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Abstract: Detection of pancreatic cancer (PC) at a resectable stage is still difficult because of the lack 27 
of accurate detection tests. The development of accurate biomarkers in low or non-invasive biofluids 28 
is essential to enable frequent tests, which would help increase the opportunity of PC detection in 29 
early stages. Polyamines have been reported as possible biomarkers in urine and saliva samples in 30 
various cancers. Here, we analyzed salivary metabolites, including polyamines, using capillary 31 
electrophoresis-mass spectrometry. Salivary samples were collected from patients with PC (n=39), 32 
chronic pancreatitis (CP, n=14) and controls (C, n=26). Polyamines, such as spermine, N1-33 
acetylspermidine, and N1-acetylspermine, showed a significant difference between PC and C, and 34 
the combination of four metabolites including N1-acetylspermidine showed high accuracy in 35 
discriminating PC from the other two groups. These data showed the potential of saliva as a 36 
screening test for PC. 37 

Keywords: pancreatic cancer, saliva, metabolomics, polyamines 38 
 39 

1. Introduction 40 
Pancreatic cancer (PC) has the worst prognosis among all cancers and its 5-year survival rate is 41 

still under 5% [1]. The high mortality rate of PC is due to a lack of early specific symptoms and a 42 
delay in diagnosis [2]. Although recent diagnostic imaging technologies, such as computed 43 
tomography (CT), positron emission tomography-CT, magnetic resonance imaging (MRI), and 44 
endoscopic ultrasonography (EUS), have helped to improve the diagnosis of PC, and, of these, 30% 45 
of patients present with a locally advanced tumor, 50% present with metastatic disease, and only 20% 46 
are resectable at initial diagnosis [3]. Gemcitabine was approved for the treatment of advanced PC in 47 
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2001. Gemcitabine, TS-1, multi-agent chemotherapy regimens, such as FOLFIRINOX, and molecular 48 
targeted therapeutic agent, have already showed effectiveness in the treatment of advanced PC [4]. 49 
However, these therapies only contribute to a slight extension of survival duration with slight 50 
improvement in advanced PC cases. Surgical resection remains the only potentially curative therapy. 51 
Thus, the early detection of PC is significantly important for improving its survival rate and 52 
prognosis. Currently, tumor markers including serum pancreatic enzymes and carbohydrate 53 
antigens such as CA19-9, CEA, DUPAN2 and SPAN1, are used for complementary diagnosis [5-7]. 54 
However, despite these markers, increase at the advanced stage of PC, as well as false negatives are 55 
also found in many cases. These tumor markers are not useful for early diagnosis at the time when 56 
surgery is possible. Therefore, it is important to establish a technology to detect early stage PC 57 
efficiently with low invasiveness, that is simple and inexpensive. 58 

PC is induced by abnormalities of P53, KRAS, SMAD4 and other genes, which accelerate 59 
polyamine synthesis and consequently affect various primary pathways [8]. The effect of metabolic 60 
changes of PC on blood has been investigated to explore metabolite-based novel biomarkers to detect 61 
patients with PC [9-14]. The meta-analysis of these blood metabolomics for PC has also been reported 62 
[15]. We also recently reported the diagnostic ability of serum metabolomics [16], indicating the 63 
spread of metabolomic change from PC cells to metabolites in blood vessels as well as a range of 64 
biofluids. 65 

Various omics technologies revealed the PC detection ability of salivary compounds and 66 
microbiomes [17-19]. We previously observed the change of metabolite concentration in salivary 67 
samples collected from PC patients [20]. Among metabolites, polyamines in non-invasively available 68 
biofluids have been reported as possible biomarkers of various cancers [21-23]. Elevation of urinary 69 
polyamines and the positive correlation between their concentrations in PC tissue is well known [24]. 70 
Salivary polyamines showed potential detection ability in breast cancer [25, 26]. However, the 71 
potential of PC detection using salivary polyamines has not been investigated.  72 

The purpose of this study is to evaluate the potential ability of salivary polyamines to detect 73 
PCs. We utilized capillary electrophoresis-mass spectrometry (CE-MS) to quantify these metabolites 74 
and accessed their sensitivity and specificity by comparison of polyamine profiles for PC, and chronic 75 
pancreatitis (CP), and controls (C). 76 

2. Results 77 
Patient information is summarized in Table 1. Metabolomic analysis successfully identified and 78 

quantified 292 metabolites in saliva samples and, of these, those 142 metabolites frequently detected 79 
(at least >50% per group) were used for subsequent analyses. Score plots of PCA (Figure 1a) showed 80 
the overall metabolite concentration pattern among all samples. The score plots of C and CP 81 
aggregated while several PC plots were scattered, indicating that the metabolomic profiles of PC 82 
showed large differences compared to C and CP. 83 

To access the discrimination ability of the salivary metabolites, the receiver operating 84 
characteristic (ROC) curve of this MLR model was developed (Figure 1b). In total, 24 metabolites 85 
showed significant differences (corrected p-value < 0.05; Mann-Whitney test) and F.C. > 4.0 between 86 
PC and (C + CP), and the 4 metabolites were selected by stepwise feature selection (Table 2). The 87 
model included alanine, N1-acetylspermidine, 2-oxobutyrate, and 2-hydroxybutyrate. The area under 88 
the ROC curve (AUC) of this model was 0.887 (95% confidence interval [CI]; 0.784 – 0.944). As 89 
pruning, the metabolites showing the largest p-value in the model were eliminated one by one. The 90 
model with fewer parameters showed less AUC values;  91 

The metabolites showing significant differences between PC and (C+CP) (corrected p < 0.001; 92 
Mann-Whitney test) included 3 polyamines (spermine, N1-acetylspermidine, and N1-acetylspermine) 93 
and 2-aminobutanoate (2AB). Their stage-specific concentrations are depicted in Figure 2. By multiple 94 
comparison (Steel-Dwass test), comparison between C and PC with stage III and stage IVb showed 95 
significant differences. Spermine showed significant differences in various comparisons, e.g. CP and 96 
PC in stage IVb. 97 

 98 
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Figure 1. Discrimination ability of metabolomics profile: (a) Score plots of PCA. Contribution ratio to 99 
first, second, and third PC (PC1, PC2, and PC3) were 34.0, 5.7, and 4.7, respectively. Blue, green, and 100 
red plots indicated C, CP, and PC, respectively; (b) ROC curves of MLR: red, green, blue, and orange 101 
curves indicated the MLR model with 4, 3, 2, and 1 metabolite(s), respectively, and their AUC values 102 
were 0.887 (95% CI; 0.784 – 0.944, p < 0.0001), 0.859 (95% CI; 0.749 – 0.925, p < 0.0001), 0.807 (95% CI; 103 
0.749 – 0.925, p < 0.0001), and 0.653 (95% CI; 0.526 – 0.761, p < 0.0122), respectively. The differences of 104 
AUC of the model with 4 parameters were 0.0501, 0.0280, and <0.0001 for those with 3, 2, and 1 105 
parameters, respectively. 106 

 107 

(a) (b) 

(c) (d) 

Figure 2. Metabolite concentration: (a) spermine; (b) N1-acetylspermidine; (c) N1-acetylspermine; and 108 
(d) 2-aminobutanoate (2AB). *** p <0.001 and *p < 0.05 by the Steel-Dwass test. 109 

 110 
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Table 1. Patient characteristics 111 

Parameters C CP PC p-value 
n 26 14 39 -  

Age 50.8 ± 16.4 51.1 ± 12.4 66.1 ± 9.86 <0.0001 ***
Sex (F/M) 13 / 13 3 / 11 18 / 21 0.189  

Table 2. MLR model 112 

Parameters Odds 95% CI Parameter 95% CI p-Value
Alanine 0.990  0.980 1.00 -0.0103 -0.0203 -0.0003  0.043  *

N1-Acetylspermidine 2.92  1.35 6.31 1.07 0.30 1.84  0.0065 ***
2-Oxobutyrate 1.15  1.02 1.29 0.14 0.02 0.25  0.019  *

2-Hydroxybutyrate 1.46  1.07 1.99 0.38 0.07 0.69  0.017  *
(Intercept) - - - -2.21 -3.21 -1.21  <.0001 ***

Table 3. Tumor markers and MLR 113 

Marker CP 
(n = 14) 

PC
p-Value 

III (n = 6) IVa (n =12) IVb (n=21) 
CEA 3.46 ± 3.27 2.75 ± 1.46 7.25 ± 4.18 43.8 ± 101 0.0196 * 
> 5.0ng/ml (%) 3 (21.4) 0 (0.0) 9 (75.0) 10 (47.6)   
#MV 0  0  0  0    

CA19-9 19.9 ± 21.3 
2.90 × 102  
± 6.26 × 102 

7.43 × 102  
± 9.98 × 102 

6.25 × 103  
± 1.77 × 104 

0.0016 *** 

> 37U/ml (%) 2 (14.3) 3 (50.0) 12 (100.0) 16 (76.2)   
#MV 0  0  0  0    

DUPAN2 74.0 ± 86.7 
6.17 × 102  
± 7.67 × 102 

5.28 × 102  
± 6.52 × 102 

9.98 × 102  
± 6.52 × 102 

0.0008 *** 

> 150U/ml (%) 2 (16.7) 4 (66.7) 6 (50.0) 18 (90.0)   
#MV 2  0  0  1    

SPAN1 16.2 ± 17.1 
89.0  
± 1.58 × 102 

3.63 × 102   
± 4.83 × 102 

3.25 × 103  
± 8.44 × 103 

<0.0001 *** 

> 30U/ml (%) 2 (18.2) 3 (50.0) 10 (83.3) 19 (95.0)   
#MV 3 0 0  1   

MLR 
0.334 ± 
0.266 

0.800 ± 0.299 0.633 ± 0.363 0.786 ± 0.268 0.002 *** 

> 0.5533 (%) 2 (14.3) 5 (83.3) 7 (58.3) 16 (76.2)   
#MV 0 0 0 0   
Note: # MV indicates the number of missing values. (%) indicates the percentage of positive subjects. 114 

 115 
Tumor markers, including CEA, CA19-9, DUPAN2, and SPAN1 of CP and PC, are summarized 116 

in Table 3. Based on the ROC curve of MLR (Figure 1b), the optimized cut-off value was calculated, 117 
and true positive ratios were also summarized in Table 3. As a computational validation test, k-fold 118 
CV was conducted using k=5, 10, and 20 with 200 random values for each. The median AUC values 119 
were 0.847 (95% CI; 0.840 - 0.846), 0.850 (95% CI; 0.847 - 0.851), and 0.852 (95% CI; 0.850 - 0.853) for 120 
k=5, 10, and 20, respectively. The resampling tests were also conducted using 200 random values, 121 
which yielded median AUC = 0.894 (95% CI; 0.889 - 0.901). 122 

3. Discussion 123 
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We conducted CE-MS-based metabolomics for comprehensive analyses of hydrophilic 124 
metabolites, including polyamines, in saliva samples from patients with C, CP, and PC. The overall 125 
metabolite concentration patterns showed several salivary samples collected from patients with PC 126 
showing a large difference among all samples (Figure 1a). 127 

The MLR model developed here included 4 metabolites and yielded an AUC = 0.887 (Figure 1b). 128 
As a pruning test, the AUC values between the model with 4 and 3 metabolites showed no significant 129 
difference (p = 0.0501, Figure 1b) while the model with 2 and 1 metabolites showed significantly 130 
decreased accuracy, indicating the combination of multiple metabolites contributed to enhance both 131 
sensitivity and specificity in discriminating PC patients from the other groups. Alanine was included 132 
in this model (Table 2), while no specificity for pancreatic cancer was expected because of various 133 
reports on this metabolite [27, 28]. Since not only these 4 metabolites, but also 24 metabolites showed 134 
potential as markers to discriminate PC from the others (corrected p < 0.05; Mann-Whitney test and 135 
F.C. > 4.0 between PC and (C + CP)), the specificity of these metabolites should be validated using 136 
larger cohorts and parameter selection. 137 

Our computational test using k-fold CV and resample tests showed high generalization ability, 138 
since no median AUC showed distinct decrease compared to the original AUC calculated using all 139 
datasets. In particular, the differences between the upper margin of the lower limit of the 95% CI of 140 
AUC values of all validation tests were small; 0.006, 0.004, 0.003, and 0.012 for 5, 10, and 20-fold CV 141 
and resampling. Both tests indicated the high generalization ability of the model. 142 

 Among the metabolites showing high discrimination ability, 3 polyamines were included 143 
(Figure 2). Spermine showed a unique pattern, e.g. all PC groups at all stages showed significant 144 
differences compared with C and PC in stage IVb (Figure 2a). However, this metabolite also showed 145 
a significant difference between C and CP. Two acetylated-polyamines, including N1-146 
acetylspermidine and N1-acetylspermine, were elevated in PC compared with stages III and IVb 147 
(Figures 2b, c). Concentrations of polyamines are tightly controlled in normal cells, e.g. ornithine by 148 
ornithine decarboxylase (ODC) [EC 4.1.1.17] which converts ornithine to putrescine, a first metabolite 149 
of the polyamine pathway, is negatively regulated by adenomatous polyposis coli (APC) tumor-150 
suppressor gene while mutated or deleted APC would activate ODC, contributing to enhance 151 
putrescine, and subsequent metabolites, such as spermidine and spermine [8]. The acetylation of 152 
these metabolites is also activated in spermidine/spermine N1-acetyltransferase (SSAT) in cancer cells 153 
[8]. In particular, N1,N12-diacetylspermine is known to be secreted by tumors and its concentration is 154 
elevated in urine in various cancer patients [29]. However, this metabolite was not independently 155 
detected in our CE-MS measurement conditions, i.e. adduct or fragment ion of other metabolites were 156 
detected at the same migration time. The elevation of salivary N1-acetylspermidine and N1-157 
acetylspermine is considered as reasonable and the lack of a significant difference between C and PC 158 
with stage IVb might be attributed to the low number of patients.  159 

 There are several limitations that need to be acknowledged. Firstly, the number contained 160 
in the cohort of this study was quite small and validation with a larger cohort is necessary. The 161 
difference of age is also a problem of this study. In this study, we recruited only advanced PC in stage 162 
III, IVa, and IVb. The validation of PC at an early stage is the most important to access the value of 163 
the saliva-based PC screening test demonstrated here. The specificity of the elevated salivary markers 164 
also should be analyzed using different types of diseases, since polyamines in saliva samples 165 
collected from breast cancer patients were previously reported [25,26]. Our data also revealed large 166 
overlap of elevated salivary metabolites among various cancers [20]. Environmental factors also affect 167 
the salivary metabolite profiles [28] and standards of protocols to handle the saliva should also be 168 
established based on observed marker metabolites, since several salivary metabolites were unstable 169 
after the saliva collection [30]. Taken together, more rigorous validation methods are still necessary 170 
to fully evaluate the potential of salivary-based PC detection. 171 

 172 
 173 

4. Materials and Methods  174 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2018                   doi:10.20944/preprints201801.0092.v1

Peer-reviewed version available at Cancers 2018, 10, 43; doi:10.3390/cancers10020043

http://dx.doi.org/10.20944/preprints201801.0092.v1
http://dx.doi.org/10.3390/cancers10020043


 6 of 9 

 

Patient Selection and Serum Collection  175 
Sample collection was conducted at Tokyo Medical University Hospital. All patients had 176 

pancreatic cancers diagnosed histologically. All patients were recently diagnosed with primary 177 
disease and none had received any prior treatment in the form of chemotherapy, radiotherapy, 178 
surgery, or alternative therapy. No subjects had a history of prior malignancy. This study was 179 
approved by the ethics committee of Tokyo Medical University (approval no. 1560). Written informed 180 
consent was obtained from all patients and from volunteers who agreed to serve as saliva donors. 181 
Our study was carried out in accordance with the Helsinki Declaration.  182 

Protocols for saliva collection 183 
The saliva providers were not allowed to take any food except water intake after 21:00 on the 184 

previous day. The subjects were required to brush their teeth without toothpaste on the day of saliva 185 
collection, and had to refrain from drinking water, smoking, tooth-brushing and intense exercise from 186 
one hour before saliva collection. They were required to gargle with water just before saliva 187 
collection. Approximately 400 μl of unstimulated saliva was collected in a 50 cc polypropylene tube. 188 
A polypropylene straw 1.1 cm in diameter was used to assist the saliva collection 189 

Sample Preparation  190 
Saliva samples were stored at -80 ˚C until metabolomic analyses. The protocol of salivary 191 

preparation for metabolomic analyses is described elsewhere (31). All samples were collected at 08:00 192 
am – 11:00 am. Eating and drinking were not permitted for at least 1.5 hours prior to saliva collection. 193 
Each subject rinsed their mouth with water, and their saliva was collected in a 50 ml Falcon tube on 194 
ice. Approximately 200 – 400 μl unstimulated whole saliva was collected over 5–10 min. After 195 
collection, the saliva samples were immediately stored at −80 °C until metabolite measurements.  196 

Measurement Conditions and Processing of Raw Data  197 
The metabolite standards, capillary electrophoresis time-of-flight mass spectrometry (CE-198 

TOFMS) instrumentation, and measurement conditions for cationic and anionic metabolites were 199 
described previously [20,31-33]. Briefly, CE-TOFMS analysis was performed using an Agilent 7100 200 
CE system (Agilent Technologies, Waldbronn, Germany), an Agilent 6224 liquid chromatography 201 
(LC)/MS TOF system, an Agilent 1260 series isocratic HPLC pump, a G1603A Agilent CE-MS adapter 202 
kit, and a G1607A Agilent CE-ESI-MS sprayer kit (Agilent Technologies, Santa Clara, CA). For system 203 
control and data acquisition, Agilent Chemstation software was used for CE and Agilent MassHunter 204 
software was used for TOFMS.  205 
Cationic metabolites were separated on a fused-silica capillary column (50-μm inner diameter×100-206 
cm total length) filled with 1 M formic acid as the electrolyte. The sample solution was injected at 5 207 
kPa for 3 s (approximately 3 nL), and a positive voltage of 30 kV was applied. The sheath liquid, 208 
methanol/water (50% v/v) containing 0.1 μM hexakis(2,2-difluorothoxy) phosphazen, was delivered 209 
at 10 μL/min. Anionic metabolites were separated using a commercially available COSMO(+) 210 
capillary column coated with a cationic polymer (Nacalai Tesque, Kyoto, Japan). Ammonium acetate 211 
solution (50 mM, pH 8.5) was used as the electrolyte. The sample solution was injected at 5 kPa for 212 
30 s (approximately 30 nL) and a voltage of 30 kV was applied. The sheath liquid, ammonium acetate 213 
(5 mM) in methanol/water (50% v/v) containing 0.01 μM hexakis(2,2-difluorothoxy) phosphazen, was 214 
delivered at a rate of 10 μL/min. Results were automatically recalibrated relative to the masses of two 215 
reference standards in each mode. Cationic analysis used the 13C isotopic ion of a protonated 216 
methanol dimer (2MeOH + H)+, m/z 66.06306, and protonated hexakis(2,2-difluorothoxy) phosphazen 217 
(M + H)+, m/z 622.02896, whereas anionic analysis used the 13C isotopic ion of a deprotonated acetic 218 
acid dimer (2CH3COOH + H)+ , m/z 120.03834, and hexakis(2,2-difluorothoxy) phosphazen + 219 
deprotonated acetic acid (M + CH3COOH + H)+ , m/z 680.03554. Mass spectra were acquired at a rate 220 
of 1.5 cycles/sec from m/z 50 to 1000.  221 
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The analysis of raw data was conducted by following the typical data processing flow [27], including 222 
noise-filtering, baseline-correction, peak integration of each sliced electropherogram, estimation of 223 
accurate m/z, alignment across multiple datasets, and identification by matching the m/z value and 224 
the corrected migration time to corresponding entries in a standard library, using MasterHands (Keio 225 
University, Tsuruoka, Japan) [20]. Metabolite concentrations were calculated based on a ratio of 226 
relative area (the area divided by the area of the internal standards) between sample and standard 227 
compound mixtures. 228 

Statistical Analysis 229 
The Mann-Whitney test was used to access the difference of metabolite concentrations between 230 

2 groups. The false discovery rate (Benjamini and Hochberg methods) [34] was used to correct P-231 
values, considering multiple independent tests. Clinical values, except for continuous values, were 232 
accessed by the χ2 test. Overall metabolomic concentrations were accessed by principal component 233 
analysis (PCA). To eliminate noise-like peaks, only frequently detected metabolites (50% of subjects 234 
of at least one group) were used for PCA. To evaluate the discrimination ability of multiple 235 
metabolites, multiple logistic regression (MLR) was conducted. Of the metabolites used for PCA, 236 
metabolites showing both significant differences (corrected p-value < 0.05 by Mann-Whitney test) and 237 
fold change (F.C.) > 4.0 of the averaged concentrations between PC and (C + CP) groups were selected. 238 
Subsequently, stepwise feature selection with backward (p > 0.05) and forward selection (p < 0.05) to 239 
eliminate multicollinearity, and an MLR model was developed. The Steel-Dwass test was used for 240 
stage-specific differences.  241 
To access the generalization ability of MLR, two computational validations were conducted; (1) k-242 
fold cross validation (CV). Data were randomly split into two (k: k-1) datasets and the former was 243 
used for training, the remaining data were used for validation. This was repeated k times and the 244 
prediction ability using validation datasets was used. (2) Resampling. To eliminate optimistic 245 
prediction, subjects were randomly selected, allowing redundant selection to generate the datasets 246 
with a number of subjects identical to the original datasets, the MLR model was developed and the 247 
accuracy was accessed. 248 
The analyses were conducted using R (ver. 3.4.3) [35], JMP (ver. 13.2.0, SAS Institute Inc., Cary NC), 249 
and WEKA (ver. 3.6.13) [36]. 250 

5. Conclusions 251 
In this study, we evaluated the discrimination ability of salivary metabolite patterns for PC. 252 

Polyamines, especially spermine, showed unique concentration patterns and a significant difference 253 
between C and PC. The combination of four metabolites showed high accuracy in discriminating PC 254 
from CP and C, and computational validation tests confirmed the high generalization ability of the 255 
developed model. Although there are several limitations, e.g. a small cohort, with only advanced PC, 256 
and no other cancer patients, the salivary metabolites including polyamines showed potential ability 257 
for screening of PC.  258 
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