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7 Abstract: Unmanned Aerial Vehicles (UAVs) are now filling in the gaps between spaceborne and

8 ground-based observations and enhancing the spatial resolution and temporal coverage of data

9 acquisition. In the realm of hydrological observations, UAVs have a key role to quantitatively
10 characterize the surface flow allowing for remotely accessing the water body of interest. In this
11 paper we propose a technology which uses a sensing platform encompassing a drone and a camera
12 to determine the water level. The images acquired my means of the sensing platform are then
13 analyzed using the Canny method to detect the edges of water level and of Ground Control Points
14 (GCPs) used as reference points. The water level is then retrieved from images and compared to a
15 benchmark value obtained by a traditional device. The method is tested at four locations in an
16 artificial lake in central Italy. Results are encouraging as the overall mean error between estimated
17 and true water level values is around 0.02 m. This technology is well suited to improve hydraulic
18 modeling and thus provide a reliable support to flood mitigation strategies also in uneasy-to-access
19 environments.
20 Keywords: water level measurement; surface hydrology; unmanned aerial vehicle; drone; dam.
21

22  1.Introduction

23 In recent years the awareness of the importance of spatial and temporal variation of open water
24 level has increased [1]. The knowledge of water level provides information about the variability of
25  water bodies and thus have a key role for monitoring and management of water resources. For
26  instance, validation and calibration of hydraulic models [2—4] and of flood forecasting models [5,6]
27 rely on accurate water level estimates in rivers. Water level measurements are at the basis of flood
28  risk mitigation strategies as the understanding of the flood inundation extent allows for the
29  construction of a resilient environment [7,8]. Water levels are usually monitored by means of
30  gauging stations. However, water level sensors are characterized by some drawbacks as for instance
31  their pointwise measurements and their limited use in uneasy-to-access environments. Moreover,
32 their accuracy can be affected by several issues such as severe storm events and systematic errors
33 associated with the sensors itself [9]. Recently, substantial efforts have been headed to the
34  development of non-invasive technologies to monitor water level. For instance, Hut et al. [10]
35  proved that the Wiimote device belonging with the Nintendo® Wii™ game system could be used to
36  estimate water level values. Remote sensors based methods such as ENVISAT and ERS-2 satellite
37  missions allowed for estimating water level of inland lakes with high precision (e.g. [11,12]).
38  Nevertheless, spaceborne sensors are affected by limitations that restrict their ability to measure the
39  temporal and spatial variation of the water level such as fixed orbit configurations and coarse
40  temporal resolution. An overview on the wide variety of existing sensors can be found in Fraden
41  [13]. Recently, there has been an increasing interest in the development of image-based technologies
42 to determine water level values (e.g. [14]). Griesbaum et al. [15] developed a low-cost method to
43  estimate flood elevation and inundation depth based on user-generated flood images. As a
44  drawback, image-based systems can be affected by lighting changes, camera movement,
45 condensation on the lens [16,17]. The spreading use of unmanned aerial vehicles (UAVs) paved the
46  way of the integration of drone technology and optical sensing aiming at quantitatively estimating

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.


http://dx.doi.org/10.20944/preprints201801.0093.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/w10030297

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2018 d0i:10.20944/preprints201801.0093.v1

47  hydraulic data such as inundated areas [18]; surface flow measurements (e.g., [19]); water level
48 estimations [14]. A drone leads to a non-invasive monitoring of water bodies and it is an efficient
49  tool in difficult-to-access environments. Moreover, the use of a drone helps to face and solve the
50  issues associated to traditional gauging methods allowing the user for an accurate measurements of
51  the water level [9]. In this paper we propose a sensing platform which couples a drone and a camera
52 to estimate the water level of an artificial lake. Water level monitoring has a key role in lakes
53  management as lakes are used as reservoirs for drinking water and for hydroelectric power
54  generation among the other purposes. A drop of lake’s level can cause severe damages to the
55  ecosystem and to local economy. The cause of lakes decline can be found not only in a changing
56  climatic forcing but also in a wrong management of the water resources [20-23]. As among the
57  causes of dam break we can list extreme rainfall events that sharply increase the water level (e.g.
58  [24,25]), a proper management of the water level in dam reservoirs is of utmost importance.
59  Moreover, dams and reservoirs plays a major role in altering hydrological variability [26] and
60  affecting hydrological extremes [27] thus modifying the frequency, magnitude and distribution of
61  floods and droughts [28]. It is worth noting that despite the method presented in this paper has been
62  tested on the water level of a dam lake, it can find application to any water body such as rivers, flood
63  inundation areas, glaciers, coasts and river estuaries. This image-based technology is well suited in
64  the framework of the Prediction in Ungauged Basins decade [29] as this method can be used to
65  retrieve hydraulic data in ungauged sites [30]. The drone help to overcome the problems due to the
66  wuse of traditional static sensors which require costly maintenance and personnel and thus can be
67  deployed in limited number [31,32]. Water level measurements can then be used to improve
68  hydraulic modeling of rivers to support flood risk mitigation plans. Only few studies aim at
69  estimating water depth from flood data acquired during the flood event itself (e.g.[33,34]), while
70 flood-level is often retrieved using remote-sensing data in the aftermath of the event for post-event
71 flood simulations (e.g. [35,36]). However, there still remains a lack of approaches to access
72 information about the flood level and extent from images shot during the event itself. In this
73 framework, a drone-based approach allows for accessing flood level information during the flood
74 event itself providing an unique support to flood mitigation actions. As a complement to traditional
75  documentation systems, the amount of volunteered hydraulic information are now becoming
76  popular [37]. Recent studies shown the potential of approaches to estimate the flood extent and level
77  from post-event flood images shot by volunteers (e.g. [38,39]). However, crowdsourced data ca be
78  characterized by gaps in time and space due to the uneven distribution of engaged citizens [40]. The
79  use of a drone can offer a unique opportunity to overcome these issues and thus to support citizen
80  observatories activities.

81 This paper proposes a sensing platform allowing for remote sensing and accessing the water
82  level. The platform enables the collection of hydraulic information also in hostile situations such as
83 during the occurrence of a flood event and during adverse atmospheric conditions. This approach is
84  expected to provide a substantial support to monitoring and management of water bodies.

85 The paper is organized as follow. First, the case study site is introduced and the aerial sensing
86  platform is described. Since the image-based technique presented here requires the acquisition of
87  ground control points (GCPs), the topographic survey is detailed together with the GCPs
88  deployment. Then, the procedure to determine water level values from images is presented and then
89  assessed comparing estimated water level values with the benchmark value. Results are discussed
90  together with the analysis of the sources of uncertainty.

91 2. Materials and Methods

92 In this section we detail the aerial sensing platform used in the experiments and the case study
93  area where the survey was performed. Then, we provide details on the procedure for the airborne
94 water level measurements.

95

96  2.1. Case study site and experimental set-up description
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97 The aerial sensing platform is a HIGHONE 4HSEPRO quadrotor mounting a gimbal system

98  and a SONY Alpha 7R, 36.4 Mpix Full frame camera oriented with its axis along the perpendicular.

99  The gimbal compensates drone vibrations due to flight operations and to the wind. The lens is a
100 35mm £/9; the camera focus, after being tested on a portion of the structure, was set to infinity during
101 the survey. The test case study is the Ridracoli lake, an artificial lake generated by the homonymous
102 dam in Emilia Romagna Region, central Italy, Figure 1. The Ridracoli dam is characterized by a
103 double-curvature arch-gravity structure with a maximum height of 103.5 m and a crest length of 432
104 m at 561 m a.s.l.. The lake extends for about 5 km in two branches. The catchment area is 88.49 km?
105  and the maximum water volume in the retention basin equals 33.06 Mm3. The reservoir is the main
106  drinking water supply of Romagna Region, providing from about 7.5 Mm?3month of discharge in
107  winter up to about 12 Mm?¥month in summer to a million resident customers, tourists and food
108  industries [41]. The reservoir has a crucial role in reducing the pumping from underground sources
109  and in providing water supply to the coast affected by subsidence and saline ingression into
110 aquifers.

111
[ Administrative Regions. |8
we 0 1 200
112
113 Figure 1. The test case study area is located in the Emilia Romagna Region, Central Italy. The red
114 circle identify the location of the area, left panel. The experiment is performed at the Ridracoli lake,
115 artificially created by the construction of the homonymous dam, right panel.

116 2.2. Ground control points acquisition

117 The technique presented in this paper to measure water level encompasses the need for ground
118  control points (GCPs). GCPs drive the procedures of orthorectification and calibration of the images
119  and are used as reference points to retrieve the water level values. The GCPs have a squared shape
120 with a width of 0.40 m. In two different months (i.e. August and October 2015), sixty regularly—
121 spaced GCPs were deployed on three rows on the upstream face of the dam. In this study we used
122 the GCPs deployed on the lower row during October 2015 using a boat. The hydrostatic level of the
123 time equaled 533.65 m a.s.l..

124 The identification of GCPs is one of the major sources of uncertainty after seeding density [42].
125  Therefore, the acquisition of GCPs coordinates has a crucial role in the experimental set-up. The
126  coordinates of the GCPs were acquired through a traditional technique by means of a Total Station
127  TS30 Leica-Geosystems. To this end, a pre-existing geodetic network consisting of four vertices
128  materialized by little pillars was used. The coordinates of each GCP were estimated along the three
129  directions. The standard deviation of each point is lower than 1 cm along the three directions. The
130 mean value of all standard deviations equals 1.0 cm, 1.0 cm and 0.8 cm along the three directions,
131  respectively. For a detailed description of the traditional topographic survey, the reader can refer to
132 Buffi et al. [43,44]. The deployment of GCPs could represent one major pitfall of this technique,
133 especially in areas with limited accesses. However, it is possible to use as reference point any point
134 of known coordinates such as georeferenced point on a bridge pier. Furthermore, a methodology to
135  address the need for ground control points is shown by Tauro et al. [19].

136  2.3. Image processing description
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137 The images were shot at a distance of about 15 m from the dam; the Ground Sample Distance
138 (GSD) equals 2.1 mm. The images are shot every 1.87 seconds and the images overlap by more than
139 70%. Each image size is 7360x4912 pixels with a resolution of 350 dpi. The camera positions on the
140  upstream face of the dam where the water level was retrieved are shown in Figure 2. Every image is
141  characterized by a minimum of four GCPs to allow for the orthorectification procedure [45].

142 After images acquisition, orthorectification was performed to eliminate distortions introduced
143 by the angled camera and to calibrate image dimensions. The orthorectification procedure
144 encompasses the following steps. First, control points such as GCPs are identified in the images.
145  Control points associate an image point with a 3D world position (i.e. longitude, latitude and height
146  acquired by the total station). Then, using bundle adjustment, the position and orientation of each
147  image is estimated. Orthorectification is preformed using the estimated positions and orientations.
148  Digital images are processed and orthorectified by means of the Hugin software [46] to obtain a high
149 resolution RGB ortho-mosaic. Hugin is an open, easy-to-use cross platform panoramic imaging
150  toolchain based on a free suite of programs and libraries (i.e. Panorama Tools; [47,48]). After
151  orthorectification, the images are blended and projected onto a surface to provide the final mosaic
152 [49]. Rectilinear projection is used to reconstruct the position of the camera and the geometry,
153  assuming that the upstream face of the dam is mostly flat, so that all control points lie on a planar
154  surface [50].

155

156

157 Figure 2. Camera positions in blue on a three dimensional model of the dam realized with Agisoft
158 Photoscan® (v. 1.2.4).

159 2.4. Water level experimental procedure

160 The drone is flown above the water flowing through the upstream face of the dam. The frames
161  used to estimate the water level values are the images shot at the upstream face where eight free
162 spillway gates open to allow for the overflow of the dam, Figure 3a and b. The water level was
163 estimated at four different locations to test the goodness of the procedure, Figure 3c. First, the water
164 level is detected in the region of interest on the ortho-mosaic image where the water draws a dark
165  line against a flat background. It is interesting to notice that there is a light grey shade on the dam
166  surface due to a preexisting water level into the reservoir, Figure 3c. Therefore, it is necessary to pay
167  attention to the identification of the water level to be accurate. The procedure to determine the water
168  level value encompasses the following steps. First, the image is transformed into a grayscale image.
169  Second, the edge detection operation is performed by means of the Canny method [51]. The Canny
170  method finds edges by looking for local maxima of the gradient of the gray scale. The edge function
171  calculates the gradient using the derivative of a Gaussian filter. This method uses two thresholds to
172 detect strong and weak edges. By using two thresholds, the Canny method filters out the noise more
173 than the other methods and can easily detect true weak edges. Nevertheless, anomalous edges can
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174 still remain such as lines due to change in concrete color, to ashlars, etc. These anomalous edges are
175  disregarded after the application of the filter. The minimum and maximum threshold values are
176  equal to 0.019 and 0.047, respectively. GCP and water level edges are thus identified. Then, the water
177  level line in pixel coordinates is calibrated to real world coordinates using as benchmark the center
178  of each one of the four GCPs. The water level retrieved from the images shot by the sensing platform
179  is then compared with a benchmark value. The benchmark is obtained from a spring balance which
180  measures the weight of a water column and returns the corresponding water level of the lake. The
181  wind speed at the time of the airborne flight generated a mild surface waviness allowing us to test
182  the procedure also in adverse meteorological conditions.

183

184

185 Figure 3. Panels a) and b) two images shot at the upstream face of the dam, prior to orthorectification.
186 Panel c) enlargement of a portion of the orthorectified image showing three of the four ground
187 control points used to estimate the water level.

188 3. Results and discussion

189 The measurement procedure leads to determine the distance between each GCP and the edge of
190  the water level. Several distance measurements are performed to take into account the uncertainty
191  affecting the water level edge detection. Indeed, the water level line cannot be sharply identified
192 because of different sources of uncertainty. The combination of the waves and of both angle and
193 intensity of the incoming light source (e.g. sun, clouds) creates the sharp change in pixel gray scale in
194 an image. Gilmore [52] investigated different sources of uncertainty affecting water level estimates
195  from images. Besides the uncertainties associated to the local environment as the change in lighting,
196  other sources of uncertainty are associated with the image quality such as the image focus, image
197  resolution, perspective, and lens distortion. The images were processed as explained in Sect. 2.3 to
198  eliminate distortion or perspective. Despite the high resolution of the images, there are limitations
199 due to pixelization. Notably, the uncertainty in the water level estimates decreases as the resolution
200  of the image increases. We used images with very high resolution, however, the effect of pixelization
201  cannot be cut off completely.

202 The water level estimated at four GCPs on the upstream face of the dam by means of the aerial
203 platform are compared with the water level reference value. The errors between the estimated water
204  level values and the benchmark one are computed. To provide a quantitative indication of the
205  procedure skill at estimating the water level value, we determined the mean absolute error (MAE)
206  between observed and estimated values, the root mean squared error (RMSE) and the percentage
207  BIAS. The MAE provides an estimate of the overall agreement between observed and estimated
208  water level values. It is defined as:
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where Wobs and West are water level values observed and estimated at a specific GCP, while N is
the number of measurements performed using each GCP as fiducial and equals 40.

The RMSE is a non-negative metric without upper bound. A perfect estimation of the water
level value would result in RMSE equaling zero. It is defined as:

| ’
RMSE = WZ(\Nobs _Westj) : @

i=1

RMSE is estimated in squared differences and thus it is biased in favor of high magnitude error,
while it is insensitive to low magnitude ones. It is thus more sensitive to occasional large errors.

The BIAS represents the mean difference between observed and simulated values, in this paper
it is presented in percentage:

N (W, ~ W,
BIAS-%:ﬁZ —s et 1100, @3)

i=1 obs

Estimated water level values result in line with the benchmark one, Table 1.

Table 1. Mean absolute error (MAE) between observed and estimated values, the root mean squared
error (RMSE) and the percentage BIAS are reported for each ground control point (GCP).

MAE RMSE BIAS

ID GCP
[m] [m?] [%]
1 0.045 0.047 0.008
2 0.012 0.015 0.000
3 0.031 0.038 0.005
4 0.051 0.062 0.005

The MAE evaluates all deviations from the observed value, in both an equal manner and
regardless of the sign. As expected, the RMSE is similar to the MAE in magnitude. The amount of
which the RMSE is larger than MAE is an indicator of the magnitude to which outliers exist in the
data set [53]. The BIAS provides an indication of the extent of errors in percentage. The three
estimation metrics allow us to draw encouraging considerations on the robustness and reliability of
the proposed methods. To better visualize the distribution of errors, the boxplot of errors between
estimated and observed water level values at each GCP is presented in Figure 4. The central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data values not considered outliers. The
median error ranges between -0.01 m (i.e. at GCP 2) and 0.045 m (i.e. at GCP 1), while the mean
deviation from the median is of +0.02 m for the first three GCPs. The fourth GCP is characterized by
a higher deviation as it is around +0.06 m. The rationale of this result is due to the fact that at GCP 4,
the perspective affects the measurements. This test was performed to understand which is the effect
of the perspective on water level measurements from images.

d0i:10.20944/preprints201801.0093.v1
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241 Figure 4. Boxplot of errors between estimated and observed water level values at the four Ground

242 Control Points (GCPs).

243 The overall agreement of estimated water level values is good as the maximum error at each

244 GCP is much lower than the sensibility of hydraulic models such as HEC-RAS (i.e. 0.20 m; [2]). This
245  result paves the way to the use of water level estimates for calibration and validation of hydraulic
246  models.

247 In agreement with the analysis performed by Gilmore et al. [52], the major sources of
248  uncertainty are found to be the perspective and the pixelization, while the scale of the experiment
249  allowed us to get rid of the effect of meniscuses which water forms at the contact with the
250  background. It is worth underlining that the water surface waviness can affect substantially the
251  water level estimates as waves ripple the water causing a blurry water level edge. Nevertheless,
252 results are encouraging since image-based method compared favorably to the traditional technique.
253  Results confirm that the method presented here has the potential to be used also in other scenarios
254  providing reliable water level estimates.

255 5. Conclusions

256 In this work we propose a novel water level measurement concept based on the combination of
257  an unmanned aerial vehicle and optical methods. The analysis of the images shot during the
258  experiment demonstrates that the drone is compatible with the hydraulic measurements. A gimbal
259  system compensates drone vibrations ensuring the stability of the drone and thus the quality of the
260  images. It is worth noting that despite wind generated ripples affecting the water surface, the water
261  level estimates were accurate confirming the robustness of the procedure. The main sources of
262 uncertainty are found to be the pixelization of images and the perspective, nevertheless, results are
263  encouraging and shows the potential of image-based measurements. The image analysis procedure
264  israpid and inexpensive as it is performed through an open source software (i.e. Hugin) allowing for
265  anaccurate estimation of the water level.

266 The sensing platform paves the way for unsupervised rapid observations in large scale
267  hydrological systems. This apparatus can support flood inundation mapping as it allows an efficient
268  event survey. The knowledge of the flood inundation extent and the water level values in the
269  flooded area is crucial to support flood risk mitigation strategies. Moreover, the use of drones can be
270  of great interest in ungauged sites where water level values and then discharges are retrieve by
271  means of regionalization procedures that allow for information to be transferred from a
272 hydrologically similar river basin. Image-based procedures relying on the use of a camera are now
273  spreading, nevertheless it is not an easy task to retrieve hydraulic information in inaccessible areas.
274  The use of a drone allows for overcoming this issue providing accurate information. Moreover,
275  unmanned aerial vehicle can improve crowdsourced data collection, supporting citizen
276  observatories lowering data uncertainty and filling in the significant gap due to areas with limited

277  access.
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