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Abstract: The first part of the paper was aimed at analyzing the given nonlinear problem by 20 
different methods of computation of the Lyapunov exponents (Wolf method [1], Rosenstein method 21 
[2], Kantz method [3], method based on the modification of a neural network [4, 5], and the 22 
synchronization method [6, 7]) for the classical problems governed by difference and differential 23 
equations (Hénon map [8], hyper-chaotic Hénon map [9], logistic map [10], Rössler attractor [11], 24 
Lorenz attractor [12]) and with the use of both Fourier spectra and Gauss wavelets [13]. It was shown 25 
that a modification of the neural network method [4, 5] makes it possible to compute a spectrum of 26 
Lyapunov exponents, and then to detect a transition of the system regular dynamics into chaos, 27 
hyper-chaos, hyper hyper-chaos and deep chaos [14-16]. Different algorithms for computation of 28 
Lyapunov exponents were validated by comparison with the known dynamical systems spectra of 29 
the Lyapunov exponents. The carried out analysis helps comparatively estimate the employed 30 
methods in order to choose the most suitable/optimal one to study different kinds of dynamical 31 
systems and different classes of problems in both this and the next paper parts. 32 

Keywords: Lyapunov exponents, Wolf method, Rosenstein method, Kantz method, neural network 33 
method, method of synchronization, Benettin method, Fourier spectrum, Gauss wavelets. 34 

1. Introduction 35 

The first part of the present work was focused on the numerical investigation of classical 36 
dynamical systems to estimate velocity of divergence of the neighborhood trajectories with the help 37 
of a measure coupled with the Kolmogorov entropy [17] (or metrics). In reference [17], based on the 38 
mathematical results of Oseledec [18] and Pesin [19], it was shown that the numerically imposed 39 
relations can be treated as exact/true values. The method proposed by Wolf [1] is most widely used 40 
to verify and study chaotic dynamics. However, also the Rosenstein [2] and Kantz [3] methods are 41 
often employed to estimate the largest Lyapunov exponents. The state-of-the-art of papers devoted 42 
to the theoretical background of the Lyapunov exponents and methods of their computations was 43 
carried out by Golovko [20]. In particular, the method of the choice of an embedding dimension was 44 
described. The method of the correlating dimension, the false nearest neighbor method and the 45 
method of gamma-test were presented based on the Hénon and Lorenz attractors. In particular, the 46 
occurrence of high computational difficulties was observed in the case of using the Wolf method and 47 
its marginally successful employment to small values of the studied data.  48 
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To avoid the above-mentioned drawbacks, a novel neural network-based algorithm to estimate 49 
the largest Lyapunov exponents by considering only one coordinate has been proposed. Golovko [20] 50 
reported the neural network algorithm for computation of a full spectrum of Lyapunov exponents. 51 
A comparison of the results obtained by Golovko with the exact values of the Lyapunov exponents 52 
of the Lorenz and Hénon systems exhibited small errors. 53 

In references [6, 7], the method of largest Lyapunov computation using the synchronization 54 
phenomena of identical systems has been proposed. A few types of coupling have been studied, 55 
depending on the type of the considered system. It has been pointed out that large computational 56 
time is required to achieve full synchronization. 57 

The method proposed in references [4, 5] is particularly suitable to study chaotic dynamics of 58 
continuous mechanical systems. It should be emphasized that, owing to the research results 59 
published by the authors of the present paper, the analysis of nonlinear dynamics based on the 60 
estimation of the Lyapunov exponents yields a conclusion that the mentioned problems have not 61 
been satisfactorily solved yet [1-5]. 62 

More recently, Vallejo and Sanjuan [21, 22] have studied the predictability of orbits in coupled 63 
systems by means of finite-time Lyapunov exponents. This approach allowed them to estimate how 64 
close the computed chaotic orbits were to the real/true orbits, being characterized by the systems 65 
shadowing properties. 66 

In the present paper, classical systems (Hénon map [8], hyper-chaotic Hénon map [9], logistic 67 
map [10], Rössler attractor [11], and Lorenz attractor [12]) were analyzed with Gauss wavelets, 68 
Fourier spectra and Poincaré pseudo-maps. 69 

It is known that the fundamental property of chaos is the existence of strong sensitivity to a 70 
change of the initial conditions. The definition of chaos given first by Devaney in 1989 [23] includes 71 
three fundamental parts. In addition to sensitivity to the variation of the initial conditions, a condition 72 
of mixing, known also as the transitivity condition and the regularity condition, measured by the 73 
density of the periodic points or classical notion of periodicity is also included. In 1992, Banks et al. 74 
[24] proved that the condition of sensitivity to the initial condition can be neglected, i.e. conditions of 75 
transitivity and periodicity imply sensitivity condition. 76 

Knudsen [25] defined chaos as a function given on a bounded metric space which has a dense 77 
orbit and essentially depends on initial conditions. 78 

Owing to chaos definition proposed by Gulick [26], chaos exists when either there is essential 79 
dependence on the initial conditions or a chaotic function has positive Lyapunov exponents in each 80 
point of the space, and which finally does not tend to a periodic orbit. This definition is also employed 81 
in the present work.  82 

2. Lyapunov Exponents 83 

2.1. The largest Lyapunov exponent 84 

The following dynamical system was considered  85 
 𝒙̇ = 𝒇(𝒙),  (1) 86 

where х stands for the N-dimensional state vector. 87 
Two closed phase points х1 and х2 were chosen (in the phase space). They stand for the origins 88 

of the trajectories (𝑥1(𝑡) and 𝑥2(𝑡)). The change in the distance d between two corresponding points 89 
of these trajectories under evolution of system (1) can be monitored by: 90 

𝑑(𝑡) = |𝜀(𝑡)| = |𝑥2(𝑡) − 𝑥1(𝑡)|. (2) 

If the dynamics of system (1) is chaotic, d(t) increases exponentially in time, i.e.  91 

𝑑(𝑡) ≈ 𝑑(0)𝑒𝑘𝑡 . (3) 

This yields the average velocity of the exponential divergence of the trajectories 92 

𝑘 ≈
𝑙𝑛 [

𝑑(𝑡)
𝑑(0)

]

𝑡
, 

(4) 

or more precisely, 93 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2018                   doi:10.20944/preprints201801.0154.v1

Peer-reviewed version available at Entropy 2018, 20, 175; doi:10.3390/e20030175

http://dx.doi.org/10.20944/preprints201801.0154.v1
http://dx.doi.org/10.3390/e20030175


 3 of 26 

 

𝑘 = lim
𝑑(0)→0

𝑡→∞

𝑙𝑛[𝑑(𝑡)/𝑑(0)]

𝑡
. (5) 

Quantity h is known as the Kolmogorov-Sinai entropy (KS-entropy). Employing the KS-entropy, 94 
one can define the studied process, i.e. quantify if the process is regular or chaotic. In particular, if 95 
the system dynamics is periodic or quasi-periodic, the distance d(t) is not inversed in time and the 96 
KS-entropy is equal to zero (h = 0). If the system dynamics tends to a stable fixed point d(t)  0, then 97 
h < 0. Contrarily, KS-entropy is positive (h > 0) if one deals with chaotic dynamics. 98 

KS-entropy is the maximum characteristic Lyapunov exponent that enables one to follow 99 
velocity of information lost with respect to the initial system state. 100 

2.2. Results 101 

The spectrum of Lyapunov exponents makes it possible to qualitatively quantify a local property 102 
with respect to stability of an attractor. Consider a phase trajectory х(t) of the dynamical system (1), 103 
starting from the point х(0), as well as its neighborhood trajectory 𝑥1(𝑡) as follows  104 

 𝑥1(𝑡) = 𝑥(𝑡) + 𝜀(𝑡).  (6) 105 
The following function can be constructed 106 

 𝜆[𝜀(0)] = lim
𝑡→∞

ln[
|𝜀⃗⃗(𝑡)|

|𝜀⃗⃗(0)|
]

𝑡
  , (7) 107 

which is defined on the vectors of initial displacement 𝜀(0) such that |𝜀(0)| = 𝜀, where 0.     108 
All possible rotations of the initial displacements vector with respect to n directions of the N-109 

dimensional phase space of the function (7) will suffer the jump-like changes in the finite series of the 110 

values 1 2 3, , ,..., .n     These values of the function   are called Lyapunov exponents (LEs). 111 

Positive/negative values of LEs can be viewed as a measure of the averaged exponential 112 
divergence/convergence of the neighborhood trajectories. 113 

A sum of LEs stands for an averaged divergence of the phase trajectories flow. In the case of a 114 
dissipative system, i.e. a system possessing an attractor, this sum is always negative. As numerical 115 
case studies show, in some dissipative systems, the LEs are invariant with respect to all chosen initial 116 
conditions. This is why a spectrum of LEs can be understood as the property of an attractor. 117 

Usually, LEs are presented in a sequence of LE values in decreasing order. For instance, symbols 118 
(+, 0, –) mean that for the analyzed attractor, there is one direction in a 3D space, where exponential 119 
stretching is exhibited, the second direction indicates neutral stability, and the third one - exponential 120 
compression. It should be noted that all attractors different from stable stationary points always have 121 
at least one LE equal to zero (in average sense, all points of a trajectory are bounded by a compact 122 
manifold and they cannot exhibit divergence or converge). 123 

In what follows, relationships between the Lyapunov exponents and the properties and types of 124 
attractors are illustrated and discussed.  125 

1) n = 1. In this case only a stable fixed point can be an attractor (node or focus). There exists one 126 

negative LE denoted by 1 ( ),     127 

2) n = 2. In 2D systems, there are two types of attractors: stable nonmovable points and limit 128 
cycles. The corresponding LEs follow:  129 

1 2( , ) ( , )      – stable nonmovable/fixed point;   130 

1 2( , ) (0, )     – stable limit cycle (one exponent is equal to zero).  131 

3) n = 3. In 3D phase space, there exist four types of attractors: stable points, limit cycles, 2D tori 132 
and strange attractors. The following set of LEs characterizes possible dynamical situations to be met: 133 

1 2 3( , , ) ( , , )        – stable nonmovable point;  134 

1 2 3( , , ) (0, , )       – stable limit cycle;  135 

1 2 3( , , ) (0,0, )      – stable 2D tori;  136 

1 2 3( , , ) ( ,0, )       – strange attractor.  137 
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In the majority of studied problems, analytical definition of LEs is not possible, since the 138 
analytical solution to the governing differential equations must be known. However, there exist 139 
reliable algorithms to find all Lyapunov exponents numerically.  140 

3. Methods of analysis of Lyapunov exponents 141 

3.1. Benettin method [17] 142 

We began with numerical investigation of the Kolmogorov entropy of the Hénon-Heiles model. 143 
Numerical computations were carried out with accuracy up to 14 digits by means employing the so-144 
called method of central points. Observe that, independently of the results reported in reference [27], 145 
a similar method was used in reference [28]. 146 

Based on the Lyapunov exponents, the ergodic properties of dissipative dynamical systems with 147 
a few degrees of freedom were numerically studied employing the Lorenz system. The system 148 
exhibited the exponents spectrum of the (+, 0, –) type, and the exponents had the same values for the 149 
orbits beginning from an arbitrary point on the attractor. It means that the ergodic property of a 150 
general dynamical system can be quantified by a spectrum of the characteristic Lyapunov exponents. 151 
Below, a brief description of the used method was presented. 152 

Let a point 0x  belong to the attractor A of a dynamical system. An evolution trajectory of the 153 

point 0x  is referred to as a real/true trajectory. A positive quantity ,  being significantly less than 154 

the attractor dimension, is chosen. Furthermore, an arbitrary perturbed point 0x%  is chosen in a way 155 

to satisfy 
0 0 .x x  %  The evolution of points 0x  and 0x%  is considered in a short time interval T, 156 

and new points are denoted by 1x  and 1 ,x%  respectively. A vector 1 1 1x x x  %  is called the 157 

perturbation vector. The first estimate of the exponent is found with the use of the following formula 158 

 1

1

|| ||1
ln .

x

T





%   (8) 159 

The time interval T is chosen in a way to keep the amplitude of perturbation less than the linear 160 
dimensions of the phase space nonhomogenity and the attractor dimension. The normalized 161 

perturbation vector /

1 1 1|| ||x x x     is taken, and a new perturbed point / /

1 1 1x x x %  is defined. 162 

Finally, the so far described procedure is implemented taking into account 1x  and 1x%  instead of 0x  163 

and 0x% , respectively. 164 

Repeating this procedure M times,   is defined as an arithmetic average of the estimates 
l

% 165 

obtained on each computational step: 166 

 
1 1 1

|| || || ||1 1 1 1
ln ln .

M M M
i i

l

i i i

x x

M M T MT
 

   

 
    %  (9) 167 

In order to achieve a higher estimate, one can take large M and carry out computations for a 168 

different initial point 0 .x  This method can be used when the equations governing the system 169 

evolution are known. It should be noted, however, that these equations are usually unknown for the 170 
experimental data.  171 

To compute the Lyapunov spectrum numerically, one can use another approach generalizing 172 
the Benettin’s algorithm. In general, it is necessary to follow a few trajectories of the perturbed points 173 
instead of only one, fundamental trajectory (the number of perturbed trajectories is equal to the 174 
dimension of the phase space). For this purpose, a numerical approach based on derivation of the 175 
dynamic equations in variations can be used [17]. Since the largest LE plays a crucial role in the 176 
evolution of all perturbed trajectories, it is necessary to carry out orthogonalization of the 177 
perturbation vectors on each step of the algorithm. In what follows, a procedure of numerical 178 
estimation of the Lyapunov spectrum of a dynamical system is briefly described. To simplify, the 179 
considerations are limited to 3D systems.  180 

Let 𝑟0 stand for a point of the system attractor and ε be a fixed positive number, not large in 181 
comparison to linear dimensions of the attractor. The points 𝑥0, 𝑦0 and 𝑧0 are chosen so that the 182 
perturbation vectors ∆𝑥0 = 𝑥0 − 𝑟0, ∆𝑦0 = 𝑦0 − 𝑟0, ∆𝑧0 = 𝑧0 − 𝑟0 have the length ε and are mutually 183 
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orthogonal. After a certain small time interval T, the points 𝑟0, 𝑥0, 𝑦0 and 𝑧0 are transformed into 184 
points 𝑟1, 𝑥1, 𝑦1  and 𝑧1, respectively. Then, new perturbation vectors ∆𝑥1 = 𝑥1 − 𝑟1, ∆𝑦1 = 𝑦1 − 𝑟1,185 
∆𝑧1 = 𝑧1 − 𝑟1 are considered. The orthogonlization using the well-known (in linear algebra) Gramm-186 
Schmidt method is carried out. After this step, the obtained vectors of perturbation ∆𝑥1

′′, ∆𝑦1
′′, ∆𝑧1

′′ 187 
become orthonormalized, i.e. they are mutually orthogonal and have the unit length. Then, the 188 
renormalization of the perturbation vectors is carried out again to get lengths of the vectors in terms 189 
of the magnitude ε: 190 

 ∆𝑥1
′′′ = ∆𝑥1

′′ ∙ 𝜀,  ∆𝑦1
′′′ =  ∆𝑦1

′′ ∙ 𝜀, ∆𝑧1
′′′ = ∆𝑧1

′′ ∙ 𝜀. (10) 191 
We take the following perturbed points 192 
 𝑥1

′ = 𝑥1 +  ∆𝑥1
′′′, 𝑦1

′ = 𝑦1 +  ∆𝑦1
′′′, 𝑧1

′ = 𝑧1 +  ∆𝑧1
′′′. (11) 193 

Next, the process is repeated, i.e. instead of the points 𝑟0, 𝑥0, 𝑦0 and 𝑧0, the points 𝑟1, 𝑥1
′ , 𝑦1

′  and 194 
𝑧1

′  are taken into account, respectively. 195 
Repeating the so far described procedure M times, one computes 196 
 𝑆1 = ∑ ln‖∆𝑥𝑘

′ ‖𝑀
𝑘=1 , 𝑆2 = ∑ ln‖∆𝑦𝑘

′ ‖𝑀
𝑘=1 , 𝑆3 = ∑ ln‖∆𝑧𝑘

′ ‖𝑀
𝑘=1 .  (12) 197 

Then, a spectrum Λ = {λ1, λ2, λ3} of LEs can be found by the following formulas: 198 

 λ𝑖 =
𝑆𝑖

𝑀𝑇
,      𝑖 = 1, 2, 3.  (13) 199 

In this method, the choice of time interval T plays a crucial role. Indeed, if one takes too large 200 
time interval T, then all perturbed trajectories will be inclined in the direction corresponding to the 201 
maximum LE, and hence the obtained results will not be reliable. 202 

 203 
 204 
 205 

3.2. Wolf method [1] 206 

In reference [1], a novel algorithm to find nonnegative Lyapunov exponents by using a time 207 
series was proposed. It was illustrated that the Lyapunov exponents are associated with either 208 
exponential divergence or convergence of the neighborhood orbits in the considered phase space. In 209 
general, the method is applicable only when analytical governing equations are known, and it is 210 
based on tracing the large time-consuming increase in the number of elements in a small volume of 211 
an attractor. 212 

We defined a Lyapunov exponent and a spectrum of Lyapunov exponents, and then illustrated 213 
how the system dynamics depends on the number of exponents with different signs in the spectrum. 214 
Our approach included reconstruction of an attractor and investigation of orbital divergence on the 215 
possibly smallest distances using the approximate Gramm-Schmidt orthogonalization procedure in 216 
the reconstructed phase. In order to estimate the largest Lyapunov exponent, a long trace of time 217 
evolution of the chosen pair of the neighborhood orbits was carried out. In general, a particular 218 
attention should be paid, since the reconstructed attractor may contain points belonging to different 219 
attractors.  220 

Two versions of the method are proposed. The first one includes the so-called fixed evolution 221 
time, where the time interval associated with the change of the points is fixed. 222 

The main idea of the proposed method is as follows: the largest Lyapunov exponent is computed 223 
based on one time series and used when the equations describing the system evolution are unknown 224 
and when it is impossible to measure all remaining phase coordinates. 225 

Consider a time series ( ),x t  1,...,t N  of one coordinate of a chaotic process measured in equal 226 

time intervals. The method of mutual information allows one to define the time delay ,  whereas 227 

the method of false neighbors yields the dimension of the embedded space m. As a result of the 228 

reconstruction, one gets a set of points of the space :mR   229 

 1 2( ( ), ( ),..., ( ( 1) )) ( ( ), ( ),..., ( )),i mx x i x i x i m x i x i x i        (14) 230 

where (( 1) 1),..., .i m N     231 

We take a point from the series (3) and denote it by 0 .x  In the series (3), one can find a point 232 

0 ,x%  where the relation 0 0 0|| ||x x    %  holds, and where   is a fixed quantity, essentially less 233 
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than the dimension of the reconstructed attractor. It is required that the points 0x  and 0x%  are 234 

separated in time. Then, time evolution of these points on the reconstructed attractor is observed until 235 

the distance between points achieves max .  The new points are denoted by 1x  and 1 ,x%  the distance 236 

is /

0 ,  and the associate interval of time evolution is denoted by 1.T   237 

After that, we again consider the sequence (14) the find the point /

1x% located close to 1 ,x  where 238 
/

1 1 1|| ||x x    %  holds. Vectors 1 1x x%  and /

1 1x x%  should possibly have the same direction. Then, 239 

the procedure is repeated for points 1x  and /

1 .x%  240 

By repeating the above-described procedure M times, the largest Lyapunov exponent is 241 
estimated:  242 

 
1

/

0 1

ln( / ) / .
M M

k k k

k k

T  


 

   (15) 243 

This method was employed in the present research for testing the accuracy of results by using 244 
the classical and known spectra of the Lyapunov exponents of the Hénon map, Rössler equations, 245 
chaos and hyperchaos exhibited by the Lorenz system, and McKay-Glass equation [29]. In addition, 246 
the method has been also employed to study the Belousov-Zhabotinsky reaction [30] and the Couette-247 
Taylor flow [31]. 248 

Wolf et al. [1] pointed out certain restrictions on the choice of the embedding dimension and 249 
magnitude of time required for the attractor reconstruction to achieve the most accurate estimate of 250 
the Lyapunov exponents. Using the Rössler attractor [11] and the Belousov-Zhabotynskiy reaction 251 
[30], the authors demonstrated the effects of the time change during the attractor reconstruction, time 252 
of evolution of the system between steps of the time change, the maximum length of the replacement 253 
vector and the minimum length of the exchange vector on the values of the estimated largest 254 
Lyapunov exponent. Furthermore, it was shown that variation of the time of the system evolution 255 
between 0.5 and 1.5 leads to reliable estimates of the studied three chaotic attractors. Also, some data 256 
requirements that make it possible to obtain the most accurate estimate of the Lyapunov exponent, 257 
such as the use of small length scale data as well as some restrictions on the presence of  noisy 258 
perturbations in the data (static and dynamic), were discussed. 259 

The proposed algorithms can be used to detect chaos as well as to compute its parameters also 260 
for the experimental data with a few positive exponents. Furthermore, numerical studies have shown 261 
that the deterministic chaos can be distinguished from white noise (the Belousov-Zhabotinsky 262 
reaction) and have presented the topological complexity of chaos (the Lorenz attractor). 263 

3.3. Rosenstein method [2] 264 

Despite this method is simple in realization compared to the previous ones and it is 265 

characterized by high computational speed, it does not directly yield 1,  but rather the function 266 

 
/1

( , ) ln ( ) , ( ) min || ||,
jj j x j jy i t d i d i x x

t
   


  (16) 267 

where jx  is a given point, and /

jx  denotes its neighbor. 268 

The algorithm is based on the relationship between jd  and the Lyapunov exponents: 269 

1 ( )
( ) .

i t

jd i e
 

  The largest Lyapunov exponent is computed by estimating the inclination of the most 270 

linear part of the function. It should be mentioned that finding this linear part does not belong to easy 271 
tasks. 272 

3.4. Kantz method [3] 273 

The algorithm proposed by Kantz [3] computes the LLE by searching all neighbors in vicinity of 274 
the reference trajectory and estimates the average distance between neighbors and the reference 275 
trajectory as a function of time (or a relative time multiplied by the data sampling frequency). The 276 
algorithm is based on the following formula  277 

 𝑆(𝜏) =
1

𝑇
∑ ln (

1

|𝑈𝑡|
∑ |𝑥𝑡+𝜏 − 𝑥𝑖+𝜏|i∈𝑈𝑡

)𝑇
𝑡=1 , (17) 278 
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where 𝑥𝑡 stands for an arbitrary signal point; 𝑈𝑡 is a neighborhood of 𝑥𝑡; 𝑥𝑖 is a neighbor of 𝑥𝑡; 𝜏 279 
– relative time multiplied by the sampling frequency; T – sample size; 𝑆(𝜏) – stretching factor in the 280 
region of a linear growth indicating a curve whose slope is equal to LE, i.e. 𝑒λτ ∝  𝑒𝑆(𝜏).  However, 281 
the assumption of a linear growth introduces new errors. Despite the fact that the method is useful 282 
and accurate for systems with known LEs, the choice of parameters and the region where the 283 
mentioned linear growth occurs is, in practice, arbitrary.  284 

The method yields correct results if the value of the Lyapunov exponent is known a priori, and 285 
hence the space with the tangent equal to that value can be chosen. 286 

3.5. Computation of LLE based on synchronization of nonnegative feedback [6, 7] 287 

In reference [6], the method of LLE computation based on synchronization of coupled identical 288 
systems was proposed. The following k-dimensional discrete system: 289 

 𝑦𝑖
′ = 𝑓(𝑦𝑖)  (18) 290 

was considered, where 𝑦 ∈ ℝ𝑘 , 𝑖 ∈ (1, 2, … , 𝑘) . The supplemental system was proposed in the 291 
following way 292 

 𝑥𝑖
′ = 𝑓(𝑦𝑖 + ∆𝑦𝑖), (19a) 293 

 𝑦𝑖
′ = 𝑓(𝑦𝑖),  (19b) 294 

 ∆𝑦𝑖
′ = [𝑓(𝑦𝑖 + ∆𝑦𝑖) −  𝑓(𝑦𝑖)] exp(−𝑝),  (19c) 295 

where 𝑥, 𝑦, ∆𝑦 ∈ ℝ𝑘 . Evolution of k-dimensional system is governed by k of LLEs. Consequently, 296 
synchronization of the perturbed and nonperturbed systems (19а) and (19b) is guaranteed by the 297 
following inequality  298 

 𝑝 > λ𝑚𝑎𝑥,  (20) 299 
where λ𝑚𝑎𝑥 stands for LLEs of the studied systems (18). 300 

 301 

Figure 1. Synchronization for the case of logistic map 302 

 303 

In reference [7], systems with excitations are studied. The authors proposed the following way 304 

of coupling of identical systems: 305 

 𝑥̇ = 𝑓(𝑥), (21a) 306 

 𝑦̇ = 𝑓(𝑦) + 𝑑(𝑥 − 𝑦). (21b) 307 

The presented approach is limited to application to the systems with known equations of 308 

evolutions, and the way of introducing the coupling of two identical systems depends on the 309 

considered system type. 310 

 311 

 312 

3.6. Jacobi method [32, 33] 313 
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This method has been proposed in references [32, 33]. Its main idea is to use an algorithm, the 314 
scheme of which is illustrated in Fig. 2. A sphere of small radius 𝜀 is taken. After a few iterations m, 315 
a certain operator 𝑇𝑚 transforms this sphere into an ellipsoid having 𝑎1, … , 𝑎𝑝 half-axes. The sphere 316 

is stretched along the axes 𝑎1, … , 𝑎𝑠 > 𝜀, where s is the number of positive LEs. For sufficiently small 317 
𝜀, the operator 𝑇𝑚 is close to the sum of the shear operator and the linear operator A. The LLEs are 318 
computed as averaged eigenvalues of the operator A on the whole attractor. 319 

 320 
Figure 2. Transformation of a sphere of small radius into a counterpart ellipsoid 321 

 322 
A vector Ϛ𝑗 is chosen, and a set  {Ϛ𝑘𝑖

}(𝑖 = 1, … , 𝑁) of i-th neighborhood vectors is found. The 323 

following set of vectors 𝑦𝑖 ≡ Ϛ𝑘𝑖
− Ϛ𝑗 , where ‖𝑦𝑖‖ ≤ 𝜀, is taken. After m successive iterations, the 324 

operator 𝑇𝑚 transforms the vector Ϛ𝑗 into Ϛ𝑗+𝑚, and the vector Ϛ𝑘𝑖
 into Ϛ𝑘𝑖+𝑚

. Consequently, the 325 

vectors 𝑦𝑖  are transformed into 326 

𝑦𝑖+𝑚 = Ϛ𝑘𝑖+𝑚
− Ϛ𝑗+𝑚. 327 

Assuming that the radius 𝜀 is sufficiently small, one can introduce the operator 𝐴𝑗 as follows 328 

𝑦𝑖+𝑚 = 𝐴𝑗𝑦𝑖. 329 

The operator 𝐴𝑗 describes the system in variations. To estimate the operator A, the least-square 330 

method can be employed: 331 

min
𝐴𝑗

𝑆 = min
𝐴𝑗

1

𝑁
∑ (𝑦𝑖+𝑚 − 𝐴𝑗𝑦𝑖)

2𝑁
𝑖=0 . 332 

This yields the following system of equations of the dimension 𝑛 × 𝑛: 333 

𝐴𝑗𝑉 = 𝐶, (𝑉)𝑘𝑙 =
1

𝑁
∑ 𝑦𝑖

𝑘𝑦𝑖
𝑙

𝑁

𝑖=1

, 334 

(𝐶)𝑘𝑙 =
1

𝑁
∑ 𝑦𝑖+𝑚

𝑘

𝑁

𝑖=1

𝑦𝑖
𝑙 , 335 

where V, C are the matrices of the dimension 𝑛 × 𝑛, 𝑦𝑖
𝑘 stands for the k-th component of vector 𝑦𝑖, 336 

and 𝑦𝑖+𝑚
𝑘  is the k-th component of the vector 𝑦𝑖+𝑚. If А is a solution to the mentioned equations, then 337 

the LEs can be found in the following way 338 

𝜆𝑖 = lim
𝑛→∞

1

𝑛𝜏
∑ ln 𝐴𝑗𝑒𝑖

𝑗

𝑛

𝑗=1

, 339 

where {𝑒𝑗} is a set of basic vectors in tangent space Ϛ𝑗. 340 

The algorithm can be realized in a way similar to the computation of LEs of the ODEs given 341 
analytically. 342 
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Let us choose an arbitrary basis {𝑒𝑠} and then follow the changes in the length of the vector 343 
𝐴𝑗𝑒𝑠 . As the vectors 𝐴𝑗𝑒𝑠  grow and their orientations change, it is necessary to perform their 344 

orthogonalization and normalization by using, for example, the Gramm-Schmidt procedure. Then, 345 
the procedure is repeated for the new basis. 346 

The mentioned method allows one to estimate a spectrum of nonnegative LEs. However, the 347 
method has a serious disadvantage - it is highly sensitive to noise and errors. 348 

3.7. Modification of the neural network method [4, 5] 349 

We proposed a novel and counterpart method to compute LEs based on a modification of the 350 
neural network method (see Fig. 3) 351 

 352 
Figure 3. One-layer neutral network 353 

 354 
To realize the neural network algorithm, the following criteria were taken into account:  355 
(i) the network is sensitive to the input information (information is given in the form of real 356 

numbers); 357 
(ii) the network is self-organizing, i.e. it yields the output space of solutions only based on the 358 

inputs; 359 
(iii) the neural network is a network of straight distribution (all connections are directed from 360 

input neurons to output neurons); 361 
(iv) owing to the synapses tuning, the network exhibits dynamics couplings (in the learning 362 

process, the tuning of the synaptic coupling takes place ( / 0),dW dt   where W stands for 363 

the weighted coefficients of the network). 364 

 365 
Figure 4. Transition function 366 

 367 
In the network, there is a hidden layer of neurons, which contains the hyperbolic tangent playing 368 

a role of an activation function (Fig. 4). 369 
A derivative of the hyperbolic tangent is described by a quadratic function, as it is in the case of 370 

a logistic function. However, in contrast to the logistic function, the space of the values of the 371 
hyperbolic tangent falls within the interval (-1;1). This results in higher convergence in comparison 372 
to the standard logistic function. 373 

Prognosis of 𝑥̂𝑘 of a scalar time series 𝑥𝑘 is made by employing the following formula 374 
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 𝑥̂𝑘 = ∑ 𝑏𝑖 tanh(𝑎𝑖0 + ∑ 𝑎𝑖𝑗𝑥𝑘−𝑗
𝑑
𝑗=1 )𝑛

𝑖=1 , (22) 375 

where 𝑛 stands for the number of neurons, 𝑑 is the number of the searched LE, 𝑎𝑖𝑗 stands for the 376 

𝑛 × (𝑑 + 1) matrix of coefficients, and 𝑏𝑖  is the vector of length 𝑛 . The matrix 𝑎𝑖𝑗  contains the 377 

coupling forces with respect to the network input and the vector 𝑏𝑖 is used to control the input of 378 
each neuron to the network output, whereas the vector 𝑎𝑖0 is used for relatively simple learning 379 
based on data with nonzero averaged value. 380 

Weights 𝑎 and 𝑏 are chosen in a probabilistic way, and the dimension of the searched solution 381 
is decreased in the process of learning. The associated Gaussian is chosen in a way to have initial 382 
standard distribution 2−𝑗, centered with respect to zero in order to promote the most recent time 383 
delays (small values of 𝑗) in the phase space. The coupling forces are chosen in a way to minimize 384 
the averaged one step mean square error of a forecast  385 

 𝑒 =
∑ (𝑥̂𝑘−𝑥𝑘)2𝑐

𝑘=𝑑+1

𝑐−𝑑
 . (23) 386 

When the network is being trained, sensitivity of the output is defined in each time step by 387 
computing partial derivatives of all averaged points of the time series in each time step 𝑥𝑘−𝑗: 388 

𝑆̂(j) =
1

𝑐 − 𝑗
∑ |

𝜕𝑥̂𝑘

𝜕𝑥𝑘−𝑗
|

𝑐

𝑘=𝑗+1

. (24) 

In the case of the network given by (22), the partial derivatives have the following form 389 

𝜕𝑥̂𝑘

𝜕𝑥𝑘−𝑗
= ∑ 𝑎𝑖𝑗𝑏𝑖 sech2 (𝑎𝑖0 + ∑ 𝑎𝑖𝑚𝑥𝑘−𝑚

𝑑

𝑚=1

)

𝑛

𝑖=1

. (25) 

The largest value 𝑗 is the optimal embedding dimension, and the key role is played by 𝑆̂(j) as 390 
in the false nearest neighbors method. The individual values of 𝑆̂(j) yield a quantitative estimate of 391 
the importance of each time step using the associated terms of the autocorrelation function or 392 
coefficients of the associated linear model.  393 

The weight coefficients of the trained neural network are substituted to the matrix of solutions, 394 
and the input data are used to define the initial state. The computation of the spectrum is realized by 395 
employment of the generalized Benettin algorithm based on the obtained system of equations. 396 

4. Wavelet methods  397 

4.1. Gauss wavelets [13] 398 

In the majority of engineering problems, the Fourier analysis is insufficient, since it deals with 399 
the averaged spectrum of the whole studied vibration signal and presents only a general picture of 400 
the signal. On the contrary, wavelets play a role of a microscope, which allows one to observe the 401 
spectrum at each time instant, and hence to detect a birth/death of the frequencies in time. 402 

A wavelet transform of a 1D signal consists of its development with respect to a basis being 403 
usually a soliton-like function with given properties. The basis is obtained by displacement and 404 
tension/compression of a function, called a wavelet. 405 

In the present work, the Gauss wavelets, defined as derivatives of the Gauss function, were used. 406 
Higher-order derivatives have many zero moments, and hence they allow one to obtain information 407 
about higher-order features hidden in the investigated signal. 408 

The 8th order Gauss wavelets of the of the following form were employed  409 

 𝑔8(𝑥) = −(105 −  420𝑥2 + 210𝑥4 − 28𝑥6 + 𝑥8)𝑒𝑥𝑝
−𝑥2

2 . (26) 410 

5. Analysis of classical dynamical systems by LEs and Gauss wavelets 411 

In this section, we study simple classical systems (Tables 1, 4, 7, 10, 13) with emphasis put on a 412 
comparison of the LEs (Tables 2, 5, 8, 11, 14) obtained using the Wolf, Rosenstein and Kantz and 413 
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neural network methods. The convergence of the mentioned methods, depending on the number of 414 
iteration steps, is illustrated and discussed (Tables 3, 6, 9, 12, 15). 415 

5.1. Logistic map [10] 416 

A logistic map describes how the population changes with respect to time  417 

Xn+1 = RXn(1 − Xn). 
(27) 

Here, Xn takes the values from 0 to 1 and presents the population in the n-th year, whereas X0 418 
denotes the initial population (in the year 0); R is a positive parameter characterizing an increase in 419 
the population (computations were carried out for R = 4). 420 

The first Lyapunov exponent and the Kaplan-Yorke dimension were estimated by Sprott [35]. 421 
He obtained: λ1=0.693147181, and the Kaplan-Yorke dimension: 1.0. 422 

Tables 1, 4, 7, 10, 13 report the following results: а) signal; b) signal window; c) Poincaré pseudo-423 
map; d) Fourier power spectrum; e) Gauss 8 wavelet; f) bifurcation diagram with LLE; g) graphs of 424 
LEs on the control parameters plane. 425 

Table 1. Nonlinear characteristics of the oscillation signal: (a) time histories; (b) time window; (c) 426 
Poincaré pseudo-map; (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagram 427 
and LLE; (g) no graph of Lyapunov exponents (logistic map) 428 

а) 

 

b) 

 

c) 

 

d) 

 

e) 

 
f) 
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g) the system consists of one control parameter, and hence the graph of Lyapunov 

exponents cannot be constructed  

Table 2. Spectrum of Lyapunov exponents and LLEs computed by different methods (logistic map) 429 
LE spectrum 

Benettin method  Neural network 

(LEs): 0.69315  

Dimension Kaplan-York (DKY): 1 

Kolmogorov-Sinai entropy (KSE): 0.69315 

Phase volume compression (PVC): 0.69315 

LEs: 0.69290 

DKY: 1 

EKS: 0.69290 

PVC: 0.69290 

LLE 

Wolf method Rosenstein method Kantz method Method of synchronization 

LLE: 0.99683 LLE: 0.690553 LLE: 0.31321 LLE: 0.696 
 430 

Table 3. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 = 1, 2 and the LLEs 431 
computed by different methods (logistic map) 432 

∆𝑡 = 1 ∆𝑡 = 2 

Fourier power spectrum 

 
 

Gauss wavelet 

 
 

LLE (Wolf) 

0.99961 1.00014 

LLE (Rosenstein) 

0.69231 0.69065 

LLE (Kantz) 

0.31321  

LLE (Synchronization) 

0.69400 0.69330 

LEs (Benettin) 

LES: 0.69318  

DKY: 1.00000 

KSE: 0.69318 

PVC: 0.69318 

LES: 0.69400  

DKY: 1.00000 

KSE: 0.69400  

PVC: 0.69400 

LEs (neural network) 

LES: 0.69290 LES: 0.69107  
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DKY: 1 

KSE: 0.69290 

PVC: 0.69290 

DKY: 1.00000 

KSE: 0.69107 

PVC: 0.69107 

The power spectrum is noisy and it is not possible to distinguish the dominating frequency. A 433 
similar situation is exhibited by the Gauss wavelet, where a large set of frequencies is visible. They 434 
are varied with respect to power, the whole interval of the signal changes, and the estimated LLEs 435 
correlate with the bifurcation diagram for the same interval of the control parameter r. 436 

As can be seen in Table 2, all computational methods were compared with Benettin’s original 437 
results. Good coincidence was exhibited by the neural network method, the Rosenstein method and 438 
the method of synchronization. Kantz/Wolf method gave decreased/increased value of LLE in 439 
comparison to the original value. 440 

5.2. Hénon map [8] 441 

The Hénon map takes a point  ,n nX Y  and maps it into another point by the following 442 

formulas 443 

 
2

1

1

1 ,

.

n n n

n n

X aX Y

Y bX





  


 (28)  444 

The following parameters are fixed for numerical experiments: 1.4,a   0.3.b   Since the 445 

equations (28) do not correspond to a real object, the parameters are replaced with fixed values. Sprott 446 
[34] computed the Lyapunov spectrum and the Kaplan-Yorke dimension of the map using the 447 

Benettin method [17] by solving (28). He obtained the following LEs: 1 0.419217,   2 1.623190,  448 

and the Kaplan-Yorke dimension: 1.258267. 449 
 450 

Table 4. Characteristics of the Hénon map: (a) time history; (b) time window; (c) Poincaré pseudo-451 
map; (d) Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) 452 
graph of Lyapunov exponents 453 
 454 

а) 

 
b) 

 

c) 
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d) 

 

e) 

 

f) 

 
g) 

 
 455 

Similarly to the logistic map, the power spectrum exhibits a uniform noisy shape. However, one 456 
can distinguish a dominating frequency (𝜔1 ≈ 0,45). It is also visible on the wavelet spectrum as a 457 
region of the largest amplitudes along the whole signal. Plots of the change in the LLE correlate with 458 
bifurcation diagrams for the same interval of changes in the parameters a and b. Dynamics of the LLE 459 
changes increases with the increase in both control parameters. Starting with the graphs of LEs for a 460 
given set of control parameters, the system mainly remains in a periodic regime, but it exhibits chaotic 461 
dynamics for large values of the control parameters. 462 

463 
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Table 5. Lyapunov exponents spectrum and LLEs computed by different methods (Hénon map) 464 

Spectrum of LLEs 

Benettin method Neural network 

LEs: 0.41919 -1.62316 

DKY: 1.25826 

EKS: 0.41919 

PVC: -1.20397 

LEs: 0.41919 -1.62316  

DKY: 1.25826 

EKS: 0.41919 

PVC: -1.20397 

LLEs 

Wolf method Rosenstein method Kantz method Synchronization method 

LLE: 0.38788 LLE: 0.414218 LLE: 0.17759 LLE: 0.40608 

 465 
Beginning from the results shown in Table 5, the majority of the employed computational 466 

methods yielded good results. However, the most accurate results were obtained by the neural 467 
network method (for whole spectrum of LEs), the Rosenstein method, and the method of 468 
synchronization (in the case of LLEs). The Wolf and Kantz methods gave decreased estimated values 469 
of the LLEs. 470 

 471 
Table 6. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 = 1, 2 and the computed 472 
LLEs by different methods (Hénon map) 473 

∆𝑡 = 1 ∆𝑡 = 2 

Fourier power spectrum 

  
Gauss wavelet 

  
LLE (Wolf) 

0.4158 0.39734 

LLE (Rosenstein) 

0.41637 0.400635 

LLE (Kantz) 

0.17759 0.105365 

LLE (synchronization) 

0.40608 0.40510 

All LEs (Benettin) 

LEs: 0.41919 -1.62316 

DKY: 1.25826 

EKs: 0.41919 

PVC: -1.20397 

LEs: 0.41917 -1.62315  

DKY: 1.25825 

EKs: 0.41917 

PVC: -1.20397 

All LEs (neural network) 

LEs: 0.41919 -1.62316  

DKY: 1.25826 

LEs: 0.40924 -1.61321  

DKY: 1.25368 
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KSE: 0.41919 

PVC: -1.20397 

KSE: 0.40924 

PVC: -1.20397 

 474 

5.3. Hyperchaotic generalised Hénon map [9] 475 

To obtain the hyperchaotic Hénon map, one needs to take a point ( , , )n n nX Y Z  and map it into 476 

the following one:  477 

 

2

1

1

1

,

,

.

n n n

n n

n n

X a aY bZ

Y X

Z Y







  





 (29)  478 

 479 

The computations were carried out for the following fixed parameters: 3.4,a   0.1.b   The 480 

Lyapunov spectrum reported in reference [9] is: 0.276; 0.257; 4.040. 481 

 482 
Table 7. Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d) 483 
Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagram and LLE; (g) graph of 484 
Lyapunov exponents (generalized Hénon map) 485 

а) 

 
b) 

 

c) 

 
d) 

 

e) 

 
f) 
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g) 

 
 486 

One can distinguish a large number of frequencies in the power spectrum. Frequencies with the 487 
largest amplitude are located in the interval [0.15; 0.3] (frequencies 𝜔1 − 𝜔4), but the remaining part 488 
of the spectrum is noisy. This interval corresponds to the brightest region on the Gauss wavelet, 489 
which is correlated with the values of the power spectrum. Changes in LLEs coincide with the 490 
bifurcation diagrams constructed for the same intervals of changes in the control parameters a and b. 491 
Dynamics of LLEs increases with the increase in the control parameters. As in the case of the Hénon 492 
map, the chart of LEs for the selected control parameters exhibits, for a majority of studied 493 
parameters, periodic dynamics. It transits into chaos for 𝑎 ≈ 1.4, and is almost suddenly shifted into 494 
hyper-chaos (2 positive LEs). 495 

Table 8. Lyapunov exponents spectrum and LLEs computed by different methods (generalized 496 
Hénon map) 497 

Spectrum of LEs 

Benettin method Neural network 

LEs: 0.27628 0.25770 -4.04053  

DKY: 2.13215 

EKS: 0.53397 

PVC: -3.50656 

LEs: 0.29251 0.27104 -4.04583  

DKY: 2.13929 

EKS: 0.56355 

PVC: -3.48227 

LLEs 

Wolf method Rosenstein method Kantz method synchronization method 

LLE: 0.45214 LLE: 0.27930 LLE: 0.26601 0.27250 

 498 
Good results were obtained by the Benettin, Rosenstein and synchronization methods 499 

(divergence from the third decimal place). The neural network yielded slightly increased estimates 500 
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of two first LEs, whereas the third LE was estimated almost exactly. The Kantz method gave a 501 
decreased result in comparison to reference data. The Wolf method resulted in the largest error. 502 

 503 
Table 9. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 = 1, 2 and the computed 504 
LLEs by different methods (generalized Hénon map) 505 

∆𝑡 = 1 ∆𝑡 = 2 

Fourier power spectrum 

  
Gauss wavelet 

  
LLE (Wolf) 

0.45214 0.46706 

LLE (Rosenstein) 

0.27930 0.27459 (0.62515) 

LLE (Kantz) 

0.26601  

LLE (synchronization) 

0.27250 0.27200 

All LEs (Benettin) 

LEs: 0.27628 0.25770 -4.04053  

DKY: 2.13215 

KSE: 0.53397 

PVC: -3.50656 

LEs: 0.27487 0.25631 -4.03774  

DKY: 2.13155 

EKS: 0.53118 

PVC: -3.50656 

All LEs (neural network) 

LEs: 0.29251 0.27104 -4.04583  

DKY: 2.13929 

KSE: 0.56355 

PVC: -3.48227 

LEs: 0.26304 0.24387 -4.14321  

DKY: 2.12235 

KSE: 0.50691 

PVC: -3.63630 

 506 

5.4. Rössler attractor [11] 507 

The following Rössler system of ODEs was investigated 508 

 

,

,

( ),

x y z

y x ay

z b z x c

  


 
   

&

&

&

 (30)  509 

and the computations were carried out for the following fixed parameters 0.2a b   and 5.7.c    510 
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The original study yielded the Lyapunov spectrum: 0.0714, 0, -5:3943, and the Kaplan-Yorke 511 

dimension equal to 2.0132. 512 

 513 
Table 10. Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d) 514 
Fourier frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graphs of 515 
Lyapunov exponents (Rössler attractor) 516 

 517 

а) 

 
b) 

 

c) 

 
d) 

 

e) 

 
f) 
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g) 

    
 518 

The power spectrum contains the fundamental frequency 𝜔1, which is accompanied by damped 519 
bursts (frequencies 𝜔2 − 𝜔10). In the whole time interval, the Gauss wavelet exhibits the brightest 520 
region of the fundamental frequency with darker peaks going to zero. Thus, the picture is analogous 521 
to the power spectrum. Contrarily to the studied maps, the bifurcation diagrams have a more 522 
complex structure. However, there is still correlation with the changes in LLEs for the corresponding 523 
control parameters. The parameter b has the most smallest influence on the change in LLE. Graphs of 524 
LLEs also exhibit a more complex structure. Borders of different vibration kinds have complex forms, 525 
which illustrates the increase in the system complexity. Aside from the chaos and hyper-chaos zones, 526 
there are drops of hyper hyper-chaos (3 positive LEs). 527 

As far as Table 11 is considered, the best results were yielded by the Benettin and Rosenstein 528 
methods. The method of neural networks gave very good results in the case of estimates of two first 529 
LEs, but underestimated the third exponent. The Wolf method yielded smaller value of the first 530 
exponent compared to the reference data. The most underestimated results were given by the Kantz 531 
method. 532 

 533 

 534 

 535 
Table 11. Lyapunov exponents spectrum and LLEs computed by different methods (Rössler 536 
attractor) 537 

Spectrum of LEs 

Benettin method Neural network 

LE: 0.07135 0.00000 -5.39420  

DKY: 2.01323 

KSE: 0.07135 

PVC: -5.32285 

LE: 0.07593 -0.00060 -0.78178 

DKY: 2.09635 

EKS: 0.07593 

PVC: -0.70646 

LLEs 

Wolf method Rosenstein method Kantz method 

LLE: 0.05855 LLE: 0.0726 LLE: 0.0208 

 538 
Table 12. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 = 0.05, 0.1, 0.15, 0.2 539 
and the computed LLEs by different methods (Rössler attractor) 540 

∆𝑡 = 0.05 ∆𝑡 = 0.1 ∆𝑡 = 0.15 ∆𝑡 = 0.2 

Fourier power spectrum 

    

Gauss wavelets 
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LLE (Wolf) 

 0.05855   

LLE (Rosenstein) 

0.083 0.0726 0.06553 0.606 

LLE (Kantz) 

0.0234 0.0208 0.02133 0.0215 

All LEs (Benettin) 

LES: 0.07156 0.00000 -

5.38768  

DKY: 2.01328 

KSE: 0.07156 

PVC: -5.31612 

LES: 0.06959 0.00000 -

5.21949  

DKY: 2.01333 

KSE: 0.06959 

PVC: -5.14990 

LES: 0.06789 0.00000 -

4.34385  

DKY: 2.01563 

KSE: 0.06789 

PVC: -4.27596 

LES: 0.06205 -0.00001 -

2.84111  

DKY: 2.02184 

KSE: 0.06205 

PVC: -2.77906 

All LEs (neural network) 

LES: 0.06259 -0.07984 -

0.32528  

DKY: 1.78396 

KSE: 0.06259 

PVC: -0.34253 

LES: 0.07340 -0.02681 -

0.23525  

DKY: 2.19807 

KSE: 0.07340 

PVC: -0.18865 

LES: 0.07374 0.00057 -

0.36909  

DKY: 2.20135 

KSE: 0.07432 

PVC: -0.29477 

LES: 0.07983 -0.02816 -

0.91182  

DKY: 2.05667 

KSE: 0.07983 

PVC: -0.86015 

 541 
The carried out numerical experiments showed that using the different sampling frequency, the 542 

power spectrum and wavelet spectrum were not changed. This was also validated by results obtained 543 
by the Benettin, neural networks and Rosenstein methods which yielded the results very close to 544 
original ones. The Kantz method gave underestimated results for different frequency selection, 545 
correlating with the results obtained for the standard sample size.  546 

5.5. Lorenz attractor [12] 547 

The input hydrodynamic system is governed by the following ODEs: 548 

 

( ),

( ) ,

,

x y x

y x r z y

z xy bz

 


  
  

&

&

&

 (31)  549 

where r stands for the normalized Rayleigh number (nondimensional number defining fluid behavior 550 

under gradient): 551 

 
3

.
g TL

r





  (32) 552 

In the above equation, the following notation is used: g – gravity of Earth; L - characteristic 553 
dimension of the fluid space; T  - temperature difference between fluid walls;   - kinematic fluid 554 
viscosity,   - thermal conductivity of the fluid;   - coefficient of heat fluid extension;   - Prandtl 555 

number (takes into account heat source property) governed by the following equation 556 

 ,
pC




 


 (33)  557 
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where: /    - kinematic viscosity,   - dynamic viscosity,   - density, 
pC





  - 558 

temperature transfer coefficient,   - heat transfer coefficient, pC  - specific heat capacity under 559 

constant pressure; and   - information about the geometry of the convective cell.  560 

The following parameters were fixed: 10.0,   28.0,r   8 / 3.b   The original results follow: 561 

LEs: 0.9056, 0, -14.5723; the Kaplan-York dimension: 2.06215. 562 

563 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2018                   doi:10.20944/preprints201801.0154.v1

Peer-reviewed version available at Entropy 2018, 20, 175; doi:10.3390/e20030175

http://dx.doi.org/10.20944/preprints201801.0154.v1
http://dx.doi.org/10.3390/e20030175


 23 of 26 

 

Table 13. Signal characteristics: (a) time history; (b) time window; (c) Poincaré pseudo-map; (d) Fourier 564 

frequency spectrum; (e) wavelet spectrum; (f) bifurcation diagrams and LLEs; (g) graphs of Lyapunov exponents 565 

(Lorenz attractor) 566 

а) 

 
b) 

 

c) 

 

d) 

 

e) 

 
f) 

 
g) 

    
The power spectrum of the attractor uniformly decreases when approaching a finite frequency, 567 

and there is a lack of frequencies with a strongly dominating amplitude. The latter observation is also 568 
verified by the Gauss wavelet spectrum. The bifurcation diagrams, similar to those for the Rössler 569 
system, exhibit a complex structure, but the correlation to the LLEs change is conserved. The 570 
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richest/lowest dynamics of LLE is obtained for changing parameter / .r   Based on the reported 571 
graphs of Les, one can conclude that the system dynamics is fully chaotic. There are also narrow 572 
windows of hyper-chaotic dynamics. 573 

 574 
Table 14. Lyapunov exponents spectrum and LLEs computed by different methods (Lorenz 575 
attractor) 576 

Spectrum of LEs 

Benettin method Neural network method 

LE: 0.90557 0.00000 -14.57214  

DKY: 2.06214 

EKS: 0.90557 

PVC: -13.66656 

LE: 0.9490 0.0610 -13.9101 

DKY: 2.07261 

EKS: 1.0101 

PVC: -12.9000 

LLEs 

Wolf method Rosenstein methhod  Kantz method 

LLE: 0.81704 LLE: 0.836 LLE: 0.807185 

 577 
 578 
A comparison of the results reported in Table 14 with the original results exhibit an excellent 579 

coincidence of the Benettin method (original results) and the neural network method (+4.79%). The 580 
Wolf and Rosenstein methods yielded the underestimated results of the LLE value. The worst 581 
estimation was obtained by Kantz method. 582 

 583 
Table 15. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 = 0.005, 0.01, 0.015, 0.02 and the 584 
computed LLEs by different methods (Lorenz attractor) 585 

∆𝑡 =  0.005 ∆𝑡 =  0.01 ∆𝑡 =  0.015 ∆𝑡 =  0.02 

Fourier power spectrum 

    
Gauss wavelet 

    
LLE (Wolf) 

 0.81704   

LLE (Rosenstein) 

0.876 0.836 0.858 0.859 

LLE (Kantz) 

    

LES (Benettin) 

LES: 0.90632 0.00000 -

14.57297  

DKY: 2.06219 

KSE: 0.90632 

PVC: -13.66666 

LES: 0.90523 0.00000 -

14.57179  

DKY: 2.06212 

KSE: 0.90523 

PVC: -13.66656 

LES: 0.90551 0.00000 -

14.57163  

DKY: 2.06214 

KSE: 0.90551 

PVC: -13.66613 

LES: 0.90596 0.00000 -

14.57086  

DKY: 2.06218 

KSE: 0.90596 

PVC: -13.66490 

LES (neural network) 
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 LE: 0.9490 0.0610 -

13.9101 

DKY: 2.07261 

EKS: 1.0101 

PVC: -12.9000 

  

 586 
Employing different sampling frequency does not change a picture of Fourier and wavelet 587 

power spectra. This was also validated by the Benettin and Rosenstein methods, which yield the 588 
results very close to the original values in spite of the arbitrary choice of the sampling frequency. 589 

6. Concluding remarks 590 

Analysis of the dynamics of the studied classical system by different methods leads to a 591 
conclusion that the most perspective and useful is the modified method of neural networks [4, 5]. It 592 
gives excellent convergence to the original results and, as the only one (besides of the Benettin 593 
method), allows to compute the spectrum of all Lyapunov exponents. In addition, very good results 594 
were obtained by the Rosenstein method for all studied systems. However, this method can be used 595 
to estimate only the largest Lyapunov exponents.  596 

As far as convergence was considered, the Kantz method always yielded underestimated values, 597 
whereas the Wolf method gave either over- and underestimated values of LEs. 598 

The method of synchronization worked reasonably well for the maps, but it was not useful in 599 
studying differential equations (the Rössler or Lorenz systems). The mentioned systems require the 600 
use of another type of coupling, which is a drawback of the method. 601 

The carried out analysis of the works devoted to feasible methods for computation of Lyapunov 602 
exponents shows that there is no universal, verified and general method to compute the exact (in the 603 
sense of numerics) values of the Lyapunov exponents. This observation leads to the conclusion that 604 
there is a need to employ qualitatively different methods while checking the reliability of “true 605 
chaotic results”. Furthermore, the analysis carried out in this paper is a helping tool to study systems 606 
of an infinite dimension. Such an analysis is the subject of the second paper part. 607 
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