, Geb. 26.23, Duesseldorf 40225, Germany.
dDepartment of Chemistry, Faculty of Science, University of Douala, PO Box 24157, Douala 00237, Cameroon.

*Corresponding author (Email: ntiekfidele@gmail.com)

ARTICLE INFO

Article history:
Received
Revised
Accepted
Available online

English abstract: Parasitic diseases continue represent a threat on a global scale, particularly among the poorest countries in the world. This is particularly because of the absence of vaccines, and in some cases, resistance against available drugs, currently being used for their treatment. In this review emphasis is laid on natural products and scaffolds from African medicinal plants (AMPs) for lead drug discovery and possible further development of drugs for the treatment of parasitic diseases. In the discussion, emphasis has been laid on alkaloids, terpenoids, quinones, flavonoids and narrower compound classes of compounds with micromolar range activities against *Schistosoma*, *Trypanosoma* and *Leishmania* species. Suggestions for future drug development from African medicinal plants have also been provided.

Keywords: African medicinal plants
Leishmaniasis
Natural products
Protozoal diseases
Schistosomiasis
Trypanosomiasis

1. Introduction

Protozoa may be considered as microscopic, essentially single-celled, eukaryotic organisms that are free-living or parasitic (obtaining their food by eating other organisms or their products) in nature. Parasitic protozoal diseases continue to be a cause of considerable morbidity and mortality globally.1 2 Parasitic protozoal diseases include malaria,3 4 trypanosomiasis (African sleeping sickness and Chagas disease),5 7 leishmaniasis 8 and schistosomiasis9 10 They threaten almost one-third of the world’s population, the most numerous incidents being recorded in over 100 Tropical and developing countries and territories, Figure 1.11 12 Malaria, for example, was reported by the WHO, to be responsible for approximately 214 million sickness cases and 438,000 deaths globally in 2017.11 12 The African region recorded the most death-related cases, especially amongst infants below the age of 5 and pregnant women. Schistosomiasis, caused by parasites of the *Schistosoma* genus are responsible for about 200 million sickness cases and about 280,000 death-related incidents annually worldwide.9 10 14 Only one drug (praziquantel) has been proven to be effective in the treatment of human schistosomiasis, with no vaccine available or in development so far.15 21 Serious concerns about drug selectivity and resistance were raised in 2013 when over 30 million people were treated in Sub-Saharan Africa.20 Moreover, observed resistance and reduced efficiency of praziquantel in laboratory strains have prompted the search for alternative therapeutic strategies.20 27

Trypanosomiasis, which represents several diseases caused by parasites of the genus *Trypanosoma*, is also of interest.5 22 29 This disease, which is much arguably the most important disease of man and domesticated animals, accounts for over 8 million reported annual cases globally, especially in the tropical regions of Latin America and Africa.30 31 Although the present number of cases seems negligible on a worldwide scale, great socioeconomic effects on the endemic areas by this disease are forecast if inadequate attention (both at the communal, national, and international levels) is not given.7 29 32 34 Leishmaniasis is caused by parasites of the *Leishmania* type, which is also transmitted by certain types of sandflies.35 36 The diseases are reported by the WHO to be responsible for about 1 million new cases leading to approximately 30,000 deaths annually on a global scale. The major cause is linked to environmental changes.
and affects mainly the very poor populations.37,38 These three diseases represent a real burden to the lives of millions of persons and their domesticated animals. The trio is capable of inflicting long-term disability and social stigmatisation, which can ultimately lead to a highly unproductive population and eventually result in economic loss and the slowdown of a country’s development.

With the absence of any vaccine targeting any parasitic protozoa and resistance against the already existing anti-parasitic drugs, research efforts have been employed and encouraged towards the search for new, cheaper, potent and effective drugs to treat these diseases. Medicinal plants represent a potential source of new drugs. This is because natural products (NPs) from organisms such as animals, fungi and the higher plants have been known to be good sources of pharmacologically active compounds against several ailments, including protozoal infections. Moreover, NPs are believed to have significant advantages as lead molecules over synthetic molecules.39-48 The criteria for choosing a particular natural product for studies are either based on the pre-existing traditional use of the source species in therapy (ethnobotanical knowledge) or the search for structurally related molecules with known pharmacologically active agents from chemical databases.49-54 The African continent is highly diverse ethnobotanically. This might explain why about 80% of the population tends to rely on medicinal plants as a primary source of healthcare.55-67 It is our goal to provide evidence of the efficacy and potency of plants used in traditional medicine against protozoal infections. The systematic documentation of the plant-based chemical constituents of African traditional medicine and attempting to using in silico procedures to investigate their modes of action are ongoing efforts,44-46,52,53 particularly on the isolated compounds from African medicinal plants (AMPs) with evaluated in vitro and/or in vivo activities against trypanosomiasis,68-74 schistosomiasis,73,74 and other parasitic protozoal diseases.4

However, the most recent review dates about 3 years back and was focused only on plants collected from Nigeria. Thus, an updated review that covers the entire continent for these three protozoal parasitic diseases is required now. The information presented herein was retrieved by searching literature from major international journals on natural products and medicinal chemistry, alongside available M.Sc. and Ph.D. theses and online databases.74,75 The information gathered is discussed under the main compound classes, as presented below and summarised in Table 1.

2. Alkaloids

This class is characterized by nitrogen-containing compounds that are naturally occurring. Diverse species (fungi, plants, animals) have yielded several bioactive alkaloids against a broad range of diseases.76-84 Table 1 summarises the alkaloids (compounds 1 - 33) isolated from AMPs and evaluated against these parasitic diseases, while Figures 2 to 5 show a selection of some promising alkaloidal compounds, based on their evaluated activity (< 12.41 µM).

2.1. Naphthylisoquinolines

The leaves, stem bark and roots of Ancistrocladus sp. (Ancistrocladaceae) are known to be rich sources of naphthylisoquinoline alkaloids (Figure 2).85-91 Ancistrocladidine

![Fig. 2. Antiprotozoal naphthylisoquinoline alkaloids.](image-url)
Table 1: Bioactive alkaloids from African flora with potential for antitrypanosomal and antileishmanial drug discovery.

<table>
<thead>
<tr>
<th>Compound number</th>
<th>Compound class / Subclass</th>
<th>Part of plant studied</th>
<th>Species name</th>
<th>Plant family</th>
<th>Place of collection</th>
<th>Used traditionally/locally</th>
<th>Reported activity on/against</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>Alkaloid / Naphthylisoquinoline</td>
<td>Leaves</td>
<td>\textit{Ancistrocladus tanzaniensis}</td>
<td>Asteraceae (Compositae)</td>
<td>Uzungwa Mountains, Tanzania</td>
<td>different species of \textit{Ancistrocladus} are used as a diuretic; also for the treatment of malaria, dysentery, elephantiasis, febrile and phlogistic.</td>
<td>Trypanosomiasis and leishmanosomiasis</td>
<td>85, 86</td>
</tr>
<tr>
<td>6, 7</td>
<td></td>
<td>Leaves, stem bark and roots</td>
<td>\textit{Ancistrocladus ealaensis}</td>
<td>Asteraceae (Compositae)</td>
<td>Eala, Democratic Republic of Congo</td>
<td>Trypanosomiasis and leishmanosomiasis</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>8 – 11</td>
<td>Alkaloid / Naphthylisoquinoline</td>
<td>Stem and root bark</td>
<td>\textit{Ancistrocladus congolensis}</td>
<td>Asteraceae (Compositae)</td>
<td>Yandja-Rive, Democratic Republic of Congo</td>
<td>Trypanosomiasis</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>12 – 14</td>
<td></td>
<td>Leaves</td>
<td>\textit{Ancistrocladus species}</td>
<td>Asteraceae (Compositae)</td>
<td>Ikela, Democratic Republic of Congo</td>
<td>Trypanosomiasis and leishmanosomiasis</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Roots</td>
<td>\textit{Ancistrocladus likoko}</td>
<td>Asteraceae (Compositae)</td>
<td>Yangambi, Democratic Republic of Congo</td>
<td>Trypanosomiasis and leishmanosomiasis</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Roots</td>
<td>\textit{Dioncophyllum thollonii}</td>
<td>Dioncophyllaceae</td>
<td>Rabi Kounga, Gabon</td>
<td>for treatment of malaria, leishmaniasis, dysentery and elephantiasis</td>
<td>Trypanosomiasis and leishmanosomiasis</td>
<td>91</td>
</tr>
<tr>
<td>17, 18</td>
<td>Alkaloid / Aporphine</td>
<td>Aerial parts</td>
<td>\textit{Cassytha filiformis}</td>
<td>Lauraceae</td>
<td>Sémé, Ouémé, Benin</td>
<td>to treat cancer, African trypanosomiasis and other diseases</td>
<td>Trypanosomiasis</td>
<td>95</td>
</tr>
<tr>
<td>19 – 28</td>
<td>Alkaloid / Quinoline</td>
<td>Roots</td>
<td>\textit{Waltheria indica}</td>
<td>Malvaceae</td>
<td>Inder, Niger</td>
<td>to treat cough, fever, external haemorrhage, dysentery, toothache, malaria, eye drop</td>
<td>Trypanosomiasis</td>
<td>98</td>
</tr>
<tr>
<td>29 – 33</td>
<td>Alkaloid / Indoles and others</td>
<td>Stem bark</td>
<td>\textit{Polyalthia suaveolens}</td>
<td>Annonaceae</td>
<td>Yaoundé, Cameroon</td>
<td>to treat rheumatic pains</td>
<td>Trypanosomiasis</td>
<td>106</td>
</tr>
</tbody>
</table>
(1), ancirotzanazines B (2), and C (3), ancirotectorilnine A (4), O-methylanictrocaladilin (5), ancirotosalines A (6) and B (7), ancirotocaglones A-D (8 – 11), ancirotocladinums A (12) and B (13), N-6’-epi-ancrotocladinum B (14), ancirotolokine D (15) and dioncophyline E (16) are few examples of naphthylisoquinoline antiprotozoal alkaloids from Ancistrocladus sp. and Dioncophyllum thollonii (Dioncophyllaceae).

The evaluation of the biological activities of these compounds showed them to be a rare set and promising class of antiprotozoal and antiviral agents, which are only found in plants of the Ancistrocladaceae and Dioncophyllaceae, mostly found in Africa. Their anti-Trypanosoma activities are evident (e.g. with IC\textsubscript{50} values ranging from 0.17 to 12.41 \(\mu\)M against Trypanosoma brucei rhodesiense), alongside good to moderate activities against Trypanosoma cruzi and Leishmania donovani. It might be worth mentioning that the Isoquinoline scaffold has also been explored synthetically for the discovery of novel antiprotozoals and antimicrobials.93,94,96,97

2.2. Aporphines

Other bioactive alkaloids include the aporphines (Figure 3); actinodaphrine (17) and cassythine (18) from Cassysha filiformis (Lauraceae), a plant whose alkaloidal extract showed activity against T. b. brucei (with an IC\textsubscript{50} value of 2.2 \(\mu\)g/mL). This confirmed the use of this plant in African folkloric medicine to treat African trypanosomiasis and other diseases.95-97 The isolated compounds displayed antitrypanosomal activities, with IC\textsubscript{50} values of 10.29 and 17.60 \(\mu\)M for compounds 17 and 18, respectively. Although, the compounds showed low selectivity indices to HeLa cells (e.g. for actinodaphrine, IC\textsubscript{50} (HeLa)/IC\textsubscript{50} (T. b. brucei) < 5), when compared with the alkaloidal fraction (selectivity index = 16), they represent good starting scaffolds that could be optimised in order to improve the efficacy and selectivity in the search for new bioactive molecules with trypanocidal effects.

![Fig. 3. Aporphine alkaloids with trypanosoidal potencies.](image)

2.3. Quinolines

Other trypanocidal alkaloids include the quinolines (Figure 4); waltheriones E–L (19–26), 8-deoxoantidesmone (27) and antidesmone (28) from Waltheria indica (Malvaceae).98 This plant is used in traditional medicine for the treatment of several ailments, including malaria.99-101 The dichloromethane root extract showed activities against T. cruzi (IC\textsubscript{50} = 0.74 \(\mu\)g/mL), T. b. brucei (2.3% survival at 20 \(\mu\)g/mL) and T. b. rhodesiense (IC\textsubscript{50} = 17.4 \(\mu\)g/mL).99 With the exception of waltherione L (26), with a slightly higher IC\textsubscript{50} (3.1 \(\mu\)M), the isolated compounds all displayed potent growth inhibition toward the amastigote form of T. cruzi (the Tulahuen C4 strain), with IC\textsubscript{50} values lower than that of the reference drug benznidazole (IC\textsubscript{50} = 2.9 \(\mu\)M). Structure-activity relationships (SARs) provide suggestions that, a methoxy group, bound to the nitrogen atom is important for activity (e.g. as in compounds 22, 24 and 25). This group at this position increased the lethality of T. cruzi. Furthermore, the absolute configuration (5R) (as in compounds 23, 26, 27) seems to result in a decrease of activity, while the presence of an N-oxide function (as in compound 26) is detrimental for T. cruzi inhibitory activity (Figure 5). Finally, a comparison of the IC\textsubscript{50} values of the isolated compounds against T. brucei sp. and T. cruzi highlighted selective toxicity towards the latter. This suggests that these molecules (or the waltherione scaffold) is a potential starting point for new safe antitrypanocidal drug development, although antidesmone (28) has already been patented for its potential as an antiprotozoal drug since 2003.98,104,105

![Fig. 4. Quinoline, indoles and other alkaloids showing activities against Trypanosoma species.](image)

2.4. Indoles and other alkaloids

Polysin (29), an indolosesquiterpene alkaloid from Polyalthia suevelens (Annonaceae), was isolated together with the known alkaloids (Figure 4); greenwayodendrin-3-one (30), 3-O-acetyl...
greenwaydendrin (31), N-acetyl polyveoline (32) and polyveoline (33). These alkaloids have demonstrated interesting activities on selected glycolytic enzymes, e.g. phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase.106 Of particular interest are polysin (29) and 3-O-acetyl greenwaydendrin (31). Compound 29 acted as a competitive reversible inhibitor against \textit{T. brucei} PFK ($K_i = 10\, \mu M$), while compound 31 acted as a selective inhibitor of \textit{T. brucei} aldolase (with IC\textsubscript{50} = 0.5\, \mu M). Meanwhile, polyveoline (33) acted as a selective inhibitor of \textit{T. brucei} PFK and is a mixed reversible inhibitor of \textit{T. brucei} GAPDH. These compounds, therefore, represent a good starting point for the design of new selective and potent trypanosomal drugs.

3. Terpenoids

Terpenoids constitute a large and diverse class of naturally occurring secondary metabolites, with interesting physiological and pharmacological functions.45,107-110 Their main scaffolds occur as multicyclic structures, e.g. hemi-terpenoids (5 carbon atoms), monoterpenoids (10 carbon atoms), sesquiterpenoids (15 carbon atoms), triterpenoids (30 carbon atoms), tetraterpenoids (40 carbon atoms), and polyterpenoids (more than 25 carbon atoms), triterpenoids (30 carbon atoms), tetraterpenoids (40 carbon atoms), and polyterpenoids (more than 40 carbon atoms), which are all primarily derived from the five-carbon isoprene units.45,107 Terpenoids have been proven to possess interesting pharmacological activities as seen in the summary presented in Table 2 (compounds 34 - 61) and their corresponding structures shown in Figures 6 to 10.45,105,111-114

The sesquiterpenoids (Figure 6), muzigadiolide (34), muzigadiol (35), 6a,9a-dihydroxy-4(13),7-coloratadiene-11,12-dial (36), mukaadal (37) and ugalendisidal (38), from the East African medicinal plant \textit{Warburgia ugandensis} (Canellaceae) have demonstrated anti-Trypanosoma activities.115 The compounds displayed in vitro activities (with IC\textsubscript{50} values ranging from 0.64 to 6.4\, \mu M) against \textit{T. b. rhodesiensis}, the parasite responsible for African sleeping sickness. Compound 37 had previously been isolated from the same plant, also showing antityranocidal activity.116 This plant (now regarded as an endangered species) has attracted many researchers because of its traditional use for the treatment of a variety of ailments, including malaria and diverse fevers.115-117 SAR studies suggested that an additional dialdehyde functional group to the sesquiterpene lactone backbone, together with a hydroxyl group attached to C-9 contribute to the activity of the compounds.

3.2. Carvotacetone derivatives

The native tropical East African medicinal plant \textit{Sphaeranthus bullatus} (synonym: \textit{S. gailiiens Sacleux}, Family: Asteraceae) has been the origin of several compounds (Figure 7),118-120 including the carvotacetone derivatives; 3-acetoxy-7-hydroxy-5-tigloyloxyxycarvotacetone (39), 3,7-dihydroxy-5-tigloyloxyxycarvotacetone (40) and 3-acetoxy-5,7-dihydroxyxycarvotacetone (41). Compounds 39-41 demonstrated antileishmanial activities, with IC\textsubscript{50} values of 2.16, 10.64 and 2.89\, \mu M, respectively, against the parasite \textit{L. donovani} promastigotes.

3.3. Diterpenoids

Other terpenoids include the abietane diterpenoids, taxodione (42) and uncinatone (43). Fig. 8, from the roots of \textit{Clerodendrum eriophyllum} (Verbenaceae),121 which displayed potent antileishmanial activities (with IC\textsubscript{50} values of 0.25 and 0.61\, \mu M, respectively) against \textit{L. donovani}. The activities of the crude extracts, e.g. the hexane extract of \textit{Polyalithia longifolia} (Amonaceae) (EC\textsubscript{50} 2.4\, \mu g/mL), the ethyl acetate extracts of \textit{Newboudia laevis} (Bignoniaceae) (EC\textsubscript{50} 12.3\, \mu g/mL) and \textit{Eucalyptus maculata} (Mycrtaceae) (EC\textsubscript{50} 12.3\, \mu g/mL) and their isolated active compounds (Figure 8); 16-a-hydroxy-cleroda-3,13(14)-z-dien-15,16-olide (44), kolaenec acid (45), polyalthiadiacidic acid (46) and the triterpenoid 3β,13β-dihiydroxy-urs-11-ene-28-oic acid (47) were observed against different trypanosomes strains (s427 WT, B48 and AQP2/3KO).122 While these pure compounds exhibited activities against the tested strains, with EC\textsubscript{50} values ranging from 1.16 to 40.46\, \mu M, it was remarkable that no toxicity towards Human Embryonic Kidney cells was observed even at concentrations up to 400\, \mu g/mL (1,315.78\, \mu M), thus suggesting new scaffolds to be further developed for the treatment of the wild-type and multi-drug resistant \textit{T. brucei}.122,123 Also interesting is the kolavic acid derivative; monomethyl ester-15-kolavic acid (48) isolated from \textit{Entada abyssinica} (Fabaceae),124...
Table 2: Bioactive terpenoids from African flora with potential for antitrypanosomal anti-
Schistosoma and antileischmanial drug discovery.

<table>
<thead>
<tr>
<th>Compound number</th>
<th>Compound class / Subclass</th>
<th>Part of plant studied</th>
<th>Species name</th>
<th>Plant family</th>
<th>Place of collection</th>
<th>Used traditionally/locally</th>
<th>Reported activity on/against</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 - 38</td>
<td>Terpenoid / Sesquiterpenoids</td>
<td>Stem bark</td>
<td>Warburgia ugandensis</td>
<td>Canellaceae</td>
<td>Harena Forest, Dello Menna, Ethiopia</td>
<td>treatment of various ailments such as common cold, fever, malaria, stomachache, constipation snakebites, measles and diarrheal. This plant is also a common component in a number of medicinal preparations.</td>
<td>Trypanosomiasis</td>
<td>115</td>
</tr>
<tr>
<td>39 - 41</td>
<td>Terpenoid / Carvotacetone derivatives</td>
<td>Aerial parts</td>
<td>Sphaeranthus bulatius (synonym: S. gallensis Sacleux)</td>
<td>Asteraceae</td>
<td>Ngong forest, Nairobi, Kenya</td>
<td>usually consumed as herbal tea for the management of diarrhea.</td>
<td>Leishmanosomiasis</td>
<td>118</td>
</tr>
<tr>
<td>42, 43</td>
<td>Terpenoid</td>
<td>Roots</td>
<td>Clerodendrum eriophyllum</td>
<td>Verbenaceae</td>
<td>Machakos, Eastern Kenya</td>
<td>treatment of malaria</td>
<td>Leishmanosomiasis</td>
<td>121</td>
</tr>
<tr>
<td>44 - 46</td>
<td>Terpenoid / Diterpenoid</td>
<td>Leaves</td>
<td>Polyalthia longifolia</td>
<td>Annonaceae</td>
<td>Anyigba, Kogi State, Nigeria</td>
<td>to treat various protozoan infections including species of Trypanosoma, Leishmania, and Plasmodium</td>
<td>Trypanosomiasis</td>
<td>122</td>
</tr>
<tr>
<td>47</td>
<td>Terpenoid / Diterpenoid</td>
<td>Leaves</td>
<td>Eucalyptus maculata</td>
<td>Myrtaceae</td>
<td>Anyigba, Kogi State, Nigeria</td>
<td>to treat various protozoan infections including species of Trypanosoma, Leishmania, and Plasmodium</td>
<td>Trypanosomiasis</td>
<td>122</td>
</tr>
<tr>
<td>48</td>
<td>Terpenoid / Diterpenoid</td>
<td>Bark</td>
<td>Entada abyssinica</td>
<td>Fabaceae</td>
<td>Dschang, Cameroon</td>
<td>to treat sleeping sickness</td>
<td>Trypanosomiasis</td>
<td>124</td>
</tr>
<tr>
<td>49 - 51</td>
<td>Terpenoid / Diterpenoid</td>
<td>Fruits</td>
<td>Xylopia aethiopica</td>
<td>Annonaceae</td>
<td>Nkongsamba, Cameroon</td>
<td>to treat bronchitis and dysenteric among other ailments.</td>
<td>Trypanosomiasis</td>
<td>126</td>
</tr>
<tr>
<td>52</td>
<td>Terpenoid / Diterpenoid</td>
<td>Rhizomes</td>
<td>Aframomum sceptrum</td>
<td>Zingiberaceae</td>
<td>Ivory Coast</td>
<td>in addition to their spiritual belief from the plant species, they are as well used as food spice, and for the treatment of inflammation, eczema, fevers, laxative, anti-helminthic, mumps, etc.</td>
<td>Trypanosomiasis and leishmaniosomiasis</td>
<td>128</td>
</tr>
<tr>
<td>53</td>
<td>Terpenoid / Triterpenoid</td>
<td>Roots</td>
<td>Asparagus stipularis</td>
<td>Asparagaceae</td>
<td>Sinai, Egypt</td>
<td>to treat Schistosomiasis (bilharziasis) amongst other ailments</td>
<td>Schistosomiasis</td>
<td>131</td>
</tr>
<tr>
<td>54</td>
<td>Terpenoid / Diterpenoid</td>
<td>Root barks</td>
<td>Elaeodendron schlechteranum</td>
<td>Celastraceae</td>
<td>Bunda district, Kung’ombe, Tanzania</td>
<td>treatment of anaemia, general body pain, dysmenorrhea, female infertility and male impotence, boils, carbuncles, cardiovascular problems including hypertension and joint inflammation.</td>
<td>Trypanosomiasis and leishmaniosomiasis</td>
<td>133</td>
</tr>
<tr>
<td>55, 56</td>
<td>Terpenoid / Triterpenoid</td>
<td>Roots</td>
<td>Salacia madagascariensis</td>
<td>Celastraceae</td>
<td>Tanzania</td>
<td>treat malaria, fever, and menorrhagia</td>
<td>Leishmaniosomiasis</td>
<td>135</td>
</tr>
<tr>
<td>57, 58</td>
<td>Terpenoid / Diterpenoid and Triterpenoid</td>
<td>Leaves</td>
<td>Keetia leucantha (synonym: Electonia leucantha Krause)</td>
<td>Rubiaceae</td>
<td>Benin</td>
<td>to treat parasitic diseases</td>
<td>Trypanosomiasis</td>
<td>138</td>
</tr>
<tr>
<td>59</td>
<td>Terpenoid / Diterpenoid</td>
<td>Stem bark</td>
<td>Piptostigma preussii</td>
<td>Annonaceae</td>
<td>Ebolowa, Cameroon</td>
<td>To treat malaria</td>
<td>Trypanosomiasis activity</td>
<td>139</td>
</tr>
<tr>
<td>60, 61</td>
<td>Terpenoid / Triterpenoid</td>
<td>Stem bark</td>
<td>Vernonia guineensis</td>
<td>Asteraceae (Compositae)</td>
<td>Bafoussam, Cameroon</td>
<td>to treat malaria and jaundice as well as an anthelmitic, an aphrodisiac and an anti-dote to poison</td>
<td>Trypanosomiasis</td>
<td>142</td>
</tr>
</tbody>
</table>
which demonstrated interesting selective inhibitory activity (IC50 value of 0.012 mM) against *T. brucei* GAPDH.125

\[
\text{taxodione (42)} \quad \text{uncinatone (43)}
\]

\[
\begin{align*}
\text{HO}_2\text{C} & \quad \text{R}_1 \\
\text{HO}_2\text{C} & \quad \text{R}_1
\end{align*}
\]

\[
\begin{align*}
\text{3\{13\}\text{diol-11-en-28-oic acid (47)} \\
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{H}
\end{align*}
\]

\[
\begin{align*}
\text{16\text{-}\alpha\text{-hydroxy-cleroda-3-13(-14)z-}
\text{dien-15,16-olide (44)} \\
\text{HO}_2\text{C} & \quad \text{C(O)H}
\end{align*}
\]

\[
\begin{align*}
\text{15\text{-oxo-ent-kaur-16-en-19-oic}
\text{acid or xylopic acid (50)} \\
\text{16,17\text{-epoxy-15-oxo-ent-kauran-19-oic acid (xylopiode, 51)}}
\end{align*}
\]

\[
\begin{align*}
\text{Ataxodione (42)} \\
\text{Uncinatone (43)} \\
\text{3\{13\}\text{dihydroxy-urs-11-en-28-oic acid (47)}} \\
\text{Monomethyl ester-15-kolavic acid (48)} \\
\text{15\text{-oxo-ent-kaur-16-en-19-oic acid (49)} \\
\text{15\text{-acetoxy-ent-kaur-16-en-19-oic acid or xylopic acid (50)}} \\
\text{16,17\text{-epoxy-15-oxo-ent-kauran-19-oic acid (xylopiode, 51)}}
\end{align*}
\]

\[\text{HO}_2\text{C} \quad \text{R}_1 \quad \text{MeO}_2\text{C} \quad \text{CO}_2\text{H}\]

\[\text{Sceptrumlabdalactone B (52)}\]

Fig. 8. Diterpenoids and a triterpenoid with selective inhibitory activity against *T. brucei* GAPDH.

Other bioactive diterpenoids include 15-oxo-ent-kaur-16-en-19-oic acid (49), 15\text{-acetoxy-ent-kaur-16-en-19-oic acid or xylopic acid, (50) and 16,17\text{-epoxy-15-oxo-ent-kauran-19-oic acid or xylopiderox (51), from fruits of Xylopia aesthetica (Annonaceae).}^{126}\] These compounds and their synthetic epoxide analogues were screened on antitypanosomal and cytotoxicity assays, showing that only the naturally-occurring compounds (49-51) displayed cytotoxic effects on the mammalian fibroblast cell line MRC-5 (with ED50 values ranging from 22 to 121 µM), as well as inhibitory effects on the growth of the bloodstream forms of *T. b. brucei* cells (strain 241) (ED50 ranging from 27 to 205 µM).

\[\text{HO}_2\text{C} \quad \text{R}_1 \quad \text{MeO}_2\text{C} \quad \text{CO}_2\text{H}\]

\[\text{Sceptrumlabdalactone B (52)}\]

Fig. 9. Potent compound with selective activity for *L. donovani*, when compared with the activity against *T. b. brucei*.

The genus *Aframomum* (Zingiberaceae), has been the source of the antitypanosomal. Sceptrumlabdalactone B (52, Figure 9) was identified, from the rhizomes of *A. sceptrum*, a plant locally used for the treatment of infectious diseases including human African trypanosomiasis (sleeping sickness), together with sceptrumlabdalactone A.127-130 The activity of compound (with IC50 value of 5.7 µM) against *L. donovani* was comparable to that of reference drugs (IC50 of 2.5 and 3.0 µM for pentamidine and miltefosine respectively). Additionally, this molecule demonstrated selective activity for *L. donovani*, when compared with the activity against *T. b. brucei*.

3.3. Triterpenoids

Asparagalin A (53, Figure 10), from the Egyptian medicinal plant *Asparagus stipularis* (Asparagaceae),131 was able to significantly reduce the ability of adult female worms to lay eggs. It was further shown that the compound had some suppressive effect on egg-laying capacity in a dose-dependence manner.132 *Elaeodendron schlechteranum* (Celastraceae) is the source of tingenin B or 22\text{-hydroxytingenone (54).}^{133} This compound has displayed a broad range of activities e.g. against *T. cruzi* (IC50 < 0.57 µM), *T. brucei* (<0.57 µM), *L. infantum* (1.67 µM), and *P. falciparum* (0.83 µM), confirming the claim of the applicability of the plant in traditional medicine to treat various non-infectious diseases.63,134 Albeit, being highly cytotoxic to MRC-5 cells (CC50 0.45 µg/mL), indicates a poor selectivity to normal cells. Further studies on this compound could be considered in order to suggest less toxic and more selective analogues for the development of novel antiparasitics. The bisnortriterpenes from *Salacia madagascariensis* (Celastraceae); isoiguesterin (55) and 20\text{-epi-isoiguesterinol (56) showed potent activities against *Leishmania* sp.}135 Meanwhile, isoiguesterin (55) and 20\text{-epi-isoiguesterinol (56) displayed comparable activities with chloroquine and artemisinin against the D6 clone, being more potent and selective against *L. donovani* (a species known to cause visceral leishmaniasis). When compared with amphotericin B, used currently in the treatment of leishmaniasis, compounds 55 and 56 show great potential for future selective drug development against *Leishmania*.
Keetia leucantha (synonym: Plectronia leucantha Krause) is a West African tree of the Rubiaceae, used to treat a variety of infections, including parasitic infections.136,137 Ursolic acid (57) and oleanolic acid (58), along with other constituents were isolated from the leaves of this plant. An investigation of the antitrypanosomal activities of essential oil, the dichloromethane extract and isolated compounds on T. b. brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF)138 showed that ursolic acid (57) and oleanolic acid (58) were the most bioactive tested compounds.138 Ursolic acid displayed IC50 values of 5.48 and 14.25 µM, respectively, on Tbb BSF and Tbb PF, while oleanolic acid displayed an IC50 value of 16.00 µM on Tbb BSF. This could explain why the plant is effective in the traditional treatment of parasitic-related ailments. Another identified triterpenoid was polycarpol or lanosta-7,9(11),24-trien-3β,15α-diol (59) from Piptostigma preussi (Annonaceae).139 The compound showed antitrypanosomal activity with an ED50 value of 5.11 µM on T. brucei cells. An investigation of its mode of action showed that the compound acted by inhibiting T. brucei glycolytic enzymes GAPDH and PFK (glycolytic pathway enzymes validated by WHO as a good target for the treatment of trypanosomiasis), with IC50 values of 650 and 180 µM, respectively. The glycolytic enzymes GAPDH are responsible for ATP production and have been reported to be vital for the survival of Trypanosomatids.140,141 From the stem bark of Vernonia guineensis (Asteraceae), vernoguinosterol (60) and vernoguinoside (61), exhibited interesting trypanocidal activity with IC50 values in the range 4.60 – 7.67 µM.142

4. Other compound classes

Other compound classes from AMP with reported activities on leishmaniasis and trypanosomiasis are shown in Figures 11 to 16, while a summary of the reported molecules is given in Table 3 (compounds 62 - 82).

4.1. Amides

Plants from the genus Zapoteca (Fabaceae) have been the origin of diverse compounds with antiprotozoal activities. These include the ester 2-(2-benzamido-3-phenylpropanamido)-3-phenylpropyl acetate (trivial names; saropeptide or aurantiamide acetate) (62) from Z. portoricensis (Figure 11).143 The IC50 values of compound 62 were 3.63, 41.65 and 92.05 µM against T. b. rhodesiense, T. cruzi and L6 cells, respectively. The compound had been previously reported to possess anti-inflammatory as well as antiplatelet aggregation activities, which are complementary to the observed trypanocidal property.144-148 Since inflammation poses major problems in the advanced stages of trypanosomiasis, compound 62 represents a promising natural hit with a reasonable selectivity for T. b. rhodesiense.

4.2. Diarylhepanoids

Other potent antitrypanosomal compounds are the diarylhepanoid; letestuianin C (63) and (4Z,6E)-5-hydroxy-1,7-bis(4-hydroxyphenyl)hepta-4,6-dien-3-one (64) from the species Aframomum letestuianum, Figure 12.130 The activities of...
Table 3: Other bioactive compounds from African flora with potential for antitrypanosomal and antileishmanial drug discovery.

<table>
<thead>
<tr>
<th>Compound number</th>
<th>Compound class / Subclass</th>
<th>Part of plant studied</th>
<th>Species name</th>
<th>Plant family</th>
<th>Place of collection</th>
<th>Used traditionally/locally</th>
<th>Reported activity on/against</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Peptide</td>
<td>Roots</td>
<td>Zapotoca portoricensis</td>
<td>Fabaceae</td>
<td>Nsukka, in Enugu State, Nigeria</td>
<td>in wound healing as well as the treatment of toothache, tonsilitis, against diarrhoea, and as an anticonvulsant and antispasmodic</td>
<td>Trypanosomiasis 143</td>
<td></td>
</tr>
<tr>
<td>63, 64</td>
<td>Diarylheptanoid</td>
<td>Seeds</td>
<td>Aframomum letestuianum</td>
<td>Zingiberaceae</td>
<td>Abong-bang, Cameroon</td>
<td>in addition to their spiritual belief from the plant species, they are as well used as food spice, and for the treatment of inflammation, eczema, fevers, laxative, anti-helmintic, mumps, etc.</td>
<td>Trypanosomiasis 130</td>
<td></td>
</tr>
<tr>
<td>65-68</td>
<td>Benzophenone</td>
<td>Fruits</td>
<td>Allanblackia monticola</td>
<td>Clusiaceae (Guttiferae)</td>
<td>Bazou, West Province, Cameroon</td>
<td>treatment of certain human ailments such as respiratory infections, diarrhoea, toothache, pain, fever</td>
<td>Leishmanosomiasis 149</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Xanthone</td>
<td>Leaves</td>
<td>Symphonia globulifera</td>
<td>Clusiaceae (Guttiferae)</td>
<td>Bangangté, West Province, Cameroon</td>
<td>to treat malaria, stomach and skin aches. It is also used as laxative by pregnant women and as a general tonic.</td>
<td>Leishmanosomiasis 149</td>
<td></td>
</tr>
<tr>
<td>70-72</td>
<td>Taccalonolide</td>
<td>Tubers</td>
<td>Tacca leontopetaloides</td>
<td>Taccaceae</td>
<td>Benue State, Nigeria</td>
<td>tubers are also processed for food as well as to treat stomach disorders, gastric ulcers, tooth ache, high blood pressure, hepatitis, enteritis and sexual dysfunction</td>
<td>Trypanosomiasis 156</td>
<td></td>
</tr>
<tr>
<td>73-75</td>
<td>Quinone / Anthrone</td>
<td>Leaf latex</td>
<td>Aloe validophila</td>
<td>Asphodelaceae</td>
<td>Yabello and Mega, Ethiopia</td>
<td>to treat sexually transmitted infections, digestive disorder, dermatological ailments, ophthalmia, conjunctivitis, wounds, burns, other injuries, etc.</td>
<td>Leishmanosomiasis 157</td>
<td></td>
</tr>
<tr>
<td>76, 77</td>
<td>Quinone / Naphthoquinone</td>
<td>Seeds</td>
<td>Triphyophyllum petatum</td>
<td>Dioncophyllaceae</td>
<td>Parc de Taï, Ivory Coast</td>
<td>for treatment of malaria, dysentery and elephantiasis</td>
<td>Leishmanosomiasis 158</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Lactone</td>
<td>Stems</td>
<td>Uvaria klainean</td>
<td>Annonaceae</td>
<td>Forêt des Abeilles, Gabon</td>
<td>for treatment of skin diseases, parasitic infections</td>
<td>Leishmanosomiasis 159</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Flavonoid</td>
<td>Leaves</td>
<td>Vitex simplicifolia</td>
<td>Verbenaceae</td>
<td>Nsukka, Nigeria</td>
<td>to treat edema, gout, malaria, skin diseases, toothache and dermatitis</td>
<td>Trypanosomiasis 160</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Aerial parts</td>
<td>Aerial parts</td>
<td>Ageratum conyzoides</td>
<td>Asteraceae (Compositae)</td>
<td>Nile bank, Khartoum, Sudan</td>
<td>to treat leprosy, skin diseases, wound healing, mental headaches, dyspepsia and infectious diseases. It is also used locally for its anti-asthmatic, antispasmodic, haemostatic effects and as an oil lotion for purulent ophthalmia.</td>
<td>Trypanosomiasis and Leishmanosomiasis 166</td>
<td></td>
</tr>
<tr>
<td>81, 82</td>
<td>Phytosterol</td>
<td>Stem bark</td>
<td>Alexis cauliflora</td>
<td>Violaceae</td>
<td>Ebolowa, Cameroon</td>
<td>to treat fever and syphilis</td>
<td>Trypanosomiasis 167</td>
<td></td>
</tr>
</tbody>
</table>
compounds 63 (4.49 µM) and 64 (8.39 µM) validate the use of the *Aframomum* sp. in treating parasitic ailments amongst others.

4.3. Benzophenones and xanthones

Guttiferone A (65), garcinol (66), cambogin (67) and guttiferone F (68) from *Allanblackia monticola* (Guttiferae or Clusiaceae) fruits and xanthone V1 (69) from *Symphonia globulifera* leaves have shown antileishmanial activities (Figure 12). The compounds exhibited very potent *in vitro* antileishmanial activities, particularly compounds 65 to 67, with IC\textsubscript{50} values of 0.16, 0.33 and 0.2 µM, for compounds 65, 66 and 67, respectively, which were lower than that of the reference drug, miltefosine (0.46 µM). SAR studies could further improve the activities of these compounds in order to enhance their selectivity indices against human cancer cell lines.

4.4. Taccalonolides

Beside their proven anticancer potential, these represent a quite potent class of antitrypanosomal compounds identified from *Tacca leontopetaloides* (Taccaceae). These include taccalonolide A 12-propanoate (70), taccalonolide T (71) and taccalonolide S (72) from the tubers of *T. leontopetaloide* (Figure 13). They have shown activities against the *T. b. brucei* s427 lister strain. These compounds and crude fractions yielded EC\textsubscript{50} values as low as 0.79 μg/mL.

4.5. Quinones and klaivanolide

Quinones from *Aloe* species have also shown antileishmanial activities. These include aloinoside (73), aloin (74) and microdontin (75) from the leaf latex of *A. calidophila* (Figure 14). It is noteworthy that, the activities of the most potent compounds, with IC\textsubscript{50} values ranging from 3.12 to 10.92 µM against *Leishmania aethiopica* and from 3.70 to 15.26 µM against *Leishmania major*, were comparable to the control drug amphotericin B (IC\textsubscript{50} = 0.12 and 0.073 µM against *L. aethiopica* and *L. major* respectively). The selectivity indices of aloinoside (73) (813.35 and 694.90, respectively, against *L. aethiopica* and *L. major*) were much better than those of the control, amphotericin B (423.49 and 688.96). This suggests that the isolated compounds could serve as potential scaffolds for the development of safe, specific and cost-effective antileishmanial agents. Additionally, the dioncoquinones A (76) and B (77) isolated from *Triphyophyllum peltatum* (Dioncophyllaceae) showed good and specific activity against *L. major* by inhibiting the growth of the parasite at very low concentrations. Klaivanolide (78), from the stems of *Uvaria klaineana* (Annonaceae), was also reported as a potent molecule (*in vitro* IC\textsubscript{50} values of 1.75 and 3.12 mM, respectively) against sensitive and amphotericin B-resistant promastigote forms of *L. donovani*.

Fig. 12. Benzophenones and a xanthone with very potent *in vitro* antileishmanial activities in the nanomolar range.

Fig. 13. Taccalonolides, a rare class of antiprotozoals.
Hence, the plant could further be investigated for the unidentified evaluation of trypanocidal activities was not reported before. Sleeping sickness patients traditionally, 164-166 led to the isolation (Asteraceae), a plant known for its importance in the treatment of ailments including parasitic diseases, 161-163 phytochemical activity confirms the use of this plant in the traditional treatment.

4.6. Flavonoids

Artemetin (79, Figure 15), from Vitex simplicifolia (Verbenaceae) leaves, exhibited promising trypanocidal activity with an IC₅₀ value of 4.7 µg/ml and a selectivity index of 9.8 against rat skeletal myoblast cell line (L6 cells).160 While this activity confirms the use of this plant in the traditional treatment of ailments including parasitic diseases,161-163 phytochemical evaluation of trypanocidal activities was not reported before. Hence, the plant could further be investigated for the unidentified compounds. An investigation of Agratatum conyzoides (Asteraceae), a plant known for its importance in the treatment of sleeping sickness patients traditionally,164-166 led to the isolation of several flavonoids; 5,6,7,8,5'-pentamethoxy-3',4'-methylenedioxyflavone (trivial name: eupalestin), 5,6,7,5'-tetramethoxy-3',4'-methylenedioxyflavone, 5,6,7,8,3',4',5'-heptamethoxyflavone (trivial name: 5'-methoxynobiletine), 5,6,7,3',4',5'-hexamethoxyflavone and 4'-hydroxy-5,6,7,3',5'-pentamethoxyflavone (trivial name: ageconyflavone C, 80) which displayed antiprotocoal activities, some in the lower micromolar range.166 Among the tested NPs, compound 80 showed the highest activity against T. b. rhodesiense and L. donovani with IC₅₀ values of 7.8 and 9.2 µM respectively. However, all the isolated compounds showed an activity weaker than that of the crude extract, implying that the activities of the compounds in the mixture could be synergistic.

4.7. Phytosterols

22-hydroxyclerosterol (81) and clerosterol (82), Figure 15, were isolated from the stem bark of Alexis cauliflora (Violaceae).167 These compounds were evaluated for trypanocidal activities, and the activity of compound 81 (ED₅₀ 1.12 µM) was far better than that of compound 82 (ED₅₀ 134.34 µM). These results prompted an investigation of their cytotoxic activities. It was observed that compound 81 inhibited mammalian cells at quite a similar concentration (ED₅₀ 1.56 µM), while compound 82 had no effect. This difference in activity could be attributed to the presence of the hydroxyl group at C-22 in the side chain of compound 81 which is absent in compound 82. Additionally, it was observed that compound 81 was more active and selective on the parasite enzyme glycolytic enzymes (PGI and GAPDH), when compared with compound 82.

5. Conclusions

Parasitic diseases continue to represent a menace on a global scale and require attention due to lack of vaccines and reported resistance against available drugs for their treatment. This review focuses on different natural compounds and scaffolds that could lead drug discovery research groups into reasonable starting points for further development of fast, effective and affordable novel molecules for the treatment of parasitic diseases. Drug discovery and development now place efforts on the search for new moieties or chemical scaffolds of natural/semisynthetic origin and in the development of phytomedicines. As a means to facilitate accessibility of information, our research team has as one of its goals, to develop free online natural products libraries from African flora (http://african-compounds.org/). In this paper, an attempt has been made to draw together original research works on natural products from AMP with micromolar range activities against Schistosoma, Trypanosoma and Leishmania species. The compounds presented herein have demonstrated a diverse range of activities against different forms of trypanosomiasis, schistosomiasis and leishmaniasis, with some scaffolds and molecules showing great potential as starting points for further development into drugs. We recently collected a dataset of several hundred bioactive plant based metabolites from AMPs with activities against Trypanosoma sp. (Afrotrop).68 It becomes interesting to perform in silico prediction of binding modes and binding free energy calculations of some of the compounds against some selected targets.

Acknowledgments

CVS is currently a Ph.D. student funded by the German Academic Exchange Services (DAAD). FNK currently holds a Georg Forster postdoctoral fellowship from the Alexander von Humboldt Foundation, Germany.

Conflict of interest

The authors declare no conflict of interest
References

