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The influence of the film thickness and the substrate’s refractive index on the surface mode at the superstrate is an 
important study step that may help clearing some of the misunderstandings surrounding their propagation 
mechanism. A single sub-wavelength slit perforating a thin metallic film is among the simplest nanostructure 
capable of launching Surface Plasmon Polaritons on its surrounding surface when excited by an incident field. Here, 
the impact of the substrate and the film thickness on surface waves is investigated. When the thickness of the film is 
comparable to its skin depth, SPP waves from the substrate penetrate the film and emerge from the superstrate, 
creating a superposition of two SPP waves, that leads to a beat interference envelope with well-defined loci which 
are the function of both the drive frequency and the dielectric constant of the substrate/superstrate. As the film 
thickness is reduced to the SPP’s penetration depth, surface waves from optically denser dielectric/metal interface 
would dominate, leading to volume plasmons that propagate inside the film at optical frequencies. Interference of 
periodic volume charge density with the incident field over the film creates charge bundles that are periodic in space 
and time.

1. Introduction 
In a most relevant report (to a certain extent) Wang et. al.[1] 

modelled a free standing optically thin silver film in vacuum, where 
authors try to explain their findings in terms of long range SPPs, SPP 
Wave Packets and Quasi Cylindrical Waves (QCW) … etc. Prior to that, 
Verhagen et. al. showed that guided waves in a metal-dielectric-metal 
waveguide can penetrate the thin metallic cladding hence shortening 
the wavelength of the SPPs at the silver/air interface [2]. 

When the refractive index of the substrate differs from that of the 
superstrate, however, the superposition of the two waves from both 
sides of the film leads to travelling SPP waves modulated by a well define 
non-travelling interference envelope at metal/dielectric interfaces. For 
a sufficiently thin metallic layer, SPPs formed at the metal/superstrate 
also interfere with those formed at the metal/substrate within the metal 
leading to a non-travelling periodic electric polarization inside the film. 
Note that this report is not concerned with the SPP eigenmodes [3-5], 
but rather it is an investigation on surface wave interference under the 
forced vibration. The numerical results reported here are exactly those 
included in chapter 10 of my thesis [6]. However, during the internal 
review, pre- and post-examination period of my thesis, it was requested 
that I remove the notions of Lorentz force and periodic transparency. 
This version of the report has those notions restored and used for 
explaining the mechanism behind the plasmonic time-crystal and more.  

Let us start with the fundamental equations governing the surface 
plasmons polaritons (SPP) stated here for convenience [7]:  
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There is also a very useful presentation by Rosa [8] that would help 
the reader to gain background knowledge on SPPs. Not having access to 
the university resource, I could not cite the references in that 
presentation. So, I hope citing Rosa’s work would suffice for now.  

Now, consider a metallic thin film with its surface set parallel to the x-
y plane. Equation (1) describes the complex wave vector for the SPP 
waves propagating at the metal/dielectric interface along the x-y plane, 
whereas the wave vector for the SPP waves penetrating the metallic film 
in the z-direction is given by equation (2). In both equations the real part 
of the wave vector represents propagation constant, whereas the 
imaginary part defines the decay lengths, 1/ SPPk  and 1/ mk , over 

which the SPP’s amplitude decreases by 1/e. Note that in equation (2), 
the permittivity, εd, corresponds to the dielectric material from which 
the field penetrates the film.  

The short introduction above was aimed to highlight some of the key 
features of surface plasmon polaritons relevant to this report. What will 
follow is a theoretical study on SPPs launched by a single subwavelength 
aperture perforated in a silver thin film. Section 2.1 covers the influence 
of the film thickness and the refractive index of the supporting substrate 
on the SPPs and in section 2.2 a plasmonic time crystal is proposed. 

2. Results and Discussions 

2.1 The Origin of Modulating Envelope in SPPs over Flat Metallic 
Films 

A 2D Finite Element Method (FEM) model of a 100 nm thick silver 
film perforated with a 50 nm wide slit was simulated. Modelling time 
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harmonics with FEM is particularly useful in examining the steady-state 
response of the system under the continues excitation with an incident 
wave with a single wavelength. The refractive index of the glass 
substrate supporting the film was initially set to n1 = 1.52 and the 
refractive index data for silver was taken from Palik [9]. The film was 
along the x plane and was illuminated with a normally incident TM wave 
propagating in the +z-direction from glass substrate. For convenience 
the air/silver interface is denoted by z = z0. Figure 1(a) depicts the 
distribution of the real part of surface charge densities, 

     0, SPPi k x t
x t x e


 


 , at an arbitrary time t0, calculated at both the 

air/silver and glass/silver interfaces from the normal to the surface, i.e. 
the z-component of the electric field. The amplitude, i.e. the envelope, of 
the surface charge density at the air/silver interface was calculated 

using      
*

, ,x x t x t    and is depicted in Figure 1(b). The 

corresponding Fast Fourier Transforms (FFT),  0ƒ , x t    and  

 ƒ x 
   were also calculated, see Figure 1(c)-(d). 

 

 

Figure 1: (a) Surface charge density,  (x, t0), at an arbitrary time t0, 
calculated at the air/silver and glass/silver interfaces. (b) The envelope, 
|(x)|, at the air/silver interface. The corresponding FFT of (c) the wave 

 0ƒ , x t    and (d) the envelope  ƒ x 
  [6].  

 
In Figure 1(b), the maximum accumulated charge density at the edge 

of the cavity, x1 = 25 nm, is labelled Cmax. The decay length of the surface 
charge density, where the value of the Cmax drop by 1/e, was found to be 
10 nm from the edge (or 35 nm from the center). At λ0 = 700 nm, the 
decay length of an SPP along the silver/air interface is 67 μm [7]. 
Activities near the slit, therefore, may not be considered as SPPs as they 
are highly localized. The inset of Figure 1(b), depict the |(x)| and  (x,t) 
at t = t0 + T/6 and t0 + T/4. Here, T is the period and t0 was set to a time 
when the surface charge density was at its maximum, Cmax, at x1. The 
separation between the localized surface charges and the appearance of 
the harmonic wave occurs at t = t0 + T/6 and x2  75 nm, i.e. 50 nm away 
from the edge. In fact, the 10 nm decay length, closer to the 1/ mk

≈ 25 nm obtained from equation (2), indicates that the surface charges 
in the vicinity of the slit are due to the cavity modes, penetrating the 
metal and subsequently decaying rapidly. This agrees to previous works 
[10, 11]. Furthermore, at t = t0 + T/4 the surface charge density at x1 
drops to 0 and the peak at x3 = 200 nm resembles that of a harmonic 
wave. The phase difference of 90° between the oscillations at x1 and x3, 

resembles that of a forced vibration where the force leads the 
displacement by 90° under resonance conditions [12]. However, the 
amplitude of the first peak at x3 is 1.9C0a, where C0a is the DC 
component of | (x)|, hence the average amplitude of the travelling SPP 

waves, see Figure 1(a) and (d). Note FFT of the envelope,  ƒ x 
  , in 

Figure 1(d), identifies the DC components (or the amplitudes of the SPP 
waves), C0a and C0g at both interfaces.  

By examining Figure 1(a) it was determined that the amplitude of the 
wave drops to C0a at x4  w/2 + 2λSPP, i.e. 2 wavelengths away from the 
edge of the slit. Although the surface charge density resembles that of a 
harmonic oscillation in the x3  x  x4 range, its rapid decay and 
non-conformance to the1/ SPPk , suggests a kind of transient state. To 

evaluate the λSPP, FFT transform  0ƒ , x t    was calculated for both 

the silver/air and the silver/glass interfaces, Figure 1(c). The weighted 

average,  
5

1
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 , that included the center mode 

and the four immediate neighboring modes, i.e. two on each side of the 
maxima, provides a good estimate of SPP wavenumbers. The SPP 
wavelengths were then calculated using λSPP = 1/KSPP, where 
KSPP = Re(kSPP)/2π is the wavenumber obtained from FFT.  

For the sake of brevity in notations, let the subscripts “a” and “g” be 
denoting the association of physical quantities carried by the SPP waves 
at the superstrate (air) and substrate (glass and later diamond) 
respectively. So, in summary, λa = 1/Ka = 667 nm and 
λg = 1/Kg = 427 nm are in agreement with λa = 682 nm and λg = 433 nm 
obtained analytically using equation (1). Examining the | (x)|, an 
additional spatial second harmonic were observed in the envelope at 
both interfaces. The second harmonics in the envelope seems to be the 
result of superposition of two time-harmonic waves: 

     0 0

?, a at ti k x i k x m

z zx t E e E e
  


   

    (3) 

where m must be an even integer and Ez>>Ez?. However, the origin of the 
second term in equation (3), Ez?, is unknown. The boundary conditions 
were set to eliminate all reflections, therefore, simulation artefacts 
cannot account for such periodic perturbations, even more so that such 
second harmonics do not manifest themselves over the surface of a 
Perfect Electric Conductor (PEC) that does not support SPPs!  

A possible scenario that may lead to oscillations at double the 
fundamental frequency in | (x)|, is the normal-to-the-surface 
component of SPPs being modulated by the parallel-to-the-surface 
component at the interface via a relationship that involved 
multiplication. SPPs are longitudinal waves manifested as surface 
charge bundles, where charges in each bundle are held together by 
SPP’s Ez along the x-axis. Repelling/attracting Coulomb forces from each 
bundle to its neighboring charge bundles of equal/opposite signs, is 
analogous to a chain of masses attached to one another by springs. Given 
that the oscillation along the chain is being driven by 

   0    , ,xF x t E z t  from the aperture, it is plausible to attribute the 

origin of the backward propagating term in equation (3) to 
02( )

  ai k x t
xF e

 
 , where the push/pull by Fx generates the backward 

propagating waves. Basically, the force modulates the amplitude of the 
surface charge density wave over T/2, during which the SPP has 
travelled a total distance of λg/2. Having noted that, the exact form of a 
partial differential equation governing the forced vibration that leads to 
equation (3) as a solution  is yet to be determined. 

Regardless, it was envisaged that by reducing the film thickness, it 
would be possible for surface charge densities from the glass/silver 
interface manifest themselves at the air/silver interface, leading to a 
superposition of the two waves:  
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see Appendix A. This would modulate the charge densities along the 
x-direction, resulting in a series of minima/maxima with fixed loci that 
are 1/Kbeat apart, where Kbeat  |Ka - Kg|. Hence by controlling the film 
thickness and the refractive index of the substrate, one could control the 
modulation strength and frequency of the envelope. Keeping the 
superstrate and the substrate intact as before, two additional 
simulations, with h = {50, 25} nm, were carried out in order to 
investigate the influence of the film thickness. Figure 2 depict the 

numerically calculated  0ƒ , x t    and  ƒ x 
  . Figure 2(a), (c) 

and (e) depicts  0ƒ , x t   with h = {50, 25} nm when the film is 

supported on a glass substrate and with h = 25 nm on a diamond 
substrate respectively. In all cases, Ka was found to be at the same 
position as it was for h = 100 nm. For h = {50, 25} nm on a glass 
substrate, Kg was also found to be at the exact location as it was for the 
100 nm thick silver film. In the case of the diamond substrate, 
λg = 1/Kg = 230 nm, was found to be close to the λg = 246 nm calculated 
using equation (1). In all cases, the appearance of an additional peak at 
the air/silver interface, positioned at Kg having an amplitude 

z

g gC C e 




 , corresponded to the SPP waves that travel along the 

substrate/silver interface penetrating the film and emerging at the 
air/silver interface. Presence of SPPs with wavelength λg at air/silver 
interface is significant as it impacts the design criteria for plasmonic 

meta-surfaces. FFT of the corresponding envelopes,  ƒ x 
  , in 

Figure 2(b), (d) and (f), show the anticipated modulating envelope with 
Kbeat  |Ka - Kg|. 

 

 

Figure 2:  0ƒ ,   x t   and   ƒ x 
   calculated for (a)-(b) h = 50 nm 

on glass substrate, (c)-(d) h = 25 nm on glass substrate and (e)-(f) h = 25 
nm on diamond substrate. Note that subscript ‘g’ is used to label the 
substrate in general [6]. 

Note that in order to shift the Kbeat to overlap with the second 
harmonics observed in the envelope, the required value for the 
substrate’s refractive index was found to be (see Appendix A) n1 = 2.41 
at λ0 = 700 nm that corresponds to diamond [13]. With the recent 
advances in nano-diamond technology, use of diamond substrate is 
both feasible and practical [14]. Therefore, an additional simulation was 
carried out with a 25 nm thick silver film supported on a diamond 
substrate. 

Figure 3 depicts the modulating envelopes, | (x)|, calculated over the 
air/silver interface for h = {100, 50, 25} nm when the film is supported 
on a glass substrate and for h = 25 nm with a diamond substrate. The 
aperture was normally illuminated with a Gaussian beam, 15λ0 in 
waist, from the substrate. The surface of a perfect electric conductor 
(PEC) that neither supports SPPs nor allows the penetration of the 
fields, produced only a smooth line, see Figure 3-(line in black). Values 
for the PEC line were calculated using 

0 zE to retain the C/m2 unit. The 

inset in Figure 3 shows the travelling SPPs,  (x, t), that are modulated 
by the envelope | (x)|, calculated over the air/silver interface for the 
case h = 50 nm when excited with a plane wave from the glass substrate. 
The presence of the second harmonic and the beat interference in the 
envelope are marked. 

 

Figure 3: Surface charge densities, | (x)|, over the air/silver surface for 
h = {100, 50, 25} on glass substrate, h = 25 nm on diamond substrate and 
for PEC [6]. 

A noticeable feature in Figure 3 is the relation between the SPP’s 
decay length, 1/ SPPk , along the air/silver interface and the strength (or 

the amplitude) of the interference envelope. Travelling SPP waves along 
the air/silver interface may be described as the superposition of two 
waves according to equation (17) in Appendix A, where each 
component decay according to their respective decay length 1/ ak  and 

1/ gk . Analytical values for decay lengths were found to be {67, 17, 3.2) 

μm for the air/silver, glass/silver and diamond/silver interfaces 
respectively. This explains the decay length of the envelope clearly. For 
example, in the case of the 25 nm silver film supported on a diamond 

substrate, the amplitude of the 
 0gi k x t

gC e





component drops to 1/e of 

its maximum at x = 3.2 μm, beyond which the only component that 

continues to propagate is  0

0
ai k x t

aC e


 due to its longer decay length of 

~67 μm. And since the modulating envelope with Kbeat requires the 
presence of both components at the air/silver interface, the decay 
length of the envelope is dictated by the component having the shortest 
of the two decay lengths, which in this example is 3.2 μm associated with 

the 
 0gi k x t

gC e





. Experimental measurements of such effects, 

however, may not be possible. Although measurements carried out by 
Verhagen et. al. [2] may be valid, Wang et. al.[1] correctly pointed out 
that positioning any probe such as an AFM tip, in the vicinity of the slit 
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stablishes standing wave oscillations between the tip and the slit, 
leading to a series of minima/maxima that convolve with those of the 
interference envelope. FEM simulations has confirmed this. 

The concept of plasmonic microzones [15, 16]  are not something 
new. What sets apart what I have reported here is the formation of the 
periodic screening/transparency (i.e. the zone plate) by the SPPs alone, 
and not during the fabrication. For the diamond substrate, diffraction 
patterns through a 25 nm silver film with single hole when excited with 
a normally incident beam (Gaussian in x) having a waist of 2λ0, is 
shown in Figure 4(a). When the maximum intensity of the Gaussian 
beam falls away from the centre of the slit (an arbitrary displacement of 
680 nm in this case) the intensity of the transmitted beam exhibits a 
curvature and a tilt towards the displacement, with the transmitted 
beam being split in two, Figure 4(b).  Such light-matter interaction is not 
observed in the transmitted beam through a 25 nm silver film on a 
diamond substrate with no aperture, see Figure 4(c).   

 

Figure 4: |E|2 10(V/m)2 Diffraction patterns of a transmitted Gaussian 
beam through (a) 25 nm silver film perforated with a slit, supported on 
a diamond substrate. (b) same as (a) with the maximum intensity of the 
Gaussian beam displaced to x = 680 nm away from the centre of the slit. 
(c) In the absence of the slit [6]. 

2.2 Plasmonic Time Crystal 

With diamond (or glass) substrate, when the film thinness is that of 
the skin depth, SPPs are no longer confined to the surface of the metal 
but rather penetrate the film from the substrate and superstrate and 
interfere with one another inside the film.  However, (as it is the case 
here), due to the aperture dimensions and partially due to the 

m zm d zdE E  [8], normal to the surface component of the electric field 

at the diamond/silver boundary is much stronger than those at the 
air/silver at λ0 = 700 nm, hence 

zg zaE E . Therefore, fields from the 

substrate dominate the film. Furthermore, the x-component of the SPP 
was found to be stronger than its z-components at λ0 = 700 nm, i.e. 

2xg zgE E  calculated using 
m

xg zg
d

E i E





  [8], and in agreement 

with the numerical results. Consequently a trail of z-component of the 
electric field {…0 – 0 + 0 – 0 … carries a trail of x-component {… – 0 + 0 – 
0 + …} with “+”, “0” and “-” denoting +Ex,z, 0 and -Ex,z respectively. Note 
the 90° phase difference between the x and the z-components. 
Naturally, the induced periodic polarization, travels inside the film as the 
SPPs propagate over the surface. The x-component of the polarization, 

 0

0

gi k x t

xg xgeP E e





 , is of interest in the context of plasmonic time 

crystals as it signifies periodic accumulation of conduction electrons 
along the x-axis, hence periodic screening/transparency within the film 
that resembles that of a Fresnel zone plate.  

 
 
 
With a flat metallic film that extends to infinity in the x-direction, it is 

not possible to apply the Gauss’s law to calculate the charges due to SPP 
fields. Therefore, I have provided an alternative approach to calculate 
the induced periodic charge density due to propagating Ezg: 
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see Appendix B. And in terms of number of electrons being displaced: 
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Equation (6) reveals the total number of charges being displaced per 
SPP field. Given that the fermi energy level for metals is given by [17]:  

2/32 3

8
F

h N

m 

 
  

 
   (7) 

 
one must set 0N N N   , where N0 is the number of electrons per 

unit volume when unperturbed. Consequently, F becomes a function

 0gi k x t

zgE e


, which may lead to many interesting effects, such as 

periodic refractive index, fermi levels, local work functions, density of 
states, eigen energies inside film, which will be a topic of another report. 
Nevertheless, in the absence of any incident field over the film, for 
example when the SPPs are launched by a dipole near the surface [18], 
the propagation of surface waves, and all physical quantities they carry, 
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is unperturbed. However, in the presence of an incident field from the 
substrate, the superposition of the field inside the film is given by 

   00 gi
i k ti k z t x

xgxiE eE eE
 

  which create disturbance on the 

periodic charges densities. It is intuitive that loci polarized by +Exg be 
transparent to +Exi, and vice versa. Now, consider an arbitrary time t = t0, 
when the maximum of the incident electric field falls over the film. This 
is depicted by the following notation: 

 

 
0

0

, :  , 0, , 0,
, ,0, , 

:        , , ,  , 

xg

xi

E x t

E t

  
    

    
  (8) 

This scenario is shown in Figure 5 with the periodic arrangement of 
“0”s when the maximum of the field falls over the film. Also note the 
strong periodic field under the film, inside the substrate! At t = t0+T/2, 
hence 180° phase, both Exg and Ei change sings. This will lead to: 

 

 
0

0

, / 2 :  , 0, , 0,
, ,0, , 

/ 2 :       , ,  ,  , 

xg

xi

E x t T

E t T

   
    

     
 (9) 

with “0” remained intact in space.  This scenario is also confirmed by 
numerical results. 

 
It is intuitive to think of the periodic “0”s as loci where conduction 

electrons are trapped. If this hypothesis is validated by experiment, it 
would open doors to study new phenomena. Each “0” may be viewed as a 
super-atom with oversaturated electronic orbitals, elevated fermi level, 
lowered work function and many more effects when considered in periodic 
settings which I have highlighted in the conclusion. 

 
Back to causality, at the first glance it seems it is a simple matter of 

superposition of two orthogonally propagating EM waves with the 
x-component of the two fields summed up inside the film. However, a 
close look at the numerical results revealed that when Exi drops to 0, (e.g. 
at t = t0+T/4), polarization inside the film experiences the effect of Exi(t0). 
This 90° phase difference between applied filed and the reaction is 
attributed to the charge bundles experiencing the Lorentz force 

( )xg zg yg yiF J B B . Furthermore, since Byi is 0 at t = t0+T/4, the 

restoration of periodic potential is resumed at t = t0+T/4 but completed 
at t = t0+T/2 when -Exi falls over the film. The whole creation/anhelation 
of 0x xeP E  is a sinusoidal process in time. Numerical results also 

revealed that Ezg not being affected by the incident field. Therefore, the 
restoration process is attributed to the Ezg. 

 

Figure 5: Snapshot of electric field Ex passing through a periodic charge 
screen (with periodicity 1/Kg) formed inside the 25 nm thick silver film 
for (a) glass and (b) diamond substrates. Note that Ex was calculated at 

an arbitrary time with the maximum of its amplitude falling over the 
silver film [6]. 

Since this creation/anhelation is periodic both in time and space with 
periodicities T/2 and λg, hence oscillating at frequency other than that of 
the drive, (although not an expert in the topic), I believe it qualifies as a 
time crystal [19, 20]. As for the breaking time symmetry, I need access 
to certain resources only academics enjoy, but as an alumnus, this is not 
possible at this stage. However, I must remind the readers that the 
x-component of the SPP’s electric field (as I understand) must always lag 
its z-components by 90° at resonance, a condition satisfied for SPPs 
launched by an aperture at any frequency. The term crystal also implies 
that one should be able to define both the Hamiltonian to determine the 
eigen-energies and the Schrödinger equation to explain the De Broglie’s 
matter waves [21, 22] for that system. Could it be called a crystal 
otherwise? The potentials V, experienced by electrons in a time crystal 
and consequently, wave functions ψ and eigen-energies ξ, must 
naturally be time-dependent:  

   ( ) , ( ) ,j jj j jt t H t t  R R   (10) 

 
 

,
( ) ,j

j

j

j t
i H t t

t









R
R   (11) 

 

Considering the original Hamiltonian, H , for the many-electrons 
[23]: 

 

  
2 2

2

,

1

2 2 4
j

j jk
j k

j

j k

e
H V

m 




 
     

 
 R

R R
 (12) 

time variations of kinetic energy term in equation (12) is taken care of 

by the time-dependent wave function  ,j j t R , however, one must 

introduce the notion of time into equation (12) and rewrite it as: 

 
2 2

2

,

1
( )

2
)

(4
(

) (2 )
j

j j k
j k

j

j k

t
t t

e
H t V

m 


 
     

  
 R

R R
 (13) 

 
where ( )) ( )( ( )( ),) (j ext tj jt t t tV V V R R R , extV is the potential due to 

the positive ions, 
 0gi k x t

tV e


  is the time-dependent potential due to 

the creation/anhelation of charge bundles and
jR is the position vector 

of the jth electron. Note that by making 
,j kR time-dependent, j ≠ k is 

taken care of, however, Vt has both time and spatial dependence (other 
than that of positive ions). Time-dependent Hamiltonian in Equation 
(13) implies that the computation must trace the position of each 
electron, 

jR with respect to t and the changes in potential with respect 

to t and
jR . The Hartree approximations [23] are also based on 

time-independent electron-electron interactions, so it must be 
remedied accordingly for time crystals. An interesting article by Linde 
[24] may prove to be useful to investigate possible changes to the 
effective mass and conductivity in an applied field but that also needs to 
be modified. With the advent of High Performance Computing (HPC) ab 
initio modelling and simulations of matters where the constituting 
components are atoms and electrons are becoming more accessible. An 
article by Borysov et. al. [25] provides a background on the existing 
infrastructure for numerically modelling and investigating structures at 
atomic levels using the Density Functional Theory (DFT) calculations, 
which may prove to be a platform of choice to study time crystals. 
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5. Conclusions, and Roadmaps for Further Study 
In conclusion, it was shown that for a sufficiently thin silver film 

sandwiched between two different dielectrics, the mixing of the two 
SPPs (formed at the substrate and the superstrate) produce an 
interference envelope that modulates the travelling SPPs at the 
substrate. For film thicknesses equivalent to the SPP’s penetration 
depth, surface waves from optically denser dielectric/metal interface 
would dominate, leading to volume plasmons that propagate inside the 
film at optical frequencies. Interference of such volume with the incident 
field over the film creates charge bundles that are periodic in space and 
time. Although many questions remained unanswered in this report, 
the future work will focus on them. If I can hypothesize, the presence of 
charge bundles inside the film may imply changes to the electronic 
density of states, electron-electron collision (hence the mean free path), 
electron-lattice interaction (hence the electron’s effective mass) and 
consequently conductivity, due to the presence of an additional periodic 
potential that may compete or superpose with that of the positive ions. 
It is intuitive to think of the periodic “0”s as loci where electrons trapped. 
If this hypothesis is validated by experiment, it would open doors to 
study new phenomena. Each “0” may be viewed as super-atom with 
oversaturated electronic orbitals, elevated fermi level, lowered work 
function and many more effects when considered in periodic settings 
which are analogous to that of a superlattice in semiconductors[23]. 

Appendix A - Superposition 
To explain the overlap between the beat modulation and the second 

harmonics in the envelope when n1 = 2.41 at λ0 = 700 nm, consider the 
superposition of two waves having equal amplitudes propagating along 

the x-axis i.e.      1 1 2 2,
i k x t i k x t

x t e e
  

   , which can be written as: 

 

   
   

1 2 1 2

2 2 1 2 1 2
, 2 cos cos

2 2

k k x t
i k k x t

x t e



 
  

 
 
 

    
     

   



  (14) 

Here it is assumed both waves start in phase. This form of the 
equation is of interest since it separates the terms related to the 

coherent length, 1 24 / ( )k k  , and the coherent time,  1 24 /  

of the superposed travelling wave. Furthermore, the last two cosine 
terms indicate that the combined travelling wave is modulated by two 
envelopes having nodes (or anti-nodes) separated by 

 21
cos

2

k xk  
 
 

 in space and 
 1 2

cos
2

t  
 
 


in time. In other 

words the beat frequencies in space and time are 21k k  and 

1 2  respectively, therefore the coherent lengths (for a lack of a 

better word) of the envelopes in space  and time can be calculated as 

1 22 / ( )k k   and  1 22 /    respectively. Necessary conditions to 

eliminate undesirable jitters in space and time envelopes are: 

   1 2 1 22 / ( ) 4 / ( )k kk k      (15) 

AND 

   1 2 1 22 / 4 /              (16) 

In the case of two superposed SPP waves at the air/silver interface, 
the superposition may be simplified to: 

     
0, ga

i k xi k xi t

a gx t e C e C e

   
  

  (17) 

Furthermore, in the case of 25 nm silver film 
g aC C  , see Figure 

2(c) and (e). Under such conditions, equation (17) may be written for 
the spatial terms as: 

 

 
 2

2 cos
2

a gk k x
i

a gk k x
x e

 
 
 
 

 
  
    
  

 

  (18) 

Equation(18), which is the special case of equation(14), shows the 
coherent length of the combined travelling SPP waves to be

 4 / a gk k   with the beat modulation occurring according to 

2 / a gkk  . A necessary condition to overlap the coherent length and 

the beat modulation with the second harmonics in the envelope is then:  

   1/ 2 2 / 4 /a a g a gk k k k k      (19) 

In this report, numerical values for wavenumbers obtained from FFT 

showed1/ 2 1/ 2 /a a ag gK K K KK    at λ0 = 700 nm when 

n1 = 2.41. Clearly in the case of a glass substrate with n1 = 1.52, 

1/ 2 1/ 2 /a a ag gK K K KK    at λ0 = 700 nm. 

The appendix is an optional section that can contain details and data 
supplemental to the main text. For example, explanations of 
experimental details that would disrupt the flow of the main text, but 
nonetheless remain crucial to understanding and reproducing the 
research shown; figures of replicates for experiments of which 
representative data is shown in the main text can be added here if brief, 
or as Supplementary data. Mathematical proofs of results not central to 
the paper can be added as an appendix. 

Appendix B - Lorentz Force and Induce Charges Inside 
the Film 

Let the magnetic flux density and the electric field carried by SPPs be 
denoted by: 

 

    0

m 0, ,0 x zi k x k z t

yB e
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x zE E e
 

E   (21) 

For simplicity, ignoring the exponent terms, we are interested in 

x z yF J B  where z e zJ E . Given that 
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In 2D: 

0
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One can write 
0

x z z x
y

k E k E
B




 . The Lorentz force distribution 

along the x-axis is then 
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x z z x
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k E k E
F J B E
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
  . This can be 

further reduced by
m
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d
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


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  (24) 

Using equations (1)-(2) and replacing 
0 0 "m m     [26], the 

Lorentz force becomes: 

''
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m
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The volume charge profile along the x-direction due to only the 

Lorentz force may be calculated as /x x xF E   where 

m

x z
d

E i E





  , therefore: 
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And in terms of number of free electrons: 

''0
0
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m d

N E
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