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Abstract: Deep learning has recently attracted much attention due to its excellent performance in 12 
processing audio, image, and video data. However, few studies are devoted to the field of 13 
automatic modulation classification (AMC). It is one of the most well-known research topics in 14 
communication signal recognition, which remains challenging for traditional methods due to the 15 
complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion 16 
(HDMF) method to solve the problem in a unified framework. The contributions include: 1) The 17 
convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two 18 
different ways without prior knowledge involved; 2) A large database, including eleven types of 19 
single-carrier modulation signals with various noises as well as a fading channel, is collected with 20 
various signal-to-noise ratios (SNRs) based on a real geographical environment; and 3) 21 
Experimental results demonstrate that HDMF is super capable of  copping with the AMC 22 
problem, and achieves much better performance when compared with the independent network. 23 
The source code and the database will be publically available. 24 

Keywords: Deep learning; automatic modulation classification; classifier fusion; convolutional 25 
neural network; long short-term memory 26 

 27 

1. Introduction 28 
Communication signal recognition is of great significance for several daily applications, such 29 

as operator regulation, signal feature map generation, and user identification. One of the main 30 
objectives of signal recognition is to detect the communication resources, which ensures the 31 
reliability of communications. To achieve this objective, automatic modulation classification (AMC) 32 
is indispensable because it can help users identify the modulation mode within a frequency band, 33 
which benefits the communication reconfiguration and electromagnetic environment analysis. 34 
AMC plays an essential role in obtaining digital baseband information from the signal when only 35 
limited knowledge about the parameters is available. Such a technique is widely used in both 36 
military and civilian applications, e.g., intelligent cognitive radio and anomaly detection [1]-[2], 37 
which have attracted much attention from researchers in the past decades. 38 

Basically, existing AMC algorithms can be divided into two main categories [3], namely, 39 
likelihood-based (LB) methods and feature-based (FB) methods. LB methods require calculating the 40 
likelihood function of received signals for all modulation modes and then make decisions in 41 
accordance with maximum likelihood ratio test [3]. LB methods usually generate accurate 42 
classification results but suffer from heavy computational cost. Alternatively, a traditional FB 43 
method consists of two parts, namely, feature extraction and classifier, where classifier identifies 44 
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digital modulation modes in accordance with the effective feature vectors extracted from the signals. 45 
As opposite to the LB methods, the FB methods are computationally light but may not be 46 
theoretically optimal. To date, several FB methods have been validated effective on the AMC 47 
problem. For instance, they successfully extract features from various time-domain waveforms, 48 
such as cyclic spectrum [4], high-order cumulant [6], and wavelet coefficients. Afterwards, a 49 
classifier is used for final classification based on features mentioned above. With the development 50 
of learning algorithms, the performances have been improved, such as from the shallow neural 51 
network [7] and decision tree to the support vector machine (SVM). Recently, deep learning is 52 
widely applied to audio, image, and video processing, facilitating the applications such as face 53 
recognition and voice discrimination [8]. However, a few works are done based on deep learning in 54 
the field of communication. 55 

Although researchers have developed various algorithms to implement AMC of digital signals, 56 
these methods are suitable for simple communication equipment and struggle in the real-world 57 
applications where more complicated equipment is in use, because: 1) they cannot handle complex 58 
disturbance from other sources; 2)they usually separate feature extraction and classification process 59 
so that  the information loss is inevitable; and 3) those methods must use distributed receivers to 60 
collect in-phase and quadrature signals, which costs additional storage space and bandwidth.  In 61 
this paper, we propose to realize AMC using the convolution neural networks (CNNs) [9], long 62 
short-term memory (LSTM) [10], and their fusion model to directly process the time-domain 63 
waveform data. 64 

CNNs exploit spatially-local correlation by enforcing a local connectivity pattern between 65 
neurons of adjacent layers. The convolution kernels are also shared in each sample for the rapid 66 
expansion of parameters caused by the fully connected structure. Sample data are still retained in 67 
the original position after convolution such that the local features are well preserved. Despite its 68 
great advance in spatial feature extraction, CNNs could not model the changes in time series well. 69 
As is known to us, the temporal property of data is important for AMC applications. As a variant of 70 
recurrent neural network (RNN), LSTM uses the gate structure to realize the information transfer of 71 
the network in time sequence, which reflects the depth in time series. Therefore, LSTM has a super 72 
capacity to process the time series data. 73 

 74 
Figure 1. Illustration of the traditional and classifier methods in this study for AMC. The traditional 75 
method needs to extract features as preprocessing and suffers from the perturbation caused by high 76 
computational complexity and effective information loss. By contrast, the classifier based on deep 77 
learning is used to process signal data directly in this study. AMC is implemented more efficiently 78 
with a heterogeneous deep model fusion (HDMF) method. 79 

This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the AMC 80 
problem in a unified framework. The framework is shown in Figure 1. Different from conventional 81 
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methods, AMC does not need to rely on other methods to extract features. In addition, the 82 
modulation modes can be obtained directly on the basis of the previous training model. Such 83 
improvement helps the communication system to overcome the shortcoming that cognition based 84 
on a separate feature and classification process and enhance classification accuracy. We use CNNs 85 
and LSTM to process the time domain waveforms of modulation signal. Eleven types of 86 
single-carrier modulation signal samples (e.g., MASK, MFSK, MPSK, and MQAM) added with 87 
additive white Gaussian noise (AWGN) and a fading channel are generated under various 88 
signal-to-noise ratios (SNRs) based on an actual geographical environment. Two kinds of HDMFs 89 
based on the serial and parallel modes are proposed to increase the classification accuracy. The 90 
results show that HDMFs achieved much better results than the single CNN or LSTM method, 91 
when SNR is in the range of 0–20 dB. In a summary, the contributions are as follows: 92 

1) CNNs and LSTM are fused based on the serial and parallel modes to solve the AMC 93 
problem, thereby leading to two HDMFs. Both are trained in the end-to-end framework, which can 94 
learn features and make classifications in a unified framework. 95 

2) The experimental results show that the performance of the fusion model has been 96 
significantly improved compared with the independent network and also traditional wavelet+SVM. 97 
The serial version of HDFM achieves much better performance than the parallel version. 98 

3) We collect communication signal data sets, which approximate the transmitted wireless 99 
channel in the actual geographical environment. Such datasets are very useful for training networks 100 
like CNNs and LSTM. 101 

The rest of this paper is organized as follows. Section II briefly introduces the related works. 102 
Section III introduces the principle of digital modulation signal and deep learning classification 103 
methods. Section IV presents the experiments and analysis. Section V summarizes the paper. 104 

2. Related Works 105 
AMC is a typical multi-classification problem in the field of communication. This section 106 

briefly introduces several feature extraction and classification methods in the traditional AMC 107 
system. The CNN and LSTM models are also presented. 108 

2.1. Conventional works based on separated feature and classifiers 109 
Traditionally the feature and classifier are separately built for an AMC system. For example, 110 

the envelope amplitude of signal, the power spectral variance of signal, and the mean of absolute 111 
value signal frequency, was extracted in [11] to describe the signal from several different aspects. 112 
Yang and Soliman used the phase probability density function for AMC [12]. Meanwhile, 113 
traditional methods usually combine instantaneous and statistical characteristics. Shermeh used the 114 
fusion of high-order moments and cumulants with instantaneous characteristics for AMC [13]-[14]. 115 
The features can describe the signals using both absolute and relative levels. In addition, the 116 
high-order characteristics can eliminate the effects of noise. The sixth and eighth statistics are 117 
widely used in several methods. 118 

Classical algorithms have been widely used in the AMC system. Panagiotou et al. considered 119 
AMC as a multiple-hypothesis test problem and used decision theory to obtain the results [15]. 120 
They assumed that the phase of AWGN was random and dealt with the signals as random variables 121 
with the known probability distribution. Finally, the generalized likelihood ratio test or the average 122 
likelihood ratio test was used to obtain the classification results by the threshold. The classifiers 123 
were then used in the AMC system. In [16], shallow neural networks and SVM were used as 124 
classifiers. In [17]-[18], modulation modes were classified using CNNs with high-level abstract 125 
learning capabilities. 126 

However, the traditional classifiers either need preprocessing to extract features or rely on the 127 
detailed prior information. This approach has led to negative influences of the classification 128 
performance. 129 

 130 
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2.2. CNN – based methods 131 
Advantage of CNNs is achieved with local connections and tied weights followed by some 132 

form of pooling which results in translation invariant features. Furthermore, another benefit is that 133 
they have many fewer parameters than fully connected networks with the same number of hidden 134 
units. In [9], the authors treat the communication signal as a 2 dimensional data which similar to an 135 
image and take it as a matrix to a narrow 2D CNN for AMC. They study the adaptation of CNN to 136 
the time domain IQ data. A 3D CNN was used in [19]-[20] to process video information. The result 137 
showed that CNN multi-frames were considerably more suitable than a single-frame network for 138 
video cognition. In [21], Luan et al propose a Gabor Convolutional Networks, which combines 139 
Gabor filters and CNN model, to enhance the resistance of deep learned features to the orientation 140 
and scale changes. Recently, Zhang et al apply one-two-one network to compression artifacts 141 
reduction in remote sensing [22]. This motivates us to solve the AMC problem. 142 

2.3. LSTM – based methods 143 
Various models have been used to process sequential signal, such as hidden semi-Markov 144 

models [23], conditional random fields [24], and finite-state machines [25]. Recently, RNN became 145 
well-known with the development of deep learning. As a special RNN, LSTM has been widely used 146 
in the field of voice and video because of its ability to handle gradient disappearance in traditional 147 
RNNs. It has the less conditional independence hypothesis compared with the previous models and 148 
facilitates integration with other deep learning networks. Researchers have recently combined 149 
spatial/optical flow CNN features with vanilla LSTM models for global temporal modeling of 150 
videos [26]-[30]. These studies have demonstrated that deep learning models have a significant 151 
effect on action recognition [27], [29], [31] and video description [30], [32]. But to our best of 152 
knowledge, the fusion of CNN and LSTM is never investigated to solve the AMC problem. 153 

3. Heterogeneous Deep Model Fusion 154 

3.1. Digital modulation signal description 155 
The received signal in the communication system can be expressed as follows: 156 

= ⋅ +( ) ( ) ( ) ( )y t x t c t n t ,                                 (1) 157 

where ( )x t  is the efficient signal from the transmitter, ( )c t  represents the transmitted wireless 158 
channel on the basis of the actual geographical environment, and ( )n t  denotes the AWGN. The 159 
digital modulation signals ( )x t  can be expressed as follows: 160 

π θ π θ π θ+= + − = + − + − ≤ ≤(2 )( ) ( ) ( ) ( cos(2 ) sin(2 )) ( ),0j ft
c s c sx t A jA e g t nT A ft A ft g t nT t NT ,   (2) 161 

where cA  and sA  are the amplitudes of the in-phase and quadrature channel, respectively; f  162 
stands for the center frequency; θ  is the initial phase of the carrier; and −( )g t nT  represents the 163 
digital sampling pulse signal. In the case of ASK, FSK, and PSK, sA  is zero. In accordance with the 164 
digital baseband information, ASK, FSK, and PSK change cA , f , and θ  in the range of −0 M , 165 

−1 M , and π−0 2 / M , respectively, with time. By contrast, QAM fully utilizes the orthogonality of 166 
the signal. After dividing the digital baseband into I  and Q  channels, the information is 167 
integrated into two identical frequency carriers with phase difference of 90° using ASK modulation 168 
mode, which significantly improves the bandwidth efficiency. 169 

As one of the most common noise, AWGN is always true whether or not the signal is in the 170 
communication system. The power spectrum density is a constant at all frequencies, and the noise 171 
amplitude obeys the Gauss distribution. 172 

 173 
 174 
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3.2. CNNs 175 
CNNs are a hierarchical neural network that contains convolution, activation, and pooling 176 

layers. In this study, the input of the CNN model is the data of signal time-domain waveform. The 177 
difference among the classes of modulation methods is deeply characterized by the stacking of 178 
multiple convolutional layers and nonlinear activation. Different from the CNN models in the 179 
image domain, we use a series of one-dimensional convolution kernels to process the signals. 180 

Each convolution layer is composed of a number of kernels with the same size. The 181 
convolution kernel is common in each sample; thus, each kernel can be called a feature extraction 182 
unit. This method of sharing parameters can effectively reduce the number of learning parameters. 183 
Moreover, the feature extracted from convolution remains in the original signal position, which 184 
preserves the temporal relationship well within the signal. In this paper, ReLU is used as the 185 
activation function. We do not use the pooling layer for dimensionality reduction because the 186 
amount of signal information is relatively small. 187 

3.3. LSTM 188 
Traditional RNNs are unable to connect the information as the gap grows. The vanishing 189 

gradient can be interpreted as the forgetting of the human brain. LSTM overcomes this drawback 190 
using gate structures that optimize the information transfer among memory cells. The particular 191 
structures in memory cells include the input, output, and forget gates. An LSTM memory cell is 192 
shown in Figure 2. 193 

th

tx

t-1h

t-1x

t+1h

t+1x  194 

Figure 2. LSTM memory cell structure. 195 

The iterating equations are as follows: 196 

−= ⋅ +1mod( [ , ] )t f t t ff sig W h x b ,                            (3) 197 

−= ⋅ +1mod( [ , ] )t i t t ii sig W h x b ,                            (4) 198 

−= ⋅ +


1tanh( [ , ] )t C t t CC W h x b ,                             (5) 199 

−= ⋅ + ⋅


1 tt t t tC f C i C ,                                 (6) 200 

−= ⋅ +1mod( [ , ] )t o t t oo sig W h x b ,                            (7) 201 

= ⋅ tanh( )t t th o C ,                                 (8) 202 

where W  is the weight matrix; b  is the bias vector; i , f , and o  are the outputs of the input, 203 
forget, and output gates, respectively; C  and h  are the cell activations and cell output vectors, 204 
respectively; and modsig  and tanh  are nonlinear activation functions. 205 

Standard LSTM usually models the temporal data in the backward direction but ignores the 206 
forward temporal data, which has a positive impact on the results. In this paper, a method based on 207 
bidirectional LSTM (Bi-LSTM) is exploited to realize AMC. The core concept is to use a forward and 208 
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a backward LSTM to train a sample simultaneously. Similarly, the architecture of Bi-LSTM network 209 
is designed to model the time domain waveforms from past and future. 210 

3.4. Fusion model based on CNN and LSTM 211 
The HDMFs are established based on the fusion model in serial and parallel ways to enhance 212 

the classification performance. The specific structure of the fusion model is shown in Figure 3. 213 

 214 

Figure 3. Fusion model structure of HDMF in parallel and series modes. We note that two HDMF 215 
models are used separately to solve the AMC problem. 216 

The modulated communication signal has local special change characteristics. Meanwhile, the 217 
data has temporal characteristics similar to voice and video. The fusion models exploit 218 
complementary advantages on the basis of these two features. 219 

The six layers of CNNs are used to characterize the differences between the digital modulation 220 
modes in the fusion model. The kernel numbers of the convolutional layer are different for each 221 
layer. The number of convolutional kernel in the first three layers increases gradually, which 222 
transforms the single-channel into multi-channel signal data. Such a transformation also helps to 223 
obtain effective features. Conversely, the number of convolutional kernel in the remaining layers 224 
reduces gradually. Finally, the result is restored to a single-channel data. Although the data format 225 
is same as the original signal, local features of the signal are extracted by multiple convolution 226 
kernels. This leads to the representation for the final classification based on CNNs. The remaining 227 
part of the fusion model uses the two-layer Bi-LSTM network to learn the temporal correlation of 228 
signals. The output of the upper Bi-LSTM is used as the input of the next layer. 229 

The parallel fusion model (HDMF). The two networks are used to train samples 230 
simultaneously. The output of each network is then transformed into an 11-dimensional feature 231 
vector by the full connection layer. The resulting feature vectors represent the judgment of the 232 
modulation modes of the training samples by the two networks. We then combine the two vectors 233 
based on the sum operation as: 234 

ω ω= ⋅ + ⋅  total c c l l ,                                  (9) 235 

and, 236 
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ω ω ω+ = ≤ ≤1,0 1c l ,                                 (10) 237 

The loss function of parallel fusion model consists of two parts, which are balanced by the given 238 
parameters. 239 

Algorithm 1: Training HDMF(parallel) 

1: Initialize the parameters θ c  in CNN, θl  in LSTM, W , ω  in the loss layer, the learning rate 

μ , and the number of iteration 0t = . 

2: While the loss does not converge, do 

3: = + 1t t  
4: Compute the total loss by ω ω= ⋅ + ⋅  total c c l l . 

5: Compute the backpropagation error ∂
∂
 total

ix
 for each ix  by ω ω∂ ∂ ∂

= ⋅ + ⋅
∂ ∂ ∂
  total c l

c l
i i ix x x

. 

6: Update parameter W  by μ μ ω μ ω∂ ∂ ∂
− ⋅ = − ⋅ ⋅ − ⋅ ⋅

∂ ∂ ∂
  total c l

c lW W
W W W

 

7: Update parameters ωc  and ω l  by ω μ
ω

∂
− ⋅

∂
 ,

,
,

c l
c l

c l

. 

8: Update parameter θ  by θ μ
θ

∂ ∂
− ⋅ ⋅

∂ ∂
 ,

,
,

m c l i
c l i

i c l

x
x

. 

9: End while 

The serial fusion method (HDMF). It is similar to the encoder–decoder framework. In this 240 
study, the encoding process is implemented by CNNs, afterwards LSTM decodes the corresponding 241 
information. The features are extracted by the two networks, from simple representation to complex 242 
concepts. The upper convolutional layers can extract features locally. Then, the Bi-LSTM layers learn 243 
temporal characteristic from these representations. 244 

For both kinds of fusion models, the final feature vectors are the probabilistic output of the 245 
softmax layer. The fusion models are trained in the end-to-end way even when different neural 246 
networks are used to address the AMC problem. 247 

3.5. Implementation details and backpropagation 248 

 249 
Figure 4. The geographic simulation environment. 250 

The geographic simulation environment is shown in Figure 4, based on which we collect our 251 
datasets. We captured the unmanned aerial vehicle communication signal data set, which is 252 
developed by us based on STK, visual studio and MATLAB. We use TensorFlow [33] to design our 253 
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deep models. The Adam method [34] is used to solve our model with 0.001 learning rate. The 254 
iterations are as follows: 255 

μ μ−= ⋅ + − ⋅1 (1 )t t tm m g ,                                (11) 256 

ν ν−= ⋅ + − ⋅ 2
1 (1 )t t tn n g ,                                 (12) 257 

μ

∧

=
−1

t
t t

m
m ,                                      (13) 258 

ν

∧

=
−1

t
t t

n
n ,                                       (14) 259 

θ η
ε

∧

∧
Δ = − ⋅

+

t

t

m

n
,                                    (15) 260 

where tm  and tn  are the first and second moment estimations of the gradient, which represent the 261 

estimation of ( )tE g  and 2( )tE g , respectively; 
∧

tm  and 
∧

tn  are the corrections of tm  and tn , 262 
respectively, which can be regarded as the unbiased estimation of expectation; θΔ  is the dynamic 263 
constraint of learning rate; and μ , ν , ε , and η  are constants. 264 

The fundamental loss and the softmax functions are defined as follows: 265 
= −( , ) log( )yx y p ,                                   (16) 266 

+

+

=

=
  1

=
T
y i yy i i

T
i j i j

W x bz

y z n W x b

ji

e ep
e e

,                                (17) 267 

where x  is the input, y  is the corresponding truth label, and iz  is the input for the softmax layer. 268 
The gradient of backpropagation is calculated as follows: 269 

∂∂ ∂= = ⋅ = − − = −
∂ ∂ ∂
  1 ( )y

t y jy j j jy
j y j y

p
g p I p p I

z p z p
,                      (18) 270 

where = 1jyI  if =j y , and = 0jyI  if ≠j y . 271 

4. Results 272 

4.1. Classification accuracy of CNN and LSTM models 273 
When CNNs and LSTM solve the AMC problem, the classification accuracies of CNNs are 274 

reported with varying convolution layer depth from 1 to 4, the number of convolution kernels from 275 
8 to 64, and the size of convolution kernels from 10 to 40. The classification accuracies of Bi-LSTM are 276 
tested when varying layer depth from 1 to 3 and number of memory cells from 16 to 128. Bi-LSTM 277 
used in the fusion model contains two layers. The number of convolution layers is 6. The number of 278 
convolution kernels in the first three layers is 8, 16, and 32, and the size of the convolution kernel is 279 
10. The number of convolution kernels in the remaining layers is 16, 8, and 1, and the size of the 280 
convolution kernel is 20. The Bi-LSTM model consists of two layers with 128 memory cells. 281 
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(a) (b) 

(c) (d) 

(e) 

 

Figure 5. Classification accuracy of CNN and LSTM models. (a) Classification accuracy of CNN with the 282 
number of convolution kernels from 8 to 64; (b) Classification accuracy of CNN with the size of convolution 283 
kernels from 10 to 40; (c) Classification accuracy of CNN with the number of convolution layers from 1 to 4; (d) 284 
Classification accuracy of Bi-LSTM with the number of memory cells from 16 to 128; (e) Classification accuracy of 285 
Bi-LSTM with the number of hidden layers from 1 to 3. 286 

When SNR is set from 0 dB to 20 dB, the classification accuracy of CNN and Bi-LSTM models 287 
is shown in Figure 5. The samples with SNR below 0 dB are not considered in this study. The 288 
classification results of the CNN models are shown in Figure 5a–c. The average classification 289 
accuracy of the CNN model for AMC can reach 75% with SNR from 0 dB to 20 dB. An excess of the 290 
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convolution kernels in each layer reduces the classification accuracy. The performance is better with 291 
the number of convolution kernels from 8 to 32. The CNN models with the size of convolution 292 
kernels from 10 to 40 have more or less the same classification accuracy. Increasing the number of 293 
convolution layers from 1 to 3 results in a performance boost. The classification results of the 294 
Bi-LSTM models are shown in Figure 5d–e. The results show that the Bi-LSTM model is more 295 
suitable for AMC than the CNN model. The average classification accuracy of Bi-LSTM is 77.5%, 296 
which is 1.5% higher than that of the CNN model. The performance is better with the number of 297 
memory cells from 32 to 128 than others. The Bi-LSTM models with the number of hidden layers 298 
more than 2 have essentially the same classification accuracy. 299 

4.2. Comparison of classification accuracy between the deep learning models and the traditional method 300 
We have compared five methods, including both traditional and deep learning methods, based 301 

on the same data sets. The classification performance is as follows. 302 

Table 1. Classification accuracy of different methods without noise. 303 
Methods Wavelet + SVM CNN Bi-LSTM Parallel fusion Serial fusion 

Accuracy 92.8% 91.2% 92.5% 93.1% 98.9% 

Table 2. Classification accuracy of different methods with SNR from 0 to 20dB 304 
SNR 

Methods 
20 dB 16 dB 12 dB 8 dB 4 dB 0 dB 

Wavelet+SVM 85.2% 84.1% 83.2% 81.6% 79.0% 77.5% 

CNN 86.1% 84.0% 82.1% 78.1% 73.6% 62.1% 

Bi-LSTM 87.2% 84.9% 82.7% 77.5% 72.5% 66.0% 

Parallel fusion 89.1% 85.2% 84.6% 80.0% 75.4% 67.9% 

Serial fusion 98.2% 95.6% 94.3% 91.5% 86.2% 78.5% 

(a) (b) 

Figure 6. Comparison of classification accuracy between the deep learning models and the 305 
traditional method. (a) Classification accuracy of different methods without noise; (b) Classification accuracy 306 
of different methods with SNR from 0 dB to 20 dB. 307 

The modified classifiers are established based on the fusion model in serial and parallel modes 308 
to increase the classification accuracy. As a result, we compare the classification accuracy of the 309 
methods on the basis of deep learning with the traditional method by using wavelet and SVM 310 
classifiers. The results are shown in Tables 1 and 2 and Figure 6. The results reveal that the fusion 311 
methods have a significant effect on improving classification accuracy. The average classification 312 
accuracy of parallel fusion model is 93% without noise, which is equal to the traditional method. 313 
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The classification accuracy of the parallel fusion model is 2% higher than the CNN model and 1% 314 
higher than the Bi-LSTM model. Moreover, the average classification accuracy of the serial fusion 315 
model is 99% without noise, which is 6% higher than the parallel fusion model. In fact, the fusion 316 
methods are more beneficial to the classification accuracy with the SNR from 0 dB to 20 dB 317 
compared with the noise-free situation. The average classification accuracy of the serial fusion 318 
method is 91%, which is 11% higher than the parallel fusion method. 319 

The performances of the classifiers show that deep learning achieves high classification 320 
accuracy for AMC. Waveform local variation and temporal characteristics can be used to identify 321 
modulation modes. In comparison with CNN and Bi-LSTM, the performance of the HDMF methods 322 
is improved significantly because the classifiers can recognize the two features simultaneously. 323 
However, the performance of the serial fusion is considerably higher than that of the parallel fusion 324 
because the parallel method belongs to the decision-level fusion. The fusion can be viewed as a 325 
simple voting process for results. The serial method belongs to the feature-level fusion, which 326 
combines the two feature information to obtain the classification results. 327 

(a) (b) 

(c) 

 

Figure 7. Confusion matrix of series fusion model. (a) Confusion matrix of series fusion model for 20 dB 328 
SNR; (b) Confusion matrix of series fusion model for 10 dB SNR; (c) Confusion matrix of series fusion model for 329 
0 dB SNR. 330 

In this study, the modulation mode of the samples includes two forms, namely, within-class 331 
and between-class modes. The confusion matrices show the identification results of the modulation 332 
modes by serial fusion model when the SNR is 20, 10, and 0 dB, respectively; the results are shown 333 
in Figure 7. When the SNR is 20 dB, a profound discrepancy is observed between the different 334 
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modulation modes. The confusion result does not have the error. The decrease of SNR, PSK, and 335 
QAM is prone to misclassification within class, which is caused by the subtle differences in M-ary 336 
phase mode. Moreover, representing the phase difference by waveform amplitude is not evident. 337 
Furthermore, QAM can be considered as a combination of ASK and PSK in practice. The classifier 338 
can detect the different types of changes simultaneously even when the result is incorrect at low 339 
SNR. Therefore, only within-class misclassifications occur in the results. 340 

5. Conclusions 341 
In this study, we proposed the methods on the basis of deep learning to address the AMC 342 

problem in the field of communication. The classification methods are end-to-end processes, which 343 
reduce the additional steps to extract signal features compared with the traditional methods. First, 344 
the communication signal data set system is developed based on the actual geographical 345 
environment to provide the basis for related classification tasks. CNNs and LSTM are then used to 346 
solve the AMC problem compared with the traditional method. Furthermore, the modified 347 
classifiers based on the fusion model in serial and parallel modes are of great benefit to improve 348 
classification accuracy with the SNR from 0 dB to 20 dB. The serial fusion mode has the best 349 
performance compared with other modes. The confusion matrices significantly reflect the 350 
shortcomings of the classifiers in this study. We will overcome these shortcomings and further 351 
research on AMC in the future. 352 
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