

1 *Type of the Paper (Article)*

2 **Quantifying Chaos by Various Computational 3 Methods. Part 1: Simple Systems**

4 **J. Awrejcewicz^{1*}, A.V. Krysko², N.P. Erofeev³, V. Dobriyan⁴, M.A. Barulina⁵, V.A. Krysko⁶**

5
6 ¹ Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics,
7 1/15 Stefanowski St., 90-924 Lodz, POLAND; jan.awrejcewicz@p.lodz.pl

8 ² National Research Tomsk Polytechnic University, Cybernetic Institute, 30 Lenin Avenue, 634050 Tomsk
9 and Saratov State Technical University, Department of Applied Mathematics and Systems Analysis,
10 77 Politehnicheskaya Str., 410054 Saratov, RUSSIAN FEDERATION; anton.krysko@gmail.com

11 ³ Saratov State Technical University, Department of Mathematics and Modeling, 77 Politehnicheskaya Str.,
12 410054 Saratov, RUSSIAN FEDERATION; erofeevnp@mail.ru

13 ⁴ Saratov State Technical University, Department of Mathematics and Modeling, 77 Politehnicheskaya Str.,
14 410054 Saratov, RUSSIAN FEDERATION; dobriy88@yandex.ru

15 ⁵ Russian Academy of Science, Precision Mechanics and Control Institute, 24 Rabochaya Str., 410028,
16 Saratov, RUSSIAN FEDERATION; marina@barulina.ru

17 ⁶ Saratov State Technical University, Department of Applied Mathematics and Systems Analysis,
18 77 Politehnicheskaya Str., 410054 Saratov, RUSSIAN FEDERATION; tak@san.ru

19

20 **Abstract:** The first part of the paper was aimed at analyzing the given nonlinear problem by
21 different methods of computation of the Lyapunov exponents (Wolf method [1], Rosenstein method
22 [2], Kantz method [3], method based on the modification of a neural network [4, 5], and the
23 synchronization method [6, 7]) for the classical problems governed by difference and differential
24 equations (Hénon map [8], hyper-chaotic Hénon map [9], logistic map [10], Rössler attractor [11],
25 Lorenz attractor [12]) and with the use of both Fourier spectra and Gauss wavelets [13]. It was shown
26 that a modification of the neural network method [4, 5] makes it possible to compute a spectrum of
27 Lyapunov exponents, and then to detect a transition of the system regular dynamics into chaos,
28 hyper-chaos, hyper hyper-chaos and deep chaos [14-16]. Different algorithms for computation of
29 Lyapunov exponents were validated by comparison with the known dynamical systems spectra of
30 the Lyapunov exponents. The carried out analysis helps comparatively estimate the employed
31 methods in order to choose the most suitable/optimal one to study different kinds of dynamical
32 systems and different classes of problems in both this and the next paper parts.

33 **Keywords:** Lyapunov exponents, Wolf method, Rosenstein method, Kantz method, neural network
34 method, method of synchronization, Benettin method, Fourier spectrum, Gauss wavelets.

35 **1. Introduction**

36 The first part of the present work was focused on the numerical investigation of classical
37 dynamical systems to estimate velocity of divergence of the neighborhood trajectories with the help
38 of a measure coupled with the Kolmogorov entropy [17] (or metrics). In reference [17], based on the
39 mathematical results of Oseledec [18] and Pesin [19], it was shown that the numerically imposed
40 relations can be treated as exact/true values. The method proposed by Wolf [1] is most widely used
41 to verify and study chaotic dynamics. However, also the Rosenstein [2] and Kantz [3] methods are
42 often employed to estimate the largest Lyapunov exponents. The state-of-the-art of papers devoted
43 to the theoretical background of the Lyapunov exponents and methods of their computations was
44 carried out by Golovko [20]. In particular, the method of the choice of an embedding dimension was
45 described. The method of the correlating dimension, the false nearest neighbor method and the
46 method of gamma-test were presented based on the Hénon and Lorenz attractors. In particular, the
47 occurrence of high computational difficulties was observed in the case of using the Wolf method and
48 its marginally successful employment to small values of the studied data.

49 To avoid the above-mentioned drawbacks, a novel neural network-based algorithm to estimate
 50 the largest Lyapunov exponents by considering only one coordinate has been proposed. Golovko [20]
 51 reported the neural network algorithm for computation of a full spectrum of Lyapunov exponents.
 52 A comparison of the results obtained by Golovko with the exact values of the Lyapunov exponents
 53 of the Lorenz and Hénon systems exhibited small errors.

54 In references [6, 7], the method of largest Lyapunov computation using the synchronization
 55 phenomena of identical systems has been proposed. A few types of coupling have been studied,
 56 depending on the type of the considered system. It has been pointed out that large computational
 57 time is required to achieve full synchronization.

58 The method proposed in references [4, 5] is particularly suitable to study chaotic dynamics of
 59 continuous mechanical systems. It should be emphasized that, owing to the research results
 60 published by the authors of the present paper, the analysis of nonlinear dynamics based on the
 61 estimation of the Lyapunov exponents yields a conclusion that the mentioned problems have not
 62 been satisfactorily solved yet [1-5].

63 More recently, Vallejo and Sanjuan [21, 22] have studied the predictability of orbits in coupled
 64 systems by means of finite-time Lyapunov exponents. This approach allowed them to estimate how
 65 close the computed chaotic orbits were to the real/true orbits, being characterized by the systems
 66 shadowing properties.

67 In the present paper, classical systems (Hénon map [8], hyper-chaotic Hénon map [9], logistic
 68 map [10], Rössler attractor [11], and Lorenz attractor [12]) were analyzed with Gauss wavelets,
 69 Fourier spectra and Poincaré pseudo-maps.

70 It is known that the fundamental property of chaos is the existence of strong sensitivity to a
 71 change of the initial conditions. The definition of chaos given first by Devaney in 1989 [23] includes
 72 three fundamental parts. In addition to sensitivity to the variation of the initial conditions, a condition
 73 of mixing, known also as the transitivity condition and the regularity condition, measured by the
 74 density of the periodic points or classical notion of periodicity is also included. In 1992, Banks et al.
 75 [24] proved that the condition of sensitivity to the initial condition can be neglected, i.e. conditions of
 76 transitivity and periodicity imply sensitivity condition.

77 Knudsen [25] defined chaos as a function given on a bounded metric space which has a dense
 78 orbit and essentially depends on initial conditions.

79 Owing to chaos definition proposed by Gulick [26], chaos exists when either there is essential
 80 dependence on the initial conditions or a chaotic function has positive Lyapunov exponents in each
 81 point of the space, and which finally does not tend to a periodic orbit. This definition is also employed
 82 in the present work.

83 2. Lyapunov Exponents

84 2.1. The largest Lyapunov exponent

85 The following dynamical system was considered

$$86 \dot{x} = f(x), \quad (1)$$

87 where x stands for the N-dimensional state vector.

88 Two closed phase points x_1 and x_2 were chosen (in the phase space). They stand for the origins
 89 of the trajectories ($x_1(t)$ and $x_2(t)$). The change in the distance d between two corresponding points
 90 of these trajectories under evolution of system (1) can be monitored by:

$$91 d(t) = |\vec{e}(t)| = |x_2(t) - x_1(t)|. \quad (2)$$

92 If the dynamics of system (1) is chaotic, $d(t)$ increases exponentially in time, i.e.

$$93 d(t) \approx d(0)e^{kt}. \quad (3)$$

94 This yields the average velocity of the exponential divergence of the trajectories

$$95 k \approx \frac{\ln \left[\frac{d(t)}{d(0)} \right]}{t}, \quad (4)$$

96 or more precisely,

$$k = \lim_{\substack{d(0) \rightarrow 0 \\ t \rightarrow \infty}} \frac{\ln[d(t)/d(0)]}{t}. \quad (5)$$

Quantity h is known as the Kolmogorov-Sinai entropy (KS-entropy). Employing the KS-entropy, one can define the studied process, i.e. quantify if the process is regular or chaotic. In particular, if the system dynamics is periodic or quasi-periodic, the distance $d(t)$ is not inverted in time and the KS-entropy is equal to zero ($h = 0$). If the system dynamics tends to a stable fixed point $d(t) \rightarrow 0$, then $h < 0$. Contrarily, KS-entropy is positive ($h > 0$) if one deals with chaotic dynamics.

KS-entropy is the maximum characteristic Lyapunov exponent that enables one to follow velocity of information lost with respect to the initial system state.

2.2. Results

The spectrum of Lyapunov exponents makes it possible to qualitatively quantify a local property with respect to stability of an attractor. Consider a phase trajectory $x(t)$ of the dynamical system (1), starting from the point $x(0)$, as well as its neighborhood trajectory $x_1(t)$ as follows

$$x_1(t) = x(t) + \vec{\varepsilon}(t). \quad (6)$$

The following function can be constructed

$$\lambda[\vec{\varepsilon}(0)] = \lim_{t \rightarrow \infty} \frac{\ln \left[\frac{|\vec{\varepsilon}(t)|}{|\vec{\varepsilon}(0)|} \right]}{t}, \quad (7)$$

which is defined on the vectors of initial displacement $\vec{\varepsilon}(0)$ such that $|\vec{\varepsilon}(0)| = \varepsilon$, where $\varepsilon \rightarrow 0$.

All possible rotations of the initial displacements vector with respect to n directions of the N -dimensional phase space of the function (7) will suffer the jump-like changes in the finite series of the values $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$. These values of the function λ are called Lyapunov exponents (LEs). Positive/negative values of LEs can be viewed as a measure of the averaged exponential divergence/convergence of the neighborhood trajectories.

A sum of LEs stands for an averaged divergence of the phase trajectories flow. In the case of a dissipative system, i.e. a system possessing an attractor, this sum is always negative. As numerical case studies show, in some dissipative systems, the LEs are invariant with respect to all chosen initial conditions. This is why a spectrum of LEs can be understood as the property of an attractor.

Usually, LEs are presented in a sequence of LE values in decreasing order. For instance, symbols $(+, 0, -)$ mean that for the analyzed attractor, there is one direction in a 3D space, where exponential stretching is exhibited, the second direction indicates neutral stability, and the third one - exponential compression. It should be noted that all attractors different from stable stationary points always have at least one LE equal to zero (in average sense, all points of a trajectory are bounded by a compact manifold and they cannot exhibit divergence or converge).

In what follows, relationships between the Lyapunov exponents and the properties and types of attractors are illustrated and discussed.

1) $n = 1$. In this case only a stable fixed point can be an attractor (node or focus). There exists one negative LE denoted by $\lambda_1 = (-)$,

2) $n = 2$. In 2D systems, there are two types of attractors: stable nonmovable points and limit cycles. The corresponding LEs follow:

$(\lambda_1, \lambda_2) = (-, -)$ – stable nonmovable/fixed point;

$(\lambda_1, \lambda_2) = (0, -)$ – stable limit cycle (one exponent is equal to zero).

3) $n = 3$. In 3D phase space, there exist four types of attractors: stable points, limit cycles, 2D tori and strange attractors. The following set of LEs characterizes possible dynamical situations to be met:

$(\lambda_1, \lambda_2, \lambda_3) = (-, -, -)$ – stable nonmovable point;

$(\lambda_1, \lambda_2, \lambda_3) = (0, -, -)$ – stable limit cycle;

$(\lambda_1, \lambda_2, \lambda_3) = (0, 0, -)$ – stable 2D tori;

$(\lambda_1, \lambda_2, \lambda_3) = (+, 0, -)$ – strange attractor.

138 In the majority of studied problems, analytical definition of LEs is not possible, since the
 139 analytical solution to the governing differential equations must be known. However, there exist
 140 reliable algorithms to find all Lyapunov exponents numerically.

141 **3. Methods of analysis of Lyapunov exponents**

142 *3.1. Benettin method [17]*

143 We began with numerical investigation of the Kolmogorov entropy of the Hénon-Heiles model.
 144 Numerical computations were carried out with accuracy up to 14 digits by means employing the so-
 145 called method of central points. Observe that, independently of the results reported in reference [27],
 146 a similar method was used in reference [28].

147 Based on the Lyapunov exponents, the ergodic properties of dissipative dynamical systems with
 148 a few degrees of freedom were numerically studied employing the Lorenz system. The system
 149 exhibited the exponents spectrum of the (+, 0, -) type, and the exponents had the same values for the
 150 orbits beginning from an arbitrary point on the attractor. It means that the ergodic property of a
 151 general dynamical system can be quantified by a spectrum of the characteristic Lyapunov exponents.
 152 Below, a brief description of the used method was presented.

153 Let a point x_0 belong to the attractor A of a dynamical system. An evolution trajectory of the
 154 point x_0 is referred to as a real/true trajectory. A positive quantity ε , being significantly less than
 155 the attractor dimension, is chosen. Furthermore, an arbitrary perturbed point \tilde{x}_0 is chosen in a way
 156 to satisfy $\|\tilde{x}_0 - x_0\| = \varepsilon$. The evolution of points x_0 and \tilde{x}_0 is considered in a short time interval T ,
 157 and new points are denoted by x_1 and \tilde{x}_1 , respectively. A vector $\Delta x_1 = \tilde{x}_1 - x_1$ is called the
 158 perturbation vector. The first estimate of the exponent is found with the use of the following formula

$$159 \lambda_1' = \frac{1}{T} \ln \frac{\|\Delta x_1\|}{\varepsilon}. \quad (8)$$

160 The time interval T is chosen in a way to keep the amplitude of perturbation less than the linear
 161 dimensions of the phase space nonhomogeneity and the attractor dimension. The normalized
 162 perturbation vector $\Delta x_1' = \varepsilon \Delta x_1 / \|\Delta x_1\|$ is taken, and a new perturbed point $\tilde{x}_1' = x_1 + \Delta x_1'$ is defined.
 163 Finally, the so far described procedure is implemented taking into account x_1 and \tilde{x}_1' instead of x_0
 164 and \tilde{x}_0 , respectively.

165 Repeating this procedure M times, λ is defined as an arithmetic average of the estimates λ_i'
 166 obtained on each computational step:

$$167 \lambda \equiv \frac{1}{M} \sum_{i=1}^M \lambda_i' = \frac{1}{M} \sum_{i=1}^M \frac{1}{T} \ln \frac{\|\Delta x_i\|}{\varepsilon} = \frac{1}{MT} \sum_{i=1}^M \ln \frac{\|\Delta x_i\|}{\varepsilon}. \quad (9)$$

168 In order to achieve a higher estimate, one can take large M and carry out computations for a
 169 different initial point x_0 . This method can be used when the equations governing the system
 170 evolution are known. It should be noted, however, that these equations are usually unknown for the
 171 experimental data.

172 To compute the Lyapunov spectrum numerically, one can use another approach generalizing
 173 the Benettin's algorithm. In general, it is necessary to follow a few trajectories of the perturbed points
 174 instead of only one, fundamental trajectory (the number of perturbed trajectories is equal to the
 175 dimension of the phase space). For this purpose, a numerical approach based on derivation of the
 176 dynamic equations in variations can be used [17]. Since the largest LE plays a crucial role in the
 177 evolution of all perturbed trajectories, it is necessary to carry out orthogonalization of the
 178 perturbation vectors on each step of the algorithm. In what follows, a procedure of numerical
 179 estimation of the Lyapunov spectrum of a dynamical system is briefly described. To simplify, the
 180 considerations are limited to 3D systems.

181 Let r_0 stand for a point of the system attractor and ε be a fixed positive number, not large in
 182 comparison to linear dimensions of the attractor. The points x_0, y_0 and z_0 are chosen so that the
 183 perturbation vectors $\Delta x_0 = x_0 - r_0$, $\Delta y_0 = y_0 - r_0$, $\Delta z_0 = z_0 - r_0$ have the length ε and are mutually

184 orthogonal. After a certain small time interval T , the points r_0, x_0, y_0 and z_0 are transformed into
 185 points r_1, x_1, y_1 and z_1 , respectively. Then, new perturbation vectors $\Delta x_1 = x_1 - r_1$, $\Delta y_1 = y_1 - r_1$,
 186 $\Delta z_1 = z_1 - r_1$ are considered. The orthogonlization using the well-known (in linear algebra) Gramm-
 187 Schmidt method is carried out. After this step, the obtained vectors of perturbation $\Delta x_1'', \Delta y_1'', \Delta z_1''$
 188 become orthonormalized, i.e. they are mutually orthogonal and have the unit length. Then, the
 189 renormalization of the perturbation vectors is carried out again to get lengths of the vectors in terms
 190 of the magnitude ε :

$$191 \quad \Delta x_1''' = \Delta x_1'' \cdot \varepsilon, \quad \Delta y_1''' = \Delta y_1'' \cdot \varepsilon, \quad \Delta z_1''' = \Delta z_1'' \cdot \varepsilon. \quad (10)$$

192 We take the following perturbed points

$$193 \quad x_1' = x_1 + \Delta x_1''', \quad y_1' = y_1 + \Delta y_1''', \quad z_1' = z_1 + \Delta z_1'''. \quad (11)$$

194 Next, the process is repeated, i.e. instead of the points r_0, x_0, y_0 and z_0 , the points r_1, x_1', y_1' and
 195 z_1' are taken into account, respectively.

196 Repeating the so far described procedure M times, one computes

$$197 \quad S_1 = \sum_{k=1}^M \ln \|\Delta x_k'\|, \quad S_2 = \sum_{k=1}^M \ln \|\Delta y_k'\|, \quad S_3 = \sum_{k=1}^M \ln \|\Delta z_k'\|. \quad (12)$$

198 Then, a spectrum $\Lambda = \{\lambda_1, \lambda_2, \lambda_3\}$ of LEs can be found by the following formulas:

$$199 \quad \lambda_i = \frac{S_i}{MT}, \quad i = 1, 2, 3. \quad (13)$$

200 In this method, the choice of time interval T plays a crucial role. Indeed, if one takes too large
 201 time interval T , then all perturbed trajectories will be inclined in the direction corresponding to the
 202 maximum LE, and hence the obtained results will not be reliable.

203
204
205

206 3.2. Wolf method [1]

207 In reference [1], a novel algorithm to find nonnegative Lyapunov exponents by using a time
 208 series was proposed. It was illustrated that the Lyapunov exponents are associated with either
 209 exponential divergence or convergence of the neighborhood orbits in the considered phase space. In
 210 general, the method is applicable only when analytical governing equations are known, and it is
 211 based on tracing the large time-consuming increase in the number of elements in a small volume of
 212 an attractor.

213 We defined a Lyapunov exponent and a spectrum of Lyapunov exponents, and then illustrated
 214 how the system dynamics depends on the number of exponents with different signs in the spectrum.
 215 Our approach included reconstruction of an attractor and investigation of orbital divergence on the
 216 possibly smallest distances using the approximate Gramm-Schmidt orthogonalization procedure in
 217 the reconstructed phase. In order to estimate the largest Lyapunov exponent, a long trace of time
 218 evolution of the chosen pair of the neighborhood orbits was carried out. In general, a particular
 219 attention should be paid, since the reconstructed attractor may contain points belonging to different
 220 attractors.

221 Two versions of the method are proposed. The first one includes the so-called fixed evolution
 222 time, where the time interval associated with the change of the points is fixed.

223 The main idea of the proposed method is as follows: the largest Lyapunov exponent is computed
 224 based on one time series and used when the equations describing the system evolution are unknown
 225 and when it is impossible to measure all remaining phase coordinates.

226 Consider a time series $x(t)$, $t = 1, \dots, N$ of one coordinate of a chaotic process measured in equal
 227 time intervals. The method of mutual information allows one to define the time delay τ , whereas
 228 the method of false neighbors yields the dimension of the embedded space m . As a result of the
 229 reconstruction, one gets a set of points of the space R^m :

$$230 \quad x_i = (x(i), x(i-\tau), \dots, x(i-(m-1)\tau)) = (x_1(i), x_2(i), \dots, x_m(i)), \quad (14)$$

231 where $i = ((m-1)\tau + 1), \dots, N$.

232 We take a point from the series (3) and denote it by x_0 . In the series (3), one can find a point
 233 \mathcal{X}_0 , where the relation $\|\mathcal{X}_0 - x_0\| = \varepsilon_0 < \varepsilon$ holds, and where ε is a fixed quantity, essentially less

234 than the dimension of the reconstructed attractor. It is required that the points x_0 and \hat{x}_0 are
 235 separated in time. Then, time evolution of these points on the reconstructed attractor is observed until
 236 the distance between points achieves ε_{\max} . The new points are denoted by x_1 and \hat{x}_1 , the distance
 237 is ε'_0 , and the associate interval of time evolution is denoted by T_1 .

238 After that, we again consider the sequence (14) the find the point \hat{x}_1 located close to x_1 , where
 239 $\|\hat{x}_1 - x_1\| = \varepsilon_1 < \varepsilon$ holds. Vectors $\hat{x}_1 - x_1$ and $\hat{x}_0 - x_0$ should possibly have the same direction. Then,
 240 the procedure is repeated for points x_1 and \hat{x}_1 .

241 By repeating the above-described procedure M times, the largest Lyapunov exponent is
 242 estimated:

$$243 \quad \lambda \equiv \sum_{k=0}^{M-1} \ln(\varepsilon'_k / \varepsilon_k) / \sum_{k=1}^M T_k. \quad (15)$$

244 This method was employed in the present research for testing the accuracy of results by using
 245 the classical and known spectra of the Lyapunov exponents of the Hénon map, Rössler equations,
 246 chaos and hyperchaos exhibited by the Lorenz system, and McKay-Glass equation [29]. In addition,
 247 the method has been also employed to study the Belousov-Zhabotinsky reaction [30] and the Couette-
 248 Taylor flow [31].

249 Wolf et al. [1] pointed out certain restrictions on the choice of the embedding dimension and
 250 magnitude of time required for the attractor reconstruction to achieve the most accurate estimate of
 251 the Lyapunov exponents. Using the Rössler attractor [11] and the Belousov-Zhabotinsky reaction
 252 [30], the authors demonstrated the effects of the time change during the attractor reconstruction, time
 253 of evolution of the system between steps of the time change, the maximum length of the replacement
 254 vector and the minimum length of the exchange vector on the values of the estimated largest
 255 Lyapunov exponent. Furthermore, it was shown that variation of the time of the system evolution
 256 between 0.5 and 1.5 leads to reliable estimates of the studied three chaotic attractors. Also, some data
 257 requirements that make it possible to obtain the most accurate estimate of the Lyapunov exponent,
 258 such as the use of small length scale data as well as some restrictions on the presence of noisy
 259 perturbations in the data (static and dynamic), were discussed.

260 The proposed algorithms can be used to detect chaos as well as to compute its parameters also
 261 for the experimental data with a few positive exponents. Furthermore, numerical studies have shown
 262 that the deterministic chaos can be distinguished from white noise (the Belousov-Zhabotinsky
 263 reaction) and have presented the topological complexity of chaos (the Lorenz attractor).

264 3.3. Rosenstein method [2]

265 Despite this method is simple in realization compared to the previous ones and it is
 266 characterized by high computational speed, it does not directly yield λ_1 , but rather the function

$$267 \quad y(i, \Delta t) = \frac{1}{\Delta t} \langle \ln d_j(i) \rangle, \quad d_j(i) = \min_{x_j} \|x_j - x'_j\|, \quad (16)$$

268 where x_j is a given point, and x'_j denotes its neighbor.

269 The algorithm is based on the relationship between d_j and the Lyapunov exponents:
 270 $d_j(i) \approx e^{\lambda_1(i\Delta t)}$. The largest Lyapunov exponent is computed by estimating the inclination of the most
 271 linear part of the function. It should be mentioned that finding this linear part does not belong to easy
 272 tasks.

273 3.4. Kantz method [3]

274 The algorithm proposed by Kantz [3] computes the LLE by searching all neighbors in vicinity of
 275 the reference trajectory and estimates the average distance between neighbors and the reference
 276 trajectory as a function of time (or a relative time multiplied by the data sampling frequency). The
 277 algorithm is based on the following formula

$$278 \quad S(\tau) = \frac{1}{\tau} \sum_{t=1}^T \ln \left(\frac{1}{|U_t|} \sum_{i \in U_t} |x_{t+\tau} - x_{i+\tau}| \right), \quad (17)$$

279 where x_t stands for an arbitrary signal point; U_t is a neighborhood of x_t ; x_i is a neighbor of x_t ; τ
 280 – relative time multiplied by the sampling frequency; T – sample size; $S(\tau)$ – stretching factor in the
 281 region of a linear growth indicating a curve whose slope is equal to LE, i.e. $e^{\lambda\tau} \propto e^{S(\tau)}$. However,
 282 the assumption of a linear growth introduces new errors. Despite the fact that the method is useful
 283 and accurate for systems with known LEs, the choice of parameters and the region where the
 284 mentioned linear growth occurs is, in practice, arbitrary.

285 The method yields correct results if the value of the Lyapunov exponent is known a priori, and
 286 hence the space with the tangent equal to that value can be chosen.

287 *3.5. Computation of LLE based on synchronization of nonnegative feedback [6, 7]*

288 In reference [6], the method of LLE computation based on synchronization of coupled identical
 289 systems was proposed. The following k -dimensional discrete system:

$$290 \quad y'_i = f(y_i) \quad (18)$$

291 was considered, where $y \in \mathbb{R}^k$, $i \in (1, 2, \dots, k)$. The supplemental system was proposed in the
 292 following way

$$293 \quad x'_i = f(y_i + \Delta y_i), \quad (19a)$$

$$294 \quad y'_i = f(y_i), \quad (19b)$$

$$295 \quad \Delta y'_i = [f(y_i + \Delta y_i) - f(y_i)] \exp(-p), \quad (19c)$$

296 where $x, y, \Delta y \in \mathbb{R}^k$. Evolution of k -dimensional system is governed by k of LLEs. Consequently,
 297 synchronization of the perturbed and nonperturbed systems (19a) and (19b) is guaranteed by the
 298 following inequality

$$299 \quad p > \lambda_{max}, \quad (20)$$

300 where λ_{max} stands for LLEs of the studied systems (18).

301
 302 **Figure 1.** Synchronization for the case of logistic map
 303

304 In reference [7], systems with excitations are studied. The authors proposed the following way
 305 of coupling of identical systems:

$$306 \quad \dot{x} = f(x), \quad (21a)$$

$$307 \quad \dot{y} = f(y) + d(x - y). \quad (21b)$$

308 The presented approach is limited to application to the systems with known equations of
 309 evolutions, and the way of introducing the coupling of two identical systems depends on the
 310 considered system type.

311

312

313 *3.6. Jacobi method [32, 33]*

314 This method has been proposed in references [32, 33]. Its main idea is to use an algorithm, the
 315 scheme of which is illustrated in Fig. 2. A sphere of small radius ε is taken. After a few iterations m ,
 316 a certain operator T^m transforms this sphere into an ellipsoid having a_1, \dots, a_p half-axes. The sphere
 317 is stretched along the axes $a_1, \dots, a_s > \varepsilon$, where s is the number of positive LEs. For sufficiently small
 318 ε , the operator T^m is close to the sum of the shear operator and the linear operator A . The LLEs are
 319 computed as averaged eigenvalues of the operator A on the whole attractor.

320
 321 **Figure 2.** Transformation of a sphere of small radius into a counterpart ellipsoid
 322

323 A vector ζ_j is chosen, and a set $\{\zeta_{k_i}\}(i = 1, \dots, N)$ of i -th neighborhood vectors is found. The
 324 following set of vectors $y_i \equiv \zeta_{k_i} - \zeta_j$, where $\|y_i\| \leq \varepsilon$, is taken. After m successive iterations, the
 325 operator T^m transforms the vector ζ_j into ζ_{j+m} , and the vector ζ_{k_i} into $\zeta_{k_{i+m}}$. Consequently, the
 326 vectors y_i are transformed into

327
$$y_{i+m} = \zeta_{k_{i+m}} - \zeta_{j+m}.$$

328 Assuming that the radius ε is sufficiently small, one can introduce the operator A_j as follows

329
$$y_{i+m} = A_j y_i.$$

330 The operator A_j describes the system in variations. To estimate the operator A , the least-square
 331 method can be employed:

332
$$\min_{A_j} S = \min_{A_j} \frac{1}{N} \sum_{i=0}^N (y_{i+m} - A_j y_i)^2.$$

333 This yields the following system of equations of the dimension $n \times n$:

334
$$A_j V = C, (V)_{kl} = \frac{1}{N} \sum_{i=1}^N y_i^k y_i^l,$$

335
$$(C)_{kl} = \frac{1}{N} \sum_{i=1}^N y_{i+m}^k y_i^l,$$

336 where V, C are the matrices of the dimension $n \times n$, y_i^k stands for the k -th component of vector y_i ,
 337 and y_{i+m}^k is the k -th component of the vector y_{i+m} . If A is a solution to the mentioned equations, then
 338 the LEs can be found in the following way

339
$$\lambda_i = \lim_{n \rightarrow \infty} \frac{1}{n\tau} \sum_{j=1}^n \ln A_j e_i^j,$$

340 where $\{e_j\}$ is a set of basic vectors in tangent space ζ_j .

341 The algorithm can be realized in a way similar to the computation of LEs of the ODEs given
 342 analytically.

343 Let us choose an arbitrary basis $\{e^s\}$ and then follow the changes in the length of the vector
 344 $A_j e^s$. As the vectors $A_j e^s$ grow and their orientations change, it is necessary to perform their
 345 orthogonalization and normalization by using, for example, the Gramm-Schmidt procedure. Then,
 346 the procedure is repeated for the new basis.

347 The mentioned method allows one to estimate a spectrum of nonnegative LEs. However, the
 348 method has a serious disadvantage - it is highly sensitive to noise and errors.

349 *3.7. Modification of the neural network method [4, 5]*

350 We proposed a novel and counterpart method to compute LEs based on a modification of the
 351 neural network method (see Fig. 3)

Figure 3. One-layer neutral network

352

353

354

355

To realize the neural network algorithm, the following criteria were taken into account:

356

(i) the network is sensitive to the input information (information is given in the form of real
 357 numbers);

358

(ii) the network is self-organizing, i.e. it yields the output space of solutions only based on the
 359 inputs;

360

(iii) the neural network is a network of straight distribution (all connections are directed from
 361 input neurons to output neurons);

362

(iv) owing to the synapses tuning, the network exhibits dynamics couplings (in the learning
 363 process, the tuning of the synaptic coupling takes place ($dW / dt \neq 0$), where W stands for
 364 the weighted coefficients of the network).

Figure 4. Transition function

365

366

367

368 In the network, there is a hidden layer of neurons, which contains the hyperbolic tangent playing
 369 a role of an activation function (Fig. 4).

370

371 A derivative of the hyperbolic tangent is described by a quadratic function, as it is in the case of
 372 a logistic function. However, in contrast to the logistic function, the space of the values of the
 373 hyperbolic tangent falls within the interval (-1;1). This results in higher convergence in comparison
 to the standard logistic function.

374

Prognosis of \hat{x}_k of a scalar time series x_k is made by employing the following formula

375 $\hat{x}_k = \sum_{i=1}^n b_i \tanh(a_{i0} + \sum_{j=1}^d a_{ij} x_{k-j}),$ (22)

376 where n stands for the number of neurons, d is the number of the searched LE, a_{ij} stands for the
 377 $n \times (d + 1)$ matrix of coefficients, and b_i is the vector of length n . The matrix a_{ij} contains the
 378 coupling forces with respect to the network input and the vector b_i is used to control the input of
 379 each neuron to the network output, whereas the vector a_{i0} is used for relatively simple learning
 380 based on data with nonzero averaged value.

381 Weights a and b are chosen in a probabilistic way, and the dimension of the searched solution
 382 is decreased in the process of learning. The associated Gaussian is chosen in a way to have initial
 383 standard distribution 2^{-j} , centered with respect to zero in order to promote the most recent time
 384 delays (small values of j) in the phase space. The coupling forces are chosen in a way to minimize
 385 the averaged one step mean square error of a forecast

386
$$e = \frac{\sum_{k=d+1}^c (\hat{x}_k - x_k)^2}{c-d}.$$
 (23)

387 When the network is being trained, sensitivity of the output is defined in each time step by
 388 computing partial derivatives of all averaged points of the time series in each time step x_{k-j} :

$$\hat{S}(j) = \frac{1}{c-j} \sum_{k=j+1}^c \left| \frac{\partial \hat{x}_k}{\partial x_{k-j}} \right|. \quad (24)$$

389 In the case of the network given by (22), the partial derivatives have the following form

$$\frac{\partial \hat{x}_k}{\partial x_{k-j}} = \sum_{i=1}^n a_{ij} b_i \operatorname{sech}^2 \left(a_{i0} + \sum_{m=1}^d a_{im} x_{k-m} \right). \quad (25)$$

390 The largest value j is the optimal embedding dimension, and the key role is played by $\hat{S}(j)$ as
 391 in the false nearest neighbors method. The individual values of $\hat{S}(j)$ yield a quantitative estimate of
 392 the importance of each time step using the associated terms of the autocorrelation function or
 393 coefficients of the associated linear model.

394 The weight coefficients of the trained neural network are substituted to the matrix of solutions,
 395 and the input data are used to define the initial state. The computation of the spectrum is realized by
 396 employment of the generalized Benettin algorithm based on the obtained system of equations.

397 4. Wavelet methods

398 4.1. Gauss wavelets [13]

399 In the majority of engineering problems, the Fourier analysis is insufficient, since it deals with
 400 the averaged spectrum of the whole studied vibration signal and presents only a general picture of
 401 the signal. On the contrary, wavelets play a role of a microscope, which allows one to observe the
 402 spectrum at each time instant, and hence to detect a birth/death of the frequencies in time.

403 A wavelet transform of a 1D signal consists of its development with respect to a basis being
 404 usually a soliton-like function with given properties. The basis is obtained by displacement and
 405 tension/compression of a function, called a wavelet.

406 In the present work, the Gauss wavelets, defined as derivatives of the Gauss function, were used.
 407 Higher-order derivatives have many zero moments, and hence they allow one to obtain information
 408 about higher-order features hidden in the investigated signal.

409 The 8th order Gauss wavelets of the following form were employed

410
$$g_8(x) = -(105 - 420x^2 + 210x^4 - 28x^6 + x^8) \exp^{\frac{-x^2}{2}}.$$
 (26)

411 5. Analysis of classical dynamical systems by LEs and Gauss wavelets

412 In this section, we study simple classical systems (Tables 1, 4, 7, 10, 13) with emphasis put on a
 413 comparison of the LEs (Tables 2, 5, 8, 11, 14) obtained using the Wolf, Rosenstein and Kantz and

414 neural network methods. The convergence of the mentioned methods, depending on the number of
 415 iteration steps, is illustrated and discussed (Tables 3, 6, 9, 12, 15).

416 *5.1. Logistic map [10]*

417 A logistic map describes how the population changes with respect to time

$$X_{n+1} = RX_n(1 - X_n). \quad (27)$$

418 Here, X_n takes the values from 0 to 1 and presents the population in the n -th year, whereas X_0
 419 denotes the initial population (in the year 0); R is a positive parameter characterizing an increase in
 420 the population (computations were carried out for $R = 4$).

421 The first Lyapunov exponent and the Kaplan-Yorke dimension were estimated by Sprott [35].
 422 He obtained: $\lambda_1 = 0.693147181$, and the Kaplan-Yorke dimension: 1.0.

423 Tables 1, 4, 7, 10, 13 report the following results: a) signal; b) signal window; c) Poincaré pseudo-
 424 map; d) Fourier power spectrum; e) Gauss 8 wavelet; f) bifurcation diagram with LLE; g) graphs of
 425 LEs on the control parameters plane.

426 **Table 1.** Nonlinear characteristics of the oscillation signal: (a) time histories; (b) time window; (c)
 427 Poincaré pseudo-map; (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagram
 428 and LLE; (g) no graph of Lyapunov exponents (logistic map)

g) the system consists of one control parameter, and hence the graph of Lyapunov exponents cannot be constructed

429

Table 2. Spectrum of Lyapunov exponents and LLEs computed by different methods (logistic map)

LE spectrum			
Benettin method			Neural network
(LEs): 0.69315			LEs: 0.69290
Dimension Kaplan-York (DKY): 1			DKY: 1
Kolmogorov-Sinai entropy (KSE): 0.69315			EKS: 0.69290
Phase volume compression (PVC): 0.69315			PVC: 0.69290
LLE			
Wolf method	Rosenstein method	Kantz method	Method of synchronization
LLE: 0.99683	LLE: 0.690553	LLE: 0.31321	LLE: 0.696

430

431
432

Table 3. Fourier power spectra and Gauss wavelet spectra obtained for $\Delta t = 1, 2$ and the LLEs computed by different methods (logistic map)

DKY: 1 KSE: 0.69290 PVC: 0.69290	DKY: 1.00000 KSE: 0.69107 PVC: 0.69107
--	--

433 The power spectrum is noisy and it is not possible to distinguish the dominating frequency. A
 434 similar situation is exhibited by the Gauss wavelet, where a large set of frequencies is visible. They
 435 are varied with respect to power, the whole interval of the signal changes, and the estimated LLEs
 436 correlate with the bifurcation diagram for the same interval of the control parameter r .

437 As can be seen in Table 2, all computational methods were compared with Benettin's original
 438 results. Good coincidence was exhibited by the neural network method, the Rosenstein method and
 439 the method of synchronization. Kantz/Wolf method gave decreased/increased value of LLE in
 440 comparison to the original value.

441 *5.2. Hénon map [8]*

442 The Hénon map takes a point (X_n, Y_n) and maps it into another point by the following
 443 formulas

$$444 \quad \begin{aligned} X_{n+1} &= 1 - aX_n^2 + Y_n, \\ &Y_{n+1} = bX_n. \end{aligned} \quad (28)$$

445 The following parameters are fixed for numerical experiments: $a = 1.4$, $b = 0.3$. Since the
 446 equations (28) do not correspond to a real object, the parameters are replaced with fixed values. Sprott
 447 [34] computed the Lyapunov spectrum and the Kaplan-Yorke dimension of the map using the
 448 Benettin method [17] by solving (28). He obtained the following LEs: $\lambda_1 = 0.419217$, $\lambda_2 = -1.623190$,
 449 and the Kaplan-Yorke dimension: 1.258267.

450
 451
 452
 453
 454

Table 4. Characteristics of the Hénon map: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graph of Lyapunov exponents

455
 456 Similarly to the logistic map, the power spectrum exhibits a uniform noisy shape. However, one
 457 can distinguish a dominating frequency ($\omega_1 \approx 0.45$). It is also visible on the wavelet spectrum as a
 458 region of the largest amplitudes along the whole signal. Plots of the change in the LLE correlate with
 459 bifurcation diagrams for the same interval of changes in the parameters a and b . Dynamics of the LLE
 460 changes increases with the increase in both control parameters. Starting with the graphs of LEs for a
 461 given set of control parameters, the system mainly remains in a periodic regime, but it exhibits chaotic
 462 dynamics for large values of the control parameters.
 463

464

Table 5. Lyapunov exponents spectrum and LLEs computed by different methods (Hénon map)

Spectrum of LLEs	
Benettin method	Neural network
LEs: 0.41919 -1.62316	LEs: 0.41919 -1.62316
DKY: 1.25826	DKY: 1.25826
EKS: 0.41919	EKS: 0.41919
PVC: -1.20397	PVC: -1.20397
LLEs	
Wolf method	Rosenstein method
LLE: 0.38788	LLE: 0.414218
Kantz method	Synchronization method
LLE: 0.17759	LLE: 0.40608

465

466 Beginning from the results shown in Table 5, the majority of the employed computational
 467 methods yielded good results. However, the most accurate results were obtained by the neural
 468 network method (for whole spectrum of LEs), the Rosenstein method, and the method of
 469 synchronization (in the case of LLEs). The Wolf and Kantz methods gave decreased estimated values
 470 of the LLEs.

471

Table 6. Fourier power spectra and Gauss wavelet spectra obtained for $\Delta t = 1, 2$ and the computed
 472 LLEs by different methods (Hénon map)

$\Delta t = 1$	$\Delta t = 2$
Fourier power spectrum	
Gauss wavelet	
LLE (Wolf)	
0.4158	0.39734
LLE (Rosenstein)	
0.41637	0.400635
LLE (Kantz)	
0.17759	0.105365
LLE (synchronization)	
0.40608	0.40510
All LEs (Benettin)	
LEs: 0.41919 -1.62316	LEs: 0.41917 -1.62315
DKY: 1.25826	DKY: 1.25825
EKS: 0.41919	EKS: 0.41917
PVC: -1.20397	PVC: -1.20397
All LEs (neural network)	
LEs: 0.41919 -1.62316	LEs: 0.40924 -1.61321
DKY: 1.25826	DKY: 1.25368

KSE: 0.41919 PVC: -1.20397	KSE: 0.40924 PVC: -1.20397
-------------------------------	-------------------------------

474

475 5.3. Hyperchaotic generalised Hénon map [9]

476 To obtain the hyperchaotic Hénon map, one needs to take a point (X_n, Y_n, Z_n) and map it into
477 the following one:

$$478 \quad \begin{aligned} X_{n+1} &= a - aY_n^2 - bZ_n, \\ Y_{n+1} &= X_n, \\ Z_{n+1} &= Y_n. \end{aligned} \quad (29)$$

479

480 The computations were carried out for the following fixed parameters: $a = 3.4$, $b = 0.1$. The
481 Lyapunov spectrum reported in reference [9] is: 0.276; 0.257; 4.040.

482

483 **Table 7.** Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d)
484 Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagram and LLE; (g) graph of
485 Lyapunov exponents (generalized Hénon map)

486

487 One can distinguish a large number of frequencies in the power spectrum. Frequencies with the
 488 largest amplitude are located in the interval $[0.15; 0.3]$ (frequencies $\omega_1 - \omega_4$), but the remaining part
 489 of the spectrum is noisy. This interval corresponds to the brightest region on the Gauss wavelet,
 490 which is correlated with the values of the power spectrum. Changes in LLEs coincide with the
 491 bifurcation diagrams constructed for the same intervals of changes in the control parameters a and b .
 492 Dynamics of LLEs increases with the increase in the control parameters. As in the case of the Hénon
 493 map, the chart of LEs for the selected control parameters exhibits, for a majority of studied
 494 parameters, periodic dynamics. It transits into chaos for $a \approx 1.4$, and is almost suddenly shifted into
 495 hyper-chaos (2 positive LEs).

496 **Table 8.** Lyapunov exponents spectrum and LLEs computed by different methods (generalized
 497 Hénon map)

Spectrum of LEs	
Benettin method	Neural network
LEs: 0.27628 0.25770 -4.04053	LEs: 0.29251 0.27104 -4.04583
DKY: 2.13215	DKY: 2.13929
EKS: 0.53397	EKS: 0.56355
PVC: -3.50656	PVC: -3.48227
LLEs	
Wolf method	Rosenstein method
LLE: 0.45214	LLE: 0.27930
Kantz method	synchronization method
LLE: 0.26601	0.27250

498

499 Good results were obtained by the Benettin, Rosenstein and synchronization methods
 500 (divergence from the third decimal place). The neural network yielded slightly increased estimates

501 of two first LEs, whereas the third LE was estimated almost exactly. The Kantz method gave a
 502 decreased result in comparison to reference data. The Wolf method resulted in the largest error.

503
 504 **Table 9.** Fourier power spectra and Gauss wavelet spectra obtained for $\Delta t = 1, 2$ and the computed
 505 LLEs by different methods (generalized Hénon map)

$\Delta t = 1$	$\Delta t = 2$
Fourier power spectrum	
Gauss wavelet	
LLE (Wolf)	
0.45214	0.46706
LLE (Rosenstein)	
0.27930	0.27459 (0.62515)
LLE (Kantz)	
0.26601	
LLE (synchronization)	
0.27250	0.27200
All LEs (Benettin)	
LEs: 0.27628 0.25770 -4.04053 DKY: 2.13215 KSE: 0.53397 PVC: -3.50656	LEs: 0.27487 0.25631 -4.03774 DKY: 2.13155 EKS: 0.53118 PVC: -3.50656
All LEs (neural network)	
LEs: 0.29251 0.27104 -4.04583 DKY: 2.13929 KSE: 0.56355 PVC: -3.48227	LEs: 0.26304 0.24387 -4.14321 DKY: 2.12235 KSE: 0.50691 PVC: -3.63630

506

507 *5.4. Rössler attractor [11]*

508 The following Rössler system of ODEs was investigated

509

$$\begin{cases} \dot{x} = -y - z, \\ \dot{y} = x + ay, \\ \dot{z} = b + z(x - c), \end{cases} \quad (30)$$

510 and the computations were carried out for the following fixed parameters $a = b = 0.2$ and $c = 5.7$.

511 The original study yielded the Lyapunov spectrum: 0.0714, 0, -5.3943, and the Kaplan-Yorke
 512 dimension equal to 2.0132.

513
 514 **Table 10.** Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map;
 515 (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graphs of
 516 Lyapunov exponents (Rössler attractor)

517

518

519 The power spectrum contains the fundamental frequency ω_1 , which is accompanied by damped
 520 bursts (frequencies $\omega_2 - \omega_{10}$). In the whole time interval, the Gauss wavelet exhibits the brightest
 521 region of the fundamental frequency with darker peaks going to zero. Thus, the picture is analogous
 522 to the power spectrum. Contrarily to the studied maps, the bifurcation diagrams have a more
 523 complex structure. However, there is still correlation with the changes in LLEs for the corresponding
 524 control parameters. The parameter b has the most smallest influence on the change in LLE. Graphs of
 525 LLEs also exhibit a more complex structure. Borders of different vibration kinds have complex forms,
 526 which illustrates the increase in the system complexity. Aside from the chaos and hyper-chaos zones,
 527 there are drops of hyper hyper-chaos (3 positive LEs).

528 As far as Table 11 is considered, the best results were yielded by the Benettin and Rosenstein
 529 methods. The method of neural networks gave very good results in the case of estimates of two first
 530 LEs, but underestimated the third exponent. The Wolf method yielded smaller value of the first
 531 exponent compared to the reference data. The most underestimated results were given by the Kantz
 532 method.

533

534

535

536

537

Table 11. Lyapunov exponents spectrum and LLEs computed by different methods (Rössler attractor)

Spectrum of LEs	
Benettin method	Neural network
LE: 0.07135 0.00000 -5.39420	LE: 0.07593 -0.000060 -0.78178
DKY: 2.01323	DKY: 2.09635
KSE: 0.07135	EKS: 0.07593
PVC: -5.32285	PVC: -0.70646
LLEs	
Wolf method	Rosenstein method
LLE: 0.05855	LLE: 0.0726
	Kantz method
	LLE: 0.0208

538

539

540

Table 12. Fourier power spectra and Gauss wavelet spectra obtained for $\Delta t = 0.05, 0.1, 0.15, 0.2$ and the computed LLEs by different methods (Rössler attractor)

LLE (Wolf)			
0.05855			
LLE (Rosenstein)			
0.083	0.0726	0.06553	0.606
LLE (Kantz)			
0.0234	0.0208	0.02133	0.0215
All LEs (Benettin)			
LES: 0.07156 0.00000 - 5.38768	LES: 0.06959 0.00000 - 5.21949	LES: 0.06789 0.00000 - 4.34385	LES: 0.06205 -0.00001 - 2.84111
DKY: 2.01328	DKY: 2.01333	DKY: 2.01563	DKY: 2.02184
KSE: 0.07156	KSE: 0.06959	KSE: 0.06789	KSE: 0.06205
PVC: -5.31612	PVC: -5.14990	PVC: -4.27596	PVC: -2.77906
All LEs (neural network)			
LES: 0.06259 -0.07984 - 0.32528	LES: 0.07340 -0.02681 - 0.23525	LES: 0.07374 0.00057 - 0.36909	LES: 0.07983 -0.02816 - 0.91182
DKY: 1.78396	DKY: 2.19807	DKY: 2.20135	DKY: 2.05667
KSE: 0.06259	KSE: 0.07340	KSE: 0.07432	KSE: 0.07983
PVC: -0.34253	PVC: -0.18865	PVC: -0.29477	PVC: -0.86015

541

542 The carried out numerical experiments showed that using the different sampling frequency, the
 543 power spectrum and wavelet spectrum were not changed. This was also validated by results obtained
 544 by the Benettin, neural networks and Rosenstein methods which yielded the results very close to
 545 original ones. The Kantz method gave underestimated results for different frequency selection,
 546 correlating with the results obtained for the standard sample size.

547 *5.5. Lorenz attractor [12]*

548 The input hydrodynamic system is governed by the following ODEs:

$$549 \quad \begin{cases} \dot{x} = \sigma(y - x), \\ \dot{y} = x(r - z) - y, \\ \dot{z} = xy - bz, \end{cases} \quad (31)$$

550 where r stands for the normalized Rayleigh number (nondimensional number defining fluid behavior
 551 under gradient):

$$552 \quad r = \frac{g\beta\Delta TL^3}{\nu\chi}. \quad (32)$$

553 In the above equation, the following notation is used: g - gravity of Earth; L - characteristic
 554 dimension of the fluid space; ΔT - temperature difference between fluid walls; ν - kinematic fluid
 555 viscosity, χ - thermal conductivity of the fluid; β - coefficient of heat fluid extension; σ - Prandtl
 556 number (takes into account heat source property) governed by the following equation

$$557 \quad \sigma = \frac{\nu}{\alpha} = \frac{\eta C_p}{\kappa}, \quad (33)$$

558 where: $\nu = \eta / \rho$ - kinematic viscosity, η - dynamic viscosity, ρ - density, $\alpha = \frac{\kappa}{\rho C_p}$ -
559 temperature transfer coefficient, κ - heat transfer coefficient, C_p - specific heat capacity under
560 constant pressure; and ρ - information about the geometry of the convective cell.

561 The following parameters were fixed: $\sigma = 10.0$, $r = 28.0$, $b = 8/3$. The original results follow:
562 LEs: 0.9056, 0, -14.5723; the Kaplan-York dimension: 2.06215.

563

564 **Table 13.** Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d) Fourier
 565 frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graphs of Lyapunov exponents
 566 (Lorenz attractor)

567 The power spectrum of the attractor uniformly decreases when approaching a finite frequency,
 568 and there is a lack of frequencies with a strongly dominating amplitude. The latter observation is also
 569 verified by the Gauss wavelet spectrum. The bifurcation diagrams, similar to those for the Rössler
 570 system, exhibit a complex structure, but the correlation to the LLEs change is conserved. The

571 richest/lowest dynamics of LLE is obtained for changing parameter r/σ . Based on the reported
 572 graphs of Les, one can conclude that the system dynamics is fully chaotic. There are also narrow
 573 windows of hyper-chaotic dynamics.

574
 575 **Table 14.** Lyapunov exponents spectrum and LLEs computed by different methods (Lorenz
 576 attractor)

Spectrum of LEs	
Benettin method	Neural network method
LE: 0.90557 0.00000 -14.57214	LE: 0.9490 0.0610 -13.9101
DKY: 2.06214	DKY: 2.07261
EKS: 0.90557	EKS: 1.0101
PVC: -13.66656	PVC: -12.9000
LLEs	
Wolf method	Rosenstein methhod
LLE: 0.81704	LLE: 0.836
	LLE: 0.807185

577
 578
 579 A comparison of the results reported in Table 14 with the original results exhibit an excellent
 580 coincidence of the Benettin method (original results) and the neural network method (+4.79%). The
 581 Wolf and Rosenstein methods yielded the underestimated results of the LLE value. The worst
 582 estimation was obtained by Kantz method.

583
 584 **Table 15.** Fourier power spectra and Gauss wavelet spectra obtained for $\Delta t = 0.005, 0.01, 0.015, 0.02$ and the
 585 computed LLEs by different methods (Lorenz attractor)

LE: 0.9490 0.0610 -		
13.9101		
DKY: 2.07261		
EKS: 1.0101		
PVC: -12.9000		

586

587 Employing different sampling frequency does not change a picture of Fourier and wavelet
 588 power spectra. This was also validated by the Benettin and Rosenstein methods, which yield the
 589 results very close to the original values in spite of the arbitrary choice of the sampling frequency.

590 **6. Concluding remarks**

591 Analysis of the dynamics of the studied classical system by different methods leads to a
 592 conclusion that the most perspective and useful is the modified method of neural networks [4, 5]. It
 593 gives excellent convergence to the original results and, as the only one (besides of the Benettin
 594 method), allows to compute the spectrum of all Lyapunov exponents. In addition, very good results
 595 were obtained by the Rosenstein method for all studied systems. However, this method can be used
 596 to estimate only the largest Lyapunov exponents.

597 As far as convergence was considered, the Kantz method always yielded underestimated values,
 598 whereas the Wolf method gave either over- and underestimated values of LEs.

599 The method of synchronization worked reasonably well for the maps, but it was not useful in
 600 studying differential equations (the Rössler or Lorenz systems). The mentioned systems require the
 601 use of another type of coupling, which is a drawback of the method.

602 The carried out analysis of the works devoted to feasible methods for computation of Lyapunov
 603 exponents shows that there is no universal, verified and general method to compute the exact (in the
 604 sense of numerics) values of the Lyapunov exponents. This observation leads to the conclusion that
 605 there is a need to employ qualitatively different methods while checking the reliability of “true
 606 chaotic results”. Furthermore, the analysis carried out in this paper is a helping tool to study systems
 607 of an infinite dimension. Such an analysis is the subject of the second paper part.

608 **Acknowledgments:** This work has been supported by the grants the Russian Science Foundation, RSF 16-19-
 609 10290.

610 **Author Contributions:** N.P. Erofeev, V. Dobriyan and M.A. Barulina performed the numerical study; A.V.
 611 Krysko and V.A. Krysko analyzed the obtained results; J. Awrejcewicz wrote the paper.

612 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the design
 613 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
 614 decision to publish the results.

615

616 **References**

1. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series. *Phys. D* **1985**, *16*, 285–317.
2. Rosenstein M.T., Collins J.J., De Luca C.J. A practical method for calculating largest Lyapunov exponents from small data sets. *Phys. D* **1993**, *65*, 117–134.
3. Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time series. *Phys. Lett. A* **1994**, *185*, 77–87.
4. Dobriyan V., Awrejcewicz J., Krysko V.A., etc. On the Lyapunov exponents computation of coupled non-linear Euler-Bernoulli beams. *Proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing*, Civil-Comp Press, Stirlingshire, UK, **2013**, Paper 53.
5. Krysko A.V., Awrejcewicz J., Kutepov I.E., Zagniboroda N.A., Dobriyan V., Krysko V.A. Chaotic dynamics of flexible Euler-Bernoulli beams. *Chaos* **2014**, *34*(4), 043130-1 - 043130-25.
6. Stefański A. Estimation of the largest Lyapunov exponent in systems with impacts. *Chaos, Sol. Fract.* **2000**, *11*(15), 2443-2451.

630 7. Stefański A., Kapitaniak T. Estimation of the dominant Lyapunov exponent of non-smooth systems on the
631 basis of maps synchronization. *Chaos, Sol. Fract.* **2003**, *15*(2), 233–244.

632 8. Hénon M. A two-dimensional mapping with a strange attractor. *Comm. Math. Phys.* **1976**, *50*(1), 69–77.

633 9. Baier G., Klein M. Maximum hyperchaos in generalized Henon maps. *Phys. Lett. A* **1990**, *151*(6–7), 281–284.

634 10. May, R. Simple mathematical model with very complicated dynamics. *Nature* **1976**, *261*, 45–67.

635 11. Peitgen H.-O., Jürgens H., Saupe D. The Rössler Attractor. In *Chaos and Fractals: New Frontiers of Science*.
636 Springer: Berlin, 2004, pp. 636–646.

637 12. Lorenz E.N. Deterministic nonperiodic flow. *J. Atm. Sci.* **1963**, *20*(2), 130–141.

638 13. Astafeva N.M. Wavelet-analysis: basic theory and examples of applications. *Succ. Phys. Sci.* **1996**, *166*(11),
639 1145–1170.

640 14. Awrejcewicz J., Kudra G., Wasilewski G. Experimental and numerical investigation of chaotic regions in
641 the triple physical pendulum. *Nonlin. Dyn.* **2007**, *50* (4), 755–766.

642 15. Dmitriev A.S., Kislov V.Ya. *Stochastic Oscillations in Radiophysics and Electronics*. Nauka: Moscow, **1989**.

643 16. Awrejcewicz J., Krysko A.V., Papkova I.V., Krysko V.A. Routes to chaos in continuous mechanical systems.
644 Part 3: The Lyapunov exponents, hyper, hyper-hyper and spatial–temporal chaos. *Chaos, Solit. Fract.* **2012**,
645 45, 721–736.

646 17. Benettin G., Galgani L., Strelcyn J.M. Kolmogorov entropy and numerical experiments. *Phys. Rev. A* **1976**,
647 14, 2338–2345.

648 18. Oseledec V.I. A multiplicative ergodic theorem. *Trans. Mosc. Math. Soc.* **1968**, *19*, 197–231.

649 19. Pesin Ya.B. Characteristic Lyapunov exponents and ergodic properties of smooth dynamical systems with
650 invariant measure. *Dokl. Akad. Nauk. SSSR* **1976**, *226*, 774–777.

651 20. Golovko V.A. Neural networks methods of quantifying chaotic process. *Proceedings of VII Conference
652 'Lectures for Neural Informatics'*. Moscow, **2005**, pp. 43–88 (in Russia).

653 21. Vallejo J.C., Sanjuan M.A.F. Predictability of orbits in coupled systems through finite-time Lyapunov
654 exponents. *New J. Phys.* **2013**, *15*, 113064.

655 22. Vallejo J.C., Sanjuan M.A.F. *Predictability of Chaotic Dynamics. A Finite-time Lyapunov Exponents Approach*.
656 Springer: Berlin, **2017**.

657 23. Devaney R.L. *An Introduction to Chaotic Dynamical Systems*. Addison-Wesley: Reading, Mass., **1989**.

658 24. Banks J., Brooks J., Davis G., Stacey P. On Devaney's definition of chaos. *Am. Math. Month.* **1992**, *99*(4), 332–
659 334.

660 25. Knudsen C. Chaos without periodicity. *Am. Math. Month.* **1994**, *101*, 563–565.

661 26. Gulick D. *Encounters with Chaos*. McGraw-Hill: New York, **1992**.

662 27. Awrejcewicz J., Krysko V.A., Papkova I.V. Routes to chaos in continuous mechanical systems. Part 1.
663 Mathematical models and solution methods. *Chaos, Sol. Fract.*, **2012**, 687–708.

664 28. Awrejcewicz J., Krylova E.Y., Papkova I.V., Krysko V.A. Wavelet-based analysis of the regular and chaotic
665 dynamics of rectangular flexible plates subjected to shear-harmonic loading. *Shock Vib.* **2012**, *19*, 979–994.

666 29. Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. *Science* **1977**, *197*, 287–289.

667 30. Hudson J.L., Mankin J.C. Chaos in the Belousov-Zhabotinskii reaction. *J. Chem. Phys.* **1981**, *74*, 6171.

668 31. Taylor G.I. Stability of a viscous liquid contained between two rotating cylinders. *Phil. Trans. Royal Society
669 A* **1923**, *223*(605–615), 289–343.

670 32. Sato S., Sano M., Sawada Y. Practical methods of measuring the generalized dimension and the largest
671 Lyapunov exponent in high dimensional chaotic systems. *Prog. Theor. Phys.* **1987**, *77*, 1–7.

672 33. Eckmann J.-P., Ruelle D. Ergodic theory of chaos and strange attractors. *Rev. Mod. Phys.* **1985**, *57*, 617–656.

673 34. Sprott J.C. *Chaos and Time Series Analysis*. Oxford University Press: Oxford, **2003**.

674 35. Sprott J.C. *Elegant Chaos. Algebraically Simple Chaotic Flows*. World Scientific: Singapore, **2010**.

675