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27 Abstract: Detection of pancreatic cancer (PC) at a resectable stage is still difficult because of the lack
28 of accurate detection tests. The development of accurate biomarkers in low or non-invasive biofluids
29 is essential to enable frequent tests, which would help increase the opportunity of PC detection in
30 early stages. Polyamines have been reported as possible biomarkers in urine and saliva samples in
31 various cancers. Here, we analyzed salivary metabolites, including polyamines, using capillary
32 electrophoresis-mass spectrometry. Salivary samples were collected from patients with PC (n=39),
33 chronic pancreatitis (CP, n=14) and controls (C, n=26). Polyamines, such as spermine, Ni-
34 acetylspermidine, and Ni-acetylspermine, showed a significant difference between PC and C, and
35 the combination of four metabolites including Ni-acetylspermidine showed high accuracy in
36 discriminating PC from the other two groups. These data showed the potential of saliva as a

37 screening test for PC.

38 Keywords: pancreatic cancer, saliva, metabolomics, polyamines

39

40 1. Introduction

41 Pancreatic cancer (PC) has the worst prognosis among all cancers and its 5-year survival rate is
42 still under 5% [1]. The high mortality rate of PC is due to a lack of early specific symptoms and a
43 delay in diagnosis [2]. Although recent diagnostic imaging technologies, such as computed
44 tomography (CT), positron emission tomography-CT, magnetic resonance imaging (MRI), and
45  endoscopic ultrasonography (EUS), have helped to improve the diagnosis of PC, and, of these, 30%
46  of patients present with a locally advanced tumor, 50% present with metastatic disease, and only 20%
47  areresectable at initial diagnosis [3]. Gemcitabine was approved for the treatment of advanced PC in
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2001. Gemcitabine, TS-1, multi-agent chemotherapy regimens, such as FOLFIRINOX, and molecular
targeted therapeutic agent, have already showed effectiveness in the treatment of advanced PC [4].
However, these therapies only contribute to a slight extension of survival duration with slight
improvement in advanced PC cases. Surgical resection remains the only potentially curative therapy.
Thus, the early detection of PC is significantly important for improving its survival rate and
prognosis. Currently, tumor markers including serum pancreatic enzymes and carbohydrate
antigens such as CA19-9, CEA, DUPAN2 and SPANI, are used for complementary diagnosis [5-7].
However, despite these markers, increase at the advanced stage of PC, as well as false negatives are
also found in many cases. These tumor markers are not useful for early diagnosis at the time when
surgery is possible. Therefore, it is important to establish a technology to detect early stage PC
efficiently with low invasiveness, that is simple and inexpensive.

PC is induced by abnormalities of P53, KRAS, SMAD4 and other genes, which accelerate
polyamine synthesis and consequently affect various primary pathways [8]. The effect of metabolic
changes of PC on blood has been investigated to explore metabolite-based novel biomarkers to detect
patients with PC [9-14]. The meta-analysis of these blood metabolomics for PC has also been reported
[15]. We also recently reported the diagnostic ability of serum metabolomics [16], indicating the
spread of metabolomic change from PC cells to metabolites in blood vessels as well as a range of
biofluids.

Various omics technologies revealed the PC detection ability of salivary compounds and
microbiomes [17-19]. We previously observed the change of metabolite concentration in salivary
samples collected from PC patients [20]. Among metabolites, polyamines in non-invasively available
biofluids have been reported as possible biomarkers of various cancers [21-23]. Elevation of urinary
polyamines and the positive correlation between their concentrations in PC tissue is well known [24].
Salivary polyamines showed potential detection ability in breast cancer [25, 26]. However, the
potential of PC detection using salivary polyamines has not been investigated.

The purpose of this study is to evaluate the potential ability of salivary polyamines to detect
PCs. We utilized capillary electrophoresis-mass spectrometry (CE-MS) to quantify these metabolites
and accessed their sensitivity and specificity by comparison of polyamine profiles for PC, and chronic
pancreatitis (CP), and controls (C).

2. Results

Patient information is summarized in Table 1. Metabolomic analysis successfully identified and
quantified 292 metabolites in saliva samples and, of these, those 142 metabolites frequently detected
(at least >50% per group) were used for subsequent analyses. Score plots of PCA (Figure 1a) showed
the overall metabolite concentration pattern among all samples. The score plots of C and CP
aggregated while several PC plots were scattered, indicating that the metabolomic profiles of PC
showed large differences compared to C and CP.

To access the discrimination ability of the salivary metabolites, the receiver operating
characteristic (ROC) curve of this MLR model was developed (Figure 1b). In total, 24 metabolites
showed significant differences (corrected p-value < 0.05; Mann-Whitney test) and F.C. > 4.0 between
PC and (C + CP), and the 4 metabolites were selected by stepwise feature selection (Table 2). The
model included alanine, Ni-acetylspermidine, 2-oxobutyrate, and 2-hydroxybutyrate. The area under
the ROC curve (AUC) of this model was 0.887 (95% confidence interval [CI]; 0.784 — 0.944). As
pruning, the metabolites showing the largest p-value in the model were eliminated one by one. The
model with fewer parameters showed less AUC values;

The metabolites showing significant differences between PC and (C+CP) (corrected p < 0.001;
Mann-Whitney test) included 3 polyamines (spermine, Ni-acetylspermidine, and Ni-acetylspermine)
and 2-aminobutanoate (2AB). Their stage-specific concentrations are depicted in Figure 2. By multiple
comparison (Steel-Dwass test), comparison between C and PC with stage III and stage IVb showed
significant differences. Spermine showed significant differences in various comparisons, e.g. CP and
PC in stage IVb.

d0i:10.20944/preprints201801.0092.v1
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Figure 1. Discrimination ability of metabolomics profile: (a) Score plots of PCA. Contribution ratio to
first, second, and third PC (PC1, PC2, and PC3) were 34.0, 5.7, and 4.7, respectively. Blue, green, and

red plots indicated C, CP, and PC, respectively; (b) ROC curves of MLR: red, green, blue, and orange

curves indicated the MLR model with 4, 3, 2, and 1 metabolite(s), respectively, and their AUC values
were 0.887 (95% CI; 0.784 — 0.944, p < 0.0001), 0.859 (95% CI; 0.749 — 0.925, p < 0.0001), 0.807 (95% CL;
0.749 - 0.925, p < 0.0001), and 0.653 (95% CI; 0.526 — 0.761, p < 0.0122), respectively. The differences of
AUC of the model with 4 parameters were 0.0501, 0.0280, and <0.0001 for those with 3, 2, and 1

parameters, respectively.
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Figure 2. Metabolite concentration: (a) spermine; (b) Ni-acetylspermidine; (c) Ni-acetylspermine; and
(d) 2-aminobutanoate (2AB). *** p <0.001 and *p < 0.05 by the Steel-Dwass test.
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Table 1. Patient characteristics
Parameters C CP PC p-value
n 26 14 39 -
Age 508+ 164  51.1+124  66.1+9.86 <0.0001 b
Sex (F/M) 13/13 3/11 18/21 0.189
Table 2. MLR model
Parameters Odds 95% CI Parameter 95% CI p-Value
Alanine 0.990 0.980 1.00 -0.0103 -0.0203  -0.0003 0.043 *
Ni-Acetylspermidine 2.92 1.35 6.31 1.07 0.30 1.84 0.0065 ok
2-Oxobutyrate 1.15 1.02 1.29 0.14 0.02 0.25 0.019 *
2-Hydroxybutyrate 1.46 1.07 1.99 0.38 0.07 0.69 0.017 *
(Intercept) - - - -2.21 -3.21 -1.21 <.0001 X
Table 3. Tumor markers and MLR
Marker Pe p-Value
(n=14) III (n = 6) IVa (n=12) IVb (n=21)
CEA 346+327 275+1.46 7.25+4.18 43.8£101 0.0196  *
>5.0ng/ml (%) 3 (21.4) 0(0.0) 9 (75.0) 10 (47.6)
#MV 0 0 0 0
2.90 x 102 7.43 x 102 6.25 x 10°
CA19-9 19.9£21.3 0.0016  ***
+6.26 x 102 +9.98 x 102 +1.77 x 10
>37U/ml (%)  2(14.3) 3 (50.0) 12 (100.0) 16 (76.2)
#MV 0 0 0 0
6.17 x 102 5.28 x 102 9.98 x 102
DUPAN2 74.0 + 86.7 0.0008  ***
+7.67 x 102 +6.52 x 102 +6.52 x 102
>150U/ml (%) 2 (16.7) 4 (66.7) 6 (50.0) 18 (90.0)
#MV 2 0 0 1
89.0 3.63 x 102 3.25x 103
SPANI1 16.2+17.1 <0.0001 ***
+1.58 x 102 +4.83 x 102 +8.44 x 10°
>30U/ml (%) 2(18.2) 3 (50.0) 10 (83.3) 19 (95.0)
#MV 3 0 0 1
0.334 +
MLR 0.266 0.800 + 0.299 0.633 £ 0.363 0.786 + 0.268 0.002 ok
>0.5533 (%) 2(14.3) 5(83.3) 7 (58.3) 16 (76.2)
#MV 0 0 0 0

Note: # MV indicates the number of missing values. (%) indicates the percentage of positive subjects.

Tumor markers, including CEA, CA19-9, DUPAN2, and SPANT1 of CP and PC, are summarized
in Table 3. Based on the ROC curve of MLR (Figure 1b), the optimized cut-off value was calculated,
and true positive ratios were also summarized in Table 3. As a computational validation test, k-fold
CV was conducted using k=5, 10, and 20 with 200 random values for each. The median AUC values
were 0.847 (95% CI; 0.840 - 0.846), 0.850 (95% CI; 0.847 - 0.851), and 0.852 (95% CI; 0.850 - 0.853) for
k=5, 10, and 20, respectively. The resampling tests were also conducted using 200 random values,
which yielded median AUC = 0.894 (95% CI; 0.889 - 0.901).

3. Discussion
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124 We conducted CE-MS-based metabolomics for comprehensive analyses of hydrophilic
125 metabolites, including polyamines, in saliva samples from patients with C, CP, and PC. The overall
126  metabolite concentration patterns showed several salivary samples collected from patients with PC
127  showing a large difference among all samples (Figure 1a).

128 The MLR model developed here included 4 metabolites and yielded an AUC = 0.887 (Figure 1b).
129 Asapruning test, the AUC values between the model with 4 and 3 metabolites showed no significant
130 difference (p = 0.0501, Figure 1b) while the model with 2 and 1 metabolites showed significantly
131  decreased accuracy, indicating the combination of multiple metabolites contributed to enhance both
132 sensitivity and specificity in discriminating PC patients from the other groups. Alanine was included
133 in this model (Table 2), while no specificity for pancreatic cancer was expected because of various
134 reports on this metabolite [27, 28]. Since not only these 4 metabolites, but also 24 metabolites showed
135 potential as markers to discriminate PC from the others (corrected p < 0.05; Mann-Whitney test and
136 F.C. > 4.0 between PC and (C + CP)), the specificity of these metabolites should be validated using
137  larger cohorts and parameter selection.

138 Our computational test using k-fold CV and resample tests showed high generalization ability,
139  since no median AUC showed distinct decrease compared to the original AUC calculated using all
140  datasets. In particular, the differences between the upper margin of the lower limit of the 95% CI of
141 AUC values of all validation tests were small; 0.006, 0.004, 0.003, and 0.012 for 5, 10, and 20-fold CV
142 and resampling. Both tests indicated the high generalization ability of the model.

143 Among the metabolites showing high discrimination ability, 3 polyamines were included
144 (Figure 2). Spermine showed a unique pattern, e.g. all PC groups at all stages showed significant
145 differences compared with C and PC in stage IVb (Figure 2a). However, this metabolite also showed
146  a significant difference between C and CP. Two acetylated-polyamines, including Ni-
147  acetylspermidine and Ni-acetylspermine, were elevated in PC compared with stages IIl and IVb
148  (Figures 2b, c). Concentrations of polyamines are tightly controlled in normal cells, e.g. ornithine by
149 ornithine decarboxylase (ODC) [EC 4.1.1.17] which converts ornithine to putrescine, a first metabolite
150  of the polyamine pathway, is negatively regulated by adenomatous polyposis coli (APC) tumor-
151  suppressor gene while mutated or deleted APC would activate ODC, contributing to enhance
152 putrescine, and subsequent metabolites, such as spermidine and spermine [8]. The acetylation of
153  these metabolites is also activated in spermidine/spermine Ni-acetyltransferase (SSAT) in cancer cells
154 [8]. In particular, N1, Ni-diacetylspermine is known to be secreted by tumors and its concentration is
155  elevated in urine in various cancer patients [29]. However, this metabolite was not independently
156 detected in our CE-MS measurement conditions, i.e. adduct or fragment ion of other metabolites were
157  detected at the same migration time. The elevation of salivary Ni-acetylspermidine and Ni-
158  acetylspermine is considered as reasonable and the lack of a significant difference between C and PC
159  with stage IVb might be attributed to the low number of patients.

160 There are several limitations that need to be acknowledged. Firstly, the number contained
161  in the cohort of this study was quite small and validation with a larger cohort is necessary. The
162  difference of age is also a problem of this study. In this study, we recruited only advanced PC in stage
163 III, IVa, and IVb. The validation of PC at an early stage is the most important to access the value of
164 the saliva-based PC screening test demonstrated here. The specificity of the elevated salivary markers
165  also should be analyzed using different types of diseases, since polyamines in saliva samples
166  collected from breast cancer patients were previously reported [25,26]. Our data also revealed large
167  overlap of elevated salivary metabolites among various cancers [20]. Environmental factors also affect
168  the salivary metabolite profiles [28] and standards of protocols to handle the saliva should also be
169  established based on observed marker metabolites, since several salivary metabolites were unstable
170  after the saliva collection [30]. Taken together, more rigorous validation methods are still necessary

171  to fully evaluate the potential of salivary-based PC detection.

172
173

174 4. Materials and Methods
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Patient Selection and Serum Collection

Sample collection was conducted at Tokyo Medical University Hospital. All patients had
pancreatic cancers diagnosed histologically. All patients were recently diagnosed with primary
disease and none had received any prior treatment in the form of chemotherapy, radiotherapy,
surgery, or alternative therapy. No subjects had a history of prior malignancy. This study was
approved by the ethics committee of Tokyo Medical University (approval no. 1560). Written informed
consent was obtained from all patients and from volunteers who agreed to serve as saliva donors.
Our study was carried out in accordance with the Helsinki Declaration.

Protocols for saliva collection

The saliva providers were not allowed to take any food except water intake after 21:00 on the
previous day. The subjects were required to brush their teeth without toothpaste on the day of saliva
collection, and had to refrain from drinking water, smoking, tooth-brushing and intense exercise from
one hour before saliva collection. They were required to gargle with water just before saliva
collection. Approximately 400 pl of unstimulated saliva was collected in a 50 cc polypropylene tube.
A polypropylene straw 1.1 cm in diameter was used to assist the saliva collection

Sample Preparation

Saliva samples were stored at -80 “C until metabolomic analyses. The protocol of salivary
preparation for metabolomic analyses is described elsewhere (31). All samples were collected at 08:00
am —11:00 am. Eating and drinking were not permitted for at least 1.5 hours prior to saliva collection.
Each subject rinsed their mouth with water, and their saliva was collected in a 50 ml Falcon tube on
ice. Approximately 200 — 400 pl unstimulated whole saliva was collected over 5-10 min. After
collection, the saliva samples were immediately stored at -80 °C until metabolite measurements.

Measurement Conditions and Processing of Raw Data

The metabolite standards, capillary electrophoresis time-of-flight mass spectrometry (CE-

TOFMS) instrumentation, and measurement conditions for cationic and anionic metabolites were
described previously [20,31-33]. Briefly, CE-TOFMS analysis was performed using an Agilent 7100
CE system (Agilent Technologies, Waldbronn, Germany), an Agilent 6224 liquid chromatography
(LC)/MS TOF system, an Agilent 1260 series isocratic HPLC pump, a G1603A Agilent CE-MS adapter
kit, and a G1607A Agilent CE-ESI-MS sprayer kit (Agilent Technologies, Santa Clara, CA). For system
control and data acquisition, Agilent Chemstation software was used for CE and Agilent MassHunter
software was used for TOFMS.
Cationic metabolites were separated on a fused-silica capillary column (50-um inner diameter=100-
cm total length) filled with 1 M formic acid as the electrolyte. The sample solution was injected at 5
kPa for 3 s (approximately 3 nL), and a positive voltage of 30 kV was applied. The sheath liquid,
methanol/water (50% v/v) containing 0.1 pM hexakis(2,2-difluorothoxy) phosphazen, was delivered
at 10 puL/min. Anionic metabolites were separated using a commercially available COSMO(+)
capillary column coated with a cationic polymer (Nacalai Tesque, Kyoto, Japan). Ammonium acetate
solution (50 mM, pH 8.5) was used as the electrolyte. The sample solution was injected at 5 kPa for
30 s (approximately 30 nL) and a voltage of 30 kV was applied. The sheath liquid, ammonium acetate
(5 mM) in methanol/water (50% v/v) containing 0.01 uM hexakis(2,2-difluorothoxy) phosphazen, was
delivered at a rate of 10 pL/min. Results were automatically recalibrated relative to the masses of two
reference standards in each mode. Cationic analysis used the 13C isotopic ion of a protonated
methanol dimer (2MeOH + H)*, m/z 66.06306, and protonated hexakis(2,2-difluorothoxy) phosphazen
(M + H)*, m/z 622.02896, whereas anionic analysis used the 13C isotopic ion of a deprotonated acetic
acid dimer (2CHsCOOH + H)* , m/z 120.03834, and hexakis(2,2-difluorothoxy) phosphazen +
deprotonated acetic acid (M + CHsCOOH + H)*, m/z 680.03554. Mass spectra were acquired at a rate
of 1.5 cycles/sec from m/z 50 to 1000.

d0i:10.20944/preprints201801.0092.v1
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222 The analysis of raw data was conducted by following the typical data processing flow [27], including
223 noise-filtering, baseline-correction, peak integration of each sliced electropherogram, estimation of
224 accurate m/z, alignment across multiple datasets, and identification by matching the m/z value and
225  the corrected migration time to corresponding entries in a standard library, using MasterHands (Keio
226  University, Tsuruoka, Japan) [20]. Metabolite concentrations were calculated based on a ratio of
227  relative area (the area divided by the area of the internal standards) between sample and standard
228  compound mixtures.

229 Statistical Analysis

230 The Mann-Whitney test was used to access the difference of metabolite concentrations between
231 2 groups. The false discovery rate (Benjamini and Hochberg methods) [34] was used to correct P-
232 values, considering multiple independent tests. Clinical values, except for continuous values, were
233 accessed by the y2 test. Overall metabolomic concentrations were accessed by principal component
234 analysis (PCA). To eliminate noise-like peaks, only frequently detected metabolites (50% of subjects
235 of at least one group) were used for PCA. To evaluate the discrimination ability of multiple
236  metabolites, multiple logistic regression (MLR) was conducted. Of the metabolites used for PCA,
237  metabolites showing both significant differences (corrected p-value < 0.05 by Mann-Whitney test) and
238  fold change (F.C.)>4.0 of the averaged concentrations between PC and (C + CP) groups were selected.
239  Subsequently, stepwise feature selection with backward (p > 0.05) and forward selection (p < 0.05) to
240  eliminate multicollinearity, and an MLR model was developed. The Steel-Dwass test was used for
241  stage-specific differences.

242 To access the generalization ability of MLR, two computational validations were conducted; (1) k-
243 fold cross validation (CV). Data were randomly split into two (k: k-1) datasets and the former was
244 used for training, the remaining data were used for validation. This was repeated k times and the
245  prediction ability using validation datasets was used. (2) Resampling. To eliminate optimistic
246  prediction, subjects were randomly selected, allowing redundant selection to generate the datasets
247 with a number of subjects identical to the original datasets, the MLR model was developed and the
248  accuracy was accessed.

249  The analyses were conducted using R (ver. 3.4.3) [35], JMP (ver. 13.2.0, SAS Institute Inc., Cary NC),
250  and WEKA (ver. 3.6.13) [36].

251 5. Conclusions

252 In this study, we evaluated the discrimination ability of salivary metabolite patterns for PC.
253 Polyamines, especially spermine, showed unique concentration patterns and a significant difference
254 between C and PC. The combination of four metabolites showed high accuracy in discriminating PC
255  from CP and C, and computational validation tests confirmed the high generalization ability of the
256  developed model. Although there are several limitations, e.g. a small cohort, with only advanced PC,
257  and no other cancer patients, the salivary metabolites including polyamines showed potential ability
258  for screening of PC.
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