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Abstract: A Pogorelov polytope is a combinatorial simple 3-polytope realizable in the Lobachevsky
(hyperbolic) space as a bounded right-angled polytope. It has no 3- and 4-gons and may have
any prescribed numbers of k-gons, k > 7. Any polytope with only 5-, 6- and at most one 7-gon is
Pogorelov. For any other prescribed numbers of k-gons, k > 7, we give an explicit construction of a
Pogorelov and a non-Pogorelov polytopes. Any Pogorelov polytope different from Lobel polytopes
can be constructed from the 5- or the 6-barrel by cuttings off pairs of adjacent edges and connected
sums with the 5-barrel along a 5-gon with the intermediate polytopes being Pogorelov. For fullerenes
there is a stronger result. Any fullerene different from the 5-barrel and the (5, 0)-nanotubes can be
constructed by only cuttings off adjacent edges from the 6-barrel with all the intermediate polytopes
having 5-, 6- and at most one additional 7-gon adjacent to a 5-gon. This result can not be literally
extended to the latter class of polytopes. We prove that it becomes valid if we additionally allow
connected sums with the 5-barrel and 3 new operations, which are compositions of cuttings off
adjacent edges. We generalize this result to the case when the 7-gon may be isolated from 5-gons.

Keywords: Fullerenes; right-angled polytopes; truncation of edges; connected sum; k-belts; p-vector
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1. Introduction

By an n-polytope we mean a combinatorial convex n-dimensional polytope, that is a class of
combinatorial equivalence of convex n-dimensional polytopes. For details on the theory of polytopes
we recommend the books [1,2]. A 3-polytope P is called a Pogorelov polytope (see [3-5]), if it can be
realized in Lobachevsky (hyperbolic) space IL? as a bounded polytope with right dihedral angles.
An n-polytope is called simple if any its vertex is contained in exactly n facets. A flag polytope is a
simple polytope such that any its set of pairwise intersecting facets has a non-empty intersection. A
k-belt is a cyclic sequence of facets with empty common intersection such that two facets are adjacent
if and only if they follow each other. It can be shown that a 3-polytope P is flag if and only if it is
different from the simplex A3 and has no 3-belts. Results by A.V. Pogorelov [6] and E.M. Andreev
[7] imply that a 3-polytope P is a Pogorelov polytope if and only if it is flag and has no 4-belts. An
example of Pogorelov polytopes is given by fullerenes — simple 3-polytopes with only 5- and 6-gonal
faces. It follows from results by T. Doslic that fullerenes are flag [8] and have no 4-belts [9]. They
are mathematical models for spherical-shaped carbon molecules discovered in 1985 by R.F. Curl [10],
H.W. Kroto [11], and R.E. Smalley [12] (Nobel Prize 1996 in chemistry). Surveys on mathematical
theory of fullerenes see in [13,14]. We also recommend a remarkable paper by W.P. Thurson [15], who
gives a parametrization for the set of all fullerenes. Another example of Pogorelov polytopes is given
by k-barrels (or Lobel polytopes (see [5,16,17]), see Fig. 1 for k = 9) — simple 3-polytopes with the
boundary glued from two equal parts consisting of a k-gon surrounded by 5-gons.
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Figure 1. The 9-barrel.

35 A nice characterization of flag and Pogorelov polytopes is given by the following result.

s Proposition 1 ([3,4]). A simple 3-polytope is flag if and only if any its face is surrounded by a belt. A simple
sz 3-polytope is a Pogorelov polytope if and only if any pair of its adjacent faces is surrounded by a belt.

38 There are two operations transforming Pogorelov polytopes into Pororelov polytopes. First of
s them is a cutting off s subsequent edges of a k-gonal face, 2 < s < k — 4, of a simple 3-polytope by a
«0 single plane and is called an (s, k)-truncation, see Fig. 2(a). If the inverse operation is defined, we call it
a1 a straightening along an edge, see Fig. 2(b).

L3 R

Figure 2. (a) An (s, k)-truncation. (b) A straightening along an edge.

a2 If the k-gon in adjacent to an mj- and an my-gon by edges next to cut edges, then we
«s call the operation an (s, k;my, my)-truncation (see Fig. 3). We do not take into account an
« orientation of the surface of the polytope; hence we do not distinguish between (s, k; m,m;)- and

ml m1+1
—
m2 m,+1

Figure 3. An (s, k; my, my)-truncation.

4 (s,k; mp, mp)-truncations.

46 The second operation we need is a connected sum of 3-polytopes along k-gons surrounded by
4z k-belts. It is the combinatorial analog of gluing of two polytopes along k-gonal faces orthogonal to
«s adjacent faces.
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Figure 4. A connected sum of two polytopes along faces.
a9 The existence of certain combinatorial types of 3-polytopes we usually verify using the Steinitz

so theorem (see [1,2]). We formulate it in the form (see, for example, [13,25]) convenient for our arguments.

51 Theorem 1 (Steinitz). A simple connected plane graph G is the graph of some convex 3-dimensional polytope
sz if and only if any its face is bounded by a simple edge-cycle and boundary cycles of any two faces either do not
ss  intersect, or intersect by a vertex, or intersect by an edge.

54 Moreover, there is a Whitney’s theorem (see [1]), which states that a plane realization of the graph
ss of a 3-polytope is combinatorially unique. Using the Steinitz theorem the following fact may be proved
se  ([13], see also [4])

s» Theorem 2. Let P be a connected 3-valent plane graph with each face bounded by a cycle with at least 5 and at
ss  most 7 edges, where the number of boundary cycles with 7 edges is at most one. Then this graph is a graph of a
so  simple 3-polytope.

60 In [13] the polytopes with 5-, 6- and one 7-gon are called 7-disk-fullerenes. Denote by F the family
a1 of fullerenes, by Py the family of 7-disk-fullerenes, by P75 its subfamily consisting of polytopes with
ez the 7-gon adjacent to a 5-gon, by P<7 5 the family F LI Py 5, and by P<y the family F LI P7. In [4] the
es following generalization of Theorem 2 was proved.

e« Theorem 3. Let P € P<y. Then P is a Pogorelov polytope.

65 This result leads to a natural question. Let py be the number of k-gonal faces of a simple 3-polytope
oo P. The collection (pg, k > 3) is called a p-vector. There Euler formula in the case of simple 3-polytopes
ez implies the following formula (see [2]), which can be proved by a direct calculation:

3p3+2pa+ps =12+ ) (k—6)px. 1)
k>7
o8 V. Eberhard proved ([19], see also [2]) that for any finite collection of non-negative integers

oo (pr k > 3,k # 6) satisfying the equation (1) there exists a simple 3-polytope P with py(P) = py for all
7k # 6. A flag polytope has no 3-gons. On the base of Eberhard’s result it was proved in [18] that for
72 any finite collection of non-negative integers (py, k > 4,k # 6) satisfying the equation (1) there exists a
2 flag polytope P with pi(P) = py, k # 3, 6. The proof used the construction of a simultaneous cutting
s off all the edges of a simple 3-polytope by different planes, see Fig. 5. This operation does not change
7o the numbers py, k # 6, and increases the number pg by the number of edges.


http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2018 d0i:10.20944/preprints201801.0289.v1

4 0f 20
Figure 5. A cutting off all the edges of a polytope by different planes.
75 It turns out that for a polytope with no 3-gons the cut polytope is flag. A Pogorelov polytope

76 has no 3- and 4-gons, since any face of a flag polytope is surrounded by a belt. In [3,4] is was proved
7z that for any finite collection of non-negative integers (py, k > 7) there exists a Pogorelov polytope
s with pr(P) = px, k > 7. Moreover, ps5(P) = 12 + Y 4~7(k — 6) px. The proof is similar to the case of flag
7 polytopes. Namely, for a polytope without 3- and 4-gons the cut polytope is a Pogorelov polytope.

so Question. Which restrictions on the numbers (py, k > 7) imply that a polytope without 3- and 4-gons is a
s Pogorelov polytope?

82 We have seen that the example is given by the restriction py <1, py =0,k > 8.

Figure 6. A graph of a polytope with 5-, 6- and two 7-gonal faces containing a 3-belt.

e Example 1. On Fig. 6 we present the graph of a simple 3-polytope (this can be easily checked using the Steinitz
sa theorem) with 5-, 6- and two 7-gonal faces. This polytope has a 3-belt containing both 7-gons, hence it is not a
e Pogorelov polytope.

a6 The first main result of our paper is the answer to this question.

sz Theorem 4 (The first main result). For any finite collection of non-negative integers (px, k > 7) with
s ) >y Pk > 1or p7 = 0and Y~y pr = 1 there exists a non-flag simple polytope P with py(P) = py, k > 7.

so  Remark 1. We will also give a slight modification of this construction producing a Pogorelov polytope with
o prescribed numbers py, k > 7, not using Ebrehard’s result.

01 Hence P<7 is a natural subclass in the class of Pogorelov polytopes.
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02 It can be shown ([20], see also [4]) that an (s, k)-truncation sransforms a Pogorelov polytope into a
o3 Pogorelov polytope if and only if 2 < s < k — 4, and a connected sum of any two Pogorelov polytopes
o« along faces is a Pogorelov polytope.

o5 It is easy to see that k-barrels, k > 5, are irreducible polytopes with respect to operations of
s an (s,k)-truncation and a connected sum along faces in the class of Pogorelov polytopes. It follows
oz from results in [20] that a simple 3-polytope P is a Pogorelov polytope if and only if either P is a
s k-barrel for some k > 5, or P can be obtained from g-barrels, 4 > 5, by a sequence of operations of an
oo (s,k)-truncation, 2 < s < k — 4, and a connected sum along p-gons. In [4] the following stronger result
100 Was proved.

101 Theorem 5 ([4]). A simple 3-polytope P is a Pogorelov polytope if and only if either P is a k-barrel, k > 5, or it
102 can be obtained from the 5-, or the 6-barrel by a sequence of operations of a (2, k)-truncation, k > 6 (Fig. 7(a)),
103 and operations of a connected sum with the 5-barrel along a 5-gon (Fig. 7(b)).

it @iy s

(a) (b)

Figure 7. (a) A (2, k)-truncation. (b) A connected sum with the 5-barrel.

108 This result is related to classical result in the polytope theory. It was proved by V. Eberhard [19]
15 and by M.Bruckner [21] (see also [2]), that a 3-polytope is simple if and only if it can be obtained from
1s the 3-simplex by a sequence of operations of cutting off a vertex, an edge or a pair of two adjacent
107 edges by a single plane. This result was used by a famous crystallographer E. S. Fedorov [22]. From a
10e  result by V.D. Volodin [23] it follows that a simple 3-polytope is flag if and only if it can be obtained
100 from a 3-cube by a sequence of operations of an (s, k)-truncation, 1 < s < k — 3. In [18] this result was
1o improved. Namely, a simple 3-polytope P is flag if and only if it can be obtained from the 3-cube by a
11 sequence of (2, k)-truncations, k > 6. For fullerenes there are analogs of this result (see [4,24-27]). The
12 starting point can be taken to be the 5- or the 6-barrel, but the difficulty is that the only (s, k)-truncation
us  transforming fullerenes to fullerenes is a (2, 6; 5, 5)-truncation, also called an Endo-Kroto operation [28].
us  This is a growth operation, that is it transforms a simple 3-polytope into a simple 3-polytope substituting
us anew patch (disk partitioned into polygons bounded by a simple edge-cycle on the surface of a simple
ue polytope) with more faces and the same boundary for a patch of a polytope. It was proved in [29]
1z that there is no finite sets of growth operations transforming fullerenes to fullerenes sufficient to
ue construct any fullerene from a finite set of initial fullerenes (seeds). In [27] an infinite family of growth
1o operations with this property was found. In [4,24-26] finite sets of growth operations sufficient to built
120 any fullerene from a finite set of seeds was found on account of allowing, at intermediate steps, simple
11 3-polytopes with 5-, 6- and one 7-gon adjacent to some 5-gon. By Theorem 3 any such polytope is a
122 Pogorelov polytope.

123 Let us formulate the most strong result in this direction improving Theorem 5 for a special class of
124 polytopes. Let us introduce a special subfamily of fullerenes. The first polytope Dy is the dodecahedron
125 (the 5-barrel). D5 is a connected sum of two copies of Dy. D5 j41) is a connected sum of Ds; with Dy
126 along a 5-gon surrounded by 5-gons (see Fig. 8). The polytopes Dsy, k > 0, are called (5, 0)-nanotubes.
12z Denote the family of polytopes { D5, k > 0} by D.
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Figure 8. A construction of (5,0)-nanotubes.

126 Theorem 6 ([4]). Any fullerene P € D can not be obtained from a simple 3-polytope without 4-gons by a
120 (2, k)-truncation, k > 6. Any fullerene P € F \ D can be obtained from the 6-barrel by a sequence of (2,6;5,5)-,
10 (2,6;5,6)-, (2,7;5,5)-, and (2,7;5,6)-truncations in such a way that any intermediate polytope is either a
11 fullerene or a polytope in Py 5.

132 Nevertheless, not any polytope in P75 can be obtained by a connected sum with the 5-barrel or
113 by a (2, k)-truncation from a polytope in P<7 5. The example is given by the polytope with the graph
13« drawn on Fig. 9. Indeed, a connected sum with the 5-barrel produces a 5-gon surrounded by 5-gons,
15 and a (2, k)-truncation produces a 5-gon with one edge lying in an r-gon, r = 5 or 6, and intersecting
13 by vertices a p- and a g- gon with p,q > 6. In the presented polytope P any such edge belongs to a
137 6-gon and intersects two 6-gons, which means that the polytope Q transforming to P contains two
138 /-gons.

Figure 9. A polytope in Py 5, which can not be obtained from a polytope in P<y 5 by a (2, k)-truncation
or a connected sum with the 5-barrel.

130 Let us mention that a connected sum with the 5-barrel is evidently a growth operation. Also an
a0 (s, k; my, my)-truncation, 2 < s < k — 4 is a growth operation on the class of flag polytopes, since it
11 substitutes the patch consisting of the new 5-gon, and the (k — 1)-, (m1 + 1)-, and (m + 1)-gons for
12 the patch consisting of the corresponding k-, m;- and mjp-gons.

143 Our second main result gives the method to construct any polytope in P<7 5 \ D from the 6-barrel
e by a sequence of growth operations from the finite list in such a way that intermediate polytopes
15 belong to the same family.

s Theorem 7 (The second main result). Any polytope in P<75 \ D can be obtained from the 6-barrel by a
a7 sequence of growth operations each being either a connected sum with the 5-barrel, a (2,6;5,5)-,(2,6;5,6)-,
s (2,7;5,5)-, (2,7;5,6)-truncation, or one of the operations O1, Oy, O3 drawn on Fig. 10 in such a way that
1o intermediate polytopes also belong to P<yz 5 \ D. Any of the operations O1, Oy, O3 is a composition of (2,6;5,6)-,
w0 (2,7;5,5)-, (2,7;5,6)-truncations such that intermediate polytopes are Pogorelov polytopes with 5-, 6-, and at
w1 most two 7-gonal faces.


http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2018 d0i:10.20944/preprints201801.0289.v1

7 of 20
O, 0O, Os
Figure 10. Three growth operations. Dotted lines denote edges arising during the operation.
152 The third main result concerns all the polytopes in P;. There are polytopes P € P7, which can

153 not be obtained by any of the operations used in Theorem 7 from any polytope Q € P<7. To obtain
154 an example we can cut off all the edges of any polytope in P7 several times. The resulting polytope
15 still belongs to Py, but it has the non-hexagonal faces far from each other. Then it can be obtained
1s from some polytope Q € P<y only by a (2,7;5,5)-truncation. But Q should have two 7-gons. A
157 contradiction. To generalize Theorem 8 to the class P<7 and a finite set of growth operations we add a
1ss  (2,7;6,6)-truncation and allow intermediate polytopes to have two 7-gons.

1so  Theorem 8 (The third main result). Any polytope in P<7 \ D can be obtained from the 6-barrel by a sequence
10 Of growth operations each being either a connected sum with the 5-barrel, a (2,6;5,5)-,(2,6;5,6)-, (2,7;5,5)-,
w1 (2,7;5,6)-, (2,7;6,6)-truncation, or one of the operations O1, Oa, O3 in such a way that intermediate polytopes
162 are Pogorelov polytopes not in D with 5-, 6- and at most two 7-gonal faces.

16s 2. Proof of the main results

16s  Proof of the first main result (Theorem 4). We will develop the idea of Example 1 corresponding to
1es  the case py = 2, pr = 0, k > 8. First let us take the disk drawn on Fig. 11(a). Let  be its boundary
e circle. If py =0, ps =1, and py = 0, k > 9, then add to F; two 2-valent vertices on 3 to become a 8-gon,
167 and to F; and F3 one 2-valent vertex to become 6-gons. Then glue to the boundary of the disk a copy
s Of the disk lying inside the 3-belt B = (F;, F,, F3) to obtain a graph of a polytope due to the Steinitz
160 theorem. This graph can be also obtained by adding to the figure the image of the graph inside the belt
170 under the circle inversion interchanging the boundary circles of 5.

17 Now let either Y ~g pr > 0, or Yy>9 px = 0 and (p7, pg) & {(2,0),(0,1)}. For each k > 7 with
w2 pg # 0 take py k-gons and arrange all the polygons in a descending order of numbers of edges. Add to
173 Fy vertices of valency 2 on  to become the first polygon. If } .~ px > 3, do the same for F,, F; and
17a  the second, the third polygons. Else take 6-gons instead of lacking polygons. Let m1, mjy, m3 be the
175 numbers of edges of Fy, F, and F3. The number v of 2-valent vertices on 8 is equal to m + my + m3 — 16.
176  Then v > 5, since either mq; > 9, my,m3 > 6, ormy =8, my >7,mz > 6,0or my =7 = my = mz. Also
1z any face has at least one 2-valent vertex on B. If there are still polygons not in use, we form from them
17e  a v-belt of faces around B, taking 6-gons for lacking polygons intersecting 2 edges on the boundary of
1o B, and 5-gons for lacking polygons intersecting one edge, if necessary. Each face of the new belt 3; has
10 at least one 2-valent vertex on the outer bundary circe 31, hence the number v; of 2-valent vertices on
11 1 is not smaller than v > 5. Repeat this argument until all the polygons are in use. Now add one new
12 belt consisting only of 5- and 6-gons, where each 5-gon intersects the boundary of the previous disk by
13 one edge, and each 6-gon by two edges. We obtain a new disk with the boundary faces having 2 edges
1es on the boundary circle, where the number b of boundary faces is it least 5 (see Fig. 11(b) for the case

185 (}77, pg, pg) = (0,2,1), Pk = 0, k Z 10.).
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Figure 11. (a) An initial disk. (b) An addition of belts. (c) A construction of the complementary disk.

186 Let us build another disk with the identical boundary neighbourhood. First take a 5-gon. Add
17 a 5-belt of faces around it consisting of ¢ pentagons and d hexagons, c +d = 5. This belt has
1 Y = C+2d =5+ d vertices of valency 2 on the outer boundary circle, and each face has at least one
180 2-valent vertex. If b < 10 then taked = b — 5, c = 10 — b. Else take ¢ = 0, d = 5 and add a new belt of
10 faces around the obtained disk, where 3-valent vertices on the boundary circle 7y of the disk correspond
101 to 6-gons of the belt (we say that they are of the first type), and edges of y connecting 2-valent vertices
102 correspond to 5-gons and 6-gons (of the second type). In the new belt any face has at least one 2-valent
103 vertex on the outer boundary circle ¢, and the total number y; of the 2-valent vertices on 7, is equal
s to p plus the number of 6-gons of the second type. If the value of y1 can not reach the number b by
15 varying the number of 6-gons of the second type, then make this value maximal possible and add new
196 belts in the same manner. In the end we add the last belt without 6-gons of the second type to obtain
107 the desired disk.

108 Now glue both disks together to obtain a 2-sphere with a 3-valent graph on it. We claim that
190 this graph is a graph of a simple 3-polytope. Indeed, any face by construction is a disk bounded by a
20 simple edge-cycle. Two faces intersect if and only if either one of them is the centre of one of the disks
201 and the other belongs to the belt surrounding it, or they are subsequent faces of the same belt, or they
202 belong to subsequent belts. In the first two cases it is evident that the faces intersect by an edge. In the
=203 last case this is also true, since by construction any face of a new belt in each disk intersects any face of
204 the previous belt either by the empty set, or by an edge, and the same is true for faces of the boundary
20 belts of disks. This finishes the proof of the theorem. [

206 Corollary 1. A slight modification of the proof of Theorem 4 gives a new explicit construction of a Pogorelov
207 polytope with given numbers (py, k > 7) different from constructions based on Eberhard’s [19] and Griinbaum'’s
208 [32] constructions of polytopes with given p-vectors and an operation of a cutting off all the edges.

200 Construction 1. For Y~y px = 0 take any fullerene. Let Y~y pi > 0. For each py # 0, k > 7, take py k-gons
20 and arrange all the polygons in a linear order. If there are more than one polygon, add around the first polygon a
2 belt of polygons from the remaining list, taking 5-gons for missing faces, if necessary. If not all polygons are in
=2 use, add new belts by the same manner, taking 6-gons for lacking polygons intersecting 2 edges on the boundary
z3 of the previous belt, and 5-gons for lacking polygons intersecting one edge. In the end add around the disk the
za  last belt of 5- and 6-gons with 3-valent vertices on the boundary of the disk corresponding to 6-gons, and the
zs  edges on the boundary of the disk connecting 2-valent vertices corresponding to 5-gons. We have the disk with
zne b > 7 boundary faces each having 2 edges on the boundary circle. The number of faces in added belts does not
a7 decrease, in particular each belt has at least 7 faces. Tnke the second disk with the same boundary neighbourhood
a8 constructed above. In this disk the number of faces in added belts also does not decrease, in particular each belt has
=0 at least 5 faces. Glue the two disks along the boundaries to obtain a 2-sphere with a plane graph corresponding to
220 a simple 3-polytope with prescribed numbers py, k > 7. We claim that this polytope is a Pogorelov polytope.
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2z Proof. We will prove that P has no 3- and 4-belts. First observe that a 3- or a 4-belt can not contain
222 the centre of one of the two disks in construction, since any two non-subsequent faces of the belt
223 surrounding the centre are not adjacent in the polytope and do not intersect the same face outside this
224 belt by construction. The polytope P outside the centres of the disks consists of the belts added in
225 construction. Let us call them levels. In each disk arrange levels in the order they were added. Let us
226 call the top level of a disk a boundary level.

227 Let (F;, F;, F) be a 3-belt. Since adjacent faces should belong to the same or adjacent levels, and a
226 3-belt can not belong to one level, two faces, say F; and Fj, lie on one level L, and F; on another level
220 Lo. If Ly is next to L; in one disk, or both levels are boundary, then F; intersects at most two faces,
230 which should intersect it by a common vertex. A contradiction. If L; is next to L, then F; and F; are
21 subsequent faces of the level. By construction there are at least 5 faces on L, each having a 2-valent
232 vertex on the circle between L; and L, whence the edge F; N F; intersects Fy.. A contradiction. Thus, P
233 has no 3-belts.

234 Let (F;, F, F, F) be a 4-belt. Since it can not belong to one level, assume that F; and F;j lie on
235 adjacent levels L, and L;. Without loss of generality assume that either both levels are boundary, or
236 Lo isnext to L1 in one disk. Then F; intersects at most two faces on L1, which should intersect it by a
27 common vertex. Since F; N F; # @, and F; N F; = @, F lies either on L, or on the third level L3. In the
23s  first case Fj and F; are subsequent in L, and Fj is one of the two faces intersecting F; on L;. The second
230 face intersects Fj. The face Fy should intersect both F; and Fj, hence it lies on L; or L,. If it lies on Ly, it
2e0 is a subsequent to F; and can not intersect Fj. If it lies on Ly, it is one of the two faces intersecting F; on
21 Ly, and it does not intersect F;. Then it does not intersect F;. A contradiction. Now let F; lie on L3. Since
2a2  F intersects both E and Fj, it lies on Ly. If L1 and Ly belong to the same disk, then Lj is either next to
2a3 Lo, or both L and L3 are boundary levels. Then F; and F, should be adjacent, since they both intersect
2as Fjon Ly. A contradiction. If L1 and L, are boundary levels, then F; and F; should be adjacent, since
20 they both intersect F; on L. A contradiction. Hence P has no 4-belts and it is a Pogorelov polytope. [

2e6  Example 2. For the case p7 = 2, px = 0, k > 8, the first disk is drawn on Fig. 12. The second disk is drawn on
247 Flg II(C)

Figure 12. The first disk for the case p; = 2, py = 0, k > 8. The second disk is drawn on Fig. 11(c).

2s Remark 2. Construction 1 of Pogorelov polytopes with given numbers (py, k > 7) can be generalized by taking
200 two disks of the first type and substituting several belts of 5- and 6-gons for the last belt of the disk with shorter
20 boundary circle to make the lengths of the boundary circles equal. Then for the case py = 2, py =0,k > 8, the
251 modified construction can produce the 7-barrel.

252 Now we proceed to prove the second and the third main result. We call by a k-loop a cyclic
23 sequence of faces with adjacent subsequent faces. Since any face of a flag 3-polytope is surrounded by
=sa  a belt, if a Pogorelov polytope contains a 5-gon surrounded by 5-gons, these 6 faces together form a
25 patch, which we denote Cy, see Fig. 13(a).
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(a) (b)

Figure 13. (a) A patch C;. (b) Another patch.

256 For a k-belt B = (F, ...,
27 component has a boundary code (a7, ..., a;) corresponding to the number of edges of faces lying on
zs  this component. We will need the following result. For fullerenes it follows from results in [30,31] (see
260 also [24,25], and [4, Theorem 2.12.1]). For polytopes in P7 it was proved in [4, Theorem 3.2.6].

F; ) the set U;;l F;; is homeomorphic to a cylinder. Each its boundary

260 Theorem 9. Let P € P<y. Then any 5-belt either surrounds a face and has on this side the boundary code
21 (1,1,1,1,1), or surrounds a patch obtained by addition of r > 0 5-belts of 6-gons around the patch Cy and has
262 0N this side the boundary code (2,2,2,2,2).

263 Proof of the second main result (Theorem 7). We start with the following

20a  Lemma 1. Let a polytope P € P<y contain a patch Cy. Then either P is the 5-barrel, or P is obtained from
20 some polytope Q € P<7 by a connected sum with the 5-barrel producing this patch. In particular, if P € F,
206 then P € D, and if P € Py, then P is obtained from a fullerene containing a patch drawn on Fig. 13(b) by a
207 sequence of connected sums with the 5-barrel, where the first connected sum is along the central 5-gon of the
2es  patch, and all the other connected sums are along the central 5-gon of the arising patch C.

200 Proof. First note that the patch C; is surrounded by a 5-belt on a Pogorelov polytope. Indeed, it
270 is surrounded by a 5-loop. If two non-subsequent faces intersect, without loss of generality these
2nn are F; and F; drawn on Fig. 14(a). But they are non-subsequent faces of the 6-belt surrounding the
=2 adjacent 5-gons Fy and F;. A contradiction. Thus, C; is surrounded by a 5-belt. If this belt contains
273 No 5-gons, then we can apply an operation inverse to a connected sum with the 5-barrel, see Fig.
zza 14(b). It is well defined by the Steinitz theorem and produces a polytope in P<7. Let one of the faces
s of the belt be a 5-gon, see Fig. 14(c). We claim that for P # Dy the patch consisting of C; and an
27e  additional 5-gon is surrounded by a 5-belt B = (F;, F, F, F, F). Indeed, faces (F, F, F;, Fj) belong
277 to the 5-belt surrounding C;, whence they are distinct and F; N F; = @ = F, N F;. Faces F; and F; are
27s  non-subsequent in the 6-belt surrounding two 5-gons, whence F; N F; = @. Faces F; and F; belong to
2o the belt surrounding F;. They are distinct, since F; has at least 5 edges. They are adjacent if and only
200 if F has exactly 5 edges. In this case the 4-loop (F;, F, Fj, F;) can not be a 4-belt, whence Fy N F, # @,
281 since F;NF; = @. Then P = D,.
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(a) (b)

Figure 14. (a) A patch C;. (b) An operation inverse to a connected sum. (c) A non-existing patch.

282 Thus, for P # Dy we have F; N Fy = @, and Fx N F, = @ by a similar argument, and B is a 5-belt.
2es By Theorem 9 either this belt surrounds a 5-gon, or each face of the belt has two edges on the outer
2ss  part of the boundary 9P of P. In the first case Fy is a 4-gon, and in the second case both F; and F; are
2es  7-gons. A contradiction. The lemma is proved. [J

286 Denote the patches arising after operations of a (2,6;5,5)-, (2,6;5,6)-, (2,7;5,5)- or (2,7;5,6)-
2e7  truncation, or operations Oy, O, or O3, by D2 655, D2 656, D755, D27.5.6, D1, D2, D3 respectively (see
2ee  Fig. 15). We do not take into account the orientation. Therefore, we do not distinguish between a patch
2e0 and its mirror image.

200 By Theorem 2 and Lemma 1 a polytope P in the class A can be obtained from a polytope Q
201 in the class B by an operation of a connected sum with the 5-barrel, or of a (2,6;5,5)-, (2,6;5,6)-,
22 (2,7;5,5)-, (2,7;5,6)- truncation, or Oy, Oy, Os, if and only if P contains respectively a patch Cy,
203 D2,6;5,5/ D2,6;5,6r D2’7;5,5, D2,7,'5,6/ Dl/ Dz, D3, where A,B = PS7 for a connected sum, a (2, 6;5, 5)—
20 truncation, and operations Oy, Oy, O3; (A, B) = (P7, F) for a (2,6;5,6)-truncation; (A, B) = (F, P7)
205 fora (2,7;5,5)-truncation; and A, B = Py for a (2,7;5, 6)-truncation. Let us call a polytope P € P<y
206 Irreducible, if it can not be obtained from a polytope in P<7 by these operations. Otherwise let us call P
207 reducible. First we will prove that only the 5- and the 6-barrel are irreducible, and then we will explain
20s  how to avoid polytopes in D.

299 It can be proved that a collection of faces of a polytope P € P<7 with the same combinatorics
;00 as in any of these patches indeed forms the corresponding patch. For the first 6 patches this follows
s from the fact that the collection of faces consists of two adjacent faces and some faces of the belt
sz surrounding them. For the patch D3 this argument works for the collection without the top face and
303 the collection without the bottom face. These faces should be distinct, for otherwise a 4-belt arises,
s0s and they should be non-adjacent, for otherwise a 5-belt with both boundary codes different from
sos (1,1,1,1,1) and (2,2,2,2,2) arises (see more details in [4, Lemma 4.0.1]).

D2,6:5,5 D2,6;5,6 D2,7;5,5 D2,7;5,6

Figure 15. Patches arising after operations.

s Lemma 2. Let P € Py be irreducible. Then the 7-gon can not be adjacent to 5-gons by 3 subsequent edges.
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sz Proof. The 7-gon is surrounded by a 7-belt. If 3 of its subsequent faces F;, F, F. are 5-gons then the
ss 4 faces F,, Fy, Fy, Fr adjacent to them and lying in the outer part of dP are 5-gons (see Fig. 16), for
;00 otherwise P contains one of the patches Dj .56 Or D7 7.5¢6. All these seven 5-gons are distinct, since
a0 they belong to the patch formed by two adjacent 5-gons F, and F,, and the 6-belt B surrounding them.
s Consider the 6-th face of B. It is different from the 7-gon, since these two faces are non-subsequent in
a1z the 6-belt surrounding the 5-gons (F,, F ). It cannot be a 5-gon, for otherwise the patch C; appears.
a1z Therefore, it is a 6-gon. Consider the 5-loop By = (F;, F, F, B, F,) arising on the boundary of B, where
as  Fj is the 7-gon. Any two non-subsequent faces of this loop do not intersect, since they are adjacent
a5 to the same face of this loop by non-adjacent edges. Then Bj is a 5-belt. Since on the side of the belt
sie B it has the boundary code (3,2,2,2,2), and F; has on the other side 2 edges, by Theorem 9 the other
si7 boundary code is (2,2,2,2,2), P contains the patch C; and is obtained by a connected sum with the
a1 5-barrel by Lemma 1. The lemma is proved.

Figure 16. The 7-gon adjacent to 3 subsequent 5-gons.
319 D

:20 Lemma 3. Let P € Py 5 be irreducible. Then the 7-gon can not be adjacent to 5-gons by 2 subsequent edges.

sz2 Proof. The 7-gon is surrounded by a 7-belt. If 2 of its subsequent faces F; and F; are 5-gons then the
s 3 faces F,, F, F; adjacent to them and lying in the outer part of dP are 5-gons (see Fig. 17(a)), for
s23  otherwise P contains one of the patches D; ;56 or D 7.5 6. All these five 5-gons are distinct since belong
224 to the patch formed by the 5-gon F; and the 5-belt B surrounding it. Consider the 5-th face F. of B. It
s2s  does not intersect the 7-gon, since these two faces are non-subsequent faces of the 6-belt surrounding
s26 the 5-gons (Fj, F). It cannot be a 5-gon, for otherwise the patch C; appears. Therefore, it is a 6-gon.
sz The faces F; and F, are 6-gons by Lemma 2. Also F, and F; are 6-gons, for otherwise the patch Dy .55
22 appears. The face Fy is not the 7-gon, since the 7-gon and F. are not adjacent. If Fy is a 5-gon, we obtain
220 the patch D, (see Fig. 17(b)). If Fy is a 6-gon, we obtain the patch Dj (see Fig. 17(c)). The lemma is
330 proved.


http://dx.doi.org/10.20944/preprints201801.0289.v1
http://dx.doi.org/10.3390/sym10030067

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2018 d0i:10.20944/preprints201801.0289.v1

13 of 20

Figure 17. (a) The 7-gon adjacent to 2 subsequent 5-gons. (b) The patch D;. (c) The patch Dj3.
331 D

sz Lemma 4. Any polytope P € P75 is reducible.

a3 Proof. Let a polytope P € P75 be irreducible. By definition the 7-gon F is adjacent to at least one
s3a  5-gon, say F;. By Lemma 3 the faces F; and F adjacent to F by the edges next to F N F; are 6-gons.
s3s The rest two faces adjacent to F; are 5-gons, for otherwise the patch D, 756 appears. We obtain the
;36 picture drawn on Fig. 18(a). The faces F, and F do not intersect, since they are non-subsequent in the
337 belt surrounding E and F;. If F, is a 6-gon, then F, and F. are also 6-gons, for otherwise the patch
s D55 appears. Then P contains the patch D; (see Fig. 18(b)). Thus, F, is a 5-gon (see Fig. 18(c)). The
s30  faces F;, F;, F; are different from F, since F, N F = @. If both F, and F,; are 6-gons, then either F; is a
a0 5-gon and we obtain the patch D5 455, or F; is a 6-gon and we obtain the patch D;. If both F, and F.
s are 5-gons, then Fy is a 6-gon, for otherwise we obtain the patch C;. Also F, and F, are 6-gons, for
a2 otherwise the patch D, ¢.55 appears. Thus we obtain the scheme drawn on Fig. 18(d). The face F; is
sas  different from F, for otherwise (F], Fy, Fy, Fy, Fy) is a 5-belt, since any two non-subsequent faces of this
aas 5-loop are adjacent to some face of this loop by non-subsequent edges. But this belt has both boundary
sas  codes different from (1,1,1,1,1) and (2,2,2,2,2), which contradicts Theorem 9. Like in the proof of
s Lemma 3 we see that either F, is a 5-gon, and we obtain the patch D,, or Fy is a 6-gon and we obtain
a7 the patch Ds.

(a) (b)

Figure 18. (a) The 7-gon adjacent to a 5-gon. (b) The patch D;. (c) The case when F; is a 5-gon. (d) The
case when F; and F, are 5-gons.

348 Now we can assume that one of the faces F; and F; is a 5-gon and the other is a 6-gon. Since we
a0 do not take into account the orientation, without loss of generality assume that F; is a 5-gon and F; is a
0 6-gon (Fig. 19(a)). If F; is a 6-gon, then F, is also a 6-gon, for otherwise we obtain the patch D 4.55.
51 Then we have the patch D; (Fig. 19(b)). Thus, F; is a 5-gon and we obtain Fig. 19(c). The face F; is
ss2  different from F, for otherwise (F]-, Fy, Fy, Fy, F;) is a 5-belt, since any two non-subsequent faces of this
353 5-loop are adjacent to some face of this loop by non-subsequent edges. But this belt has both boundary
ssa  codes different from (1,1,1,1,1) and (2,2,2,2,2).
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(b) (c)

Figure 19. (a) The case when F; is a 5-gon and F is a 6-gon. (b) The patch D;. (c) The case when F; is a
5-gon.

355 If F, is a 5-gon, we obtain Fig. 20(a). All the 5-gons are distinct, since they consist of adjacent
s faces F,, F, and some faces of the 6-belt surrounding them. We have a 5-loop (F;, F, Fy, F;, F;), which
7 is a 5-belt, since any two non-subsequent faces of this 5-loop are adjacent to some face of this loop
sss by non-subsequent edges. But this belt has both boundary codes different from (1,1,1,1,1) and
o (2,2,2,2,2), which contradicts Theorem 9. Hence F, is a 6-gon and we obtain Fig. 20(b). Then if F; is a
s 5-gon, we obtain the patch D, 455, and if F; is a 6-gon, we obtain the patch D (or, more precisely, its
s mirror image, which we do not distinguish from it), see Fig. 20(c).

(b) ()

Figure 20. (a) The case when F; is a 5-gon. (b) The case when F, is a 6-gon. (c) The patch D;.
362 D

363 Thus, any irreducible polytope in P<7 5 is a fullerene. Now we will prove the result, which will
ses  be useful also for P<y. For fullerenes it was proved in [4, Thorem 4.0.2 1].

ses  Lemma 5. Let P be a fullerene or a polytope in ‘P; with the 7-gon surrounded by 6-gons. If P has two adjacent
s D-gons, then either P is the 5- or the 6-barrel, or it can be obtained from a fullerene or a polytope in Py respectively
sez by one of the operations: a connected sum with the 5-barrel, a (2,6;5, 5)-truncation, Oy, O,, Oj3.

s Proof. We need to prove that P contains one of the corresponding patches. Assume that it is not true.
seo  Consider two adjacent 5-gons F; and F;. Then the edge F; N F; intersects by one of its edges some 5-gon
a0 Fy, for otherwise the patch D, ¢.55 appears. If this patch consisting of three 5-gons with a common
sn vertex, is surrounded by 6-gons, then P contains the patch D;. Hence one of the faces around the
sz patch is a 5-gon. If it intersects only one of the three 5-gons, then the edge of intersection should
ss  intersect by a vertex a new 5-gon adjacent to two 5-gons of the patch, for otherwise the patch Dy .55
s7a appears. Therefore without loss of generality assume that the edge F; N F; intersects two 5-gons Fy
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s7s  and F; by vertices (see Fig. 21(a)). Then each pair of faces (Fp, F;) and (F,, F,) contains at least one
a7s  6-gon, for otherwise the patch C; appears. Up to a mirror symmetry corresponding to the change of
s77 an orientation of the polytope, we have two possibilities: Fy, F, are 5-gons (Fig. 21(b)), or F,, F, are
s7s  5-gons (Fig. 21(c)).

Figure 21. (a) Four 5-gons. (b) F, and F; are 5-gons. (c) F, and F; are 5-gons.

379 In the first case F, is a 6-gon, for otherwise the patch D; g5 5 appears. Then F, and F; are 5-gons,
sso for otherwise the patch D; appears. Then F; and F, are 5-gons, for otherwise the patch D; appears.
sea  F is a 6-gon, for otherwise the patch C; appears (see Fig. 22(a)). Also faces F; and F; are 6-gons,
sz for otherwise the patch D, g5 5 appears. Faces F; and Fj, are distinct, since they are adjacent to F; by
;a3 distinct edges. Then one of them is not a 7-gon. If it is a 5-gon, we obtain the patch D, (Fig. 22(b)). If it
ses 1S a 6-gon we obtain the patch D3 (Fig. 22(c)).

(c)

Figure 22. (a) F, and F; are 5-gons. (b) The patch D;. (c) The patch Ds.

ass In the second case each pair of faces (F;, F;) and (Fy, F;y) contains at least one 5-gon, for otherwise
sss  the patch D; appears. If Fy, is a 5-gon, then F, is also a 5-gon, for otherwise the patch D; g5 5 appears.
ss7  Therefore we can assume that F; is a 5-gon, and similarly F; is a 5-gon, see Fig. 23(a). The 6-loop
ses  (Fp, Fy, Fy, Fu, Fo, Fy) is a 6-belt, since any two non-subsequent faces of this loop are non-subsequent
s faces of the 6-belt surrounding one of the 3 pairs of adjacent 5-gons F;, F;, F. If F, is a 5-gon, then we
300 obtain a patch D drawn on Fig. 23(b). If both faces F; and F; are 6-gons, we obtain the patch D;. If Fs is
s01  a 5-gon, then F; is a 5-gon, for otherwise we obtain the patch D, g5 5. Thus, we can assume that F; is a
sz 5-gon, see Fig. 23(c). The faces (F,, Fy, Fy, F;, Fs) form a 5-loop in the complement of the patch D in the
303 boundary of P. They are pairwise distinct, since any two non-subsequent faces of this loop are adjacent
:0s  to some its face by distinct edges. Now we have the 4-loop (Fr, F,, F;, Fa). F. N FE = @, since these two
a5 faces are non-subsequent in the belt surrounding (Fp, Fq). Since P has no 4-belts, F, N F, # @. Since P
s0s has no 3-belts, £, N F, N Fs and F, N F, N F; are vertices, and all the faces in the 4-loop are 5-gons. Then
sz Pis the 6-barrel. If F,, is a 6-gon, then F; is also a 6-gon (see Fig. 23(d)), for otherwise the patch Dy .55
s0s appears. Then we obtain the patch D;. The lemma is proved.
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(b) (d)

Figure 23. (a) F and F, are 5-gons. (b) F, is a 5-gon. (c) F; is a 5-gon. (d) F;, is a 6-gon.

O

We are ready to prove the following result.
Lemma 6. Only the 5- and the 6-barrel are irreducible polytopes in P<7 5.

Proof. The 5- and the 6-barrel are evidently irreducible. Any polytope in Py 5 is reducible by Lemma
4. If P is a fullerene different from the 5- and the 6-barrel and has adjacent 5-gons, then it is reducible
by Lemma 5. If a fullerene has no adjacent 5-gons, then any its 5-gon belongs to a patch D5 7.5 5. Hence
P is reducible. [

Now we will show how to avoid polytopes in D.

Lemma 7. Let P be a polytope in P<7 \ D. If it can be reduced to a polytope in D, then it can also be reduced
to a polytope Q € P<7 \ D.

Proof. For a polytope Ds;, k > 0, the operation of a connected sum with the 5-barrel can be
applied only along the central 5-gon of a patch C, for otherwise two 7-gons appear. This operation
transforms Dsy into D5 1). The only other operations that can be applied to the polytope Dsy are a
(2,6;5,5)-truncation, if k = 1, Oq or O, if k = 2, O3, if k = 3, and a (2; 6;5, 6)-truncation, if k > 2. In all
the cases any of the operations makes the transformation of the patches drawn on Fig. 24 (a). Then the
polytope P also contains the patch D; and can be reduced to a polytope Q € P<7 containing the patch
D5 655 (see Fig. 24(b)). We have Q ¢ D and the lemma is proved.

(b)

Figure 24. (a) A transformation of a patch. (b) A reduction.

O

Lemma 7 implies that any polytope in P<y5 \ D can be reduced to the 6-barrel by a sequence of
operations in such a way that intermediate polytopes also belong to P<7 5 \ D. This finishes the proof
of Theorem 7. [

d0i:10.20944/preprints201801.0289.v1
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a0 Proof of the third main result (Theorem 8). Consider a polytope P € P<y. If P € P<y75, then the
a1 theorem follows from Theorem 7. If P € P; \ P<y5, and P has two adjacent 5-gons, then the theorem
a2 follows from Lemma 5 and Lemma 7. Thus it remains to consider the case of polytopes with the
a3 7-gon and all the 5-gons isolated. By a thick path we call a sequence of faces (F;, ..., F;, ) such that any
s two subsequent faces are adjacent. It is easy to see that any two faces of a simple 3-polytope can be
a2s connected by a thick path. Let us call a length of the thick path consisting of k faces the number k — 1. We
a2s  will use the idea presented in [27] and [24] for fullerenes. Consider the 7-gon and the shortest thick
a2z path among all thick paths connecting it to 5-gons. Then all the faces except for the first and the last
a2s  are 6-gons. Since the path is the shortest, each 6-gon can not intersect the next and the previous faces
a2 by adjacent edges. We say that the path goes "forward" in the 6-gon, if these edges of intersection
a0 are opposite. If they are not opposite and not adjacent, then the path "turns left" or "turns right",
an  depending on the orientation of the boundary of the polytope. In the shortest path all the 6-gons are
a2 distinct and non-subsequent faces are not adjacent. Moreover, there can not be two subsequent turns
a3 to the same side, and it is possible to modify the shortest path to have no more than one turn (see
a3a details in [27] and [24]).

a5 Lemma 8. Let I be the shortest path among all thick paths connecting the 7-gon with 5-gons in a polytope
as P € P7 with the 7-gon and all the 5-gons isolated. If I" hat no turns, then it is contained in the patch drawn on
a3z Fig. 25(a). If it has one turn, then it is contained in the patch drawn on Fig. 26(a).

a3s  Proof. The path I itself forms a patch on the polytope P. To prove that I' is contained in the desired
a9 patch it is sufficient to show that all the faces on each figure are distinct on the polytope and the faces
a0 are adjacent on the polytope if and only if they are adjacent on the figure. Let I have length k. Let us
«a1  call a distance between faces of a disk on a figure the length of the shortest thick path connecting them
a2 on the figure. If two faces are distinct or non-adjacent on the figure and the distance between them
a3 is at most 3, then they are respectively distinct or non-adjacent on the polytope, since either they are
aas  adjacent, if the distance is 1, or are non-subsequent faces of the belt surrounding a face or a pair of
«ss adjacent faces, if the distance is 2 or 3. Thus, if two faces on the figure are distinct or non-adjacent, but
as  the corresponding condition is not valid on the polytope, then the distance between them is at least
a7 4. We claim that for any two faces on each figure there is a thick path I'; of length at most k + 2 with
ws  the same ends as I' containing both faces. Indeed, each figure consists of faces lying in the union of
ao the face F; | and two thick paths of lengths k and k + 1: T and (F, Fj,, . .., Fj,, F;,) for the first figure,

Jk+1 1 Ejgr
a0 and (F;, F; F_,F F,)and (F,F,,..., F_,F F; , F; ) for the second. If both faces lie

P R S T , NEVTRRY
a1 on the garﬁe path{ we Jrclan take this path?. If they lie oi1+clliffererfjc paths, then take the path of length
a2k + 1. Then the face C lying on the other path is adjacent to two subsequent faces (A, B) of the first
a3 path. Substitute the segment (A, C, B) for (A, B) to obtain the new path of length k + 2. If one of the
a4 faces is ij+1’

s segment (F;,, Fi../ F; ). If it has length k + 1, then substitute (ij, Fi1r
ase  desired path.

then take the path containing the second face. If it has length k, then simply add the
F, ) for (F;, F;,) to obtain the

V34
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(c)

Figure 25. (a) The initial patch. (b), (c) Transformations of the patch. (d) The resulting patch.

as? Let two distinct or non-adjacent faces of one of the figures respectively coincide or be adjacent on
ass  the polytope. Take a thick path I'; of length at most k + 2 containing them. Since the faces coincide or
40 are adjacent on the polytope, we can shorten the path deleting the segment between these faces. This
a0 segment consists of at least 3 intermediate faces, whence the new path has length at most k — 1 and is
s shorter than I'. A contradiction. Thus, the lemma is proved. [

a62 Now reduce the obtained patch to the corresponding patch drawn on Fig. 25(d) or Fig. 26(e)
w3 by straightenings along edges inverse to (2,7;5,5)-, (2,7;5,6)-, and (2,7;6,6)-truncations (see Fig.
ssa  25(b),(c) or Fig. 26(b)-(d) respectively). Then P is obtained from the polytope Q with the last patch
«s  substituted for the first patch in P by the corresponding truncations. Also Q or any intermediate
ass polytope contains a 7-gon, hence it does not belong to D.

(e) (d)

Figure 26. (a) The initial patch. (b), (c), (d) Transformations of the patch. (e) The resulting patch.

a67 This finishes the proof of the theorem. [J

sz 3. Prospects

a6 In Introduction we have enough discussed the place of our results in the context of studies in this
a7 direction. Let us mention the arising prospects.

ann 1. The result of Theorem 8 may be strenghtened. It seems that the operation of a (2,7; 6, 6)-truncation
a2 can be excluded. Also, it seems to be an opened question, whether there is a finite set of growth
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a73 operations transforming the family Py to itself sufficient to reduce any polytope in P; with all
a7a the non-hexagons isolated to some polytope in P<y. Let us remind that due to results in [29] there
a7 are no finite sets of growth operations transforming fullerenes to fullerenes sufficient to reduce
ne any fullerene with all 5-gons isolated to some fullerene.
a7 2. There arise further questions about p-vectors of Pogorelov polytopes. For example, for given
a78 numbers (pg, k > 7) for which values of pg a Pogorelov polytope realizing this p-vector exists?
azs 3. To apply the construction of fullerenes and Pogorelov polytopes by operations presented in this
a80 article to problems on combinatorics of polytopes, toric topology (see [33]), and hyperbolic
a81 geometry. For example, to give a new prove of the 4-color theorem for special classes of
as2 Pogorelov polytopes. Or for a given Pogorelov polytope to enumerate all characteristic mappings
a83 sending the faces to vectors in Z3 (or Z3, where Zy = 7/27) such that for any triple of faces
a8a intresecting in a vertex their images form a basis in Z* (respectively in Z3). Such functions
ass correspond to 6-dimensional manifolds with an action of the compact torus T° and 3-dimensional
486 hyperbolic manifolds (see [3,5]). In [3] it was proved that these manifolds are uniquely determined
a87 by their cohomology and respectively Zj-cohomology rings. There is a question to describe
ass transformation of differential-geometric and algebraic-topological properties of the manifolds
480 under transformation of polytopes.

a0 Acknowledgments: This work is supported by the Russian Science Foundation under grant no. 14-11-00414
401 and was done at Steklov Mathematical Institute of Russian Academy of Sciences. The author thanks
492 Victor M. Buchstaber for valuable discussions.

203 Conflicts of Interest: The author declares no conflict of interest.

ws Abbreviations
405 The following abbreviations are used in this manuscript:
F the family of fullerenes

P7 the family of simple 3-polytopes with 5-, 6- and one 7-gonal face
P75 the subfamily in P; consisting of polytopes with the 7-gon adjacent to a 5-gon

P<75 FUP75
'P§7 FuUPy
D the family of polytopes consisting of the dodecahedron and the (5, 0)-nanotubes
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