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Abstract: Historical forest management practices in the southwestern US have left forests prone1

to high intensity, stand-replacement fires. Effective management to reduce the cost and impact of2

forest-fire management and allow fires to burn freely without negative impact depends on detailed3

knowledge of stand composition, in particular, above-ground biomass (AGB). Lidar-based modeling4

techniques provide opportunities to reduce costs and increase ability of managers to monitor AGB5

and other forest metrics. Using Bayesian Model Averaging (BMA), we develop a regionally applicable6

lidar-based statistical model for Ponderosa pine and mixed conifer forest systems of the southwestern7

USA, using previously collected field data. The selected regional model includes a mid and low8

canopy height metric, a canopy cover, and height distribution term. It explains 72% of the variability9

in field estimates of AGB, and the RMSE of the two independent validation data sets are 23.25 and10

32.82 Mg/ha. The regional model developed is structured in accordance with previously described11

models fit to local data, and performs equivalently to models designed for smaller scale application.12

Developing regional models for broad scale application provides a cost-effective, robust approach for13

managers to monitor and plan adaptively at the landscape scale.14

Keywords: forest biomass; aboveground biomass; airborne lidar; monitoring; regional forest15

inventory; variable selection; Bayesian model averaging; multiple linear regression16

1. Introduction17

Costs and damages from large, high-severity wildfires have been steadily escalating, particularly18

in the forests of the western United States [1,2]. In Ponderosa pine and mixed conifer forests of the19

southwest USA a legacy of fire suppression, historical logging practices, and grazing has increased fire20

risk [3,4]. These activities altered the natural fire cycle due to the increased stand density, accumulation21

of surface and ladder fuel loads, and regrowth of fire-intolerant trees [5–7]. As a result forests in the22

southwestern USA that were once characterized by frequent, low-intensity fires are now experiencing23

catastrophic stand replacement crown fires [3]. Rising temperatures, extended fire seasons, earlier24

snowmelt, and ongoing drought will continue to increase future wildfire potential [2,8–11]. Interactions25

between altered fire regimes, land use, and climate change are projected to continue intensifying the26

occurrence, size and severity of wildfires [12,13].27
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Landscape scale restoration efforts are being implemented to create conditions where natural28

fires can be left to burn without fear of escalation, thereby reducing fire suppression costs [1,14–16].29

Over 280,000 km2 (70 million acres) of these forests are in need of restoration [1,17]. Government30

agencies, civil society organizations, and regional and local stakeholder groups have been collaborating31

to develop restoration strategies, identify priority areas for treatment, and implement activities to32

reduce rising costs and threats of extreme fires to communities and landscapes [18–20]. Congress33

appropriated a consistent funding source through the Collaborative Forest Landscape Restoration34

Program (CFLRP, part of the Omnibus Public Land Management Act of 2009) in recognition of the35

urgent problem these communities are facing [21]. CFLRP offers competitive awards to communities36

that are implementing large-scale, collaborative, cross jurisdictional restoration plans. Three selected37

projects cover Ponderosa pine and mixed conifer southwest US forests. Awarded projects are required38

to monitor social, ecological, and economic outcomes for at least 15 years after implementation begins39

[22]. The monitoring process aids in understanding treatment performance and the identification of40

negative unintended consequences of treatments; which then informs future decisions in an adaptive41

planning cycle [23–26].42

The need for ongoing monitoring is especially important given the emergence of novel conditions43

resulting from the interactions of climate change and land use [27–29]. Restoration treatments are44

often guided by historical reference conditions and the natural range of variability [30]; however,45

forests are expected to experience new conditions outside this range [2,11–13]. Assessing the efficacy46

of restoration treatments under new ecological, social, and economic conditions is essential to adapting47

strategies aimed at increasing resilience of desired forest systems [27].48

Repeating extensive ground-based forest inventories is time consuming, labor intensive, and49

expensive. CFLRP encourages long-term restoration treatments (10-year period) across national50

forests, but that also extend across other land ownerships (e.g., federal, state, tribal, and private51

land) in order to reduce fire risk to vulnerable communities [21,31]. The need to monitor forests with52

fragmented ownership adds to the expense of accessing ground plots. Estimation techniques that use53

Earth observing data provide an alternative toolkit for monitoring landscapes over time [32]. The54

advantages of lidar-based approaches include 1) the ability to collect and process spatially explicit55

data representing the horizontal and vertical conditions of the landscape over large spatial extents,56

2) coverage of difficult to reach terrain and properties, and 3) accurate estimation of forest structure57

parameters in a timely and economical fashion (reviews by [33–39]).58

CFLRP projects have invested in lidar acquisitions and collection of field data necessary to59

train the models that estimate forest structure. On-going field-based inventories are expensive, and60

project managers have expressed the need for a framework that allows them to use statistical models61

developed from previous lidar acquisitions and coincident field data collection efforts to update forest62

inventories on newly acquired lidar data. When new lidar acquisitions become available, the ability to63

use relationships developed from existing data to update lidar-based forest inventories can result in64

substantial savings from reduced field data collection efforts.65

The goal of this work is to develop a regional biomass estimation model using lidar metrics from66

field data [40] and apply it to new lidar acquisitions. We use AGB estimates from field inventories,67

discrete-return lidar data and environmental data to develop a regional lidar model that estimates68

above-ground biomass in Ponderosa pine and mixed conifer forests in the southwest United States.69

Information from the lidar data is supplemented with data from other sources to explain differences in70

forest structure due to contrasting environmental conditions, site productivity, and species composition71

[41–46]. Above ground biomass (AGB) was estimated at plots from ground-based data using regional72

allometric equations.73

Lidar-derived height, canopy density and volume metrics are combined with environmental data74

and regressed against the field-based estimates. The relationship between stand characteristics and75

lidar metrics vary between tree species, especially those with different crown shapes [47–49]. Therefore76

we test a combination of information from optical remote sensing and lidar to represent potential77
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differences in plots with deciduous trees. We estimate the magnitude of seasonal variation of greenness78

(NDVI) from a Landsat time-series analysis. Environmental data includes topographic information79

and ecological response units [50]. We integrated data from seven field data collection efforts; five were80

used for model development and the remaining two were for an independent validation. We evaluate81

the reliability of the model using independent validation data from all sites and test the transferability82

of the model on a new lidar acquisition and two coincident field data collection efforts. No standard83

approach has emerged in the literature to select which lidar metrics from the large (overwhelming)84

pool of candidates are best suited for estimating biomass. We use Bayesian model averaging methods85

to specify our model structure from the ensemble of candidates.86

The lidar data is from acquisitions collected with similar flight and sensor specifications. We87

include AGB estimates from seven field data campaigns with similar, but inconsistent plot size88

protocols and sample designs. While we recognize this is not ideal for model development, it does89

allow us to examine the influence of cost saving plot size protocols on our model errors. We investigate90

the impact of a plot size determined by average stand stem density, discuss the implications of these91

inconsistencies on lidar-based AGB estimations, and make recommendations that attempts to balance92

the need for immediate field inventory savings vs. long term costs of monitoring these landscapes.93

We use AGB as our case study to test this approach for two reasons. Studies have demonstrated94

accurate biomass estimates can be predicted with lidar data [36,37,39]. We expect that if the method95

works well for AGB it should then be applicable for prediction of other forest structure metrics that96

are correlated with lidar derivatives. González-Ferreiro and colleagues [51–54] demonstrated the97

effectiveness of using lidar to estimate canopy fuel characteristics. The second relates to the common98

need of fire restoration projects to monitor effectiveness at reducing fuel densities and prioritizing99

areas with high fuel loads. Accurate estimates of biomass are also important for forest management,100

habitat conservation, and global carbon accounting [55].101

Biomass provides information about the growth, health, and productivity. It is a key parameter102

in estimating carbon stock, timber production, wildlife habitat, fire behavior, fire impact, and for103

ecological modeling. Few studies have assessed lidar-based inventories in Ponderosa pine and104

mixed conifer forests of the southwestern USA [41,56,57]. Those that have were built on small data105

sets covering a limited lidar footprint. Lidar-based regional models have been developed to estimate106

biomass in boreal, temperate deciduous, temperate coniferous, and tropical forests [49,58–61]. Regional107

models for southwestern US forests have not been explored. Finally, Sherrill and colleagues [56] have108

demonstrated success in separating biomass estimates between live and dead vegetation in these109

regions; an invaluable metric for assessing fire risk of these landscapes.110

1.1. Model selection with Bayesian model averaging methods111

Lidar data can be aggregated in a plethora of ways to represent forest attributes such as canopy112

height. Many of the metrics have utility in producing estimates of aboveground biomass, total wood113

volume, and other landscape measures that are important for management decisions [33,34,36–39].114

These metrics can be grouped into three categories that have clear biological interpretation and115

have direct analogs to ecologically significant variables. Variables representing the canopy height116

distribution, the variability or shape of canopy height distribution, and canopy cover or density are117

analogous to variables used in aerial stand volume tables that are used in forest inventory [42,62].118

Various methods are available to select a parsimonious set of metrics to use as predictors [62].119

One possible approach is to engage in dimensional reduction of the data such as a principle component120

analysis and canonical correlation analysis [41,49]. However, the resultant factors can be difficult121

or impossible to meaningfully interpret. A commonly used approach is stepwise regression on a122

large pool of lidar metrics, however this approach can result in over fit models and is sensitive to123

multicolinearity issues [63,64]. A different approach is to avoid choosing a single model and generate a124

distribution of possible models that represent the inherent uncertainty that arises when many possible125

predictors (with possibly conflicting interpretations) exist [65]. This process is referred to as Bayesian126
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Model Averaging (BMA), and it allows for a large pool of possible models to be enumerated and127

evaluated for how well they fit the data, and for the uncertainty of model fit and parameter values128

to be clearly represented [66]. This approach reduces the possibility of researcher bias in variable129

selection than typical step-wise regression approaches [65].130

Interestingly, the use of non-specific inference–that is, no single model is used to generate131

predictions, rather a large suite of possible models are used to produce an average prediction–often132

outperforms the use of any single model [67]. Enumeration and evaluation of large numbers of models133

can be problematic; however, for normal multiple linear regression well-behaved, closed form solutions134

that allow for direct model comparison exist [66]. For a good introduction to BMA, see [65,67,68].135

For managers, use of Bayesian model averaging for prediction may be problematic because136

the Bayesian model averaging object used to generate the model is not intuitive. It also needs be137

reproduced by a user for prediction on new data sets, as compared to the utility and ease of use of a138

single model specification. Therefore we present a final, single model from the ensemble generated by139

BMA.140

2. Materials and Methods141

2.1. Study Area142

This study takes place in Ponderosa pine and frequent-fire (dry) mixed conifer forests in U.S.143

National Forests in Arizona and New Mexico, USA. Sites were selected based on lidar acquisitions144

covering fire-adapted, Ponderosa pine and mixed conifer forests within active landscape-scale145

restoration projects. These regions include the Four Forest Restoration Initiative (4FRI), the146

Southwest Jemez Mountains Collaborative Landscape Restoration Project (both part of the network147

of Collaborative Forest Landscape Restoration Programs), and the 2009 Kaibab Forest Health Focus148

(Figure 1). The Four Forest Restoration Initiative (4FRI) covers 10,000 km2 of ponderosa pine forest in149

northern Arizona, including lands in the Coconino, Tonto, and Apache-Sitgreaves National Forests.150

The Southwest Jemez Mountain Landscape Restoration Project expands across 850 km2 of ponderosa151

pine, mixed conifer, and pinyon-juniper woodlands in the upper and middle Jemez River watersheds.152

A portion of the Santa Fe National Forest lies within it. The Kaibab Plateau is in the northern section of153

the Kaibab National Forest and the Grand Canyon National Park-North Rim, Arizona.154

Elevation of the study sites ranges from 1,700 to 3,100 m above sea level. Annual precipitation is155

bimodal: most falls as snow between November and March, with a smaller amount of precipitation156

from monsoonal rains and thunderstorms during July and August [69]. Forest composition is strongly157

influenced by elevational gradients. The colder and wetter conditions of higher elevation areas support158

dense stands of spruce trees (Engelmann’s spruce, Picea engelmannii and blue spruce, Picea pungens)159

and mixed fir stands (corkbark fir, Abies lasiocarpa var. arizonica; white fir, Abies concolor; and subalpine160

fir, Abies lasiocarpa) [70]. A narrow Douglas-fir (Pseudotsuga menziesii) belt occurs below the spruce161

and mixed fir stands. These are followed by Ponderosa pine (Pinus ponderosa) stands, located at162

moderate elevations [70–72]. The forest matrix includes patches of aspen stands, meadows, and forest163

openings generated by disturbances such as fire, wind throw, and timber harvesting [70]. Twoneedle164

pinyon (Pinus edulis), Utah juniper (Juniperus osteosperma), Gambel oak (Quercus gambelii), New Mexico165

locust (Robinia neomexicana), and rabbitbrush (Chrysothamnus viscidiflorus) are commonly interspersed166

throughout [69,72,73].167

Pinyon-juniper woodlands occur below the Ponderosa pine belt. These woodlands regions are168

dominated by tree species with multi-stem growth form and smaller maximum heights than the higher169

elevation species [50]. Due to their different growth form, we masked large areas dominated by these170

woodland growth forms from the study. However, there are still some small pinyon-juniper patches171

interspersed throughout the study region.172
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Figure 1. Location of study regions.

2.2. Data173

2.2.1. Field Survey174

We use information from seven different data collection efforts in Arizona and New Mexico. Data175

were collected at over 3,000 plots in seven data collection efforts between 2013 and 2015 (Figure 2 and176

Table 1) in the Kaibab Plateau, Four Forest Restoration Initiative, and the Southwest Jemez Mountains.177

Five field data collection efforts were completed in multiple stages within the 4FRI: the first effort178

was implemented on the western half in 2013 to 2014; the second stage of data collection began the179

following year in the eastern portion of the Apache-Sitgreaves National Forest. Data from the second180

stage were used for model validation. Currently, there is not complete sample that covers the full181

extent of Ponderosa pine and mixed conifer forests in southwest US forests to estimate AGB, but the182

combination of these seven collection efforts provide information across a range of forest conditions.183

Sample design varied by project (Table 1). Generally, the strategy was to capture the full range of184

variation in forest structure recorded by the lidar sensor. Plots were located using a stratified random185

sampling scheme based on lidar-derived canopy structure information for all but two of the field186

inventory projects (Tonto and Coconino N.F., Table 1) [74,75]. Plots were only placed in areas where the187

max canopy cover was greater than 3 meters. Plots in the Tonto and Coconino N.F. were systematically188

located in stands that lack a current inventory. Minimum sample size per stand was 3 plots, but189

sample size and spacing between plots varied depending on stand area [76]. Plots for two projects190

were located based on accessibility. Plots within the Kaibab Plateau were within 250 m of level 2 forest191

service roads, the Santa Fe plots were within 300 m.192

The majority of plots were 0.04 and 0.02 ha in area. The plot size in the Coconino and Tonto NF193

varied based on average stand density. To decrease time and costs of data collection, in dense forest194

stands plot size was decreased from 0.04 ha [76]. The plot size in the Apache-Sitgreaves and Southwest195

Jemez Mountains projects was increased to 0.08 ha if there were fewer than 8 trees in a 0.04 ha plot.196
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Southwest Jemez 
MountainsKaibab Plateau

0 50 10025 Kilometers
¯

Lidar Acquisition, Phase I
Coconino NF Apache-Sitgreaves NF

Stage 1

Tonto NF
Apache-Sitgreaves NF

Stage 2

Apache-Sitgreaves NF
Stage 3

Lidar Acquisition, Phase 2

C.B.A.

Figure 2. Map of the seven field data collection efforts and the footprint of the four lidar acquisitions,
in grey, subset by region. Plots used for model development are displayed in warm tones (red, orange,
yellow); those to assess transferability of model are blue. The three regions where data collection took
place include: (a) Kaibab Plateau, AZ, (b) Four Forest Restoration Initiative, AZ, and (c) Southwest
Jemez Mountains Landscape Restoration, NM.

Information was recorded on all trees with a dbh greater than 12.7 cm in six of the projects and a197

dbh greater than 20.3 cm for the Kaibab study region. Species and dbh were recorded for each live and198

standing dead tree that met the minimum dbh threshold for each project. Plot location was measured199

with a Trimble GeoXH6000 with GPS + GLONASS or a Trimble GeoXH with GPS using accuracy200

based logging settings. Plot center coordinates were recorded with a minimum of 200 positions in the201

Coconino and Tonto N.F.; and for a minimum of 10 minutes at the other sites. Differential correction202

was applied using Pathfinder Office.203
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Table 1. Data collection summary for each project.

Study region Area
(km2) Year

No. &
size (ha)
of plots

Min
DBH
(cm)

Sample
design Strata Use

Kaibab Plateau, AZ 1,382 2013-
2014

112
(0.04) 20.3 stratified

random

95th percentile height
& percent canopy
returns (>3 m)

model
dev.

Coconino NF, 4FRI,
AZ

75
(sampled
area);
1,136
(total)

2013-
2014

508
(0.04),
329
(0.03),
669
(0.02),
160
(0.01)

12.7 systematic 288 stands without
current inventory

model
dev.

Tonto NF, 4FRI, AZ

48
(sampled
area);
499
(total)

2013-
2014

491
(0.04),
453
(0.02),
162
(0.01), 13
(0.008)

12.7 systematic 215 stands without
current inventory

model
dev.

Apache-Sitgreaves
NF, 4FRI, AZ, Stage 1 1,028 2014 15 (0.08),

85 (0.04) 12.7 stratified
random

95th percentile height
& percent canopy
returns (>3 m)

model
dev.

Southwest Jemez
Mountains, NM 353 2014 6 (0.08),

61 (0.04) 12.7 stratified
random

99th percentile height
& all returns above
the mode divided by
1st returns

model
dev.

Apache-Sitgreaves
NF, 4FRI, AZ, Stage 2 294 2015 66 (0.08),

84 (0.04) 12.7 stratified
random

95th percentile height
& percent canopy
returns (>3 m)

model
valid.

Apache-Sitgreaves
NF, 4FRI, AZ, Stage 3 1,700 2015-

2016
25 (0.08),
71 (0.04) 12.7 stratified

random

95th percentile height
& percent canopy
returns (>3 m)

model
valid.

2.2.2. Lidar204

Four lidar data sets were acquired in our study area between 2012 and 2014 during leaf-on canopy205

conditions (June to September) (Figure 2). Each acquisition was surveyed with a Leica ALS series206

sensor with an opposing flight line side-lap greater than or equal to 50% (greater than or equal to 100%207

overlap) and an average native pulse density greater than or equal to 8 pulses per square meter over208

terrain. The targeted vertical accuracy (RMSE) for each acquisition was less than or equal to 15 cm.209

The field of view for each survey was generally between 26◦and 28◦, except for the 2000 m altitude210

survey in the North Kaibab which was only 20◦. The complete lidar acquisition specifications for each211

site in this analysis are summarized in Table 2.212
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Table 2. Summary of the lidar specifications for each site.

Study region Date Area
(km2) Instrument

Ave.
pulse
density
(pulses/m2)

Field
of
view
(degrees)

Altitude
(m)

Kaibab Plateau, AZ 2012 1,853 Leica ALS50 &
ALS60 10.75 20-28 900-2000

Four Forest Restoration
Initiative, AZ, Stage 1 2013 3,546 Leica ALS50 &

ALS60 9.4 28 900

Four Forest Restoration
Initiative, AZ, Stage 2 2014 4,365 Leica ALS70 15.4 28 1200-1400

Southwest Jemez
Mountains, NM 2012 526 Leica ALS60 13.3 26 900

Canopy structure metrics were calculated from the raw lidar point cloud using FUSION software213

[77]. At each plot, we generated canopy height distributions and density metrics from the lidar point214

cloud using the relative height measure at each return. Relative height is the difference in terrain215

surface height (from the digital terrain model provided by the vendor) and the Z coordinate of each216

point. Canopy returns were points with a relative height above 3 m; in these forests anything lower217

is typically ground, stones, and low-lying vegetation [41,56]. Fractional canopy cover1, metrics were218

calculated using this static cover threshold and the dynamic thresholds of mean and mode values219

[79]. We included canopy volume measures as a product of height quantiles and canopy density.220

Metrics with a correlation in excess of 0.94 with other lidar variables were removed to reduce problems221

associated with highly collinear predictor variables, particularly ambiguous interpretation issues222

[67,80]. Most highly correlated variables existed as pairs with almost perfect correlation. The lidar223

metrics are listed in Table 3 (excluded metrics are located in Table 8 in Supplemental Section).224

1 also called canopy point density [42], laser intercept index [78]

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2018                   doi:10.20944/preprints201801.0275.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 442; doi:10.3390/rs10030442

http://dx.doi.org/10.20944/preprints201801.0275.v1
http://dx.doi.org/10.3390/rs10030442


9 of 29

Table 3. Table of assessed metrics.

Variable Definition

Height Metrics

Mode height at mode
Qmode quadratic mode height

P01, P10, P30, P60, P90 height at which the 1st, 10th, 30th, 60th, 90th percent of the
points are below

QP01, QP10, QP30,
QP60, QP90 quadratic quantile heights

Height Distribution

SD standard deviation
Skewness, Kurtosis skewness and kurtosis
MAD Med., MAD
Mode

median of absolute deviations from the overall median
and mode

L3, L4 3rd and 4th L-moments
L-CV, L-skew., L-kurt. L-moment coefficient of variation, skewness, and kurtosis

Canopy Cover & Density

CC fractional canopy cover: number of all returns (> 3m)
divided by total number of all returns

Cov>mean height:all mean height cover: number of all returns above the mean
divided by total number of all returns

Cov>3:1st number of all returns (> 3m) divided by total number of
1st returns

Covall >mode:all first
number of all returns above the mode divided by total
number of 1st returns

Volume
P01*CC, P10*CC,
P30*CC, P60*CC,
P90*CC

product of percentile height measures and canopy density

Environment
Elevation, Aspect, Slope elevation, aspect, slope

NDVI Ampl. NDVI amplitude: a time series analysis of seasonal
greenness to represent phenology

ERU ecological response units

2.2.3. Topography225

In addition to field level forest structure measures and lidar data, we included two data sets226

derived from Earth Observing data. Elevation, slope, and aspect at each plot was determined from the227

Shuttle Radar Topography Mission (SRTM) digital elevation data with a resolution of 1 arc-second228

[81]. The topographic derivatives were calculated and sampled at each plot center in the Google Earth229

Engine platform [82].230

2.2.4. Phenology231

Phenology was represented by the amplitude of the seasonal difference in the normalized
difference vegetation index (NDVI). We measured amplitude using a harmonic regression time series
analysis on Landsat images recorded between 2012 to 2015. Multiple linear regression is performed
on NDVI observations, assuming that there is a sine curve (a harmonic, or Fourier transform) with a
frequency of one cycle per year that describes the annual variation in NDVI, Equation 1 [83]. The β’s
are the coefficients, f is the frequency, and t is time. Finally, to more easily interpret the cosine and sine
coefficients (βcos and βsin) we convert these to amplitude, (βA), and phase, (βφ), (Equations 2 and 3)
[83]. These calculations and sampling were performed in the Google Earth Engine platform [82].

NDVI = β1 + βtt + βcos ∗ cos( f t) + βsin ∗ sin( f t) + e (1)

βA =
√

β2
cos + β2

sin (2)

βφ = atan(βcos, βsin) (3)
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2.2.5. Ecological Response Unit232

Ecological Response Units are a system of mapped ecosystem types [50]. They were created using233

a combination of information on plant associations and structure characteristics that would occur under234

natural disturbance regimes and biological processes. For the analysis similar ecological response units235

were grouped into broader categories: herbaceous and grasslands (montane and subalpine grasslands,236

and Colorado Plateau and Great Basin grasslands), alder and willow (Arizona alder/willow and237

willow/thinleaf alder units), mixed conifer (frequent fire mixed conifer and mixed conifer with aspen238

units), and Ponderosa pine (Ponderosa pine, Ponderosa pine with willow, and Ponderosa pine with239

evergreen oak units).240

2.3. Analysis241

2.3.1. Field AGB Estimates242

Aboveground biomass (stem, branch, and foliage biomass) and volume were calculated for each243

tree (live or standing dead) using the recorded DBH values, species-specific allometric equations, and244

wood densities [84]. Aboveground biomass and total volume per plot were computed by summing the245

estimates for all trees within the plot. Analysis was performed using the Region 3 variant of the Forest246

Vegetation Simulator (FVS) [84,85]. To take into account the sample design of the field data collection247

efforts, all sample-based summary statistics were calculated using functions within the survey package248

in R [86,87].249

2.3.2. Lidar AGB Estimates250

We tested the inclusion of three categories of lidar metrics: 1) variables representing the canopy251

height distribution, 2) the density of the canopy, and 3) the interaction between height and density of252

the canopy metrics (Table 3). We also tested ecologically important environmental variables, including253

ecological response units, topography (elevation, slope, and aspect), and the amplitude of seasonal254

differences in the normalized difference vegetation index. Upon inspection of linear fits between AGB255

and the height and canopy density metrics, we tested models built with a log transform of AGB and256

one with no transform.257

Models were created using the Bayesian Adaptive Sampling (BAS) package [88] for use in R. BAS258

allows for more rapid exploration of model space than typical Markov Chain Monte Carlo methods,259

flexible model and prior specification, includes good diagnostic and predictive tools, and is well260

documented and under active development. We used a version of BAS that combines Markov chain261

Monte Carlo (MCMC) with the BAS algorithm, as MCMC approaches tend to be more tolerant of262

strong correlation between predictors (some of the remaining covariates were under the threshold,263

but are still correlated). Data was randomly subset for the purposes of model development, with264

25% of the data reserved for validation of the model fits. As the focus of this work is on deriving265

models useful for landscape-level management of forests at risk for destructive fires, we are primarily266

interested in sites with medium to high AGB. Sites with zero AGB were removed from the data before267

models were fit to the data.268

A key component of Bayesian statistical approaches is specifying the prior distribution. The269

prior distribution provides a way of using known information to adjust how we view new data. If270

we have strong beliefs about the world, we are more critical of new data; conversely if we have a lot271

of uncertainty about the world, new data is largely left to speak for itself. Two prior distributions272

need to be assigned before fitting of a model can be conducted using BAS: the prior that describes273

beliefs about model sizes, and the prior that describes beliefs about how likely it is that the coefficients274

of the model will be non-zero. While the initial pool of variables is quite large, many are correlated275

and may in effect be duplicates, so a large model is not necessary or likely to occur. Thus a truncated276

Poisson model with a mean of 10 covariates and a cut-off of 30 covariates was used; the cutoff sets277
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the probability of larger models to zero. For the coefficients, the majority are likely to be zero, but278

some are expected to be highly significant. Zellner’s g is often used to specify the prior for model279

coefficients, as it flexibly allows for a varying degree of belief about the coefficients to be included: a280

large g suggests little knowledge (and causes the coefficients to closely approximate their ordinary least281

squares counterparts), and a small g suggests strong skepticism that the coefficient will be non-zero282

[89]. We used a hyper-g, a Beta prior on the shrinkage factor of the form in Equation 4, where a is283

a parameter in the range 2 < a < 4 [90]. The benefit of a hyper-g is that we specify a moderately284

informative prior, splitting the difference between g approaching infinity and 0; but limit the risk of285

unintended consequences on the posterior results by allowing Bayesian updating of g to be used to286

adjust outcomes [91]. We set a to 3.287

g
1 + g

∼ Beta(1,
a
2
− 1) (4)

2.4. Accuracy Assessment288

2.4.1. Model fit289

We used BMA to fit a population of multiple regression linear and log-linear models using290

ordinary least squares to the data. These were specified with and without quadratic height terms,291

with and without volume interactions, and with and without a log transform of the response (AGB).292

The performance and goodness of fit of the highest probability (the single model with the highest293

probability of occurrence) and median models from the linear and log-linear BMA run was assessed.294

The median model includes the set of lidar and biophysical variables that occurred in the population295

of models more than 50% of the time (posterior probability was greater than or equal to 0.5).296

The median and highest probability models were fit using ordinary least squares regression.297

To evaluate the performance of each model we report the coefficient of determination estimates (R2
298

and adjusted R2).The root mean square error (RMSE), percent root mean square error, bias, and299

mean bias are reported for the median probability and highest probability linear models. Issues with300

multicolinearity and reliability of predictor estimates were assessed using percent relative standard301

error (PRSE) and variance inflation factors. Variance inflation factors greater than 5 suggest issues302

with multicolinearity [92], although Graham [63] cautions that values as low as two can have serious303

impacts on models. PRSE values of greater than 20% are considered unreliable in ecological studies304

[93]. We used these thresholds to trim significant predictors from our models. We maintained the raw305

terms of significant interaction predictors even if these metrics indicate they are not significant [94].306

Terms refer to the covariate variables, predictors encompass terms and combinations of terms.307

The BMA object produced in R using BAS was also used to generate predictions, using308

the top 10,000 models (’top’ meaning highest posterior probability). While it is possible to use309

the full population of models to generate predictions, enumerating the full ensemble of models310

(2number of covariates) is computationally impractical, and most models have very low probability of311

occurring. The same error metrics were calculated for these predictions, and they were compared with312

the performance of the median and highest probability multiple regression models.313

Error metrics were calculated on estimates of all three sets of data: the model training data, the314

25% withheld from the training data, and the data from the two new lidar acquisitions. Recall that 25%315

of the data was withheld from the Kaibab Plateau, Coconino N.F., Tonto N.F., Apache-Sitgreaves N.F.316

Stage 1, and Southwest Jemez Mountains projects for model validation. We also report error and bias317

metrics for each project. We qualitatively assessed model fit from scatter plots of the observed versus318

predicted values and marginal plots for each model [95].319

Root mean square error and bias provide information on fixed bias, a bias when values are higher320

(or lower) across the whole range of measurement. Other methods provide additional information on321

the potential for proportional bias, when estimates diverge progressively along the range of values.322
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We examined proportional bias with ordinary least squares and major axis (MA) regression analysis323

on the field and lidar based estimates. Ordinary least squares regression of observed vs. predicted324

values is a popular method used in other studies; therefore we include it so that our results can be325

compared to these studies. However, it is questionable to use OLS to assess proportional bias, as326

errors exist in both the lidar (predictors) and field based estimates (observed). Field based estimates of327

AGB include uncertainty due to natural variability, measurement error, allometric model error, and328

model selection choices [92,96]. Therefore we also present results from major axis regression, which329

fits errors or natural variability on both variables symmetrically [97–99]. It is impossible to know if330

error is indeed symmetric between the two, but this approach strikes us as a more realistic assessment331

tool. Major axis regression was implemented using the Model II Regression package, lmodel2, from332

the R CRAN repository [100].333

2.4.2. Model Transferability334

We evaluated the regional transferability of our model(s) by applying the final biomass model to335

independent observations from the Four Forest Restoration Initiative Phase 2 lidar acquisition. We336

report RMSE, percent RMSE, bias, and percent bias.337

3. Results338

3.1. Summary Statistics of Field Data Estimates339

The average aboveground biomass of the sample of data used for model construction was 122.3340

(+ 1.8) tons per hectare, and 114.6 (+ 2.9) in the subset of plots used to validate the model development341

(25% of the data). The composition of the plots from the data used for model construction was 72.8%342

Ponderosa pine forest, 25.5% mixed conifer, 0.5% spruce-fir forest, 0.5% pinyon-juniper Woodland,343

0.4% herbaceousgrassland, and 0.3% deciduous (narrowleaf cottonwood and shrub, alder, and willow).344

The two additional data sets used to assess model transferability had average aboveground biomass of345

71.1 (+ 5.5) and 89.5 (+ 5.7). Table 4 includes average biomass values for each data collection effort,346

including sample and population estimates. For most projects, the average biomass of the field plot347

samples at each project site is higher than the population average for the entire site (when the sample348

weights are taken into account). This reflects our sample strategy designed to represent the full range of349

forest conditions. Only a selection of stands were sampled in the Coconino and Tonto NF. A population350

estimate for the selected Coconino and Tonto NF stands and the full model development data set is351

not appropriate because the spatial extent of the combined projects is not a meaningful ecological or352

political unit. Only a selection of regions have been sampled within the southwestern mixed conifer353

forests. The projects were selected to represent the range of conditions present in the forests, but the354

sample frame does not cover the full spatial extent of these forests.355
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Table 4. Sample and population summary statistics from the field data for each project. Estimates are
provided for both the model development and validation data subsets. Mean and standard error of
AGB and elevation are reported.

Model Construction Data Validation Data
Study region AGBpopulationAGBsample Elev.sample AGBpopulationAGBsample Elev.sample

(Mg ha-1) (Mg ha-1) (m) (Mg ha-1) (Mg ha-1) (m)

All Model Dev. Sites - 122.3 +
1.8 2090 + 4 - 114.6 + 2.9 2090 + 7

Kaibab Plateau, AZ 121.3 + 7.2 132.2 + 9.3 2502 + 18 126.8 +
18.8

139.7 +
19.3 2510 + 35

Coconino NF, 4FRI, AZ - 128.5 + 2.4 2160 + 2 - 123.6 + 4 2154 + 4
Tonto NF, 4FRI, AZ - 113.9 + 2.8 1913 + 5 - 101 + 4.6 1903 + 8
Apache-Sitgreaves NF,
4FRI, AZ, Stage 1 103.4 + 4.4 107.9 + 7.3 2238 + 12 92.8 + 5.7 93.5 + 9 2230 + 18

Southwest Jemez
Mountains, NM 109 + 6.7 117.7 + 9.8 2493 + 23 109.6 + 7 94.2 + 13.1 2475 + 36

Transferability Validation Sites
Apache-Sitgreaves NF, 4FRI, AZ, Stage 2 - - 57.2 + 2.6 71.1 + 5.5 2076 + 10
Apache-Sitgreaves NF, 4FRI, AZ, Stage 3 - - 85.2 + 3.6 89.5 + 5.7 2570 + 13

3.2. AGB Estimation and Model Validation356

We analyzed six models, the median probability and highest probability models from the BMA357

object and the BMA for two versions of the data (log-transformed and not) (Table 5). The error metrics of358

the estimates derived from the BMA ensemble were nearly identical to those of the median probability359

model. For each BMA model population, the median probability and the highest probability model360

were the same. The raw biomass model performed better than the model fit using log-transformed361

AGB. It explained 72% of the variation in the field based AGB estimates, had lower validation error362

values, and negligible bias. It is also the more parsimonious model.363

Table 5. Model summary statistics of the estimates from the median probability model (MPM), the
highest probability model (HPM), and from the Bayesian model average (BMA) object. RMSE, percent
RMSE, bias and percent bias were all calculated on the data used to construct the statistical models.

Model Height
Metrics

Canopy
Cover
and
Density

Volume Environ. R2 Adj.
R2

RMSE
(Mg/ha)RMSE%Bias

(Mg/ha) Bias%

MPM, ln(AGB)
P30 CC P90*CC elevation 0.69 0.69 45 39 -1e-14 -1e-16
P60, QP60 slope

P90 NDVI
Ampl

MAD
Med.

HPM,
ln(AGB) same as MPM

BMA Object,
ln(AGB) 47.19 40.92 6.97 0.06

MPM, ABG
P60, QP60 Cov>3:1st P30*CC 0.72 0.72 45 36.8 -1e-16 -8e-17
MAD
Med. CC P60*CC

P30
HPM, AGB same as MPM
BMA Object,
AGB 44.92 36.74 -1e-13 -1e-17
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The median and highest probability raw biomass multiple regression model consisted of five364

terms and nine predictors (Table 5 and 6). These include the second order polynomial of the 60th
365

percentile height, an indicator of the canopy height distribution (median of absolute deviation from the366

overall median), relationship between canopy cover returns and all first returns, and a lower and mid367

height canopy volume metric composed of the canopy cover with the 30th and 60th percentile heights.368

The lidar derivatives alone are used to estimate AGB; no information on topography, phenology, or369

ecological response units was included in the model.370

The variance inflation factor of the two canopy cover and volume (product) predictors exceeded371

10. The high PRSE metric of these predictors also suggests there are issues with these estimates that372

need to be remedied. Therefore we removed the canopy cover normalized by first returns (Cov>3:1st)373

and volume term with the 60th percentile height. The trimmed model included one less term, two374

fewer predictors, and explained 71% of the variation in field AGB estimates (R2 was 0.71; adjusted375

R2 was 0.71). Table 6 includes the full model specification. At least one predictor of all terms were376

significant at p < 0.001. The 60th percentile was not significant. It was included in the model because it377

is a term in the polynomial predictor, which is significant [94]. An examination of the marginal model378

plots shows that the quadratic height term, QP60, improves model fit by pulling the estimates of plots379

with high and low biomass values closer to those observed in the field; with out the quadratic term380

they are under and over predicted, respectively. All subsequent analysis was conducted using this381

trimmed model (Table 6).382

Table 6. Final prediction model for AGB and the correlation coefficient between AGB and the selected
covariate. The significance of the relationship between each predictor and the response is indicated as
follows: * is less than .05, ** is less than 0.01, and *** less than 0.001; others are less than 1.

Full Model Trimmed Model

Predictors Coef. Std.
Error Signif. PRSE Coef. Std.

Error Signif. PRSE

Intercept -33.62 16.1 * 47.89 -9.78 13.93 142.5
Canopy Height Metrics

P30 -1.21 1.59 131.35 -4.66 1.19 *** 25.63
P60 -837.93 351.15 * 41.9 -68.73 249.3 362.7
QP60 396.45 59.73 *** 15.07 457.74 54.91 *** 12

Canopy Height
Distribution

MAD Median 10.02 1.58 *** 15.77 10.94 1.54 *** 14.08
Canopy Cover and
Density

Cov>3:1st 0.44 0.098 *** 22.16 removed due to variance inflation issues
CC 0.11 0.23 209.17 1.01 0.16 *** 15.57

Canopy Volume
P30*CC 0.15 0.033 *** 33.19 0.24 0.015 *** 6.47
P60*CC 0.083 0.028 ** 22.54 removed due to variance inflation issues

3.3. Model Performance by Site383

The overall percent root mean squared error between the field observed AGB and the predicted384

AGB using the trimmed model was 35.23% for the validation data set withheld during model385

development. It was 31.18% and 32.83% for the two new validation data sets used to assess the386

efficacy of transferring the model to new lidar and field data acquisitions. The disagreement, expressed387

as percent RMSE, between predictions and field observed estimates from the Kaibab Plateau, Coconino388

NF and Tonto NF were slightly larger than at the other data collection sites (Table 7). These three389

projects were the only data collection efforts with AGB field estimates above 400 Mg per hectare (Fig.390

3).391
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Bias was negligible overall for the model development sites; the model development construction392

and validation data had a percent bias below a tenth of a percent; the fully independent data from393

the Phase 2 lidar aquisition and stage 2 and 3 field data collection efforts on the eastern half of the394

Apache-Sitgreaves NF has a slightly negative bias of 4.69% and 10.89% (Table 7). These slight negative395

biases are occurring on sites that have moderate AGB estimates; none of the plots have field estimated396

AGB above 400 Mg/ha. However, at most sites the 95% confidence intervals of the OLS trend line397

between the field and predicted estimates includes the 1 to 1 line, indicating the bias estimates may398

not be significantly different (Fig. 3). The 95% confidence interval on the trendline for the Southwest399

Jemez Mountain project does, however, not fully enclose the 1:1 line (Fig. 3, f).400
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B. Kaibab Plateau
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Field = 1.04 * Pred. + −5.79
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D. Tonto NF
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E. AS NF, Stage 1
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F. SW Jemez Mountains
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G. AS NF, Stage 2
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H. AS NF, Stage 3
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Figure 3. Scatter plot and ordinary least squares regression trend line of field measured aboveground
biomass versus predicted values from the raw biomass regression model (Table 6). Plots include data
from: (a) all data used for model construction (data in plots b-f), (b) Kaibab Plateau, (c) Coconino NF
(4FRI), (d) Tonto NF (4FRI), (e) Apache-Sitgreaves NF (4FRI) Stage 1, (f) Southwest Jemez Mountains,
(g) Apache-Sitgreaves NF (4FRI) Stage 2, and (h) Apache-Sitgreaves NF (4FRI) Stage 3. Red and orange
lines are the linear fit and 95% confidence interval band of field measured aboveground biomass versus
predicted values on the independent validation data subset. Black line is 1:1.
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Table 7. Model validation statistics. RMSE, percent RMSE, bias and percent bias were all calculated on
the independent validation data sets.

Project Site Validation
or Model n RMSE

(Mg/ha)RMSE%Bias
(Mg/ha)Bias%

Model Construction Data Validation 793 41.15 35.23 -2.26 -0.019
Model 2271 45.29 37.04 -2e-13 -1e-15

Kaibab Plateau, AZ Validation 25 43.7 32.85 6.7 5.03
Model 87 55.19 41.43 -1.01 -0.76

Coconino NF, 4FRI, AZ Validation 448 41.74 33.7 -0.23 -0.19
Model 1218 43.84 33.99 -0.51 -0.4

Tonto NF, 4FRI, AZ Validation 272 41.73 39.31 -5.2 -4.9
Model 847 47.43 42.42 2.06 1.84

Apache-Sitgreaves NF, 4FRI, AZ, Phase 1Validation 27 28.38 29.05 -4.2 -4.3
Model 73 28.2 26.17 0.16 0.15

Southwest Jemez Mountains, NM Validation 21 30.36 27.7 -15.41 -14.06
Model 46 43.82 31.21 -22.66 -16.14

Transferability Validation Data
Apache-Sitgreaves NF, 4FRI, AZ,
Phase 2 Validation 96 23.25 31.18 -3.5 -4.69

Apache-Sitgreaves NF, 4FRI, AZ,
Phase 3 Validation 150 32.82 32.66 -10.94 -10.89

3.4. Influence of Inconsistent Plot Size401

This analysis is conducted with data from seven data collection efforts and the field protocols that402

determined plot size varied between projects (Table 1). The plots within the sample were distributed403

as follows: 0.4% 0.008 ha plots, 9.7% 0.01 ha plots, 33.9% 0.02 ha plots, 9.9% 0.03 ha plots, 42.7% 0.04 ha404

plots, and 3.4% 0.08 ha plots. Plot radius was determined by tree density in all data collection efforts,405

except on the Kaibab Plateau. The plot size in the Kaibab project was 0.04 ha. The default plot size in406

the other projects was also 0.04 ha, but was increased or decreased depending on tree density. In the407

Tonto and Coconino NF plot size was decreased in dense stands; in the Southwest Jemez Mountains408

and three Apache-Sitgreaves NF the plot size was increased in low density stands. Overall, 43% of all409

the plots were 0.04 ha in size; 3.4% were larger; and 54% were smaller.410

In stands with high tree density in the Coconino and Tonto NF the contractor was allowed to411

select a plot size such that at least 8 trees (DBH greater than 12.7 cm) were present per plot, on average412

through out the stand. 64% of the plots in these two data collection efforts met these dense stand413

conditions and were reduced in size to between 0.03 to 0.008 ha. 20% of the plots in the Coconino414

were reduced to 0.03 ha; 40% of the Tonto and 40% of the Coconino NF plots were reduced to 0.02 ha;415

and 10% of the Coconino and 16% of the Tonto plots were reduced to 0.01 ha or smaller. One stand in416

the Tonto had a tree density that resulted in 13 plots with a size of 0.008 ha. In the Southwest Jemez417

Mountains and three Apache-Sitgreaves NF data collection efforts, plot size was doubled from 0.04 ha418

to 0.08 if there were fewer than 8 trees (DBH greater than 12.7cm) in the plot. The majority of the 0.08419

ha plots are in the Apache-Sitgreaves stage 2 and 3 data collection efforts and were located within the420

perimeters of the Rodeo-Chediski and Wallow fires respectively.421

The smallest and largest plot sizes tend to have low AGB values (Fig 4, a and Fig 5, a and f).422

The smallest plots (0.008 ha) were typically composed of tightly packed small trees. Conversely, the423

large plots included trees of varied size that were dispersed through out the plot. These plots suggest424

the model may under and over predict the AGB in low biomass forests at the edges of the range of425

high density with small trees and low density with mature trees. However, our moderate plot sizes426

presumably contain similar stand characteristics, so further work would need to be done to accurately427

assess the influence of plot size and performance of the model in stands with these characteristics.428

The lidar-estimated AGB values for the smallest and largest plot sizes are not equal to zero (paired429

t-test p-value = 0.04 and <1e-5) (fig. 4, b). The stands with a high density of small DBH trees in the430
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Tonto NF have plot estimates slightly higher than those reported from the field (average difference431

of 31.19 Mg/ha). While the reverse is true for the sparsely populated stands (0.08 ha plots), where432

estimates are on average 11.57 Mg/ha less than field estimates.433

A. B.

Figure 4. Distribution of AGB and mode disagreement by plot size: (a.) Histogram of field estimated
AGB for each of the plot sizes. The red line is the group mean, orange is group median and (b.) Box
plot of disagreement between field estimated and lidar estimated aboveground biomass for each of the
different plot sizes. Plot width is proportional to the square root of the number of observations in each
group. Notches indicate a 95% confidence interval of the mean [101]
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Figure 5. Scatter plot of field measured aboveground biomass versus predicted values from the raw
biomass regression model (Table 6) for each of the plot sizes used in the study. Plot sizes for each
window are: (a) 0.008 ha, (b) .01 ha, (c) 0.02 ha, (d) 0.03 ha, (e) 0.04 ha, and (f) 0.08 ha. Red and orange
lines are the linear fit and 95% confidence interval band of field measured aboveground biomass versus
predicted values on the independent validation data subset. Black line is 1:1.

Finally, the majority of plots with field based AGB estimates above 400 Mg/ha are in plots that434

are smaller than 0.04 ha, most are 0.01 and 0.02 hectare plots (Fig. 5, b and c). The high AGB plots435

(>400 Mg/ha) also exhibit under predicted lidar based estimates compared to the field estimates; with436

an average disagreement of 142.33 Mg/ha. A trend line fit using major axis regression indicates that437

there is proportional disagreement between the lidar and field estimates. The effects are most evident438

in these plots with high AGB (Fig. 6). This may be the result of edge effects, plot mis-registration, and439

other errors associated with smaller plot sizes [39,102–105]. These issues are discussed in more detail440

below.441
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Figure 6. Scatter plot and major axis regression trend line of field measured aboveground biomass
versus predicted values from the raw biomass regression model (Table 6). Plots include data from:
(a) all model development data used during model construction, (b) all validation data used during
model construction. Red dashed line is linear fit from the major axis regression of field measured
aboveground biomass versus predicted values on the independent validation data subset. Grey lines
are 95% confidence intervals from 1,000 permutations. Black line is 1:1.

4. Discussion442

As expected, the BMA performed well for estimation of AGB, with marginally lower error values443

for predictions. However, broadly adopting the BMA approach for prediction may not be appropriate,444

given the added complexity and computational cost, particularly when scaling the estimation up to445

the raster level. A single multiple regression equation is more practical for technicians to implement,446

only requires access to a GIS with raster processing capacity, and produces results similar to the more447

complicated method. Further, models with clear biological interpretations and which can be related448

to ecological theory are typically preferred and easier to interpret or check for obvious disconnects449

with ground conditions. The BMA approach can be used to come up with a single multiple regression450

equation, by identifying the median or highest probability model. BMA approach considers far more451

of the possible model space and reduces the possibility of researcher bias in variable selection than452

typical step-wise regression approaches [65].453

We have demonstrated the BMA median and highest probability models are robust and perform454

well in this application. The highest and median probability models identified by the BMA process455

produced a parsimonious, interpretable model that explained 72 percent of the variation in the field456

based AGB estimates of the sample of plots. Close agreement in magnitude between RMSE from the457

data used to build the model and the cross validation data, as well as consistent performance across458

the regions involved in the study suggest that the model is not over fit and suitable for generalization459

in Ponderosa pine and mixed conifer forests in the southwestern US. The terms and predictors arrived460

at via our approach can be reasonably interpreted to have direct analogs to ecologically significant461

variables. Lidar height, density, and distribution metrics correspond to variables used in forest462

inventory aerial stand volume tables.463

Our final model contains variables that relate strongly to the vertical and horizontal extent and464

central tendency of the canopy, as well as its density and volume. Both the relationship of stem465
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diameter to biomass and stem height to biomass have been well-studied in the biomass and allometric466

estimation literature, and scaling relationships are well supported by empirical work [92]. Lidar cannot467

directly measure stem diameter in most forest types, but canopy extent does relate to stem diameter:468

crown radius and crown area can both be related to stem diameter via simple power laws of the form469

Y = Y0Mb, where Y is a biological variable of interest (crown area), Y0 is a normalization constant,470

M is a measured biological variable (stem diameter), and b is the scaling exponent [106]. The set of471

lidar metrics selected in our final model describe the location of the thickest part of the canopy, and472

biomass estimation theory indicates this should be strongly correlated to biomass of the site. Similarily,473

the median of absolute deviations from the overall median (MAD_median) describes the vertical474

variability of the canopy and may help the model to account for the complex of intermediate tree475

crown in the over-story and suppressed trees in the understory [42]. This combined with the height476

metrics represents the vertical distribution and extent of canopy.477

4.1. Relationship to other Modeling Efforts478

Our model is consistent with other studies conducted in the same region [41,56,57]. Hall [57]479

proposed a model using the proportion of ground returns that were not intercepted by the canopy fit480

using a sample of Ponderosa pine and Douglas fir plots in the Front Range of the Rocky Mountains,481

CO. Their model had a coefficient of determination similar to ours, 0.74. Sherrill et al [41] used a482

canonical correlation analysis to predict AGB with a coefficient of determination of 0.76 and a RMSE483

of 36.5 Mg/ha on a sample from subalpine forests of the Central Rockies. Kim and colleagues’ [56]484

proposed a lidar-based model fit to estimate live and dead aboveground biomass in Ponderosa pine485

and mixed conifer forests in the North Rim of the Grand Canyon National Park, a small subset of the486

forests we have examined. Their best model for (non-transformed) live above ground biomass had an487

RMSE of 46.01 Mg/ha (23.66% RMSE) and a coefficient of determination of 0.76. Our large sample488

size, full range of AGB conditions, and expansive spatial footprint enable us to build on their research.489

The data from these three studies had a limited range of AGB values; a max less than 300 Mg/ha [41],490

a max below 400 but with only 4 plots above 150 Mg/ha [57], and a max less than 400 Mg/ha [56].491

Sample sizes were small, ranging from 36 [41] to 58 to [56]. However, plot sizes were larger; 0.1 ha [56]492

and 0.32 ha [57].493

The lidar covariates Kim [56] selected for their live AGB model are nearly identical to our total494

AGB model when you take into account the strongly co-linear nature of many lidar derivatives (Table495

S1). Their model included a volume product (mean height and canopy cover), 20th percentile height,496

mean height, and variation of the height metrics. Our proposed model structure includes the addition497

of theoretically sound predictors that improve on their model limitations. The Kim et al [56] model did498

not include volume metrics on multiple height quartiles nor did they asses quadratic height quartiles.499

We found these to be valuable; the 30th percentile metric appeared in our model as a volume metric500

(P30*CC) as did the quadratic term of the mean height equivalent. The inclusion of the quadratic501

height term, QP60, also improved our model fit, reducing the tendency of the model to under predict502

plots with high biomass values and over predict those with low values. A comparison of their scatter503

plot of predicted to observed values indicates that their model under predicts high biomass plots504

(starting at about 250 Mg/ha) and over predicts low biomass plots, especially those with close to zero505

AGB [56].506

4.2. Model Bias507

Our model exhibited a pattern where plots with large AGB field estimates were under predicted508

by the lidar model. We observe this pattern in scatter plots of observed field vs lidar predictions of509

other studies (e.g., [42,56,107–109]). This disagreement can be partially explained by knowns errors510

associated with plot sizes, discrepancies between a minimum DBH requirement in the field and lidar511

sensors that return pulses from vegetation regardless of DBH thresholds, error structure of the field512

based estimates, and model structure. Sheridan and colleagues [108] remedied the issue by using a513
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square root transform of the response; this transformation exacerbated our model bias. Estimates of514

AGB from field data include measurement error, allometric model error, and choice of allometric model515

[92]. The magnitude of these measurement errors increases with biomass [105]. Our log transformed516

model performed similar to our natural AGB model, however the performance of these models might517

shift if we had more information about the error structure of the high biomass field estimates. An518

examination of the marginal plots of the high biomass sites that were well predicted (300-400 Mg/ha)519

and those that were under predicted (> 400 Mg/ha) indicate negligible differences in lidar metric520

values between the two groups.521

Model errors decrease with increasing plot size [39,103,104]. The relationship is non-linear and522

asymptotic, and the influence levels off at a plot size of around 0.2 ha (well above our maximium523

plot)[39,104]. This is partially explained by the discrepancy between the amount of AGB estimated524

from field measurement vs. lidar returns due to edge effects. Lidar sensors record information from525

trees with stems outside the plot boundary but with crowns that extend into the plot; conversely AGB526

from a tree near the inside edge of a plot may be less than the amount represented by the portion527

of the canopy recorded by the lidar sensor. A larger plot radius has a smaller perimeter to area528

ratio, mitigating discrepancies between field and laser measurement protocols at plot edges [103,104].529

Co-registration errors are reduced in larger plots due to the higher degree of spatial overlap. Gobakken530

and Naesset [103] reported that plots larger than 0.03 ha were generally unaffected by positional errors531

of 5 m or less; however 0.02 ha plots exhibited substantial biases in the estimation of height, basal532

area, and volume due to slight positional mis-registrations. Small plots have substantial variation533

around canopy height quantiles which increases disagreement between lidar predictions and field534

based estimates.535

44% of the plots in our study are 0.02 ha or smaller, increasing the positional errors as well as the536

possibility that the lidar and plot data do not represent the same conditions. The increased positional537

errors and edge effects for locations with large trees (with larger canopies that extend into the study538

area) that are captured in one dataset but not the other likely contribute to poor model performance539

in the upper ranges of AGB. Plot size was linked to stem density in the sample design, so a large540

proportion of the sites with high biomass values were recorded on small plots. All but three of our541

plots with AGB values in excess of 400 Mg/ha were recorded on plots 0.02 ha or smaller; these same542

plots tend to have field AGB estimates far in excess—on average 142.33 Mg/ha—of the lidar based543

estimates.544

We have identified biases in our model that have implications for determining when estimates545

will be accurate enough for different management applications. The model under predicts AGB in546

areas with high field biomass estimates (> 400 Mg/ha). This has real consequences to management in547

terms of carbon accounting and perhaps in the identification of fuel loads. For example, the model548

will likely yield a lower, conservative estimate of total carbon at the landscape scale. However, as549

areas with very high AGB make up a small proportion of these forested landscapes, we consider these550

estimates to still be relevant and the model useful for application at broad scales. We also have some551

reason to question the sensitivity of the model to discern differences in structure of low biomass plots552

with a high density of small trees vs. a low density of mature trees. This warrants further investigation553

to determine the suitability of the model in prioritizing where to apply some restoration treatments,554

such as stand thinning. To refine the model, we suggest an intensified collection of data in areas with555

biomass in excess of 400 Mg/ha, and across a range of low biomass conditions. Finally, data collection556

efforts that cover the full extent of Ponderosa pine and mixed conifer forests are required to get more557

precise model error estimates; Johnson and colleagues [107] describe limitations to the application of558

models developed with data sampled from a narrow definition of forests to regions with tree cover that559

are not within that definition. Understanding these implications is especially important to determining560

if lidar based models perform well at the interface of public forest and settlements, where the costs of561

fire and fire suppression are the greatest.562

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2018                   doi:10.20944/preprints201801.0275.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 442; doi:10.3390/rs10030442

http://dx.doi.org/10.20944/preprints201801.0275.v1
http://dx.doi.org/10.3390/rs10030442


22 of 29

By combining data from projects with different plot size protocols, we are in an interesting563

position to examine the potential unintended consequences of cost savings efforts—determining plot564

size based on stem density—on lidar-based monitoring products. While allowing contractors to565

collection information on smaller plots in high density stands reduces time and costs on field data566

collection, our findings suggest that these savings have practical implications on the ability to monitor567

the landscape and may cost more in the long term. Field data protocols that will assist in remedying568

disagreement between field and model predictions include consistent plot sizes with a minimum size569

of at least 0.04 ha570

5. Conclusion571

The task of identifying the best performing combination of lidar metrics for AGB estimation is572

a key challenge in the development of regional lidar-based AGB predictive models. No standard573

approach has been agreed on; approaches range from theory driven hypothesis test of a single lidar574

derivative to information criteria-based data mining. Studies using a priori candidate models built575

from allometric theory are not well suited to evaluate which of the suite of lidar metrics that represent576

a functional trait are the most appropriate (e.g., the forest height profile can be represented with a577

plethora of related, but distinct lidar metrics). Information theory approaches face issues with spurious578

relationships, confounding variables, and confirmation bias [64,110,111]. Stephens [112] makes the579

case for a combination of these methods. Model selection with BMA allows these issues to largely580

be circumvented through the full exploration of the model space, and assesses probability of both581

the inclusion of individual parameters in any model, and the probability of any given model[65,66].582

Thus, we attempt to blend these two approaches using Bayesian model averaging, verifying our final583

model is supported by empirical findings and biomass estimation theory, and finally assessing the584

performance of the model on independent validation data sets. Our final model takes a functional585

form that aligns with theory and empirical observations on relating biomass to forest height and cover586

profiles.587

Lidar based regional AGB models have been developed for boreal, temperate deciduous,588

temperate coniferous, and tropical forests [49,58–61]. This study presents a novel contribution by being589

among the first to develop a regional AGB lidar-based model for Ponderosa pine and mixed conifer590

forests of the southwest USA. The BMA model selection produced a parsimonious, interpretable model591

that explained 72 percent of the variation in the field based AGB estimates of the sample of plots. The592

terms and predictors arrived at via our approach can be reasonably interpreted to have direct analogs593

to ecologically significant variables. Lidar height, density, and distribution metrics correspond to594

variables used in forest inventory aerial stand volume tables.595

Model root mean square error was 45.29 Mg/ha; comparable to other published regional596

lidar-based AGB models [39]. The final biomass models performed well when they were used to597

predict observed values in the 4FRI stage 2 and 3 lidar datasets (independent dataset acquired later in598

the analysis). The RMSE of the model cross validation and the two transferability validation data sets599

were 41.15, 23.25, and 32.82 Mg/ha respectively. Close agreement in magnitude between RMSE from600

the data used to build the model and the validation data, as well as consistent performance across601

the regions involved in the study suggest that the model is not overfit and suitable for generalization.602

The lidar data used in this analysis was collected using a Leica ALS series lidar sensor with identical603

range of flight specifications. As the lidar industry evolves, instrument development advances, and604

new sensors become operational (e.g., multi-wavelength lidar, Geiger-mode, or single photon systems)605

the transferability of this regional model will need to be reevaluated and parameterized to match606

new technologies. The cover and height percentile metrics in our model are relatively more robust607

than others across a variety of lidar sensor platforms. However, point cloud metrics, such as the608

(MAD_median), are known to be sensitive to variations in the technical properties of sensors [113–115].609

The model presented here is trained on data from Ponderosa pine and mixed conifer forests in the610

southwest US and lidar with similar data acquisition specifications (see specs in Table 2). It should611
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only be applied when the domain of a new lidar acquisition with similar specifications covers these612

forest types.613

We present a cost effective approach to use previous data collection efforts to assist in updating614

lidar-derived forest inventories. While this approach still requires a field work campaign to validate615

the performance of the model on new lidar data, use of this predictive model reduces the size of the616

field data collection efforts, offering significant time and cost savings. Further, as new validation617

data becomes available it can be used to refine the model with Bayesian model updating techniques.618

This approach can be used to improve the known model shortcomings due to the influence of high619

disagreement between field and model AGB estimates at the upper range of AGB due to small plot620

size. Hierarchical Bayesian models have proven to be robust in individual tree biomass estimation621

models [116,117].622

The focus of this research was on aboveground biomass, but we expect this approach can be623

duplicated to develop regional lidar-based models to monitor other forest structure attributes that624

are well suited to estimation by lidar (e.g., see [38]). Examples of forest characteristics of particular625

importance in these fire-prone forests include timber volume, canopy fuels [51,52,54], monitoring626

management intensity Valbuena et al 2016, and standing dead biomass [56]. Recognizing the broad627

applicability of lidar acquisitions (hazards, terrain mapping, etc.) and the decreased unit cost as628

scanned surface increases agencies are partnering to form lidar consortiums to fund the continued629

acquisition of lidar covering a large spatial extent. Therefore the application of this methodology has630

the possibility to provide estimates of important biological characteristics of large areas at relatively631

low cost, using large volumes of already extant data.632

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: Correlation633

statistics of excluded lidar metrics.634

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2018                   doi:10.20944/preprints201801.0275.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 442; doi:10.3390/rs10030442

http://dx.doi.org/10.20944/preprints201801.0275.v1
http://dx.doi.org/10.3390/rs10030442


24 of 29

Table 8. Correlation statistics of excluded lidar metrics; metrics that had a correlation of 0.94 or greater
were not considered in the BMA.

Variable Excluded Pair Corr.
Coef.

Height Metrics
P10 P05 0.94

P30
P20 0.97
P25 0.99
P40 0.98

P60

mean height 0.99
P50 0.99
P70 0.99
P75 0.98

P90
P80 0.98
P95 0.99
P99 0.97

Height Distribution Metrics

SD L2 0.98
Average absolute deviation from the mean height 0.97

MAD Med. Interquartile distance 0.94
LCV Coefficient of variation 0.94
Canopy Cover
CC number of 1st returns (> 3m) divided by total number of all returns 0.98

Cov>mean height:all
number of all returns above the mean divided by total number of 1st

returns 0.99

number of 1st returns above the mean divided by total number of all
returns 0.99

Covall >mode:all first

number of all returns above the mode divided by total number of all
returns 0.98

number of 1st returns above the mode divided by total number of all
returns 0.99
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