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Abstract: A Pogorelov polytope is a combinatorial simple 3-polytope realizable in the Lobachevsky1

(hyperbolic) space as a bounded right-angled polytope. It has no 3- and 4-gons and may have2

any prescribed numbers of k-gons, k ≥ 7. Any polytope with only 5-, 6- and at most one 7-gon is3

Pogorelov. For any other prescribed numbers of k-gons, k ≥ 7, we give an explicit construction of a4

Pogorelov and a non-Pogorelov polytopes. Any Pogorelov polytope different from Löbel polytopes5

can be constructed from the 5- or the 6-barrel by cuttings off pairs of adjacent edges and connected6

sums with the 5-barrel along a 5-gon with the intermediate polytopes being Pogorelov. For fullerenes7

there is a stronger result. Any fullerene different from the 5-barrel and the (5, 0)-nanotubes can be8

constructed by only cuttings off adjacent edges from the 6-barrel with all the intermediate polytopes9

having 5-, 6- and at most one additional 7-gon adjacent to a 5-gon. This result can not be literally10

extended to the latter class of polytopes. We prove that it becomes valid if we additionally allow11

connected sums with the 5-barrel and 3 new operations, which are compositions of cuttings off12

adjacent edges. We generalize this result to the case when the 7-gon may be isolated from 5-gons.13
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1. Introduction16

By an n-polytope we mean a combinatorial convex n-dimensional polytope, that is a class of17

combinatorial equivalence of convex n-dimensional polytopes. For details on the theory of polytopes18

we recommend the books [1,2]. A 3-polytope P is called a Pogorelov polytope (see [3–5]), if it can be19

realized in Lobachevsky (hyperbolic) space L3 as a bounded polytope with right dihedral angles.20

An n-polytope is called simple if any its vertex is contained in exactly n facets. A flag polytope is a21

simple polytope such that any its set of pairwise intersecting facets has a non-empty intersection. A22

k-belt is a cyclic sequence of facets with empty common intersection such that two facets are adjacent23

if and only if they follow each other. It can be shown that a 3-polytope P is flag if and only if it is24

different from the simplex ∆3 and has no 3-belts. Results by A.V. Pogorelov [6] and E.M. Andreev25

[7] imply that a 3-polytope P is a Pogorelov polytope if and only if it is flag and has no 4-belts. An26

example of Pogorelov polytopes is given by fullerenes – simple 3-polytopes with only 5- and 6-gonal27

faces. It follows from results by T. Doslic that fullerenes are flag [8] and have no 4-belts [9]. They28

are mathematical models for spherical-shaped carbon molecules discovered in 1985 by R.F. Curl [10],29

H.W. Kroto [11], and R.E. Smalley [12] (Nobel Prize 1996 in chemistry). Surveys on mathematical30

theory of fullerenes see in [13,14]. We also recommend a remarkable paper by W.P. Thurson [15], who31

gives a parametrization for the set of all fullerenes. Another example of Pogorelov polytopes is given32

by k-barrels (or Löbel polytopes (see [5,16,17]), see Fig. 1 for k = 9) – simple 3-polytopes with the33

boundary glued from two equal parts consisting of a k-gon surrounded by 5-gons.34
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Figure 1. The 9-barrel.

A nice characterization of flag and Pogorelov polytopes is given by the following result.35

Proposition 1 ([3,4]). A simple 3-polytope is flag if and only if any its face is surrounded by a belt. A simple36

3-polytope is a Pogorelov polytope if and only if any pair of its adjacent faces is surrounded by a belt.37

There are two operations transforming Pogorelov polytopes into Pororelov polytopes. First of38

them is a cutting off s subsequent edges of a k-gonal face, 2 ≤ s ≤ k− 4, of a simple 3-polytope by a39

single plane and is called an (s, k)-truncation, see Fig. 2(a). If the inverse operation is defined, we call it40

a straightening along an edge, see Fig. 2(b).41
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Figure 2. (a) An (s, k)-truncation. (b) A straightening along an edge.

If the k-gon in adjacent to an m1- and an m2-gon by edges next to cut edges, then we42

call the operation an (s, k; m1, m2)-truncation (see Fig. 3). We do not take into account an43

orientation of the surface of the polytope; hence we do not distinguish between (s, k; m1, m2)- and44

(s, k; m2, m1)-truncations.45
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Figure 3. An (s, k; m1, m2)-truncation.

The second operation we need is a connected sum of 3-polytopes along k-gons surrounded by46

k-belts. It is the combinatorial analog of gluing of two polytopes along k-gonal faces orthogonal to47

adjacent faces.48
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Figure 4. A connected sum of two polytopes along faces.

The existence of certain combinatorial types of 3-polytopes we usually verify using the Steinitz49

theorem (see [1,2]). We formulate it in the form (see, for example, [13,25]) convenient for our arguments.50

Theorem 1 (Steinitz). A simple connected plane graph G is the graph of some convex 3-dimensional polytope51

if and only if any its face is bounded by a simple edge-cycle and boundary cycles of any two faces either do not52

intersect, or intersect by a vertex, or intersect by an edge.53

Moreover, there is a Whitney’s theorem (see [1]), which states that a plane realization of the graph54

of a 3-polytope is combinatorially unique. Using the Steinitz theorem the following fact may be proved55

([13], see also [4])56

Theorem 2. Let P be a connected 3-valent plane graph with each face bounded by a cycle with at least 5 and at57

most 7 edges, where the number of boundary cycles with 7 edges is at most one. Then this graph is a graph of a58

simple 3-polytope.59

In [13] the polytopes with 5-, 6- and one 7-gon are called 7-disk-fullerenes. Denote by F the family60

of fullerenes, by P7 the family of 7-disk-fullerenes, by P7,5 its subfamily consisting of polytopes with61

the 7-gon adjacent to a 5-gon, by P≤7,5 the family F t P7,5, and by P≤7 the family F t P7. In [4] the62

following generalization of Theorem 2 was proved.63

Theorem 3. Let P ∈ P≤7. Then P is a Pogorelov polytope.64

This result leads to a natural question. Let pk be the number of k-gonal faces of a simple 3-polytope65

P. The collection (pk, k ≥ 3) is called a p-vector. There Euler formula in the case of simple 3-polytopes66

implies the following formula (see [2]), which can be proved by a direct calculation:67

3p3 + 2p4 + p5 = 12 + ∑
k≥7

(k− 6)pk. (1)

V. Eberhard proved ([19], see also [2]) that for any finite collection of non-negative integers68

(pk, k ≥ 3, k 6= 6) satisfying the equation (1) there exists a simple 3-polytope P with pk(P) = pk for all69

k 6= 6. A flag polytope has no 3-gons. On the base of Eberhard’s result it was proved in [18] that for70

any finite collection of non-negative integers (pk, k ≥ 4, k 6= 6) satisfying the equation (1) there exists a71

flag polytope P with pk(P) = pk, k 6= 3, 6. The proof used the construction of a simultaneous cutting72

off all the edges of a simple 3-polytope by different planes, see Fig. 5. This operation does not change73

the numbers pk, k 6= 6, and increases the number p6 by the number of edges.74

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2018                   doi:10.20944/preprints201801.0289.v1

Peer-reviewed version available at Symmetry 2018, 10, 67; doi:10.3390/sym10030067

http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067


4 of 20

Figure 5. A cutting off all the edges of a polytope by different planes.

It turns out that for a polytope with no 3-gons the cut polytope is flag. A Pogorelov polytope75

has no 3- and 4-gons, since any face of a flag polytope is surrounded by a belt. In [3,4] is was proved76

that for any finite collection of non-negative integers (pk, k ≥ 7) there exists a Pogorelov polytope77

with pk(P) = pk, k ≥ 7. Moreover, p5(P) = 12 + ∑k≥7(k− 6)pk. The proof is similar to the case of flag78

polytopes. Namely, for a polytope without 3- and 4-gons the cut polytope is a Pogorelov polytope.79

Question. Which restrictions on the numbers (pk, k ≥ 7) imply that a polytope without 3- and 4-gons is a80

Pogorelov polytope?81

We have seen that the example is given by the restriction p7 ≤ 1, pk = 0, k ≥ 8.82

Figure 6. A graph of a polytope with 5-, 6- and two 7-gonal faces containing a 3-belt.

Example 1. On Fig. 6 we present the graph of a simple 3-polytope (this can be easily checked using the Steinitz83

theorem) with 5-, 6- and two 7-gonal faces. This polytope has a 3-belt containing both 7-gons, hence it is not a84

Pogorelov polytope.85

The first main result of our paper is the answer to this question.86

Theorem 4 (The first main result). For any finite collection of non-negative integers (pk, k ≥ 7) with87

∑k≥7 pk > 1 or p7 = 0 and ∑k≥7 pk = 1 there exists a non-flag simple polytope P with pk(P) = pk, k ≥ 7.88

Remark 1. We will also give a slight modification of this construction producing a Pogorelov polytope with89

prescribed numbers pk, k ≥ 7, not using Ebrehard’s result.90

Hence P≤7 is a natural subclass in the class of Pogorelov polytopes.91

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2018                   doi:10.20944/preprints201801.0289.v1

Peer-reviewed version available at Symmetry 2018, 10, 67; doi:10.3390/sym10030067

http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067


5 of 20

It can be shown ([20], see also [4]) that an (s, k)-truncation sransforms a Pogorelov polytope into a92

Pogorelov polytope if and only if 2 ≤ s ≤ k− 4, and a connected sum of any two Pogorelov polytopes93

along faces is a Pogorelov polytope.94

It is easy to see that k-barrels, k ≥ 5, are irreducible polytopes with respect to operations of95

an (s, k)-truncation and a connected sum along faces in the class of Pogorelov polytopes. It follows96

from results in [20] that a simple 3-polytope P is a Pogorelov polytope if and only if either P is a97

k-barrel for some k ≥ 5, or P can be obtained from q-barrels, q ≥ 5, by a sequence of operations of an98

(s, k)-truncation, 2 ≤ s ≤ k− 4, and a connected sum along p-gons. In [4] the following stronger result99

was proved.100

Theorem 5 ([4]). A simple 3-polytope P is a Pogorelov polytope if and only if either P is a k-barrel, k ≥ 5, or it101

can be obtained from the 5-, or the 6-barrel by a sequence of operations of a (2, k)-truncation, k ≥ 6 (Fig. 7(a)),102

and operations of a connected sum with the 5-barrel along a 5-gon (Fig. 7(b)).103

(a) (b)

Figure 7. (a) A (2, k)-truncation. (b) A connected sum with the 5-barrel.

This result is related to classical result in the polytope theory. It was proved by V. Eberhard [19]104

and by M.Bruckner [21] (see also [2]), that a 3-polytope is simple if and only if it can be obtained from105

the 3-simplex by a sequence of operations of cutting off a vertex, an edge or a pair of two adjacent106

edges by a single plane. This result was used by a famous crystallographer E. S. Fedorov [22]. From a107

result by V.D. Volodin [23] it follows that a simple 3-polytope is flag if and only if it can be obtained108

from a 3-cube by a sequence of operations of an (s, k)-truncation, 1 ≤ s ≤ k− 3. In [18] this result was109

improved. Namely, a simple 3-polytope P is flag if and only if it can be obtained from the 3-cube by a110

sequence of (2, k)-truncations, k ≥ 6. For fullerenes there are analogs of this result (see [4,24–27]). The111

starting point can be taken to be the 5- or the 6-barrel, but the difficulty is that the only (s, k)-truncation112

transforming fullerenes to fullerenes is a (2, 6; 5, 5)-truncation, also called an Endo-Kroto operation [28].113

This is a growth operation, that is it transforms a simple 3-polytope into a simple 3-polytope substituting114

a new patch (disk partitioned into polygons bounded by a simple edge-cycle on the surface of a simple115

polytope) with more faces and the same boundary for a patch of a polytope. It was proved in [29]116

that there is no finite sets of growth operations transforming fullerenes to fullerenes sufficient to117

construct any fullerene from a finite set of initial fullerenes (seeds). In [27] an infinite family of growth118

operations with this property was found. In [4,24–26] finite sets of growth operations sufficient to built119

any fullerene from a finite set of seeds was found on account of allowing, at intermediate steps, simple120

3-polytopes with 5-, 6- and one 7-gon adjacent to some 5-gon. By Theorem 3 any such polytope is a121

Pogorelov polytope.122

Let us formulate the most strong result in this direction improving Theorem 5 for a special class of123

polytopes. Let us introduce a special subfamily of fullerenes. The first polytope D0 is the dodecahedron124

(the 5-barrel). D5 is a connected sum of two copies of D0. D5(k+1) is a connected sum of D5k with D0125

along a 5-gon surrounded by 5-gons (see Fig. 8). The polytopes D5k, k > 0, are called (5, 0)-nanotubes.126

Denote the family of polytopes {D5k, k ≥ 0} by D.127
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Figure 8. A construction of (5, 0)-nanotubes.

Theorem 6 ([4]). Any fullerene P ∈ D can not be obtained from a simple 3-polytope without 4-gons by a128

(2, k)-truncation, k ≥ 6. Any fullerene P ∈ F \D can be obtained from the 6-barrel by a sequence of (2, 6; 5, 5)-,129

(2, 6; 5, 6)-, (2, 7; 5, 5)-, and (2, 7; 5, 6)-truncations in such a way that any intermediate polytope is either a130

fullerene or a polytope in P7,5.131

Nevertheless, not any polytope in P7,5 can be obtained by a connected sum with the 5-barrel or132

by a (2, k)-truncation from a polytope in P≤7,5. The example is given by the polytope with the graph133

drawn on Fig. 9. Indeed, a connected sum with the 5-barrel produces a 5-gon surrounded by 5-gons,134

and a (2, k)-truncation produces a 5-gon with one edge lying in an r-gon, r = 5 or 6, and intersecting135

by vertices a p- and a q- gon with p, q ≥ 6. In the presented polytope P any such edge belongs to a136

6-gon and intersects two 6-gons, which means that the polytope Q transforming to P contains two137

7-gons.138

Figure 9. A polytope in P7,5, which can not be obtained from a polytope in P≤7,5 by a (2, k)-truncation
or a connected sum with the 5-barrel.

Let us mention that a connected sum with the 5-barrel is evidently a growth operation. Also an139

(s, k; m1, m2)-truncation, 2 ≤ s ≤ k− 4 is a growth operation on the class of flag polytopes, since it140

substitutes the patch consisting of the new 5-gon, and the (k− 1)-, (m1 + 1)-, and (m2 + 1)-gons for141

the patch consisting of the corresponding k-, m1- and m2-gons.142

Our second main result gives the method to construct any polytope in P≤7,5 \ D from the 6-barrel143

by a sequence of growth operations from the finite list in such a way that intermediate polytopes144

belong to the same family.145

Theorem 7 (The second main result). Any polytope in P≤7,5 \ D can be obtained from the 6-barrel by a146

sequence of growth operations each being either a connected sum with the 5-barrel, a (2, 6; 5, 5)-,(2, 6; 5, 6)-,147

(2, 7; 5, 5)-, (2, 7; 5, 6)-truncation, or one of the operations O1, O2, O3 drawn on Fig. 10 in such a way that148

intermediate polytopes also belong to P≤7,5 \D. Any of the operations O1, O2, O3 is a composition of (2, 6; 5, 6)-,149

(2, 7; 5, 5)-, (2, 7; 5, 6)-truncations such that intermediate polytopes are Pogorelov polytopes with 5-, 6-, and at150

most two 7-gonal faces.151
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O2O1 O3

Figure 10. Three growth operations. Dotted lines denote edges arising during the operation.

The third main result concerns all the polytopes in P7. There are polytopes P ∈ P7, which can152

not be obtained by any of the operations used in Theorem 7 from any polytope Q ∈ P≤7. To obtain153

an example we can cut off all the edges of any polytope in P7 several times. The resulting polytope154

still belongs to P7, but it has the non-hexagonal faces far from each other. Then it can be obtained155

from some polytope Q ∈ P≤7 only by a (2, 7; 5, 5)-truncation. But Q should have two 7-gons. A156

contradiction. To generalize Theorem 8 to the class P≤7 and a finite set of growth operations we add a157

(2, 7; 6, 6)-truncation and allow intermediate polytopes to have two 7-gons.158

Theorem 8 (The third main result). Any polytope in P≤7 \ D can be obtained from the 6-barrel by a sequence159

of growth operations each being either a connected sum with the 5-barrel, a (2, 6; 5, 5)-,(2, 6; 5, 6)-, (2, 7; 5, 5)-,160

(2, 7; 5, 6)-, (2, 7; 6, 6)-truncation, or one of the operations O1, O2, O3 in such a way that intermediate polytopes161

are Pogorelov polytopes not in D with 5-, 6- and at most two 7-gonal faces.162

2. Proof of the main results163

Proof of the first main result (Theorem 4). We will develop the idea of Example 1 corresponding to164

the case p7 = 2, pk = 0, k ≥ 8. First let us take the disk drawn on Fig. 11(a). Let β be its boundary165

circle. If p7 = 0, p8 = 1, and pk = 0, k ≥ 9, then add to F1 two 2-valent vertices on β to become a 8-gon,166

and to F2 and F3 one 2-valent vertex to become 6-gons. Then glue to the boundary of the disk a copy167

of the disk lying inside the 3-belt B = (F1, F2, F3) to obtain a graph of a polytope due to the Steinitz168

theorem. This graph can be also obtained by adding to the figure the image of the graph inside the belt169

under the circle inversion interchanging the boundary circles of B.170

Now let either ∑k≥9 pk > 0, or ∑k≥9 pk = 0 and (p7, p8) /∈ {(2, 0), (0, 1)}. For each k ≥ 7 with171

pk 6= 0 take pk k-gons and arrange all the polygons in a descending order of numbers of edges. Add to172

F1 vertices of valency 2 on β to become the first polygon. If ∑k≥7 pk ≥ 3, do the same for F2, F3 and173

the second, the third polygons. Else take 6-gons instead of lacking polygons. Let m1, m2, m3 be the174

numbers of edges of F1, F2 and F3. The number ν of 2-valent vertices on β is equal to m1 +m2 +m3− 16.175

Then ν ≥ 5, since either m1 ≥ 9, m2, m3 ≥ 6, or m1 = 8, m2 ≥ 7, m3 ≥ 6, or m1 = 7 = m2 = m3. Also176

any face has at least one 2-valent vertex on β. If there are still polygons not in use, we form from them177

a ν-belt of faces around B, taking 6-gons for lacking polygons intersecting 2 edges on the boundary of178

B, and 5-gons for lacking polygons intersecting one edge, if necessary. Each face of the new belt B1 has179

at least one 2-valent vertex on the outer bundary circe β1, hence the number ν1 of 2-valent vertices on180

β1 is not smaller than ν ≥ 5. Repeat this argument until all the polygons are in use. Now add one new181

belt consisting only of 5- and 6-gons, where each 5-gon intersects the boundary of the previous disk by182

one edge, and each 6-gon by two edges. We obtain a new disk with the boundary faces having 2 edges183

on the boundary circle, where the number b of boundary faces is it least 5 (see Fig. 11(b) for the case184

(p7, p8, p9) = (0, 2, 1), pk = 0, k ≥ 10.).185
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Figure 11. (a) An initial disk. (b) An addition of belts. (c) A construction of the complementary disk.

Let us build another disk with the identical boundary neighbourhood. First take a 5-gon. Add186

a 5-belt of faces around it consisting of c pentagons and d hexagons, c + d = 5. This belt has187

µ = c + 2d = 5 + d vertices of valency 2 on the outer boundary circle, and each face has at least one188

2-valent vertex. If b ≤ 10 then take d = b− 5, c = 10− b. Else take c = 0, d = 5 and add a new belt of189

faces around the obtained disk, where 3-valent vertices on the boundary circle γ of the disk correspond190

to 6-gons of the belt (we say that they are of the first type), and edges of γ connecting 2-valent vertices191

correspond to 5-gons and 6-gons (of the second type). In the new belt any face has at least one 2-valent192

vertex on the outer boundary circle γ1, and the total number µ1 of the 2-valent vertices on γ1 is equal193

to µ plus the number of 6-gons of the second type. If the value of µ1 can not reach the number b by194

varying the number of 6-gons of the second type, then make this value maximal possible and add new195

belts in the same manner. In the end we add the last belt without 6-gons of the second type to obtain196

the desired disk.197

Now glue both disks together to obtain a 2-sphere with a 3-valent graph on it. We claim that198

this graph is a graph of a simple 3-polytope. Indeed, any face by construction is a disk bounded by a199

simple edge-cycle. Two faces intersect if and only if either one of them is the centre of one of the disks200

and the other belongs to the belt surrounding it, or they are subsequent faces of the same belt, or they201

belong to subsequent belts. In the first two cases it is evident that the faces intersect by an edge. In the202

last case this is also true, since by construction any face of a new belt in each disk intersects any face of203

the previous belt either by the empty set, or by an edge, and the same is true for faces of the boundary204

belts of disks. This finishes the proof of the theorem.205

Corollary 1. A slight modification of the proof of Theorem 4 gives a new explicit construction of a Pogorelov206

polytope with given numbers (pk, k ≥ 7) different from constructions based on Eberhard’s [19] and Grünbaum’s207

[32] constructions of polytopes with given p-vectors and an operation of a cutting off all the edges.208

Construction 1. For ∑k≥7 pk = 0 take any fullerene. Let ∑k≥7 pk > 0. For each pk 6= 0, k ≥ 7, take pk k-gons209

and arrange all the polygons in a linear order. If there are more than one polygon, add around the first polygon a210

belt of polygons from the remaining list, taking 5-gons for missing faces, if necessary. If not all polygons are in211

use, add new belts by the same manner, taking 6-gons for lacking polygons intersecting 2 edges on the boundary212

of the previous belt, and 5-gons for lacking polygons intersecting one edge. In the end add around the disk the213

last belt of 5- and 6-gons with 3-valent vertices on the boundary of the disk corresponding to 6-gons, and the214

edges on the boundary of the disk connecting 2-valent vertices corresponding to 5-gons. We have the disk with215

b ≥ 7 boundary faces each having 2 edges on the boundary circle. The number of faces in added belts does not216

decrease, in particular each belt has at least 7 faces. Take the second disk with the same boundary neighbourhood217

constructed above. In this disk the number of faces in added belts also does not decrease, in particular each belt has218

at least 5 faces. Glue the two disks along the boundaries to obtain a 2-sphere with a plane graph corresponding to219

a simple 3-polytope with prescribed numbers pk, k ≥ 7. We claim that this polytope is a Pogorelov polytope.220
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Proof. We will prove that P has no 3- and 4-belts. First observe that a 3- or a 4-belt can not contain221

the centre of one of the two disks in construction, since any two non-subsequent faces of the belt222

surrounding the centre are not adjacent in the polytope and do not intersect the same face outside this223

belt by construction. The polytope P outside the centres of the disks consists of the belts added in224

construction. Let us call them levels. In each disk arrange levels in the order they were added. Let us225

call the top level of a disk a boundary level.226

Let (Fi, Fj, Fk) be a 3-belt. Since adjacent faces should belong to the same or adjacent levels, and a227

3-belt can not belong to one level, two faces, say Fi and Fj, lie on one level L1, and Fk on another level228

L2. If L2 is next to L1 in one disk, or both levels are boundary, then Fk intersects at most two faces,229

which should intersect it by a common vertex. A contradiction. If L1 is next to L2, then Fi and Fj are230

subsequent faces of the level. By construction there are at least 5 faces on L2, each having a 2-valent231

vertex on the circle between L1 and L2, whence the edge Fi ∩ Fj intersects Fk. A contradiction. Thus, P232

has no 3-belts.233

Let (Fi, Fj, Fk, Fl) be a 4-belt. Since it can not belong to one level, assume that Fi and Fj lie on234

adjacent levels L2 and L1. Without loss of generality assume that either both levels are boundary, or235

L2 is next to L1 in one disk. Then Fi intersects at most two faces on L1, which should intersect it by a236

common vertex. Since Fi ∩ Fl 6= ∅, and Fj ∩ Fl = ∅, Fl lies either on L2, or on the third level L3. In the237

first case Fl and Fi are subsequent in L2 and Fj is one of the two faces intersecting Fi on L1. The second238

face intersects Fl . The face Fk should intersect both Fj and Fl , hence it lies on L1 or L2. If it lies on L2, it239

is a subsequent to Fl and can not intersect Fj. If it lies on L1, it is one of the two faces intersecting Fl on240

L1, and it does not intersect Fi. Then it does not intersect Fj. A contradiction. Now let Fl lie on L3. Since241

Fk intersects both Fj and Fl , it lies on L2. If L1 and L2 belong to the same disk, then L3 is either next to242

L2, or both L2 and L3 are boundary levels. Then Fi and Fk should be adjacent, since they both intersect243

Fl on L2. A contradiction. If L1 and L2 are boundary levels, then Fi and Fk should be adjacent, since244

they both intersect Fj on L2. A contradiction. Hence P has no 4-belts and it is a Pogorelov polytope.245

Example 2. For the case p7 = 2, pk = 0, k ≥ 8, the first disk is drawn on Fig. 12. The second disk is drawn on246

Fig. 11(c).247

Figure 12. The first disk for the case p7 = 2, pk = 0, k ≥ 8. The second disk is drawn on Fig. 11(c).

Remark 2. Construction 1 of Pogorelov polytopes with given numbers (pk, k ≥ 7) can be generalized by taking248

two disks of the first type and substituting several belts of 5- and 6-gons for the last belt of the disk with shorter249

boundary circle to make the lengths of the boundary circles equal. Then for the case p7 = 2, pk = 0, k ≥ 8, the250

modified construction can produce the 7-barrel.251

Now we proceed to prove the second and the third main result. We call by a k-loop a cyclic252

sequence of faces with adjacent subsequent faces. Since any face of a flag 3-polytope is surrounded by253

a belt, if a Pogorelov polytope contains a 5-gon surrounded by 5-gons, these 6 faces together form a254

patch, which we denote C1, see Fig. 13(a).255
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(a) (b)

Figure 13. (a) A patch C1. (b) Another patch.

For a k-belt B = (Fi1 , . . . , Fik ) the set
⋃k

j=1 Fij is homeomorphic to a cylinder. Each its boundary256

component has a boundary code (α1, . . . , αk) corresponding to the number of edges of faces lying on257

this component. We will need the following result. For fullerenes it follows from results in [30,31] (see258

also [24,25], and [4, Theorem 2.12.1]). For polytopes in P7 it was proved in [4, Theorem 3.2.6].259

Theorem 9. Let P ∈ P≤7. Then any 5-belt either surrounds a face and has on this side the boundary code260

(1, 1, 1, 1, 1), or surrounds a patch obtained by addition of r ≥ 0 5-belts of 6-gons around the patch C1 and has261

on this side the boundary code (2, 2, 2, 2, 2).262

Proof of the second main result (Theorem 7). We start with the following263

Lemma 1. Let a polytope P ∈ P≤7 contain a patch C1. Then either P is the 5-barrel, or P is obtained from264

some polytope Q ∈ P≤7 by a connected sum with the 5-barrel producing this patch. In particular, if P ∈ F ,265

then P ∈ D, and if P ∈ P7, then P is obtained from a fullerene containing a patch drawn on Fig. 13(b) by a266

sequence of connected sums with the 5-barrel, where the first connected sum is along the central 5-gon of the267

patch, and all the other connected sums are along the central 5-gon of the arising patch C1.268

Proof. First note that the patch C1 is surrounded by a 5-belt on a Pogorelov polytope. Indeed, it269

is surrounded by a 5-loop. If two non-subsequent faces intersect, without loss of generality these270

are Fi and Fj drawn on Fig. 14(a). But they are non-subsequent faces of the 6-belt surrounding the271

adjacent 5-gons Fk and Fl . A contradiction. Thus, C1 is surrounded by a 5-belt. If this belt contains272

no 5-gons, then we can apply an operation inverse to a connected sum with the 5-barrel, see Fig.273

14(b). It is well defined by the Steinitz theorem and produces a polytope in P≤7. Let one of the faces274

of the belt be a 5-gon, see Fig. 14(c). We claim that for P 6= D0 the patch consisting of C1 and an275

additional 5-gon is surrounded by a 5-belt B = (Fi, Fj, Fk, Fl , Fr). Indeed, faces (Fl , Fr, Fi, Fj) belong276

to the 5-belt surrounding C1, whence they are distinct and Fl ∩ Fi = ∅ = Fr ∩ Fj. Faces Fl and Fj are277

non-subsequent in the 6-belt surrounding two 5-gons, whence Fl ∩ Fj = ∅. Faces Fi and Fk belong to278

the belt surrounding Fj. They are distinct, since Fj has at least 5 edges. They are adjacent if and only279

if Fj has exactly 5 edges. In this case the 4-loop (Fi, Fk, Fl , Fr) can not be a 4-belt, whence Fk ∩ Fr 6= ∅,280

since Fi ∩ Fl = ∅. Then P = D0.281
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Fi

Fj

Fk

Fl

Fi

FjFl

Fr

Fk
(c)(b)(a)

Figure 14. (a) A patch C1. (b) An operation inverse to a connected sum. (c) A non-existing patch.

Thus, for P 6= D0 we have Fi ∩ Fk = ∅, and Fk ∩ Fr = ∅ by a similar argument, and B is a 5-belt.282

By Theorem 9 either this belt surrounds a 5-gon, or each face of the belt has two edges on the outer283

part of the boundary ∂P of P. In the first case Fk is a 4-gon, and in the second case both Fj and Fl are284

7-gons. A contradiction. The lemma is proved.285

Denote the patches arising after operations of a (2, 6; 5, 5)-, (2, 6; 5, 6)-, (2, 7; 5, 5)- or (2, 7; 5, 6)-286

truncation, or operations O1, O2, or O3, by D2,6;5,5, D2,6;5,6, D2,7;5,5, D2,7;5,6, D1, D2, D3 respectively (see287

Fig. 15). We do not take into account the orientation. Therefore, we do not distinguish between a patch288

and its mirror image.289

By Theorem 2 and Lemma 1 a polytope P in the class A can be obtained from a polytope Q290

in the class B by an operation of a connected sum with the 5-barrel, or of a (2, 6; 5, 5)-, (2, 6; 5, 6)-,291

(2, 7; 5, 5)-, (2, 7; 5, 6)- truncation, or O1, O2, O3, if and only if P contains respectively a patch C1,292

D2,6;5,5, D2,6;5,6, D2,7;5,5, D2,7;5,6, D1, D2, D3, where A, B = P≤7 for a connected sum, a (2, 6; 5, 5)-293

truncation, and operations O1, O2, O3; (A, B) = (P7,F ) for a (2, 6; 5, 6)-truncation; (A, B) = (F ,P7)294

for a (2, 7; 5, 5)-truncation; and A, B = P7 for a (2, 7; 5, 6)-truncation. Let us call a polytope P ∈ P≤7295

irreducible, if it can not be obtained from a polytope in P≤7 by these operations. Otherwise let us call P296

reducible. First we will prove that only the 5- and the 6-barrel are irreducible, and then we will explain297

how to avoid polytopes in D.298

It can be proved that a collection of faces of a polytope P ∈ P≤7 with the same combinatorics299

as in any of these patches indeed forms the corresponding patch. For the first 6 patches this follows300

from the fact that the collection of faces consists of two adjacent faces and some faces of the belt301

surrounding them. For the patch D3 this argument works for the collection without the top face and302

the collection without the bottom face. These faces should be distinct, for otherwise a 4-belt arises,303

and they should be non-adjacent, for otherwise a 5-belt with both boundary codes different from304

(1, 1, 1, 1, 1) and (2, 2, 2, 2, 2) arises (see more details in [4, Lemma 4.0.1]).305

D2,6;5,5 D2,7;5,5D2,6;5,6 D2,7;5,6 D1 D2 D3

Figure 15. Patches arising after operations.

Lemma 2. Let P ∈ P7,5 be irreducible. Then the 7-gon can not be adjacent to 5-gons by 3 subsequent edges.306
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Proof. The 7-gon is surrounded by a 7-belt. If 3 of its subsequent faces Fa, Fb, Fc are 5-gons then the307

4 faces Fu, Fv, Fw, Ft adjacent to them and lying in the outer part of ∂P are 5-gons (see Fig. 16), for308

otherwise P contains one of the patches D2,6;5,6 or D2,7;5,6. All these seven 5-gons are distinct, since309

they belong to the patch formed by two adjacent 5-gons Fv and Fw and the 6-belt B surrounding them.310

Consider the 6-th face of B. It is different from the 7-gon, since these two faces are non-subsequent in311

the 6-belt surrounding the 5-gons (Fc, Fw). It cannot be a 5-gon, for otherwise the patch C1 appears.312

Therefore, it is a 6-gon. Consider the 5-loop B1 = (Fi, Fj, Fk, Fl , Fr) arising on the boundary of B, where313

Fi is the 7-gon. Any two non-subsequent faces of this loop do not intersect, since they are adjacent314

to the same face of this loop by non-adjacent edges. Then B1 is a 5-belt. Since on the side of the belt315

B it has the boundary code (3, 2, 2, 2, 2), and Fi has on the other side 2 edges, by Theorem 9 the other316

boundary code is (2, 2, 2, 2, 2), P contains the patch C1 and is obtained by a connected sum with the317

5-barrel by Lemma 1. The lemma is proved.318

Fi Fj

FkFl

Fr

Fa

Fb
Fc

Fu

Fv Fw

Ft

Figure 16. The 7-gon adjacent to 3 subsequent 5-gons.

319

Lemma 3. Let P ∈ P7,5 be irreducible. Then the 7-gon can not be adjacent to 5-gons by 2 subsequent edges.320

Proof. The 7-gon is surrounded by a 7-belt. If 2 of its subsequent faces Fi and Fj are 5-gons then the321

3 faces Fb, Fc, Fd adjacent to them and lying in the outer part of ∂P are 5-gons (see Fig. 17(a)), for322

otherwise P contains one of the patches D2,6;5,6 or D2,7;5,6. All these five 5-gons are distinct since belong323

to the patch formed by the 5-gon Fl and the 5-belt B surrounding it. Consider the 5-th face Fc of B. It324

does not intersect the 7-gon, since these two faces are non-subsequent faces of the 6-belt surrounding325

the 5-gons (Fj, Fl). It cannot be a 5-gon, for otherwise the patch C1 appears. Therefore, it is a 6-gon.326

The faces Fa and Fe are 6-gons by Lemma 2. Also Fb and Fd are 6-gons, for otherwise the patch D2,6;5,5327

appears. The face Ff is not the 7-gon, since the 7-gon and Fc are not adjacent. If Ff is a 5-gon, we obtain328

the patch D2 (see Fig. 17(b)). If Ff is a 6-gon, we obtain the patch D3 (see Fig. 17(c)). The lemma is329

proved.330
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Fi Fj

Fk
Fl Fr

Fa

Fb

Fc

Fd

Fe

Ff

(a) (b) (c)

Figure 17. (a) The 7-gon adjacent to 2 subsequent 5-gons. (b) The patch D2. (c) The patch D3.

331

Lemma 4. Any polytope P ∈ P7,5 is reducible.332

Proof. Let a polytope P ∈ P7,5 be irreducible. By definition the 7-gon F is adjacent to at least one333

5-gon, say Fj. By Lemma 3 the faces Fi and Fk adjacent to F by the edges next to F ∩ Fj are 6-gons.334

The rest two faces adjacent to Fj are 5-gons, for otherwise the patch D2,7;5,6 appears. We obtain the335

picture drawn on Fig. 18(a). The faces Fb and F do not intersect, since they are non-subsequent in the336

belt surrounding Fj and Fq. If Fb is a 6-gon, then Fa and Fc are also 6-gons, for otherwise the patch337

D2,6;5,5 appears. Then P contains the patch D1 (see Fig. 18(b)). Thus, Fb is a 5-gon (see Fig. 18(c)). The338

faces Fa, Fc, Fd are different from F, since Fb ∩ F = ∅. If both Fa and Fc are 6-gons, then either Fd is a339

5-gon and we obtain the patch D2,6;5,5, or Fd is a 6-gon and we obtain the patch D1. If both Fa and Fc340

are 5-gons, then Fd is a 6-gon, for otherwise we obtain the patch C1. Also Fu and Fv are 6-gons, for341

otherwise the patch D2,6;5,5 appears. Thus we obtain the scheme drawn on Fig. 18(d). The face Fw is342

different from F, for otherwise (Fj, Fq, Fb, Fd, Fw) is a 5-belt, since any two non-subsequent faces of this343

5-loop are adjacent to some face of this loop by non-subsequent edges. But this belt has both boundary344

codes different from (1, 1, 1, 1, 1) and (2, 2, 2, 2, 2), which contradicts Theorem 9. Like in the proof of345

Lemma 3 we see that either Fw is a 5-gon, and we obtain the patch D2, or Fw is a 6-gon and we obtain346

the patch D3.347

(a)

Fa

F

Fi

Fj
Fk

Fp Fq

Fb

Fc

(b) (c)

Fa

F

Fi

Fj
Fk

Fp Fq

Fd

Fc

Fb

(d)

F

Fj

Fp Fq

Fb

Fu Fv

Fd

FcFa

Fi Fk

Fu Fv

Fw

Figure 18. (a) The 7-gon adjacent to a 5-gon. (b) The patch D1. (c) The case when Fb is a 5-gon. (d) The
case when Fa and Fc are 5-gons.

Now we can assume that one of the faces Fa and Fc is a 5-gon and the other is a 6-gon. Since we348

do not take into account the orientation, without loss of generality assume that Fa is a 5-gon and Fc is a349

6-gon (Fig. 19(a)). If Fd is a 6-gon, then Fu is also a 6-gon, for otherwise we obtain the patch D2,6;5,5.350

Then we have the patch D1 (Fig. 19(b)). Thus, Fd is a 5-gon and we obtain Fig. 19(c). The face Ft is351

different from F, for otherwise (Fj, Fq, Fb, Fd, Ft) is a 5-belt, since any two non-subsequent faces of this352

5-loop are adjacent to some face of this loop by non-subsequent edges. But this belt has both boundary353

codes different from (1, 1, 1, 1, 1) and (2, 2, 2, 2, 2).354
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(a)

F

Fj
Fk

Fp Fq

Fd

Fb

Fu

Fa
Fc

(b)

Fi

(c)

F

Fj

Fp Fq

Fb

Fu

Fa

Fd

Fk

Fc

Fi

Ft

Figure 19. (a) The case when Fa is a 5-gon and Fc is a 6-gon. (b) The patch D1. (c) The case when Fd is a
5-gon.

If Fu is a 5-gon, we obtain Fig. 20(a). All the 5-gons are distinct, since they consist of adjacent355

faces Fa, Fp and some faces of the 6-belt surrounding them. We have a 5-loop (Fs, F, Fk, Fc, Ft), which356

is a 5-belt, since any two non-subsequent faces of this 5-loop are adjacent to some face of this loop357

by non-subsequent edges. But this belt has both boundary codes different from (1, 1, 1, 1, 1) and358

(2, 2, 2, 2, 2), which contradicts Theorem 9. Hence Fu is a 6-gon and we obtain Fig. 20(b). Then if Ft is a359

5-gon, we obtain the patch D2,6;5,5, and if Ft is a 6-gon, we obtain the patch D1 (or, more precisely, its360

mirror image, which we do not distinguish from it), see Fig. 20(c).361

(a)

F

Fj

Fp Fq

FbFa

Fd

Fk

Fs

Fi

Fc
Fu

Ft

F

Fj

Fp Fq

FbFa

Fd

Fk

Fc

Fi

(b)

Ft

Fu

(c)
Figure 20. (a) The case when Fu is a 5-gon. (b) The case when Fu is a 6-gon. (c) The patch D1.

362

Thus, any irreducible polytope in P≤7,5 is a fullerene. Now we will prove the result, which will363

be useful also for P≤7. For fullerenes it was proved in [4, Thorem 4.0.2 1].364

Lemma 5. Let P be a fullerene or a polytope in P7 with the 7-gon surrounded by 6-gons. If P has two adjacent365

5-gons, then either P is the 5- or the 6-barrel, or it can be obtained from a fullerene or a polytope in P7 respectively366

by one of the operations: a connected sum with the 5-barrel, a (2, 6; 5, 5)-truncation, O1, O2, O3.367

Proof. We need to prove that P contains one of the corresponding patches. Assume that it is not true.368

Consider two adjacent 5-gons Fi and Fj. Then the edge Fi ∩ Fj intersects by one of its edges some 5-gon369

Fk, for otherwise the patch D2,6;5,5 appears. If this patch consisting of three 5-gons with a common370

vertex, is surrounded by 6-gons, then P contains the patch D1. Hence one of the faces around the371

patch is a 5-gon. If it intersects only one of the three 5-gons, then the edge of intersection should372

intersect by a vertex a new 5-gon adjacent to two 5-gons of the patch, for otherwise the patch D2,6;5,5373

appears. Therefore without loss of generality assume that the edge Fi ∩ Fj intersects two 5-gons Fk374

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2018                   doi:10.20944/preprints201801.0289.v1

Peer-reviewed version available at Symmetry 2018, 10, 67; doi:10.3390/sym10030067

http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067


15 of 20

and Fl by vertices (see Fig. 21(a)). Then each pair of faces (Fp, Fq) and (Fu, Fv) contains at least one375

6-gon, for otherwise the patch C1 appears. Up to a mirror symmetry corresponding to the change of376

an orientation of the polytope, we have two possibilities: Fp, Fv are 5-gons (Fig. 21(b)), or Fp, Fu are377

5-gons (Fig. 21(c)).378

(a)

Fi Fj

Fk

FlFp

Fq Fu

Fv

Fi Fj

Fk

Fl

Fq Fu

(b)

Fi Fj

Fk

Fl

Fq

Fv

(c)

Fp Fv Fp

Fu

Fw FwFw

Fr Fr Fr

Figure 21. (a) Four 5-gons. (b) Fp and Fv are 5-gons. (c) Fp and Fu are 5-gons.

In the first case Fw is a 6-gon, for otherwise the patch D2,6;5,5 appears. Then Fu and Fq are 5-gons,379

for otherwise the patch D1 appears. Then Fq and Fu are 5-gons, for otherwise the patch D1 appears.380

Fr is a 6-gon, for otherwise the patch C1 appears (see Fig. 22(a)). Also faces Fs and Ft are 6-gons,381

for otherwise the patch D2,6;5,5 appears. Faces Fa and Fb are distinct, since they are adjacent to Fs by382

distinct edges. Then one of them is not a 7-gon. If it is a 5-gon, we obtain the patch D2 (Fig. 22(b)). If it383

is a 6-gon we obtain the patch D3 (Fig. 22(c)).384

(a)

Fi Fj

Fk

Fl

(b) (c)

Fp Fv

Fw

Fq Fu

Fr
Fs Ft

Fa

Fb

Fc

Figure 22. (a) Fp and Fv are 5-gons. (b) The patch D2. (c) The patch D3.

In the second case each pair of faces (Fq, Fr) and (Fv, Fw) contains at least one 5-gon, for otherwise385

the patch D1 appears. If Fw is a 5-gon, then Fv is also a 5-gon, for otherwise the patch D2,6;5,5 appears.386

Therefore we can assume that Fv is a 5-gon, and similarly Fq is a 5-gon, see Fig. 23(a). The 6-loop387

(Fp, Fq, Fk, Fu, Fv, Fw) is a 6-belt, since any two non-subsequent faces of this loop are non-subsequent388

faces of the 6-belt surrounding one of the 3 pairs of adjacent 5-gons Fi, Fj, Fl . If Fw is a 5-gon, then we389

obtain a patch D drawn on Fig. 23(b). If both faces Fs and Ft are 6-gons, we obtain the patch D1. If Fs is390

a 5-gon, then Ft is a 5-gon, for otherwise we obtain the patch D2,6;5,5. Thus, we can assume that Ft is a391

5-gon, see Fig. 23(c). The faces (Fa, Fr, Fb, Ft, Fs) form a 5-loop in the complement of the patch D in the392

boundary of P. They are pairwise distinct, since any two non-subsequent faces of this loop are adjacent393

to some its face by distinct edges. Now we have the 4-loop (Fr, Fb, Fs, Fa). Fr ∩ Fs = ∅, since these two394

faces are non-subsequent in the belt surrounding (Fp, Fq). Since P has no 4-belts, Fa ∩ Fb 6= ∅. Since P395

has no 3-belts, Fa ∩ Fb ∩ Fs and Fa ∩ Fb ∩ Fr are vertices, and all the faces in the 4-loop are 5-gons. Then396

P is the 6-barrel. If Fw is a 6-gon, then Ft is also a 6-gon (see Fig. 23(d)), for otherwise the patch D2,6;5,5397

appears. Then we obtain the patch D1. The lemma is proved.398
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(a) (b)

Fi Fj

Fk

Fl
Fw

Fr

Fp

Fq Fu

Fv

Fi Fj

Fk

Fl

Fr
Fq

Fp

Fu

Fv

FwFs Ft

Fi Fj

Fk

Fl

Fr

Fq

Fp Fv

Fw
Fs

Fu

Ft

Fa

Fb

(c) (d)

Fi Fj

Fk

Fl

Fr

Fp

Fq Fu

Fv

Fs
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Figure 23. (a) Fp and Fu are 5-gons. (b) Fw is a 5-gon. (c) Ft is a 5-gon. (d) Fw is a 6-gon.

399

We are ready to prove the following result.400

Lemma 6. Only the 5- and the 6-barrel are irreducible polytopes in P≤7,5.401

Proof. The 5- and the 6-barrel are evidently irreducible. Any polytope in P7,5 is reducible by Lemma402

4. If P is a fullerene different from the 5- and the 6-barrel and has adjacent 5-gons, then it is reducible403

by Lemma 5. If a fullerene has no adjacent 5-gons, then any its 5-gon belongs to a patch D2,7;5,5. Hence404

P is reducible.405

Now we will show how to avoid polytopes in D.406

Lemma 7. Let P be a polytope in P≤7 \ D. If it can be reduced to a polytope in D, then it can also be reduced407

to a polytope Q ∈ P≤7 \ D.408

Proof. For a polytope D5k, k ≥ 0, the operation of a connected sum with the 5-barrel can be409

applied only along the central 5-gon of a patch C1, for otherwise two 7-gons appear. This operation410

transforms D5k into D5(k+1). The only other operations that can be applied to the polytope D5k are a411

(2, 6; 5, 5)-truncation, if k = 1, O1 or O2, if k = 2, O3, if k = 3, and a (2; 6; 5, 6)-truncation, if k ≥ 2. In all412

the cases any of the operations makes the transformation of the patches drawn on Fig. 24 (a). Then the413

polytope P also contains the patch D1 and can be reduced to a polytope Q ∈ P≤7 containing the patch414

D2,6;5,5 (see Fig. 24(b)). We have Q /∈ D and the lemma is proved.415

(a) (b)
Figure 24. (a) A transformation of a patch. (b) A reduction.

416

Lemma 7 implies that any polytope in P≤7,5 \ D can be reduced to the 6-barrel by a sequence of417

operations in such a way that intermediate polytopes also belong to P≤7,5 \ D. This finishes the proof418

of Theorem 7.419
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Proof of the third main result (Theorem 8). Consider a polytope P ∈ P≤7. If P ∈ P≤7,5, then the420

theorem follows from Theorem 7. If P ∈ P7 \ P≤7,5, and P has two adjacent 5-gons, then the theorem421

follows from Lemma 5 and Lemma 7. Thus it remains to consider the case of polytopes with the422

7-gon and all the 5-gons isolated. By a thick path we call a sequence of faces (Fi1 , . . . , Fik ) such that any423

two subsequent faces are adjacent. It is easy to see that any two faces of a simple 3-polytope can be424

connected by a thick path. Let us call a length of the thick path consisting of k faces the number k− 1. We425

will use the idea presented in [27] and [24] for fullerenes. Consider the 7-gon and the shortest thick426

path among all thick paths connecting it to 5-gons. Then all the faces except for the first and the last427

are 6-gons. Since the path is the shortest, each 6-gon can not intersect the next and the previous faces428

by adjacent edges. We say that the path goes "forward" in the 6-gon, if these edges of intersection429

are opposite. If they are not opposite and not adjacent, then the path "turns left" or "turns right",430

depending on the orientation of the boundary of the polytope. In the shortest path all the 6-gons are431

distinct and non-subsequent faces are not adjacent. Moreover, there can not be two subsequent turns432

to the same side, and it is possible to modify the shortest path to have no more than one turn (see433

details in [27] and [24]).434

Lemma 8. Let Γ be the shortest path among all thick paths connecting the 7-gon with 5-gons in a polytope435

P ∈ P7 with the 7-gon and all the 5-gons isolated. If Γ hat no turns, then it is contained in the patch drawn on436

Fig. 25(a). If it has one turn, then it is contained in the patch drawn on Fig. 26(a).437

Proof. The path Γ itself forms a patch on the polytope P. To prove that Γ is contained in the desired438

patch it is sufficient to show that all the faces on each figure are distinct on the polytope and the faces439

are adjacent on the polytope if and only if they are adjacent on the figure. Let Γ have length k. Let us440

call a distance between faces of a disk on a figure the length of the shortest thick path connecting them441

on the figure. If two faces are distinct or non-adjacent on the figure and the distance between them442

is at most 3, then they are respectively distinct or non-adjacent on the polytope, since either they are443

adjacent, if the distance is 1, or are non-subsequent faces of the belt surrounding a face or a pair of444

adjacent faces, if the distance is 2 or 3. Thus, if two faces on the figure are distinct or non-adjacent, but445

the corresponding condition is not valid on the polytope, then the distance between them is at least446

4. We claim that for any two faces on each figure there is a thick path Γ1 of length at most k + 2 with447

the same ends as Γ containing both faces. Indeed, each figure consists of faces lying in the union of448

the face Fjk+1
and two thick paths of lengths k and k + 1: Γ and (Fi0 , Fj1 , . . . , Fjk , Fik ) for the first figure,449

and (Fi0 , Fj1 , . . . , Fjs , Fis+1 , . . . , Fik ) and (Fi0 , Fi1 , . . . , Fis , Fjs+1 , . . . , Fjk , Fik ) for the second. If both faces lie450

on the same path, we can take this path. If they lie on different paths, then take the path of length451

k + 1. Then the face C lying on the other path is adjacent to two subsequent faces (A, B) of the first452

path. Substitute the segment (A, C, B) for (A, B) to obtain the new path of length k + 2. If one of the453

faces is Fjk+1
, then take the path containing the second face. If it has length k, then simply add the454

segment (Fik , Fjk+1
, Fik ). If it has length k + 1, then substitute (Fjk , Fjk+1

, Fik ) for (Fjk , Fik ) to obtain the455

desired path.456

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2018                   doi:10.20944/preprints201801.0289.v1

Peer-reviewed version available at Symmetry 2018, 10, 67; doi:10.3390/sym10030067

http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067


18 of 20
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Figure 25. (a) The initial patch. (b), (c) Transformations of the patch. (d) The resulting patch.

Let two distinct or non-adjacent faces of one of the figures respectively coincide or be adjacent on457

the polytope. Take a thick path Γ1 of length at most k + 2 containing them. Since the faces coincide or458

are adjacent on the polytope, we can shorten the path deleting the segment between these faces. This459

segment consists of at least 3 intermediate faces, whence the new path has length at most k− 1 and is460

shorter than Γ. A contradiction. Thus, the lemma is proved.461

Now reduce the obtained patch to the corresponding patch drawn on Fig. 25(d) or Fig. 26(e)462

by straightenings along edges inverse to (2, 7; 5, 5)-, (2, 7; 5, 6)-, and (2, 7; 6, 6)-truncations (see Fig.463

25(b),(c) or Fig. 26(b)-(d) respectively). Then P is obtained from the polytope Q with the last patch464

substituted for the first patch in P by the corresponding truncations. Also Q or any intermediate465

polytope contains a 7-gon, hence it does not belong to D.466
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Figure 26. (a) The initial patch. (b), (c), (d) Transformations of the patch. (e) The resulting patch.

This finishes the proof of the theorem.467

3. Prospects468

In Introduction we have enough discussed the place of our results in the context of studies in this469

direction. Let us mention the arising prospects.470

1. The result of Theorem 8 may be strenghtened. It seems that the operation of a (2, 7; 6, 6)-truncation471

can be excluded. Also, it seems to be an opened question, whether there is a finite set of growth472
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operations transforming the family P≤7 to itself sufficient to reduce any polytope in P7 with all473

the non-hexagons isolated to some polytope in P≤7. Let us remind that due to results in [29] there474

are no finite sets of growth operations transforming fullerenes to fullerenes sufficient to reduce475

any fullerene with all 5-gons isolated to some fullerene.476

2. There arise further questions about p-vectors of Pogorelov polytopes. For example, for given477

numbers (pk, k ≥ 7) for which values of p6 a Pogorelov polytope realizing this p-vector exists?478

3. To apply the construction of fullerenes and Pogorelov polytopes by operations presented in this479

article to problems on combinatorics of polytopes, toric topology (see [33]), and hyperbolic480

geometry. For example, to give a new prove of the 4-color theorem for special classes of481

Pogorelov polytopes. Or for a given Pogorelov polytope to enumerate all characteristic mappings482

sending the faces to vectors in Z3 (or Z3
2, where Z2 = Z/2Z) such that for any triple of faces483

intresecting in a vertex their images form a basis in Z3 (respectively in Z3
2). Such functions484

correspond to 6-dimensional manifolds with an action of the compact torus T3 and 3-dimensional485

hyperbolic manifolds (see [3,5]). In [3] it was proved that these manifolds are uniquely determined486

by their cohomology and respectively Z2-cohomology rings. There is a question to describe487

transformation of differential-geometric and algebraic-topological properties of the manifolds488

under transformation of polytopes.489
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