Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2018 d0i:10.20944/preprints201801.0154.v1

1 Type of the Paper (Article)

2 Quantifying Chaos by Various Computational

3 Methods. Part 1: Simple Systems

4 J. Awrejcewicz!, A.V. Krysko?, N.P. Erofeev?, V. Dobriyan?, M.A. Barulina®, V.A. Krysko¢

5

6 ! Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics,

7 1/15 Stefanowski St., 90-924 Lodz, POLAND; jan.awrejcewicz@p.lodz.pl

8 2 National Research Tomsk Polytechnic University, Cybernetic Institute, 30 Lenin Avenue, 634050 Tomsk

9 and Saratov State Technical University, Department of Applied Mathematics and Systems Analysis,
10 77 Politechnicheskaya Str.,410054 Saratov, RUSSIAN FEDERATION; anton krysko@gmail.com
11 3 Saratov State Technical University, Department of Mathematics and Modeling, 77 Politechnicheskaya Str.,
12 410054 Saratov, RUSSIAN FEDERATION; erofeevnp@mail.ru
13 4 Saratov State Technical University, Department of Mathematics and Modeling, 77 Politechnicheskaya Str.,
14 410054 Saratov, RUSSIAN FEDERATION; dobriy88@yandex.ru
15 5 Russian Academy of Science, Precision Mechanics and Control Institute, 24 Rabochaya Str., 410028,
16 Saratov, RUSSIAN FEDERATION; marina@barulina.ru
17 ¢ Saratov State Technical University, Department of Applied Mathematics and Systems Analysis,
18 77 Politechnicheskaya Str., 410054 Saratov, RUSSIAN FEDERATION;; tak@san.ru
19
20 Abstract: The first part of the paper was aimed at analyzing the given nonlinear problem by
21 different methods of computation of the Lyapunov exponents (Wolf method [1], Rosenstein method
22 [2], Kantz method [3], method based on the modification of a neural network [4, 5], and the
23 synchronization method [6, 7]) for the classical problems governed by difference and differential
24 equations (Hénon map [8], hyper-chaotic Hénon map [9], logistic map [10], Rossler attractor [11],
25 Lorenz attractor [12]) and with the use of both Fourier spectra and Gauss wavelets [13]. It was shown
26 that a modification of the neural network method [4, 5] makes it possible to compute a spectrum of
27 Lyapunov exponents, and then to detect a transition of the system regular dynamics into chaos,
28 hyper-chaos, hyper hyper-chaos and deep chaos [14-16]. Different algorithms for computation of
29 Lyapunov exponents were validated by comparison with the known dynamical systems spectra of
30 the Lyapunov exponents. The carried out analysis helps comparatively estimate the employed
31 methods in order to choose the most suitable/optimal one to study different kinds of dynamical
32 systems and different classes of problems in both this and the next paper parts.
33 Keywords: Lyapunov exponents, Wolf method, Rosenstein method, Kantz method, neural network
34 method, method of synchronization, Benettin method, Fourier spectrum, Gauss wavelets.

35  1.Introduction

36 The first part of the present work was focused on the numerical investigation of classical
37  dynamical systems to estimate velocity of divergence of the neighborhood trajectories with the help
38  of a measure coupled with the Kolmogorov entropy [17] (or metrics). In reference [17], based on the
39  mathematical results of Oseledec [18] and Pesin [19], it was shown that the numerically imposed
40  relations can be treated as exact/true values. The method proposed by Wolf [1] is most widely used
41  to verify and study chaotic dynamics. However, also the Rosenstein [2] and Kantz [3] methods are
42  often employed to estimate the largest Lyapunov exponents. The state-of-the-art of papers devoted
43 to the theoretical background of the Lyapunov exponents and methods of their computations was
44 carried out by Golovko [20]. In particular, the method of the choice of an embedding dimension was
45  described. The method of the correlating dimension, the false nearest neighbor method and the
46  method of gamma-test were presented based on the Hénon and Lorenz attractors. In particular, the
47 occurrence of high computational difficulties was observed in the case of using the Wolf method and
48  its marginally successful employment to small values of the studied data.

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.


http://dx.doi.org/10.20944/preprints201801.0154.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/e20030175

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2018 d0i:10.20944/preprints201801.0154.v1

2 0f 26

49 To avoid the above-mentioned drawbacks, a novel neural network-based algorithm to estimate
50  thelargest Lyapunov exponents by considering only one coordinate has been proposed. Golovko [20]
51  reported the neural network algorithm for computation of a full spectrum of Lyapunov exponents.
52 A comparison of the results obtained by Golovko with the exact values of the Lyapunov exponents
53  of the Lorenz and Hénon systems exhibited small errors.

o4 In references [6, 7], the method of largest Lyapunov computation using the synchronization
55  phenomena of identical systems has been proposed. A few types of coupling have been studied,
56  depending on the type of the considered system. It has been pointed out that large computational
57  time is required to achieve full synchronization.

58 The method proposed in references [4, 5] is particularly suitable to study chaotic dynamics of
59  continuous mechanical systems. It should be emphasized that, owing to the research results
60  published by the authors of the present paper, the analysis of nonlinear dynamics based on the
61  estimation of the Lyapunov exponents yields a conclusion that the mentioned problems have not
62  been satisfactorily solved yet [1-5].

63 More recently, Vallejo and Sanjuan [21, 22] have studied the predictability of orbits in coupled
64  systems by means of finite-time Lyapunov exponents. This approach allowed them to estimate how
65  close the computed chaotic orbits were to the real/true orbits, being characterized by the systems
66  shadowing properties.

67 In the present paper, classical systems (Hénon map [8], hyper-chaotic Hénon map [9], logistic
68  map [10], Rossler attractor [11], and Lorenz attractor [12]) were analyzed with Gauss wavelets,
69  Fourier spectra and Poincaré pseudo-maps.

70 It is known that the fundamental property of chaos is the existence of strong sensitivity to a
71 change of the initial conditions. The definition of chaos given first by Devaney in 1989 [23] includes
72 three fundamental parts. In addition to sensitivity to the variation of the initial conditions, a condition
73 of mixing, known also as the transitivity condition and the regularity condition, measured by the
74 density of the periodic points or classical notion of periodicity is also included. In 1992, Banks et al.
75 [24] proved that the condition of sensitivity to the initial condition can be neglected, i.e. conditions of
76  transitivity and periodicity imply sensitivity condition.

77 Knudsen [25] defined chaos as a function given on a bounded metric space which has a dense
78  orbit and essentially depends on initial conditions.
79 Owing to chaos definition proposed by Gulick [26], chaos exists when either there is essential

80  dependence on the initial conditions or a chaotic function has positive Lyapunov exponents in each
81  point of the space, and which finally does not tend to a periodic orbit. This definition is also employed
82  in the present work.

83 2. Lyapunov Exponents

84  2.1. The largest Lyapunov exponent

85 The following dynamical system was considered

86 x = f(x), 1)
87  where x stands for the N-dimensional state vector.

88 Two closed phase points x1 and x2 were chosen (in the phase space). They stand for the origins

89 of the trajectories (x;(t) and x,(t)). The change in the distance d between two corresponding points
90  of these trajectories under evolution of system (1) can be monitored by:

d(®) = [E@D)] = x2(t) — 21 (D). (2)
91 If the dynamics of system (1) is chaotic, d(t) increases exponentially in time, i.e.
d(t) = d(0)e*. 3)
92 This yields the average velocity of the exponential divergence of the trajectories
d(t)]
o
d(O) (4)

93  or more precisely,
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94 Quantity & is known as the Kolmogorov-Sinai entropy (KS-entropy). Employing the KS-entropy,

95  one can define the studied process, i.e. quantify if the process is regular or chaotic. In particular, if

96  the system dynamics is periodic or quasi-periodic, the distance d(t) is not inversed in time and the

97  KS-entropy is equal to zero (h = 0). If the system dynamics tends to a stable fixed point d(t) — 0, then

98  h<0. Contrarily, KS-entropy is positive (h > 0) if one deals with chaotic dynamics.

99 KS-entropy is the maximum characteristic Lyapunov exponent that enables one to follow
100  velocity of information lost with respect to the initial system state.

101  2.2. Results

102 The spectrum of Lyapunov exponents makes it possible to qualitatively quantify a local property
103  with respect to stability of an attractor. Consider a phase trajectory x(t) of the dynamical system (1),
104  starting from the point x(0), as well as its neighborhood trajectory x;(t) as follows

105 x, () = x(t) + £(¢). (6)
106 The following function can be constructed

| E@I
107 A[£(0)] = hm 'E(‘”' @)

108  which is defined on the vectors of initial dlsplacement £(0) such that |£(0)| = &, where € 0.

109 All possible rotations of the initial displacements vector with respect to n directions of the N-
110  dimensional phase space of the function (7) will suffer the jump-like changes in the finite series of the
111 values 4,4, 4,...,4,. These values of the function 1 are called Lyapunov exponents (LEs).

112  Positive/negative values of LEs can be viewed as a measure of the averaged exponential
113 divergence/convergence of the neighborhood trajectories.

114 A sum of LEs stands for an averaged divergence of the phase trajectories flow. In the case of a
115  dissipative system, i.e. a system possessing an attractor, this sum is always negative. As numerical
116  case studies show, in some dissipative systems, the LEs are invariant with respect to all chosen initial
117  conditions. This is why a spectrum of LEs can be understood as the property of an attractor.

118 Usually, LEs are presented in a sequence of LE values in decreasing order. For instance, symbols
119 (+, 0, -) mean that for the analyzed attractor, there is one direction in a 3D space, where exponential
120  stretching is exhibited, the second direction indicates neutral stability, and the third one - exponential
121  compression. It should be noted that all attractors different from stable stationary points always have
122  at least one LE equal to zero (in average sense, all points of a trajectory are bounded by a compact
123 manifold and they cannot exhibit divergence or converge).

124 In what follows, relationships between the Lyapunov exponents and the properties and types of
125  attractors are illustrated and discussed.

126 1) n =1. In this case only a stable fixed point can be an attractor (node or focus). There exists one
127  negative LE denoted by 4, = (-

128 2) n = 2. In 2D systems, there are two types of attractors: stable nonmovable points and limit
129  cycles. The corresponding LEs follow:

130 (4,4;) =(=-) - stable nonmovable/fixed point;

131 (4,4;,) =(0,-) - stable limit cycle (one exponent is equal to zero).

132 3) n=_3.In 3D phase space, there exist four types of attractors: stable points, limit cycles, 2D tori
133  and strange attractors. The following set of LEs characterizes possible dynamical situations to be met:
134 (4,4, 4) = (=,——) - stable nonmovable point;

135 (4, 4;,4) =(0,—,—) - stable limit cycle;

136 (A4, 4,,4;) =(0,0,—) —stable 2D tori;

137 (4,4, 43) = (+,0,—) - strange attractor.
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138 In the majority of studied problems, analytical definition of LEs is not possible, since the
139  analytical solution to the governing differential equations must be known. However, there exist
140  reliable algorithms to find all Lyapunov exponents numerically.

141 3. Methods of analysis of Lyapunov exponents

142  3.1. Benettin method [17]

143 We began with numerical investigation of the Kolmogorov entropy of the Hénon-Heiles model.
144 Numerical computations were carried out with accuracy up to 14 digits by means employing the so-
145  called method of central points. Observe that, independently of the results reported in reference [27],
146  asimilar method was used in reference [28].

147 Based on the Lyapunov exponents, the ergodic properties of dissipative dynamical systems with
148  a few degrees of freedom were numerically studied employing the Lorenz system. The system
149  exhibited the exponents spectrum of the (+, 0, -) type, and the exponents had the same values for the
150  orbits beginning from an arbitrary point on the attractor. It means that the ergodic property of a
151  general dynamical system can be quantified by a spectrum of the characteristic Lyapunov exponents.
152  Below, a brief description of the used method was presented.

153 Let a point X, belong to the attractor A of a dynamical system. An evolution trajectory of the

154  point X, is referred to as a real/true trajectory. A positive quantity &, being significantly less than
155  the attractor dimension, is chosen. Furthermore, an arbitrary perturbed point % is chosen in a way
156  tosatisfy |%—x,|=¢. The evolution of points X, and % is considered in a short time interval T,
157  and new points are denoted by X and %, respectively. A vector AX =%-X is called the
158  perturbation vector. The first estimate of the exponent is found with the use of the following formula

1 A
159 %o- L lIA% I ®)
T &
160 The time interval T is chosen in a way to keep the amplitude of perturbation less than the linear

161  dimensions of the phase space nonhomogenity and the attractor dimension. The normalized
162  perturbation vector Ax =&AX /|| Ax || is taken, and a new perturbed point %=X +Ax, is defined.

163  Finally, the so far described procedure is implemented taking into account ¥ and % instead of X,

164  and %, respectively.

165 Repeating this procedure M times, 1 is defined as an arithmetic average of the estimates A
166  obtained on each computational step:
13 13501 IIAX.II 1 IAXII
167 Az—) A0=— In 9
YOI Z ©)
168 In order to achieve a higher estimate, one can take large M and carry out computations for a

169  different initial point X,. This method can be used when the equations governing the system

170 evolution are known. It should be noted, however, that these equations are usually unknown for the
171  experimental data.

172 To compute the Lyapunov spectrum numerically, one can use another approach generalizing
173 the Benettin’s algorithm. In general, it is necessary to follow a few trajectories of the perturbed points
174 instead of only one, fundamental trajectory (the number of perturbed trajectories is equal to the
175  dimension of the phase space). For this purpose, a numerical approach based on derivation of the
176  dynamic equations in variations can be used [17]. Since the largest LE plays a crucial role in the
177  evolution of all perturbed trajectories, it is necessary to carry out orthogonalization of the
178  perturbation vectors on each step of the algorithm. In what follows, a procedure of numerical
179  estimation of the Lyapunov spectrum of a dynamical system is briefly described. To simplify, the
180  considerations are limited to 3D systems.

181 Let 7, stand for a point of the system attractor and € be a fixed positive number, not large in
182 comparison to linear dimensions of the attractor. The points x,, y, and z, are chosen so that the
183  perturbation vectors Axy = xo — Ty, Ayy = Yo — 1o, Azy = zy — 1, have the length ¢ and are mutually
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184  orthogonal. After a certain small time interval T, the points 7y, x,,¥, and z, are transformed into
185  points 7,x;3,y; and z;, respectively. Then, new perturbation vectors Ax; = x; — 1y, Ay; =y, — 14,
186 Az, =z, —r, are considered. The orthogonlization using the well-known (in linear algebra) Gramm-
187  Schmidt method is carried out. After this step, the obtained vectors of perturbation Axy’,Ayy,Az;
188  become orthonormalized, i.e. they are mutually orthogonal and have the unit length. Then, the
189  renormalization of the perturbation vectors is carried out again to get lengths of the vectors in terms
190  of the magnitude e:

191 Axi" = Axy' &, Ay;" = Ay -, Az = Az{ -« (10)
192 We take the following perturbed points

193 x1=x + Axy’, yi =y, + Ay{", 71 =z, + Azy". (11)
194 Next, the process is repeated, i.e. instead of the points g, xg,yo and z,, the points ry,x;,y; and
195  z{ are taken into account, respectively.

196 Repeating the so far described procedure M times, one computes

197 Sy = Xkt nllAxill, S; = XLy nllAyill, S; = XiL, InllAzg]l. (12)
198 Then, a spectrum A = {A;,;,A3} of LEs can be found by the following formulas:

199 N=2t, i=1,23 (13)
200 In this method, the choice of time interval T plays a crucial role. Indeed, if one takes too large

201  time interval T, then all perturbed trajectories will be inclined in the direction corresponding to the
202  maximum LE, and hence the obtained results will not be reliable.

203
204
205

206 3.2. Wolf method [1]

207 In reference [1], a novel algorithm to find nonnegative Lyapunov exponents by using a time
208  series was proposed. It was illustrated that the Lyapunov exponents are associated with either
209  exponential divergence or convergence of the neighborhood orbits in the considered phase space. In
210  general, the method is applicable only when analytical governing equations are known, and it is
211  based on tracing the large time-consuming increase in the number of elements in a small volume of
212 an attractor.

213 We defined a Lyapunov exponent and a spectrum of Lyapunov exponents, and then illustrated
214 how the system dynamics depends on the number of exponents with different signs in the spectrum.
215  Our approach included reconstruction of an attractor and investigation of orbital divergence on the
216  possibly smallest distances using the approximate Gramm-Schmidt orthogonalization procedure in
217  the reconstructed phase. In order to estimate the largest Lyapunov exponent, a long trace of time
218  evolution of the chosen pair of the neighborhood orbits was carried out. In general, a particular
219  attention should be paid, since the reconstructed attractor may contain points belonging to different
220  attractors.

221 Two versions of the method are proposed. The first one includes the so-called fixed evolution
222  time, where the time interval associated with the change of the points is fixed.

223 The main idea of the proposed method is as follows: the largest Lyapunov exponent is computed
224 based on one time series and used when the equations describing the system evolution are unknown
225  and when it is impossible to measure all remaining phase coordinates.

226 Consider a time series X(t), t=1..,N of one coordinate of a chaotic process measured in equal
227  time intervals. The method of mutual information allows one to define the time delay z, whereas
228  the method of false neighbors yields the dimension of the embedded space m. As a result of the
229  reconstruction, one gets a set of points of the space R™ :

230 X = (x(1), x(i=7),.., x(I1—=(M=D)7)) = (X, (1), X, (i),.., X,, (1)), (14)
231  where i=((mM-1)7r+1),..,N.
232 We take a point from the series (3) and denote it by X,. In the series (3), one can find a point

233 %, where the relation ||%—X,|=¢&, <& holds, and where & is a fixed quantity, essentially less
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234 than the dimension of the reconstructed attractor. It is required that the points X, and % are
235  separated in time. Then, time evolution of these points on the reconstructed attractor is observed until
236  the distance between points achieves &,,,. The new points are denoted by X and %, the distance

237 is &), and the associate interval of time evolution is denoted by T,.

238 After that, we again consider the sequence (14) the find the point % located close to X, where
239 || %—x|l=¢ <& holds. Vectors %—x and %—x, should possibly have the same direction. Then,
240  the procedure is repeated for points ¥ and %.

241 By repeating the above-described procedure M times, the largest Lyapunov exponent is
242  estimated:
M-1 M
243 A=In(g 1e)1 D T,. (15)
k=0 P
244 This method was employed in the present research for testing the accuracy of results by using

245  the classical and known spectra of the Lyapunov exponents of the Hénon map, Rossler equations,
246  chaos and hyperchaos exhibited by the Lorenz system, and McKay-Glass equation [29]. In addition,
247  the method has been also employed to study the Belousov-Zhabotinsky reaction [30] and the Couette-
248  Taylor flow [31].

249 Wolf et al. [1] pointed out certain restrictions on the choice of the embedding dimension and
250  magnitude of time required for the attractor reconstruction to achieve the most accurate estimate of
251  the Lyapunov exponents. Using the Rdssler attractor [11] and the Belousov-Zhabotynskiy reaction
252 [30], the authors demonstrated the effects of the time change during the attractor reconstruction, time
253  of evolution of the system between steps of the time change, the maximum length of the replacement
254 vector and the minimum length of the exchange vector on the values of the estimated largest
255  Lyapunov exponent. Furthermore, it was shown that variation of the time of the system evolution
256  between 0.5 and 1.5 leads to reliable estimates of the studied three chaotic attractors. Also, some data
257  requirements that make it possible to obtain the most accurate estimate of the Lyapunov exponent,
258  such as the use of small length scale data as well as some restrictions on the presence of noisy
259  perturbations in the data (static and dynamic), were discussed.

260 The proposed algorithms can be used to detect chaos as well as to compute its parameters also
261  for the experimental data with a few positive exponents. Furthermore, numerical studies have shown
262  that the deterministic chaos can be distinguished from white noise (the Belousov-Zhabotinsky
263  reaction) and have presented the topological complexity of chaos (the Lorenz attractor).

264  3.3. Rosenstein method [2]

265 Despite this method is simple in realization compared to the previous ones and it is
266  characterized by high computational speed, it does not directly yield 4, but rather the function

267 y(i,At):§<Indj(i)>,dj(i):minxj %, = |l (16)

]
268  where x; isa given point, and x| denotes its neighbor.
269 The algorithm is based on the relationship between d; and the Lyapunov exponents:
270 d,;(i) ~e*™. The largest Lyapunov exponent is computed by estimating the inclination of the most

271  linear part of the function. It should be mentioned that finding this linear part does not belong to easy

272  tasks.

273  3.4. Kantz method [3]

274 The algorithm proposed by Kantz [3] computes the LLE by searching all neighbors in vicinity of
275  the reference trajectory and estimates the average distance between neighbors and the reference
276  trajectory as a function of time (or a relative time multiplied by the data sampling frequency). The
277  algorithm is based on the following formula

278 S() = £ X1 In (i Ziew, Xere = Xinel) (17)
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279  where x, stands for an arbitrary signal point; U, is a neighborhood of x;; x; is a neighbor of x;; ©
280 - relative time multiplied by the sampling frequency; T — sample size; S(t) - stretching factor in the
281  region of a linear growth indicating a curve whose slope is equal to LE, i.e. e** « e5®. However,
282  the assumption of a linear growth introduces new errors. Despite the fact that the method is useful
283  and accurate for systems with known LEs, the choice of parameters and the region where the
284  mentioned linear growth occurs is, in practice, arbitrary.

285 The method yields correct results if the value of the Lyapunov exponent is known a priori, and
286  hence the space with the tangent equal to that value can be chosen.

287  3.5. Computation of LLE based on synchronization of nonnegative feedback [6, 7]

288 In reference [6], the method of LLE computation based on synchronization of coupled identical
289  systems was proposed. The following k-dimensional discrete system:
290 yi=f) (18)

291  was considered, where y € R¥, i € (1,2,...,k). The supplemental system was proposed in the
292  following way

293 xi = f(y; + Ay, (19a)
294 yi = f(), (19b)
295 Ay; = [f i + Ay) — f(y)]exp(—p), (19¢)

296  where x,y,Ay € R¥. Evolution of k-dimensional system is governed by k of LLEs. Consequently,
297  synchronization of the perturbed and nonperturbed systems (19a) and (19b) is guaranteed by the
298  following inequality

299 P > Anaxs (20)
300  where A4, stands for LLEs of the studied systems (18).

301 0 p 0.8

302 Figure 1. Synchronization for the case of logistic map

303

304 In reference [7], systems with excitations are studied. The authors proposed the following way

305  of coupling of identical systems:

306 x=f(x), (21a)
307 y=f)+dx-y). (21b)
308 The presented approach is limited to application to the systems with known equations of

309  evolutions, and the way of introducing the coupling of two identical systems depends on the

310  considered system type.

311
312

313  3.6. Jacobi method [32, 33]
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314 This method has been proposed in references [32, 33]. Its main idea is to use an algorithm, the
315  scheme of which is illustrated in Fig. 2. A sphere of small radius ¢ is taken. After a few iterations m,
316  acertainoperator T™ transforms this sphere into an ellipsoid having aj, ... , a, half-axes. The sphere
317  isstretched along the axes ay, ... ,ag > &, where s is the number of positive LEs. For sufficiently small
318 ¢, the operator T™ is close to the sum of the shear operator and the linear operator A. The LLEs are
319  computed as averaged eigenvalues of the operator A on the whole attractor.

320

321 Figure 2. Transformation of a sphere of small radius into a counterpart ellipsoid

322

323 A vector G; is chosen, and a set {Gy,}(i = 1,..,N) of i-th neighborhood vectors is found. The

324  following set of vectors y; = Gy, —G;, where [ly;|| < ¢, is taken. After m successive iterations, the
325  operator T™ transforms the vector G; into G, and the vector Gy, into G, . Consequently, the
326  vectors y; are transformed into

327 Yitm = ngm - §j+m-

328 Assuming that the radius ¢ is sufficiently small, one can introduce the operator A; as follows
329 Yiem = AjYi.

330 The operator A; describes the system in variations. To estimate the operator A, the least-square

331  method can be employed:

. .1
332 min$ = rr}lljnﬁZiio(yHm —Ajy)*
333 This yields the following system of equations of the dimension n X n:
1 N
334 AV =C (V) = Nz vyt
i=1
L&
335 ©u =75 Vm b
i=1

336  where V, C are the matrices of the dimension n x n, yf stands for the k-th component of vector y;,
337 and yk,,, isthe k-th component of the vector y;,,. If A is a solution to the mentioned equations, then
338  the LEs can be found in the following way
1 n
339 A =1lim— ) In Ajeij,
n-co NT
j=1
340  where {e;} is a set of basic vectors in tangent space §;.
341 The algorithm can be realized in a way similar to the computation of LEs of the ODEs given

342  analytically.
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Let us choose an arbitrary basis {e®} and then follow the changes in the length of the vector
Aje®. As the vectors Aje® grow and their orientations change, it is necessary to perform their
orthogonalization and normalization by using, for example, the Gramm-Schmidt procedure. Then,
the procedure is repeated for the new basis.

The mentioned method allows one to estimate a spectrum of nonnegative LEs. However, the
method has a serious disadvantage - it is highly sensitive to noise and errors.

3.7. Modification of the neural network method [4, 5]

We proposed a novel and counterpart method to compute LEs based on a modification of the
neural network method (see Fig. 3)

Figure 3. One-layer neutral network

To realize the neural network algorithm, the following criteria were taken into account:

(i) the network is sensitive to the input information (information is given in the form of real
numbers);

(ii) the network is self-organizing, i.e. it yields the output space of solutions only based on the
inputs;

(iii) the neural network is a network of straight distribution (all connections are directed from
input neurons to output neurons);

(iv) owing to the synapses tuning, the network exhibits dynamics couplings (in the learning
process, the tuning of the synaptic coupling takes place (dW /dt#0), where W stands for

the weighted coefficients of the network).
o

______________________ -1

Figure 4. Transition function

In the network, there is a hidden layer of neurons, which contains the hyperbolic tangent playing
a role of an activation function (Fig. 4).

A derivative of the hyperbolic tangent is described by a quadratic function, as it is in the case of
a logistic function. However, in contrast to the logistic function, the space of the values of the
hyperbolic tangent falls within the interval (-1;1). This results in higher convergence in comparison
to the standard logistic function.

Prognosis of %) of a scalar time series x;, is made by employing the following formula

d0i:10.20944/preprints201801.0154.v1
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375 fk = Z?zl bi tanh(aio + Z?:l al-jxk_j), (22)

376 where n stands for the number of neurons, d is the number of the searched LE, a;; stands for the
377  nx(d+1) matrix of coefficients, and b; is the vector of length n. The matrix q; j contains the
378  coupling forces with respect to the network input and the vector b; is used to control the input of
379  each neuron to the network output, whereas the vector a;, is used for relatively simple learning
380  based on data with nonzero averaged value.

381 Weights a and b are chosen in a probabilistic way, and the dimension of the searched solution
382  is decreased in the process of learning. The associated Gaussian is chosen in a way to have initial
383  standard distribution 27/, centered with respect to zero in order to promote the most recent time
384  delays (small values of j) in the phase space. The coupling forces are chosen in a way to minimize
385  the averaged one step mean square error of a forecast

= Zheas Groxi)?
386 e= — . (23)
387 When the network is being trained, sensitivity of the output is defined in each time step by

388  computing partial derivatives of all averaged points of the time series in each time step x_;:

c
A 1 ox
S = ) | 4)
J k=41 | k=d
389 In the case of the network given by (22), the partial derivatives have the following form
n d
0%
ox k . = Z ai]-bi Sechz (al-o + Z aimxk_m) (25)
k=1 = m=1 .
390 The largest value j is the optimal embedding dimension, and the key role is played by S(j) as

391  in the false nearest neighbors method. The individual values of $(j) yield a quantitative estimate of
392  the importance of each time step using the associated terms of the autocorrelation function or
393  coefficients of the associated linear model.

394 The weight coefficients of the trained neural network are substituted to the matrix of solutions,
395  and the input data are used to define the initial state. The computation of the spectrum is realized by
396  employment of the generalized Benettin algorithm based on the obtained system of equations.

397 4. Wavelet methods

398  4.1. Gauss wavelets [13]

399 In the majority of engineering problems, the Fourier analysis is insufficient, since it deals with
400  the averaged spectrum of the whole studied vibration signal and presents only a general picture of
401  the signal. On the contrary, wavelets play a role of a microscope, which allows one to observe the
402  spectrum at each time instant, and hence to detect a birth/death of the frequencies in time.

403 A wavelet transform of a 1D signal consists of its development with respect to a basis being
404  wusually a soliton-like function with given properties. The basis is obtained by displacement and
405  tension/compression of a function, called a wavelet.

406 In the present work, the Gauss wavelets, defined as derivatives of the Gauss function, were used.
407  Higher-order derivatives have many zero moments, and hence they allow one to obtain information
408  about higher-order features hidden in the investigated signal.

409 The 8t order Gauss wavelets of the of the following form were employed

2
410 gs(x) = —(105 — 420x% + 210x* — 28x° + x®)exp = . (26)
411 5. Analysis of classical dynamical systems by LEs and Gauss wavelets

412 In this section, we study simple classical systems (Tables 1, 4, 7, 10, 13) with emphasis put on a
413 comparison of the LEs (Tables 2, 5, 8, 11, 14) obtained using the Wolf, Rosenstein and Kantz and
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neural network methods. The convergence of the mentioned methods, depending on the number of
iteration steps, is illustrated and discussed (Tables 3, 6, 9, 12, 15).

5.1. Logistic map [10]

A logistic map describes how the population changes with respect to time
Xpis = RXy(1 = X, @7

Here, X, takes the values from 0 to 1 and presents the population in the n-th year, whereas X,
denotes the initial population (in the year 0); R is a positive parameter characterizing an increase in
the population (computations were carried out for R = 4).

The first Lyapunov exponent and the Kaplan-Yorke dimension were estimated by Sprott [35].
He obtained: A1=0.693147181, and the Kaplan-Yorke dimension: 1.0.

Tables 1, 4, 7, 10, 13 report the following results: a) signal; b) signal window; c) Poincaré pseudo-
map; d) Fourier power spectrum; e) Gauss 8 wavelet; f) bifurcation diagram with LLE; g) graphs of
LEs on the control parameters plane.

Table 1. Nonlinear characteristics of the oscillation signal: (a) time histories; (b) time window; (c)

Poincaré pseudo-map; (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagram

and LLE; (g) no graph of Lyapunov exponents (logistic map)
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exponents cannot be constructed

g) the system consists of one control parameter, and hence the graph of Lyapunov

429 Table 2. Spectrum of Lyapunov exponents and LLEs computed by different methods (logistic map)

LE spectrum

Benettin method Neural network

(LEs): 0.69315 LEs: 0.69290

Dimension Kaplan-York (DKY): 1 DKY: 1

Kolmogorov-Sinai entropy (KSE): 0.69315 EKS: 0.69290

Phase volume compression (PVC): 0.69315 PVC: 0.69290

LLE

Wolf method Rosenstein method Kantz method Method of synchronization
430 LLE: 0.99683 LLE: 0.690553 LLE: 0.31321 LLE: 0.696
431 Table 3. Fourier power spectra and Gauss wavelet spectra obtained for At = 1,2 and the LLEs
432 computed by different methods (logistic map)

At=1 |
Fourier power spectrum

At =2

Gauss wavelet

05

.....

LLE (Wolf)
0.99961 [1.00014
LLE (Rosenstein)
0.69231 0.69065
LLE (Kantz)
0.31321 |
LLE (Synchronization)
0.69400 0.69330
LEs (Benettin)
LES: 0.69318 LES: 0.69400
DKY: 1.00000 DKY: 1.00000
KSE: 0.69318 KSE: 0.69400
PVC: 0.69318 PVC: 0.69400
LEs (neural network)
LES: 0.69290 ILES: 0.69107
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IDKY: 1 IDKY: 1.00000
KSE: 0.69290 IKSE: 0.69107
PVC: 0.69290 IPVC: 0.69107

The power spectrum is noisy and it is not possible to distinguish the dominating frequency. A
similar situation is exhibited by the Gauss wavelet, where a large set of frequencies is visible. They
are varied with respect to power, the whole interval of the signal changes, and the estimated LLEs
correlate with the bifurcation diagram for the same interval of the control parameter r.

As can be seen in Table 2, all computational methods were compared with Benettin’s original
results. Good coincidence was exhibited by the neural network method, the Rosenstein method and
the method of synchronization. Kantz/Wolf method gave decreased/increased value of LLE in
comparison to the original value.

5.2. Hénon map [8]

The Hénon map takes a point (X,,Y,) and maps it into another point by the following

formulas
X, =1-aXZ+Y,,
Y., =bX,.
The following parameters are fixed for numerical experiments: a=14, b=03. Since the

(28)

equations (28) do not correspond to a real object, the parameters are replaced with fixed values. Sprott
[34] computed the Lyapunov spectrum and the Kaplan-Yorke dimension of the map using the
Benettin method [17] by solving (28). He obtained the following LEs: 4 =0.419217, 7, =-1.623190,

and the Kaplan-Yorke dimension: 1.258267.

Table 4. Characteristics of the Hénon map: (a) time history; (b) time window; (c) Poincaré pseudo-
map; (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g)

graph of Lyapunov exponents
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Similarly to the logistic map, the power spectrum exhibits a uniform noisy shape. However, one
can distinguish a dominating frequency (w; = 0,45). It is also visible on the wavelet spectrum as a
region of the largest amplitudes along the whole signal. Plots of the change in the LLE correlate with
bifurcation diagrams for the same interval of changes in the parameters 2 and b. Dynamics of the LLE
changes increases with the increase in both control parameters. Starting with the graphs of LEs for a
given set of control parameters, the system mainly remains in a periodic regime, but it exhibits chaotic
dynamics for large values of the control parameters.
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Table 5. Lyapunov exponents spectrum and LLEs computed by different methods (Hénon map)
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Spectrum of LLEs

Benettin method Neural network

LEs: 0.41919 -1.62316 LEs: 0.41919 -1.62316

DKY: 1.25826 DKY: 1.25826

EKS: 0.41919 EKS: 0.41919

PVC: -1.20397 PVC: -1.20397

LLEs

Wolf method | Rosenstein method Kantz method Synchronization method
LLE: 0.38788 LLE: 0.414218 LLE: 0.17759 LLE: 0.40608

Beginning from the results shown in Table 5, the majority of the employed computational
methods yielded good results. However, the most accurate results were obtained by the neural
network method (for whole spectrum of LEs), the Rosenstein method, and the method of
synchronization (in the case of LLEs). The Wolf and Kantz methods gave decreased estimated values

of the LLEs.

Table 6. Fourier power spectra and Gauss wavelet spectra obtained for At = 1,2 and the computed
LLEs by different methods (Hénon map)

At=1

|

At =2

Fourier power spectrum

I
.

Gauss wavelet

O ——

0 W\ ‘{\'""h i *“"\

%n

Z()D

LLE (Wolf)
0.4158 0.39734
LLE (Rosenstein)
0.41637 0.400635
LLE (Kantz)
0.17759 0.105365
LLE (synchronization)
0.40608 0.40510
All LEs (Benettin)
LEs: 0.41919 -1.62316 LEs: 0.41917 -1.62315
DKY: 1.25826 DKY: 1.25825
EKs: 0.41919 EKs: 0.41917
PVC: -1.20397 PVC: -1.20397

All LEs (neural network)

LEs: 0.41919 -1.62316

DKY: 1.25826

LEs: 0.40924 -1.61321
IDKY: 1.25368
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KSE: 0.41919 KSE: 0.40924
PVC: -1.20397 PVC: -1.20397
474
475  5.3. Hyperchaotic generalised Hénon map [9]
476 To obtain the hyperchaotic Hénon map, one needs to take a point (X,,Y,,Z,) and map it into
477  the following one:
X,,=a-aY’-bzZ,,
478 Yo = Xis (29)
Zn+l = Yn :
479
480 The computations were carried out for the following fixed parameters: a=3.4, b=0.1. The
481  Lyapunov spectrum reported in reference [9] is: 0.276; 0.257; 4.040.
482
483 Table 7. Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d)
484 Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagram and LLE; (g) graph of
485 Lyapunov exponents (generalized Hénon map)
a)
o
152
w
[y
]
A
o
=1
e
=)
0 t 1000
b)
S
E w
: “
= ﬂ
200 t 400
d) e)
80
- " ‘ SN |1|||IPW
2 I Il | | ' "
10 ‘ 1 t
B !
0 0.1 0.2 0.3 0.4 )
f)



http://dx.doi.org/10.20944/preprints201801.0154.v1
http://dx.doi.org/10.3390/e20030175

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2018 d0i:10.20944/preprints201801.0154.v1

17 of 26
g
=
“70264 2 1931 \.,; — b
E =]
== 0
| @
8)
-0.264 1.931
a
486
487 One can distinguish a large number of frequencies in the power spectrum. Frequencies with the

488  largest amplitude are located in the interval [0.15; 0.3] (frequencies w; — w,), but the remaining part
489  of the spectrum is noisy. This interval corresponds to the brightest region on the Gauss wavelet,
490  which is correlated with the values of the power spectrum. Changes in LLEs coincide with the
491  bifurcation diagrams constructed for the same intervals of changes in the control parameters 4 and b.
492  Dynamics of LLEs increases with the increase in the control parameters. As in the case of the Hénon
493  map, the chart of LEs for the selected control parameters exhibits, for a majority of studied
494  parameters, periodic dynamics. It transits into chaos for a ~ 1.4, and is almost suddenly shifted into
495  hyper-chaos (2 positive LEs).

496 Table 8. Lyapunov exponents spectrum and LLEs computed by different methods (generalized
497 Hénon map)
Spectrum of LEs
Benettin method Neural network
LEs: 0.27628 0.25770 -4.04053 LEs: 0.29251 0.27104 -4.04583
DKY: 2.13215 DKY: 2.13929
EKS: 0.53397 EKS: 0.56355
PVC: -3.50656 PVC: -3.48227
LLEs
Wolf method | Rosenstein method | Kantz method | synchronization method
LLE: 0.45214 | LLE: 0.27930 LLE: 0.26601 0.27250
498
499 Good results were obtained by the Benettin, Rosenstein and synchronization methods

500 (divergence from the third decimal place). The neural network yielded slightly increased estimates
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of two first LEs, whereas the third LE was estimated almost exactly. The Kantz method gave a
decreased result in comparison to reference data. The Wolf method resulted in the largest error.

Table 9. Fourier power spectra and Gauss wavelet spectra obtained for At = 1,2 and the computed
LLEs by different methods (generalized Hénon map)

At=1

| At =2

Fourier power spectrum

LLE (Wolf)
0.45214 0.46706
LLE (Rosenstein)
0.27930 0.27459 (0.62515)
LLE (Kantz)
0.26601 |
LLE (synchronization)
0.27250 0.27200
All LEs (Benettin)
LEs: 0.27628 0.25770 -4.04053 LEs: 0.27487 0.25631 -4.03774
DKY: 2.13215 DKY: 2.13155
KSE: 0.53397 EKS: 0.53118
PVC: -3.50656 PVC: -3.50656

All LEs (neural network)

ILEs: 0.29251 0.27104 -4.04583
DKY: 2.13929

KSE: 0.56355

PVC: -3.48227

LEs: 0.26304 0.24387 -4.14321
DKY: 2.12235

KSE: 0.50691

PVC: -3.63630

5.4. Rossler attractor [11]

The following Rossler system of ODEs was investigated

Be= -y -1z,
Be= X +ay,
B=b+z(x-c),

(30)

and the computations were carried out for the following fixed parameters a=b=0.2 and ¢=5.7.
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511 The original study yielded the Lyapunov spectrum: 0.0714, 0, -5:3943, and the Kaplan-Yorke
512  dimension equal to 2.0132.
513
514 Table 10. Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d)
515 Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graphs of
516 Lyapunov exponents (Rossler attractor)
517
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518

519 The power spectrum contains the fundamental frequency w,, which is accompanied by damped
520  bursts (frequencies w, — wy). In the whole time interval, the Gauss wavelet exhibits the brightest
521  region of the fundamental frequency with darker peaks going to zero. Thus, the picture is analogous
522 to the power spectrum. Contrarily to the studied maps, the bifurcation diagrams have a more
523  complex structure. However, there is still correlation with the changes in LLEs for the corresponding
524 control parameters. The parameter b has the most smallest influence on the change in LLE. Graphs of
525  LLEsalso exhibit a more complex structure. Borders of different vibration kinds have complex forms,
526  which illustrates the increase in the system complexity. Aside from the chaos and hyper-chaos zones,
527  there are drops of hyper hyper-chaos (3 positive LEs).

528 As far as Table 11 is considered, the best results were yielded by the Benettin and Rosenstein
529  methods. The method of neural networks gave very good results in the case of estimates of two first
530  LEs, but underestimated the third exponent. The Wolf method yielded smaller value of the first
531  exponent compared to the reference data. The most underestimated results were given by the Kantz

532  method.
533
534
535
536 Table 11. Lyapunov exponents spectrum and LLEs computed by different methods (Rossler
537 attractor)

Spectrum of LEs

Benettin method Neural network

LE: 0.07135 0.00000 -5.39420 LE: 0.07593 -0.00060 -0.78178

DKY: 2.01323 DKY: 2.09635

KSE: 0.07135 EKS: 0.07593

PVC: -5.32285 PVC: -0.70646

LLEs

Wolf method Rosenstein method Kantz method

LLE: 0.05855 LLE: 0.0726 LLE: 0.0208
538
539 Table 12. Fourier power spectra and Gauss wavelet spectra obtained for At = 0.05,0.1,0.15, 0.2
540 and the computed LLEs by different methods (Rossler attractor)

At = 0.05 | At = 0.1 | At = 0.15 | At = 0.2
Fourier power spectrum
) ‘n ”v“"'“‘lk’rl-‘;’pv» NP S N J\ILM N m‘]. JLJL‘N ““%‘k’/kujlvﬁ-.?.:‘glx.m.);‘:__ — M ”JL‘.A‘-‘,JV_,.« Mo
Gauss wavelets
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LLE (Wolf)
0.05855 | \
LLE (Rosenstein)
0.083 0.0726 0.06553 0.606
LLE (Kantz)
0.0234 0.0208 0.02133 0.0215
All LEs (Benettin)

ILES: 0.07156 0.00000 -
5.38768

IDKY: 2.01328

KSE: 0.07156
PVC:-5.31612

LES: 0.06959 0.00000 -
5.21949

DKY: 2.01333

KSE: 0.06959

PVC: -5.14990

LES: 0.06789 0.00000 -
4.34385

DKY: 2.01563

IKSE: 0.06789

PVC: -4.27596

ILES: 0.06205 -0.00001 -
2.84111

IDKY: 2.02184

KSE: 0.06205

PVC: -2.77906

All LEs (neural network)

ILES: 0.06259 -0.07984 -
0.32528

DKY: 1.78396

KSE: 0.06259

PVC: -0.34253

ILES: 0.07340 -0.02681 -
0.23525

DKY: 2.19807

KSE: 0.07340

PVC: -0.18865

LES: 0.07374 0.00057 -
0.36909

DKY: 2.20135

IKSE: 0.07432

PVC: -0.29477

ILES: 0.07983 -0.02816 -
0.91182

DKY: 2.05667

KSE: 0.07983

PVC: -0.86015

The carried out numerical experiments showed that using the different sampling frequency, the
power spectrum and wavelet spectrum were not changed. This was also validated by results obtained
by the Benettin, neural networks and Rosenstein methods which yielded the results very close to
original ones. The Kantz method gave underestimated results for different frequency selection,
correlating with the results obtained for the standard sample size.

5.5. Lorenz attractor [12]

The input hydrodynamic system is governed by the following ODEs:

Xe= o (y —X),

ﬁcx(r_z)_yv
B= xy — bz,

(G2))

where r stands for the normalized Rayleigh number (nondimensional number defining fluid behavior

under gradient):

"o gpATL

VX

(32)

In the above equation, the following notation is used: g — gravity of Earth; L - characteristic
dimension of the fluid space; AT - temperature difference between fluid walls; v - kinematic fluid
viscosity, y -thermal conductivity of the fluid; S - coefficient of heat fluid extension; o -Prandtl

number (takes into account heat source property) governed by the following equation

o=—

14

Cy

N

(33)
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558  where: v=n/p - kinematic viscosity, 7 - dynamic viscosity, p - density, a=% -
Py

559  temperature transfer coefficient, X - heat transfer coefficient, C, - specific heat capacity under
560  constant pressure; and p - information about the geometry of the convective cell.

561 The following parameters were fixed: 0 =10.0, r=28.0, b=8/3. The original results follow:

562  LEs: 0.9056, 0, -14.5723; the Kaplan-York dimension: 2.06215.
563
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564 Table 13. Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d) Fourier
565 frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graphs of Lyapunov exponents

566 (Lorenz attractor)

M yo55561 2

62866'LT-

£e168L1- O™ 1601 2

10 t 30

f)

9895 51

Y ‘ll

$O9bE'ES:

4 4 2495

£60¥6D  £9968'ST-

S90£6'0

wn

1L16E0

O}
o
q
5 o
. am

*

6ZEELO-

SE66S

s

+ 56.1

567 The power spectrum of the attractor uniformly decreases when approaching a finite frequency,
568  and there is a lack of frequencies with a strongly dominating amplitude. The latter observation is also
569  verified by the Gauss wavelet spectrum. The bifurcation diagrams, similar to those for the Rossler

570  system, exhibit a complex structure, but the correlation to the LLEs change is conserved. The
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richest/lowest dynamics of LLE is obtained for changing parameter r/o. Based on the reported
graphs of Les, one can conclude that the system dynamics is fully chaotic. There are also narrow
windows of hyper-chaotic dynamics.

Table 14. Lyapunov exponents spectrum and LLEs computed by different methods (Lorenz

attractor)
Spectrum of LEs
Benettin method Neural network method
LE: 0.90557 0.00000 -14.57214 LE: 0.9490 0.0610 -13.9101
DKY: 2.06214 DKY: 2.07261
EKS: 0.90557 EKS: 1.0101
PVC: -13.66656 PVC: -12.9000
LLEs
Wolf method Rosenstein methhod Kantz method
LLE: 0.81704 LLE: 0.836 LLE: 0.807185

A comparison of the results reported in Table 14 with the original results exhibit an excellent
coincidence of the Benettin method (original results) and the neural network method (+4.79%). The
Wolf and Rosenstein methods yielded the underestimated results of the LLE value. The worst
estimation was obtained by Kantz method.

Table 15. Fourier power spectra and Gauss wavelet spectra obtained for At = 0.005,0.01,0.015,0.02 and the

computed LLEs by different methods (Lorenz attractor)
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Gauss wavelet

LLE (Wolf)
0.81704 \ \
LLE (Rosenstein)
0.876 0.836 0.858 0.859

LLE (Kantz)

LES (Benettin)

LES: 0.90632 0.00000 -
14.57297

DKY: 2.06219

KSE: 0.90632

PVC: -13.66666

LES: 0.90523 0.00000 -
14.57179

DKY: 2.06212

IKSE: 0.90523

PVC: -13.66656

ILES: 0.90551 0.00000 -
14.57163

DKY: 2.06214

KSE: 0.90551

PVC: -13.66613

LES: 0.90596 0.00000 -
14.57086

DKY: 2.06218

KSE: 0.90596

PVC: -13.66490

LES (neural network)
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LE: 09490 0.0610 -
13.9101

DKY: 2.07261

EKS: 1.0101

PVC: -12.9000

586

587 Employing different sampling frequency does not change a picture of Fourier and wavelet
588 power spectra. This was also validated by the Benettin and Rosenstein methods, which yield the
589  results very close to the original values in spite of the arbitrary choice of the sampling frequency.

590 6. Concluding remarks

591 Analysis of the dynamics of the studied classical system by different methods leads to a
592 conclusion that the most perspective and useful is the modified method of neural networks [4, 5]. It
593  gives excellent convergence to the original results and, as the only one (besides of the Benettin
594  method), allows to compute the spectrum of all Lyapunov exponents. In addition, very good results
595  were obtained by the Rosenstein method for all studied systems. However, this method can be used
596  to estimate only the largest Lyapunov exponents.

597 As far as convergence was considered, the Kantz method always yielded underestimated values,
598  whereas the Wolf method gave either over- and underestimated values of LEs.
599 The method of synchronization worked reasonably well for the maps, but it was not useful in

600  studying differential equations (the Rdssler or Lorenz systems). The mentioned systems require the
601  use of another type of coupling, which is a drawback of the method.

602 The carried out analysis of the works devoted to feasible methods for computation of Lyapunov
603  exponents shows that there is no universal, verified and general method to compute the exact (in the
604  sense of numerics) values of the Lyapunov exponents. This observation leads to the conclusion that
605  there is a need to employ qualitatively different methods while checking the reliability of “true
606  chaotic results”. Furthermore, the analysis carried out in this paper is a helping tool to study systems
607  of an infinite dimension. Such an analysis is the subject of the second paper part.

608 Acknowledgments: This work has been supported by the grants the Russian Science Foundation, RSF 16-19-
609 10290

610 Author Contributions: N.P. Erofeev, V. Dobriyan and M.A. Barulina performed the numerical study; A.V.
611 Krysko and V.A. Krysko analyzed the obtained results; J. Awrejcewicz wrote the paper.

612 Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design

613 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
614 decision to publish the results.
615

616  References

617 1.  Wolf A., Swift ].B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series. Phys.

618 D 1985, 16, 285-317.

619 2. Rosenstein M.T., Collins J.J., De Luca C.J. A practical method for calculating largest Lyapunov exponents
620 from small data sets. Phys. D 1993, 65, 117-134.

621 3. Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 1994,
622 185, 77-87.

623 4.  Dobriyan V., Awrejcewicz J., Krysko V.A., etc. On the Lyapunov exponents computation of coupled non-
624 linear Euler-Bernoulli beams. Proceedings of the Fourteenth International Conference on Civil, Structural and
625 Environmental Engineering Computing", Civil-Comp Press, Stirlingshire, UK, 2013, Paper 53.

626 5. Krysko A.V., Awrejcewicz J., Kutepov L.E., Zagniboroda N.A., Dobriyan V., Krysko V.A. Chaotic dynamics
627 of flexible Euler-Bernoulli beams. Chaos 2014, 34(4), 043130-1 - 043130-25.

628 6.  Stefanski A. Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Sol. Fract. 2000,
629 11(15), 2443-2451.


http://dx.doi.org/10.20944/preprints201801.0154.v1
http://dx.doi.org/10.3390/e20030175

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2018 d0i:10.20944/preprints201801.0154.v1

26 of 26

630 7.  Stefanski A., Kapitaniak T. Estimation of the dominant Lyapunov exponent of non-smooth systems on the
631 basis of maps synchronization. Chaos, Sol. Fract. 2003, 15(2), 233-244.

632 8.  Hénon M. A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 1976, 50(1), 69-77.
633 9.  Baier G, Klein M. Maximum hyperchaos in generalized Henon maps. Phys. Lett. A 1990, 151(6-7), 281-284.
634 10. May, R. Simple mathematical model with very complicated dynamics. Nature 1976, 261, 45-67.

635 11. Peitgen H.-O., Jiirgens H., Saupe D. The Réssler Attractor. In Chaos and Fractals: New Frontiers of Science.
636 Springer: Berlin, 2004, pp. 636-646.

637  12. Lorenz E.N. Deterministic nonperiodic flow. J. Atm. Sci. 1963, 20(2), 130-141.

638 13. Astafeva N.M. Wavelet-analysis: basic theory and examples of applications. Succ. Phys. Sci. 1996, 166(11),

639 1145-1170.
640 14.  Awrejcewicz J., Kudra G., Wasilewski G. Experimental and numerical investigation of chaotic regions in
641 the triple physical pendulum. Nonlin. Dyn. 2007, 50 (4), 755-766.

642 15. Dmitriev A.S., Kislov V.Ya. Stochastic Oscillations in Radiophysics and Electronics. Nauka: Moscow, 1989.
643 16. Awrejcewicz]., Krysko A.V., PapkovaL.V., Krysko V.A. Routes to chaos in continuous mechanical systems.

644 Part 3: The Lyapunov exponents, hyper, hyper-hyper and spatial-temporal chaos. Chaos, Solit. Fract. 2012,
645 45,721-736

646 17.  Benettin G., Galgani L., Strelcyn J.M. Kolmogorov entropy and numerical experiments. Phys. Rev. A 1976,
647 14, 2338-2345.

648 18. Oseledec V.I. A multiplicative ergodic theorem. Trans. Mosc. Math. Soc. 1968, 19, 197-231.

649 19. Pesin Ya.B. Characteristic Lyapunov exponents and ergodic properties of smooth dynamical systems with
650 invariant measure. Dokl. Akad. Nauk. SSSR 1976, 226, 774-777.

651 20. Golovko V.A. Neural networks methods of quantifying chaotic process. Proceedings of VII Conference
652 ‘Lectures for Neural Informatics’. Moscow, 2005, pp. 43-88 (in Russia).

653 21. Vallejo J.C., Sanjuan M.A.F. Predictability of orbits in coupled systems through finite-time Lyapunov
654 exponents. New J. Phys. 2013, 15, 113064.

655 22. Vallejo J.C., Sanjuan M.A.F. Predictability of Chaotic Dynamics. A Finite-time Lyapunov Exponents Approach.
656 Springer: Berlin, 2017.

657 23. Devaney R.L. An Introduction to Chaotic Dynamical Systems. Addison-Wesley: Reading, Mass., 1989.

658 24. Banks]., Brooks J., Davis G., Stacey P. On Devaney’s definition of chaos. Am. Math. Month. 1992, 99(4), 332-
659 334.

660  25. Knudsen C. Chaos without periodicity. Am. Math. Month. 1994, 101, 563-565.

661 26. Gulick D. Encounters with Chaos. McGraw-Hill: New York, 1992.

662 27. Awrejcewicz J., Krysko V.A., Papkova L.V. Routes to chaos in continuous mechanical systems. Part 1.

663 Mathematical models and solution methods. Chaos, Sol. Fract., 2012, 687-708.
664 28. Awrejcewicz J., Krylova E.Y., Papkova I.V., Krysko V.A. Wavelet-based analysis of the regular and chaotic
665 dynamics of rectangular flexible plates subjected to shear-harmonic loading. Shock Vib. 2012, 19, 979-994

666 29. Mackey M.C,, Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197, 287-289.
667 30. Hudson J.L., Mankin J.C. Chaos in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 1981, 74, 6171.

668 31. Taylor G.I. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Royal Society
669 A 1923, 223(605-615), 289-343.

670 32. Sato S., Sano M., Sawada Y. Practical methods of measuring the generalized dimension and the largest
671 Lyapunov exponent in high dimensional chaotic systems. Prog. Theor. Phys. 1987, 77, 1-7.

672 33. Eckmann J.-P., Ruelle D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617-656.
673 34. Sprott J.C. Chaos and Time Series Analysis. Oxford University Press: Oxford, 2003.

674 35. Sprott J.C. Elegant Chaos. Algebraically Simple Chaotic Flows. World Scientific: Singapore, 2010.

675


http://dx.doi.org/10.20944/preprints201801.0154.v1
http://dx.doi.org/10.3390/e20030175

