1
2
3
4
5
6
7
8
9

Enhancing Location-related Hydrogeological Knowledge

Alexander Kmoch \(^1\), Evelyn Uuemaa \(^1\), Hermann Klug \(^2\), and Stewart Cameron \(^3\)

\(^1\) Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Estonia; alexander.kmoch@ut.ee
\(^2\) Interfaculty Department of Geoinformatics - Z_GIS, University of Salzburg, Austria; hermann.klug@sbg.ac.at
\(^3\) Institute of Geological & Nuclear Sciences, Wairakei Research Centre, Private Bag 2000, Taupo, New Zealand; s.cameron@gns.cri.nz

* Correspondence: alexander.kmoch@ut.ee; Tel.: +372- 737-5816

Abstract: 1) Background: We analyzed the corpus of three geoscientific journals to investigate if there are enough locational references in research articles to apply a geographical search method, on the example of New Zealand. 2) Methods: Based on all available abstracts and all freely available papers of the New Zealand Journal of Geology and Geophysics, the New Zealand Journal of Marine and Freshwater Research, and the Journal of Hydrology, New Zealand, we searched title, abstracts and full texts for place name occurrences that match records from the official Land Information New Zealand (LINZ) gazetteer. We generated ISO standard compliant metadata records for each article including the spatial references and make them available in a public catalogue service. This catalogue can be queried for articles based on authors, titles, keywords, topics as well as by spatial reference. We visualize the results in a map to show which area the research articles are about. 3) Results: We outline the methodology and technical framework for the geo-referencing of the journal articles and the platform design for this knowledge inventory. The results indicate that the use of well-crafted abstracts for journal articles with carefully chosen place names of relevance for the article provides a guideline for geographically referencing unstructured information like journal articles and reports in order to make such resources discoverable through geographical queries. 4) Conclusion: This approach can actively support integrated holistic assessment of water resources and support decision making.

Keywords: Metadata; Geo-referencing; CSW; ISO standards; hydrology

1. Introduction

Resource management decisions are based on knowledge and insights gained from environmental information and data. However, such information and data is often scattered between different institutions and is not stored or made accessible according to national or international standards. Thus, usability of available information is hampered [1]. The larger the number of data sets and the less structured the data sets are, the worse the situation will become [2]. Since we are not only looking at single data users but also considering multi-vendor architectures and multi-user applications, a considerable loss of economic and production power would accrue due to inefficiency and inefficacy of information retrieval. Networked, web-based GIS provide means to process and analyze spatio-temporal data from distributed sources and derive valuable information to inform policy development [3,4]. Supporting standard compliant interfaces is expected to enable multi-level and interdisciplinary decision making processes [5].

At the end of the last century Albrecht [6] discussed 'offline' geospatial information standards. Since then these standards transcended to 'online' web service technologies with an increasing amount of available, web and cloud based, geospatial resources and modelling functions [7–9]. While offline geospatial content still has its value, the wide distribution of this information that is available
as hard copy maps, digital images or PDF files is limited. Nowadays, the internet, as a fast, efficient, and effective information distribution medium, offers sufficient capabilities to provide continuously updated and 'live' information.

While information retrieval has become faster, data sets remain scattered both in location and formats. Online data search and public data access is hampered. For example, in New Zealand, data sets are maintained by a variety of custodians, e.g. research institutes, regional and district councils, and the Ministries. They collect, produce and maintain a vast amount of environmentally related data. These institutions hold spatial data and metadata (data about data) in various formats that use different nomenclature, storage technologies, interfaces and even languages. This situation is similar in many countries and complicates search, discovery, and accessibility for users [10]. Among the data are also written information resources about a specific area, in particular research articles and scientific reports. Usually, these manuscripts are available as PDF files, are published on static web pages, do not have spatial metadata attached, and thus, are unlikely to be discovered through existing spatial search algorithms.

For spatial search access to ecological knowledge Karl et al. [11,12] called on journals and publishers to support standard reporting of study locations in publications and metadata and suggested geo-referencing of past studies. As a demonstration they developed 'JournalMap'1 where coordinates for research articles could be registered and searched via a web interface. They also provide a web-service-based application programming interface (API) for machine-readable access. A drawback is the non-standardized query mechanism and the manual procedure of geo-referencing. Journal publishers have begun to support interactive web maps if geographic data is reported via supplemental materials, there is still not spatial search on those websites. The same situation arises for the current open data movement. Finally, these websites support extensive metadata but there is no interoperable way of entering explicit geometry for an area or region of interest via existing metadata elements, and there is no interoperable and standardized way of searching these metadata records.

Data sources including their respective metadata sets should be discoverable through, e.g. standardized web-based access to keyword and topic category search, related area of interest, spatial context. The main metadata formats which are used by data providers on national and international level are Dublin Core [13] and ISO metadata, especially with the ISO 19115 geographic extensions [14]. The Open Geospatial Consortium (OGC) Catalogue Service for Web (CSW) provides capabilities to store such metadata and make it searchable [15]. De Andrade et al. [16] and Yue et al. [17] describe how a federation of catalogues through the CSW service interface improves overall access to distributed metadata records and thus, improves the integration into Spatial Data Infrastructures (SDI).

For the meaningful integration of geographic data sets GIScience and the Geosciences research topics have been continuously focusing on semantic methodologies using ontologies and their machine-readable encoding [18–21]. End users can search for (hydrological) information using keywords, areas, or points of interest. Those frameworks are not discrete components by themselves, but techniques and methodologies to integrate generic resources in a (web-based) distributed environment. To index data and yield the requested search results, a thesaurus and a gazetteer are required. A thesaurus is a reference work where words are grouped according to their (multilingual) similarity of meaning. Thus, a thesaurus is a collection of concepts - terms of reference in a particular community or domain with, collated and described with their attributes and properties and inherent relationships. It provides a uniform and consistent vocabulary for indexing metadata [22]. A gazetteer is a dictionary or directory referencing place names with their geographical locations. Web services implementations provide access to such thesauri and gazetteers via World Wide Web Consortium (W3C) standardized Hyper Text Transfer Protocol (HTTP) protocols like the OGC Web Feature Service (WFS) or the W3C recommended SPARQL Query Language for RDF [23–25]. Although Dublin Core offers so called ‘coverage’ types, that may hold values or terms from

1 JournalMap website: https://www.journalmap.org, last accessed 02.01.2018
controlled vocabulary such as the Thesaurus of Geographic Names (TGN) or geographic coordinates, ISO 19115 metadata supports more extensive geographical referencing through, e.g. bounding boxes, feature shape geometry and also place names with reference to controlled lists.

Environmental studies are often spatial and related to certain location or region of interest (ROI). The aim of the current paper is to explore how research articles and reports can be made more discoverable for further research or decision making processes if the search criteria also includes location instead of keywords only. Research papers and reports are interdisciplinary usable by policy- and decision-makers at different territorial spatial scales. On the example of three pre-selected journals, the New Zealand Journal of Geology and Geophysics, the New Zealand Journal of Marine and Freshwater Research, and the Journal of Hydrology, New Zealand, we test whether place names of journal articles can be extracted from manuscripts, geo-coded into meaningful spatial context in order to enable effective spatial enquiry via a bounding box query. We expect to improve the discovery of spatially dependent interdisciplinary research articles and hypothesize that we will discover pronounced places where research is happening based on the analyzed journal articles. Our second objective is to generate standardized geo-referenced metadata records of these journal articles discoverable through a web service search interface. This would enable the integration of spatial and metadata searches for journal articles into national or international Spatial Data Infrastructures (SDI).

Finally, we explore how self-describing title, abstract, and full journal articles are to enable an unambiguous allocation to geographical locations. Developments focus on a platform independent search interface based on free and open source software components.

2. Materials and Methods

2.1. Geo-referencing research articles

We used New Zealand as a case study, which simplifies the experimental setup: English is an official language, which means place names are available in English, too. The English language has a comparatively simple grammar and place names in various grammatical constellations don’t change the word structure of place names. We chose the domain of hydrology and hydrogeology, because understanding water resources is an important topic for New Zealand’s economic, environmental and recreational welfare and it has inherent spatial context. All scientific articles are published in English. New Zealand does not share any immediate borders with any country and thus, provides a comparatively well isolated test-bed.

The Royal Society of New Zealand, besides other scientific journals, publishes the New Zealand Journal of Marine and Freshwater Research\(^2\) (NZJMFS), an international journal of aquatic science of particular importance to Australasia, the Pacific Basin, and Antarctica; and the New Zealand Journal of Geology and Geophysics\(^3\) (NZJGG), an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica. The New Zealand Hydrological Society publishes the Journal of Hydrology (New Zealand)\(^4\) (JHNZ), which is considered as an important medium for the communication of scientific and operational research results around water resources and their management in New Zealand. All journal articles can be accessed through their own websites, which provide a ‘free-text’ search over title, authors, abstract of the journal articles. NZJMFS and NZJGG additionally support enhanced search query capabilities, e.g. keywords, DOI or temporal constraints, which JHNZ does not support. However, explicit spatial referenced metadata is crucial for spatial search capabilities and the inclusion of journal articles as location-based knowledge.

For the case study of New Zealand and in reconciliation with the literature review we concluded that the use of a gazetteer service provides the required capabilities in order to retrieve place name(s) and their corresponding spatial coordinates. The place name list was retrieved from the Land

\(^{2}\) NZJMFS, http://www.tandfonline.com/toc/trzm20/current, last accessed 02.01.2018

\(^{3}\) NZJGG, http://www.tandfonline.com/toc/trzag20/current, last accessed 02.01.2018

Information New Zealand (LINZ) official gazetteer. The gazetteer list contained 51804 georeferenced names. The gazetteer is implemented as simple features WFS including the following feature attributes:

- ID: '15040'
- name: '15 Mile Creek'
- status: 'Official Approved'
- region: 'Nelson'
- projection: 'NZTM'
- northing: '5483525.2'
- easting: '1559021.0'
- geodetic datum: 'NZGD2000'
- latitude: '40.79825'
- longitude: '172.514222'

This enables web service-based access to the official New Zealand place names register which was used for the geo-coding approach. Thus, locations matching place names from journal articles and LINZ gazetteer can be spatially referenced, visualized, and searched for.

Through an automated scripting approach all publication basic metadata and full article PDF files (where available to us) provided on the websites of NZJGG (1958-2015), NZJMF (1967-2014), and JHNZ (1962-2013), were downloaded, split and text-processed, and loaded into a database for fast programmatic access. For that we used the ‘GNU parallel’ library and ‘Tesseract OCR’ to digitize and transcode PDFs into plain text. Due to intellectual property considerations we cannot publish this raw dataset as it includes full texts that are only available under subscription. We also kept the URLs for each publication that uniquely identify and link to the online journal publication.

The metadata quality was not always consistent. For example, authorship and title text strings were separated sometimes with (comma) and sometimes with (semicolon). Author names or initials were sometimes abbreviated with (period) or without a period and even with the occasional omission of (space) between initials. In hindsight most of these issues occurred with JHNZ.

Furthermore, particular journal articles featured editorials, news, book reviews or other non-qualified articles which we filtered out based on titles and abstracts. Stop words have been selected and improved over the course of the analysis and include e.g., 'Book Review', 'Editorial', 'Foreword' or 'letters to the editor'.

After the journal metadata database was prepared the articles were analyzed for place names occurrences in their title, abstract and full text. For efficiency reasons, the full gazetteer dataset was loaded into memory, instead of checking each word or phrase against the web service.

A direct text-matching strategy was implemented over the list of used articles. For each element in the places list the search discovers a direct match in the articles’ titles, abstracts, and full text bodies. The first implementation revealed reliability limitations. Place names like ‘Og’ or ‘Tor’ would be found as parts of other place names like ‘Bogs’ or ‘Tractor’. The final algorithm uses regular expressions to match only for the full phrase of the place name in order to avoid too many partial matches.

However, other ambiguities would still be caused by compound place names. For example, for the place name ‘Waikato’ (ID: 45890) - an officially recorded locality in the Nelson area - matches would also be found in compound place name mentions in the text like ‘Waikato Point’ (ID: 14062), ‘Waikato Region’ (ID: 15023), or ‘Waikato River’ (ID: 45893).

6 Tesseract OCR on GitHub: https://github.com/tesseract-ocr/tesseract/blob/master/README.md, last accessed 13.01.2018
The final numbers of matches, i.e. occurrence of place names the matching location references, where collected and stored in an Excel spreadsheet. Subsequently, we randomly selected approximately 5% of the geo-referenced articles for validation. We manually reviewed the selected articles and the collected place names for each of them in relation to the title, the abstract and the full text. We counted if a place name matched (was correctly identified and relevant for this article), and how many of the found place names were not relevant to the article. If a place name was correct but had duplicates – i.e. there were multiple place entities in the gazetteer that have exactly the same name but different locations – we assumed only one out of them to be correct. For example, there exist more than different 20 places with the name ‘Round Hill’. If one of the ‘Round Hill’ occurrences were actually relevant to the paper, then we would count 1 as a positive match, and 19 as errors. Eventually, we classified the results into 5 categories: all correct (OK), mostly correct, around ~2/3 – ¾ (MOST), half correct ~50% (HALF), less than half correct, around 1/3 – 1/4 (LESS), all incorrect (NONE).

2.2. Spatial search enablement via an OGC CSW catalogue

Metadata are data or information about the data itself. Metadata refers to structured information that describes, explains, locates, or otherwise makes it easier to discover, access or use data sets, collections, and services. Metadata elements describe the thematic and geographic context of a dataset, where and when it has been obtained or processed, who the maintaining institution is and how and where to get the data. In our case study the data are the journal articles.

The ANZLIC Metadata Profile, currently in version 1.1, is the recommended geospatial metadata standard for use by New Zealand government agencies. This choice is further reinforced by the many data services in New Zealand which maintain online data catalogues that can be searched through a standards-compliant web service interface (CSW) and provide metadata in the ANZLIC format. The ANZLIC is a profile of the ISO 19115 2003 metadata standard. For additional service-level metadata the related ISO 19119 standard provides required elements. For the encoding, i.e. the data format, of metadata records for data sets and services, in which such metadata records can be delivered through the CSW interface, the ISO 19139 standard provides a standardized machine-readable XML representation for ANZLIC/ISO metadata [27]. Free and open source software tools such as GeoNetwork Opensource7, the ESRI Geoportal Server8 or PyCSW9 can be used, to upload, maintain, query and download metadata records.

A distinctive advantage of the CSW protocol as compared to a plain text search are spatial and temporal search constraints, and furthermore, CSW supports limiting search queries to selected keywords from controlled lists. Thus, to generate basic metadata elements for unstructured text documents, like the journal articles, the extracted location information was used from the articles. A small set of ANZLIC metadata elements was selected to create valid XML metadata records for each analyzed journal article. We followed a simple questions based approach: What, Where, When, Who, and How. These questions have been translated to the matching elements satisfying the ANZLIC/ISO metadata standards:

What?

1. Title
2. Keywords
3. Abstract
4. Topic (ANZLIC/ISO Category), e.g. InlandWaters, Environment, GeoscientificInformation
5. Type of Resource, e.g. data set, service, sensor, series, model, or nonGeographicDataset

7 https://geonetwork-opensource.org/, last accessed 03.01.2018
8 http://www.esri.com/software/arcgis/geoportal, last accessed 04.01.2018
9 http://pygeosw.org/, last accessed 04.01.2018
6. Geographical Scale
7. Location Description
8. Geographic or Projected Reference System of the Resource
9. Geographical Extent, i.e. bounding box in WGS84

When?
10. Dates of Creation, Publication, or Revision of the Resource
11. Lineage Information of the Resource
12. Temporal Extent of the Resource

Who?
13. Name of Contact Person for the Resource, e.g. author
14. Phone number of the Contact Person
15. Email Address of the Contact Person
16. The Role of the Person in Relation to the Resource
17. Organisation (and/or Position) of the Contact Person
18. A Weblink (URL) for the Organisation

How?
19. License or other Constraints
20. Type of Distribution Format
21. Distribution Link

As JHNZ did not provide keywords, we used the Term Frequency – Inverse Document Frequency (TF-IDF) algorithm from the Scikit-learn Python library to generate keywords for these articles [28]. TF-IDF is a method for determining ‘important’ words in order to find out what each document in a set of documents is ‘about’ [29]. It does that by 1) evaluating each single term’s overall proportion of occurrences in relation to the total number of terms in a document, i.e. term frequency (TF); and 2) calculating the inverse document frequency (IDF) for each term. IDF is the inverse of the number of documents that contain that term. The more often a term occurs in one document, but not in the rest of the documents of the corpus, the more important it is deemed to be for this specific document. For example, the mentioning of a place name, a specific water body or hydrological phenomenon is more important for a document, if it does not occur often in other document. We only considered the joined text of title and abstract of each article as a single document for this method, and selected the top five keywords that were computed by TF-IDF for each article that we didn’t have keywords available.

Finally, we created a metadata XML template (Appendix A1) and filled the required values from our analysis database or from otherwise known values, such as the journal’s name, its website and contact information. Subsequently, we loaded the generated XML metadata records into a PyCSW server, which is now publicly accessible.

3. Results

3.1. Full text analysis vs abstract and title

From the overall 5812 processed articles, 5027 were used after stop-words filtering. Altogether 285 papers of these 5027 were randomly selected for manual review and validation - 25 out of 367/607 from NZ Journal of Hydrology, 87 out of 2533/2914 NZ Journal of Geology and Geophysics and 173 out of 2127/2191 from NZ Journal of Marine and Freshwater Research. The general tendency was that a full text analysis gave a big proportion of incorrect cases (Figure 1). There was only one paper that
had half of the place names correct and the rest of the papers had less than half or none of the place names correct.

Looking at the number of place names that were automatically georeferenced in the full texts there were 15 place names in average (med = 13, min = 2 and max = 122) mentioned in each paper. Most of the place names in each full text paper were determined incorrectly (Figure 2).

3.2 Most incorrect and most correct place names

There were 978 unique place names (213 of them had duplicates, meaning several different places having the same name) mentioned altogether 4157 times. 15.2% of the mentioning were fully correct and 80.4% were completely incorrect (Figure 1). Out of all incorrect cases 27.5% were caused by duplicates i.e. place names that have one or several duplicates in some other location. For example, there are 14 streams named Muddy Creek in New Zealand but if a study is only on one of them then the 13 other Muddy Creek streams are likely incorrect. Rest of the incorrect place names had several reasons. Many place names were incorrect because they were either human names (for example
Alexandra, Ashley) and they usually appeared among authors. The most often mentioned place names are listed in Table 1. Ten names contribute to almost 25% of the overall number of matches. But most of the city names (for example Auckland, Wellington) were incorrect because these place names usually appeared in the address of the authors or publishers and did not relate to the case study area or content of the journal article. Third group of place names had also other meaning which was used in the scientific text of the paper. For example, Rock (hill in Taranaki district) and Rocks (hill in Canterbury district and hill in Marlborough district) accounted altogether 46 incorrect cases. There were also place names that were always incorrect. Also Earthquakes (locality in Otago district) and Limestone (hill in Marlborough district) caused respectively 7 and 5 incorrect cases.

Table 1. Most often mentioned place names

<table>
<thead>
<tr>
<th>Place name</th>
<th>OK</th>
<th>MOST</th>
<th>HALF</th>
<th>LESS</th>
<th>NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auckland</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>Cambridge</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Christchurch</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>Dunedin</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Howick</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>257</td>
</tr>
<tr>
<td>Mana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>North Island</td>
<td>30</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Oxford</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Para</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>South Island</td>
<td>36</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>Tasman</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>49</td>
</tr>
<tr>
<td>Tor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Wellington</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>113</td>
</tr>
<tr>
<td>Wha</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
</tbody>
</table>

There were 231 place names (24%) that were always correct. However, 90% of them were mentioned only once and the rest of the 10% were mentioned up to four times. Therefore, they were rarely mentioned and mostly they were quite specific place names like streams, coves, hills, sounds. Only four of these place names (2%) had duplicates. 747 place names had some incorrect - 30% of them had duplicates. 98% of place names that had duplicates had incorrect cases. Duplicates increase the probability of incorrectness. Therefore, duplicates cause a problem in automatic geo-referencing based on full text papers. From the most problematic place names (Table 2) Howick lead with 257 occurrences and all of them were deemed incorrect. Howick appears in the publisher Taylor and Francis’s address and is also an eastern suburb of Auckland. North and South Island, Wellington, Auckland, Christchurch, Dunedin, Cambridge and Oxford were mostly incorrect because they appeared in authors or publishers’ addresses. Ross seems to match mainly as last name of a cited author. And place names like Round Hill have many duplicates, meaning different many places across New Zealand have this name.

Table 2. Most problematic place names

<table>
<thead>
<tr>
<th>Place name</th>
<th>OK</th>
<th>MOST</th>
<th>HALF</th>
<th>LESS</th>
<th>NONE</th>
<th>duplicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howick</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>257</td>
<td>0</td>
</tr>
<tr>
<td>Wellington</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>Para</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>48</td>
</tr>
<tr>
<td>North Island</td>
<td>36</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>South Island</td>
<td>36</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>54</td>
</tr>
<tr>
<td>Place Name</td>
<td>Count</td>
<td>Count</td>
<td>Count</td>
<td>Count</td>
<td>Count</td>
<td>Count</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Round Hill</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Tasman</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Wha</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Ara</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>32</td>
</tr>
<tr>
<td>Auckland</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>Christchurch</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Tara</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>28</td>
</tr>
<tr>
<td>Ross</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Mana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>Oxford</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Thompson</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>Dunedin</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Tor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Cambridge</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Rock</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3. Full text Spatial and categorical distribution of the place names mentioned in the papers

The spatial distribution of correct place names provides an overview of those areas that have been investigated most in the earth sciences in New Zealand (Figure 3). Spatially most covered areas are main urban fringes (Auckland, Wellington), volcanically active areas (Taupo, Rotorua) and coastal areas. It can be noticed also that a higher amount of studies on bays is in Auckland, Marlborough, Nelson and Southland regions.
If feature types are considered then altogether 37 different feature types were mentioned as place names and most often mentioned feature types were locality, island, town, bay and stream (Table 3). However, out of 99 island mentions, 70 were just North and South Island indicating in general the location of the study area. High number of towns, cities, suburbs and localities (human settlements) might not always be the study areas themselves but the study area locations are best described through human settlements. Hydrological features (bays, streams, lakes) were in general most studied.

Table 3. Most mentioned feature types.

<table>
<thead>
<tr>
<th>Feature type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>106</td>
</tr>
<tr>
<td>Island</td>
<td>99</td>
</tr>
<tr>
<td>Town</td>
<td>92</td>
</tr>
<tr>
<td>Bay</td>
<td>78</td>
</tr>
<tr>
<td>Stream</td>
<td>78</td>
</tr>
<tr>
<td>Hill</td>
<td>70</td>
</tr>
</tbody>
</table>

Figure 3. Spatial distribution of place names mentioned in the studies.
3.4. Web-based Metadata Search

For the overall implementation and application of a spatial search we highlight the integrative aspects of the ISO/ANZLIC metadata standard and encoding that was adopted. A fully encoded exemplary XML ISO metadata record is listed in Appendix B1. Metadata records were created for all journal articles and uploaded to a PyCSW catalogue server.

We developed an exemplary web application that can query CSW-compatible catalogues. A user can now query and retrieve metadata records for journal articles and provide a spatial context. Figure 4 shows how the simplified query form was implemented. A slippy map on the left side shows the applied spatial bounding box, it can be zoomed and panned around to adjust the desired spatial context for the search. The generated search query was sent to the CSW catalogue server and the results are collated in a list.

![Figure 4. The search form of the implemented web application. Besides the textual parameters, e.g. keywords, the bounding box of the map on the left is used as a spatial constraint for the metadata query.](image)

4. Discussion and Conclusion

We described an approach to make journal articles discoverable through ISO/ANZLIC metadata records, which can be searched for in CSW-enabled catalogues including spatial search constraints. For that we found searching for place names was relatively successful from title and abstract. That means that if there were place names found in title and/or abstracts they were correct to a high degree. But when considering full texts the usefulness of place names was very unreliable. Especially scanned PDFs contained publishers’ addresses and metadata in the article header. This finding is encouraging insofar as it would reduce overall processing time when only titles and abstracts of journal articles need to be processed in order to yield good geo-locations. Thus, we call on scientists to precisely mention place names of the described case studies in either title or at least in the abstract of their research articles. The advantage of using OGC standard compliant XML-based web services, is that data and interface descriptions in XML are the foundation of self-contained and optimized machine-to-machine communication between applications, because the advantage of using XML schemas is
that data records can immediately be checked for schema compliance and validity. Furthermore, the
CSW protocol explicitly enables location-based queries against the metadata it holds.

The three New Zealand case study journals provide textual search access to 5027 (up to year
2015) research articles, but they could not be searched via spatial queries. Based on the demonstration
for these journals we could show that in principle the automated detection of place based keywords
is working. However, comparing these keywords with the LINZ gazetteer provides challenges in the
allocation of the right place in case one name exists more than once.

The web page is accessible from any operational platform with any existing web browser.
Furthermore, the CSW interface of compliant catalogue servers can be accessed by any OGC CSW
compliant browser software. Additionally, the CSW protocol is also designed for distributed
federated queries, thus, each journal publisher could maintain their own articles metadata in an own
CSW server. A client can then send same spatial metadata query to all registered CSW servers in
parallel.

Beyond the seemingly straightforward task of literal comparison of place names from lists like
the LINZ gazetteer, several new challenges arose, that were not addressed further in this study.
Ambiguities, which arise from the textual context, e.g. in the word ‘Waikato’ could not be
differentiated from the word comparisons between for example Waikato river, the Waikato region,
or the Waikato river catchment. Depending on the place name construction and language, those cases
might be improved via improving the match-finding code with techniques like back-tracking and
double-checking in order to evaluate if actually a longer (or compound) place name was found in the
text. Additional difficulties stem from contents and quality of the LINZ gazetteer register of place
names, which holds official as well as unofficial records. This is further aggravated by the fact, that
the place names used in publications can vary even further by referencing of geological formations
or partial water bodies. The LINZ gazetteer list that we used only holds point geometries for
locations. Thus, the approach to find a spatial bounding box for a metadata record is neither accurate
nor precise, but a reasonably pragmatic approach. LINZ has recently also published a polygon-based
place names list for planar geographic feature representations.

Another challenge arose from duplicates, that there exist different places which have the same
name. Even if one of these places would be a correct match means, that the rest of the places with the
same name are very likely indicating an incorrect location. This problem could not be eliminated. It
would require certain contextual knowledge that be possible to harvested from the texts with the
help of advanced machine learning algorithms. This would certainly be a great improvement in the
future.

Searching for specific place names or regions might be more powerful with the OpenStreetMap
(OSM) gazetteer, as it contains additional volunteered geographical information provided by the
public community. The continuously updated OSM Nominatim geocoding service and the
OpenStreetMap, which is made available for reuse under the Open Database Licence (ODBL) share-
alike license could be used to complement the LINZ gazetteer or as a global place names register.
However, more place names will not necessarily solve the challenge of accurately identifying
occurrences of place names in documents. Furthermore, more place names will significantly increase
processing time. This would need to be investigated further to be employable on a large scale.

Eventually, the purely automatic geo-referencing method presented in this demonstrates an
approach to provide user support for the task of on-demand geo-coding of written documents to
make them spatially discoverable in CSW catalogue services. We also call on journals to add
queryable geolocation information to research articles and their search capabilities. However, past
papers can be georeferenced using current method at a reasonable level and speed. People can search
different keywords (e.g. flooding) and based on the resulting journal papers the locations of main
area of interest in the number of journal papers can be identified. Furthermore, the approach opens
up the possibility of detection of place names independent of the age of the publication, and thus,
manuscripts which originally were written by typewriter and are now scanned.
Supplementary Materials: The following dataset files are available online at DOI: 10.5281/zenodo.1153887 [30]:
1) raw count data: articles_georef_count_data.xlsx, 2) summary data for Figure 1, Figure 2, Table 1, Table 2, and Table 3: summary_final.xlsx, 3) Appendix A1: article_template.xml, and Appendix B1: full_article.xml

Acknowledgments: The authors wish to acknowledge the six year funding (07/2011–06/2017) of the Ministry of Business, Innovation, and Employment (MBIE), New Zealand, for the SMART Aquifer Characterisation Programme (SAC) under contract number C05X1102; the Marie Skłodowska-Curie Actions individual fellowships offered by the Horizon 2020 Programme under REA, grant agreement number 660391; the Ernst Jaakson Scholarship from the University of Tartu Foundation; and the Mobilitas Pluss Postdoctoral Researcher Grant (MOBJD) number MOBJD233 of the Estonian Research Council (ETAG).

Author Contributions: A.K. conceived, designed and performed the experiments and software developments; E.U. analyzed the data; H.K. contributed materials and analysis tools; A.K. wrote the sections 1, 2 and 4, E.U wrote section 3, H.K. and S.C. contributed to all sections.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.
Appendix A

A1. The default template used to convert the collected metadata into standard compliant ISO 19139 XML-encoded metadata records. ‘TPL_’ indicates the start of a variable that is filled during the process.

```xml
<gmd:MD_Metadata xmlns:gco="http://www.isotc211.org/2005/gco"
    xmlns:gmd="http://www.isotc211.org/2005/gmd"
    xmlns:gmml="http://www.opengis.net/gml"
    xmlns:gx="http://www.isotc211.org/2005/gmx"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.isotc211.org/2005/gmd
    http://www.isotc211.org/2005/gmd/gmd.xsd
    http://www.isotc211.org/2005/gmx
    http://www.isotc211.org/2005/gmx/gmx.xsd">

    <gmd:fileIdentifier>
        <gco:CharacterString>TPL_fileIdentifier</gco:CharacterString>
    </gmd:fileIdentifier>

    <gmd:language>
        codeSpace="ISO 639-2">
            en
        </gmd:LanguageCode>
    </gmd:language>

    <gmd:characterSet>
        <gmd:MD_CharacterSetCode
        codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_CharacterSetCode"
        codeListValue="utf8" codeSpace="ISOTC211/19115">utf8</gmd:MD_CharacterSetCode>
    </gmd:characterSet>

    <gmd:hierarchyLevel>
        <gmd:MD_ScopeCode
        codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_ScopeCode"
        codeListValue="nonGeographicDataset" codeSpace="ISOTC211/19115">nonGeographicDataset</gmd:MD_ScopeCode>
    </gmd:hierarchyLevel>

    <gmd:contact>
        <gmd:CI_ResponsibleParty id="author-pointOfContact">

            <gmd:individualName>
                <gco:CharacterString>TPL_individualname</gco:CharacterString>
            </gmd:individualName>

            <gmd:organisationName>
                <gco:CharacterString>TPL_organisation</gco:CharacterString>
            </gmd:organisationName>

            <gmd:positionName>
                <gco:CharacterString>TPL_positionname</gco:CharacterString>
            </gmd:positionName>

            <gmd:contactInfo>
                <gmd:CI_Contact>

                    <gmd:phone>
                        <gmd:voice>
                            <gco:CharacterString>TPL_phone</gco:CharacterString>
                        </gmd:voice>
                    </gmd:phone>

                    <gmd:facsimile>
                        <gco:CharacterString>TPL_fax</gco:CharacterString>
                    </gmd:facsimile>
                </gmd:CI_Contact>
            </gmd:contactInfo>
        </gmd:CI_ResponsibleParty>
    </gmd:contact>
</gmd:MD_Metadata>
```
<gmd:address>
 <gmd:CI_Address>
 <gmd:deliveryPoint>
 <gco:CharacterString>TPL_address</gco:CharacterString>
 </gmd:deliveryPoint>
 <gmd:city>
 <gco:CharacterString>TPL_city</gco:CharacterString>
 </gmd:city>
 <gmd:administrativeArea>
 <gco:CharacterString>TPL_administrativearea</gco:CharacterString>
 </gmd:administrativeArea>
 <gmd:postalCode>
 <gco:CharacterString>TPL_postalcode</gco:CharacterString>
 </gmd:postalCode>
 <gmd:country>
 <gco:CharacterString>TPL_country</gco:CharacterString>
 </gmd:country>
 <gmd:electronicMailAddress>
 <gco:CharacterString>TPL_email</gco:CharacterString>
 </gmd:electronicMailAddress>
 </gmd:CI_Address>
</gmd:address>

<gmd:onlineResource>
 <gmd:CI_OnlineResource>
 <gmd:linkage>
 <gmd:URL>TPL_journalUrl</gmd:URL>
 </gmd:linkage>
 <gmd:protocol>
 <gco:CharacterString>WWW:LINK</gco:CharacterString>
 </gmd:protocol>
 <gmd:function>
 </gmd:function>
 </gmd:CI_OnlineResource>
</gmd:onlineResource>

<gmd:CI_Contact>
 <gmd:role>
 </gmd:role>
</gmd:CI_Contact>

<gmd:dateStamp>
 <gco:DateTime>2017-11-23T12:00:00Z</gco:DateTime>
</gmd:dateStamp>

<gmd:metadataStandardName>
 <gco:CharacterString>ISO 19115:2003 - Geographic information - Metadata</gco:CharacterString>
</gmd:metadataStandardName>

<gmd:metadataStandardVersion>
 <gco:CharacterString>ISO 19115:2003</gco:CharacterString>
</gmd:metadataStandardVersion>
<gmd:abstract/>
<gmd:status>
 <gmd:MD_ProgressCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_ProgressCode"
codeListValue="historicalArchive" codeSpace="ISOTC211/19115">historicalArchive</gmd:MD_ProgressCode>
</gmd:status>
<gmd:resourceMaintenance>
 <gmd:MD_MaintenanceInformation>
 <gmd:maintenanceAndUpdateFrequency>
 <gmd:MD_MaintenanceFrequencyCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_MaintenanceFrequencyCode"
codeListValue="notPlanned" codeSpace="ISOTC211/19115">notPlanned</gmd:MD_MaintenanceFrequencyCode>
 </gmd:maintenanceAndUpdateFrequency>
 </gmd:MD_MaintenanceInformation>
</gmd:resourceMaintenance>
<gmd:graphicOverview>
 <gmd:MD_BrowseGraphic>
 <gmd:fileName>
 <gco:CharacterString>TPL_browsegraphic</gco:CharacterString>
 </gmd:fileName>
 </gmd:MD_BrowseGraphic>
</gmd:graphicOverview>
<gmd:descriptiveKeywords>
 <gmd:MD_Keywords>
 <gmd:type>
 <gmd:MD_KeywordTypeCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode"
codeListValue="theme" codeSpace="ISOTC211/19115">theme</gmd:MD_KeywordTypeCode>
 </gmd:type>
 </gmd:MD_Keywords>
</gmd:descriptiveKeywords>
<gmd:descriptiveKeywords>
 <gmd:MD_Keywords>
 <gmd:type>
 <gmd:MD_KeywordTypeCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode"
codeListValue="place" codeSpace="ISOTC211/19115">place</gmd:MD_KeywordTypeCode>
 </gmd:type>
 </gmd:MD_Keywords>
</gmd:descriptiveKeywords>
<gmd:resourceConstraints>
 <gmd:MD_LegalConstraints>
 <gmd:accessConstraints>
 <gmd:MD_RestrictionCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode"
codeListValue="copyright" codeSpace="ISOTC211/19115">copyright</gmd:MD_RestrictionCode>
 </gmd:accessConstraints>
 <gmd:useLimitation>
 <gco:CharacterString>TPL_organisation</gco:CharacterString>
 </gmd:useLimitation>
 </gmd:MD_LegalConstraints>
 <gmd:accessConstraints>
 <gmd:MD_RestrictionCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode"
codeListValue="copyright" codeSpace="ISOTC211/19115">copyright</gmd:MD_RestrictionCode>
 </gmd:accessConstraints>
</gmd:resourceConstraints>
<gml:TimePeriod>
 </gml:extent>
</gml:EX_TemporalExtent>
</gml:temporalElement>
</gmd:EX_Extent>
</gmd:extent>
</gmd:supplementalInformation>
</gmd:MD_DataIdentification>
</gmd:identificationInfo>
</gmd:distributionInfo>
</gmd:MD_Distribution>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
</gmd:distributionInfo>
</gmd:MD_Distributor>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
</gmd:distributionInfo>
</gmd:MD_Distributor>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
</gmd:distributionInfo>
</gmd:MD_Distributor>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
</gmd:distributionInfo>
</gmd:MD_Distributor>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
</gmd:distributionInfo>
</gmd:MD_Distributor>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
</gmd:distributionInfo>
</gmd:MD_Distributor>
</gmd:distributorContact>
</gmd:distributor>
</gmd:CI_ResponsibleParty id="contact-distributor">
</gmd:individualName>
</gmd:organisationName>
</gmd:organisationName>
</gmd:positionName>
</gmd:positionName>
</gmd:contactInfo>
</gmd:CI_Contact>
</gmd:phone>
</gmd:CI_Telephone>
</gmd:phone>
</gmd:CI_Address>
</gmd:deliveryPoint>
This metadata record has been created for TPL_organisation. For further information please visit TPL_arturl

Characterisation programme (2011-2017)

Materials/groundwater/research-programmes/SMART-Aquifer-characterisation
Appendix B

B1. A full example of the article “Thompson, S.M. (2002). River discharge from mountains with frequent rain. Journal of Hydrology (NZ) p.125-144” (available at: http://hydrologynz.co.nz/journal.php?article_id=13) in standard compliant ISO 19139 XML-encoded metadata; including generated keywords, matching place names such as ‘Lake Tekapo’ and the constructed geographical extent. The link to the online CSW server is: https://portal.smart-project.info/journalcsw/journalcsw?request=GetCapabilities&acceptversions=2.0.2&service=CSW; the metadata record can be obtained via a ‘GetRecordById’ request: https://portal.smart-project.info/journalcsw/journalcsw?request=GetRecordById&version=2.0.2&service=CSW&elementSetName=full&outputSchema=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd&Id=738bafe6-41a2-4203-a8e9-077b482d5348

<gmd:MD_Metadata xmlns:gco="http://www.isotc211.org/2005/gco"
xmlns:gmd="http://www.isotc211.org/2005/gmd"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gmx="http://www.isotc211.org/2005/gmx"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 <gmd:fileIdentifier><gco:CharacterString>738bafe6-41a2-4203-a8e9-077b482d5348</gco:CharacterString></gmd:fileIdentifier>
 <gmd:characterSet><gmd:MD_CharacterSetCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_CharacterSetCode" codeListValue="utf8" codeSpace="ISOTC211/19115">utf8</gmd:MD_CharacterSetCode></gmd:characterSet>
 <gmd:hierarchyLevel><gmd:MD_ScopeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_ScopeCode" codeListValue="nonGeographicDataset" codeSpace="ISOTC211/19115">nonGeographicDataset</gmd:MD_ScopeCode></gmd:hierarchyLevel>
 <gmd:contact>
 <gmd:CI_ResponsibleParty id="author-pointOfContact">
 <gmd:individualName>
 <gco:CharacterString>Thompson, S.M.</gco:CharacterString>
 </gmd:individualName>
 <gmd:organisationName>
 <gmd:OrganisationName>New Zealand Hydrological Society - Journal of Hydrology (New Zealand) (ISSN 0022-1708) </gmd:OrganisationName>
 </gmd:organisationName>
 </gmd:CI_ResponsibleParty>
 <gmd:organisationName>
 </gmd:organisationName>
 </gmd:contact>
</gmd:MD_Metadata>
<gmd:CI_Contact>
 <gmd:phone>
 <gmd:CI_Telephone>
 <gmd:voice>
 <gco:CharacterString>+64 6 357 1605</gco:CharacterString>
 </gmd:voice>
 <gmd:facsimile>
 <gco:CharacterString>+000-xxx-xxx</gco:CharacterString>
 </gmd:facsimile>
 </gmd:CI_Telephone>
 </gmd:phone>
 <gmd:address>
 <gmd:CI_Address>
 <gmd:deliveryPoint>
 <gco:CharacterString>PO Box 12300</gco:CharacterString>
 </gmd:deliveryPoint>
 <gmd:city>
 <gco:CharacterString>Wellington</gco:CharacterString>
 </gmd:city>
 <gmd:administrativeArea>
 <gco:CharacterString>n/a</gco:CharacterString>
 </gmd:administrativeArea>
 <gmd:postalCode>
 <gco:CharacterString>6144</gco:CharacterString>
 </gmd:postalCode>
 <gmd:country>
 <gco:CharacterString>New Zealand</gco:CharacterString>
 </gmd:country>
 <gmd:electronicMailAddress>
 <gco:CharacterString>admin@hydrologynz.org.nz</gco:CharacterString>
 </gmd:electronicMailAddress>
 </gmd:CI_Address>
 </gmd:address>
</gmd:CI_Contact>

<gmd:CI_OnlineResource>
 <gmd:linkage>
 <gmd:URL>
 </gmd:URL>
 </gmd:linkage>
 <gmd:protocol>
 <gco:CharacterString>WWW:LINK</gco:CharacterString>
 </gmd:protocol>
 <gmd:function>
 <gmd:CI_RoleCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode"/>
 <gmd:CI_OnlineResource>
 </gmd:CI_OnlineResource>
 </gmd:CI_OnLineFunctionCode>
 </gmd:function>
</gmd:CI_OnlineResource>
<gmd:CI_RoleCode codeListValue="author" codeSpace="ISOTC211/19115">author</gmd:CI_RoleCode>

</gmd:CI_ResponsibleParty>

<gmd:dateStamp>
 <gco:DateTime>2017-08-23T12:00:00Z</gco:DateTime>
</gmd:dateStamp>

<gmd:metadataStandardName>
 <gco:CharacterString>ISO 19115:2003 - Geographic information - Metadata</gco:CharacterString>
</gmd:metadataStandardName>

<gmd:metadataStandardVersion>
 <gco:CharacterString>ISO 19115:2003</gco:CharacterString>
</gmd:metadataStandardVersion>

<gmd:dataSetURI>
 <gco:CharacterString>https://dev.smart-project.info/#/context/resource/738bafe6-41a2-4203-a8e9-077b482d5348</gco:CharacterString>
</gmd:dataSetURI>

<gmd:spatialRepresentationInfo>
</gmd:spatialRepresentationInfo>

<gmd:referenceSystemInfo>
 <gmd:MD_ReferenceSystem>
 <gmd:referenceSystemIdentifier>
 <gmd:RS_Identifier>
 <gmd:code>
 <gco:CharacterString>urn:ogc:def:crs:EPSG:4326</gco:CharacterString>
 </gmd:code>
 <gmd:version>
 <gco:CharacterString>6.18.3</gco:CharacterString>
 </gmd:version>
 </gmd:RS_Identifier>
 </gmd:referenceSystemIdentifier>
 </gmd:MD_ReferenceSystem>
</gmd:referenceSystemInfo>

<gmd:identificationInfo>
 <gmd:MD_DataIdentification>
 <gmd:citation>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>River discharge from mountains with frequent rain</gco:CharacterString>
 </gmd:title>
 </gmd:CI_Citation>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:date>
 <gco:Date>2002-01-01</gco:Date>
 </gmd:date>
 <gmd:dateType>
 <gmd:CI_DateTypeCode codeListValue="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_DateTypeCode" codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_DateTypeCode" codeSpace="ISOTC211/19115">creation</gmd:CI_DateTypeCode>
 </gmd:date>
 </gmd:CI_Date>
 </gmd:citation>
 </gmd:MD_DataIdentification>
</gmd:identificationInfo>
This paper presents a method for forecasting river discharge from basins in mountains where storms are frequent, and where the spatial distribution of precipitation intensity is known. It includes a lumped model that separates base flow from quick flow in an unusual way, which is suitable for areas where the ground is always wet. It also includes a distributed model that represents the influence of snow in a conventional way, and requires forecasts of precipitation and air temperature as inputs. The model is illustrated by an application to the basin in the Southern Alps that discharges into Lake Tekapo, New Zealand.
<gmd:keyword>
 <gco:CharacterString>way</gco:CharacterString>
</gmd:keyword>

<gmd:keyword>
 <gco:CharacterString>model</gco:CharacterString>
</gmd:keyword>

<gmd:keyword>
 <gco:CharacterString>precipitation</gco:CharacterString>
</gmd:keyword>

<gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode" codeListValue="theme" codeSpace="ISOTC211/19115"/>
</gmd:type>

<gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>Lake Tekapo</gco:CharacterString>
 </gmd:keyword>

 <gmd:keyword>
 <gco:CharacterString>The Basin</gco:CharacterString>
 </gmd:keyword>

 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode" codeListValue="place" codeSpace="ISOTC211/19115">place</gmd:MD_KeywordTypeCode>
 </gmd:type>

 <gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>smartCategory</gco:CharacterString>
 </gmd:keyword>

 <gmd:keyword>
 <gco:CharacterString>smartCategory</gco:CharacterString>
 </gmd:keyword>

 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode" codeListValue="discipline" codeSpace="ISOTC211/19115">discipline</gmd:MD_KeywordTypeCode>
 </gmd:type>

 <gmd:MD_Keywords>
 </gmd:MD_Keywords>
 </gmd:MD_Keywords>
</gmd:descriptiveKeywords>

<gmd:resourceConstraints>
 <gmd:MD_LegalConstraints>
 <gmd:accessConstraints>
 <gmd:MD_RestrictionCode codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode" codeListValue="copyright" codeSpace="ISOTC211/19115">copyright</gmd:MD_RestrictionCode>
 </gmd:accessConstraints>

 <gmd:useLimitation>
 <gco:CharacterString>New Zealand Hydrological Society - Journal of Hydrology (New Zealand) (ISSN 0022-1708)</gco:CharacterString>
 </gmd:useLimitation>
 </gmd:MD_LegalConstraints>
</gmd:resourceConstraints>
https://portal.smart-project.info/journalsw/csw?request=GetRecordById&version=2.0.2&service=CSW&elementSetName=full&outputSchema=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd&Id=738bafe6-41a2-4203-a8e9-077b482d5348

Thompson, S.M.

New Zealand Hydrological Society - Journal of Hydrology (New Zealand)

ISSN 0022-1708

+++++6 357 1605

PO Box 1230

Wellington

n/a
<gmd:CI_OnlineResource>
 <gmd:linkage>
 <gco:CharacterString>WWW:LINK</gco:CharacterString>
 <gmd:protocol>
 <gco:CharacterString>WWW:LINK</gco:CharacterString>
 </gmd:protocol>
 </gmd:linkage>
 <gmd:name>
 <gco:CharacterString>River discharge from mountains with frequent rain</gco:CharacterString>
 </gmd:name>
 <gmd:description>
 Link to the article at the Journal of Hydrology (New Zealand) (ISSN 0022-1708)
 </gmd:description>
 <gmd:CI_OnLineFunctionCode
codeListValue="download" codeSpace="ISOTC211/19115">download</gmd:CI_OnLineFunctionCode>
</gmd:CI_OnlineResource>

This metadata record has been created in the SMART project based on the publicly accessible abstracts from the Journal of Hydrology (New Zealand) (ISSN 0022-1708). For further information please visit http://hydrologynz.co.nz/journal.php?article_id=13
<gmd:MD_MaintenanceFrequencyCode
codeList="http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_MaintenanceFrequencyCode"
codeListValue="notPlanned" codeSpace="ISOTC211/19115">notPlanned</gmd:MD_MaintenanceFrequencyCode>
</gmd:maintenanceAndUpdateFrequency>
<gmd:maintenanceNote>
<gco:CharacterString>
</gco:CharacterString>
</gmd:maintenanceNote>
</gmd:MD_MaintenanceInformation>
</gmd:metadataMaintenance>

Figure 5. The geographic bounding box for the exemplary metadata record of Appendix B1 as reported from the CSW server.

References

15. OGC; Nebert; Whiteside; Vretanos; editors OpenGIS Catalogue Service Implementation Specification (ISO 19115), v2.0.2. *CSW 2.0.2* 2007.

