

1 *Type of the Paper (Article)*

2 **Solvation and Aggregation of Meta-aminobenzoic 3 Acid in Water: Density Functional Theory and 4 Molecular Dynamics Study**

5 **Etienne Gaines and Devis Di Tommaso ***

6 School of Biological and Chemical Sciences, Materials Research Institute, Queen Mary University of
7 London, Mile End Road, E1 4NS London, United Kingdom; e.gaines@qmul.ac.uk

8 * Correspondence: d.ditommaso@qmul.ac.uk; Tel.: +44-207-882-6226

9 **Abstract:** Meta-aminobenzoic acid, an important model system in the study of polymorphism and
10 crystallization of active pharmaceutical ingredients, exist in water in both the nonionic (mABA) and
11 zwitterionic (mABA \pm) forms. However, the constituent molecules of the polymorph that crystallizes
12 from aqueous solutions are zwitterionic. This study reports atomistic simulations of the events
13 surrounding the early stage of crystal nucleation of meta-aminobenzoic acid from aqueous
14 solutions. *Ab initio* molecular dynamics was used to simulate the hydration of mABA \pm and mABA,
15 and to quantify the interaction of these molecules with the surrounding water molecules. Density
16 functional theory calculations were conducted to determine the low-lying energy conformers of
17 meta-aminobenzoic acid dimers and compute the Gibbs free energies in water of nonionic,
18 (mABA) $_2$, zwitterionic, (mABA \pm) $_2$ and nonionic-zwitterionic, (mABA)(mABA \pm), species. Classical
19 molecular dynamics simulations of mixed mABA-mABA \pm aqueous solutions were carried out to
20 examine the aggregation of meta-aminobenzoic acid. According to these simulations the selective
21 crystallization of the polymorph which constituent molecules are zwitterionic is driven by the
22 formation of zwitterionic dimers in solution, which are thermodynamically more stable than
23 (mABA) $_2$ and (mABA)(mABA \pm) pairs. This work represents a paradigm of the role of molecular
24 processes during the early stages of crystal nucleation in affecting polymorph selection during
25 crystallization from solution.

26 **Keywords:** meta-aminobenzoic acid; solvation; aggregation; polymorphism; atomistic simulations
27

28 **1. Introduction**

29 The substance meta-aminobenzoic acid is of considerable importance in the pharmaceutical
30 industry, widely used in the synthesis of analgesics, antihypertensives, vasodilators and other drugs.¹
31 This molecules also represents a fascinating model system for polymorphic research because it can
32 crystallize in five different crystal structures (I-V).² The very strong polymorphic character of meta-
33 aminobenzoic acid can be related to the manifold of inter-molecular interactions between meta-
34 aminobenzoic acid molecules (hydrogen (H) bonding, π - π interactions and H- π interactions) but also
35 to the ability of this molecule to exist in either of both the nonionic (mABA) and zwitterionic (mABA \pm)
36 forms (Figure 1).³ In fact, in the polymorphs denoted I, III and V the meta-aminobenzoic acid
37 molecules are zwitterionic, and in the polymorphs II and V they are nonionic.^{2,4}

38 The nature of the solvent can significantly influence the thermodynamics and kinetics of crystal
39 growth,⁵⁻⁷ and control the formation of one specific polymorph over another.⁸⁻¹⁰ In the case of meta-
40 aminobenzoic acid, Form II preferentially crystallizes from dimethyl sulfoxide (DMSO),⁴ where meta-
41 aminobenzoic acid only exist in the nonionic form in this solvent. Hughes and co-workers¹¹
42 monitored the crystallization of meta-aminobenzoic acid from organosulfur solutions using a
43 combined liquid- and solid-state *in-situ* NMR apparatus and proposed the existence of nonionic
44 mABA aggregates linked by H bonds, but the authors could not however uniquely determine the
45 identity of these species. A recent theoretical study conducted in our group showed however that

46 mABA molecules in DMSO aggregate to form thermodynamically stable dimers and tetramers which
 47 structure is consistent with the classic carboxylic dimer π - π stacking synthon found in this
 48 polymorph.¹²

49 **Figure 1.** Schematic picture of the two tautomeric forms of meta-aminobenzoic acid: (a) nonionic
 50 mABA; (b) zwitterion mABA[±].

51 On the other hand, the constituent molecules of crystal form I of meta-aminobenzoic acid are
 52 zwitterions. Despite it has been reported that the values of the equilibrium constant $K_z =$
 53 $[mABA^\pm]/[mABA]$ for aminobenzoic acids are of the order of unity in water,^{13–15} implying a
 54 comparable distribution of mABA[±] and mABA molecules, Form I preferentially crystallizes from
 55 aqueous environments. The fundamental details of factors controlling the selection between
 56 zwitterionic and nonionic forms of meta-aminobenzoic acid during crystal nucleation from aqueous
 57 solution are not known yet.¹⁶ This work aims to solve this conundrum by applying a combination of
 58 atomistic methods to follow the events surrounding the crystal nucleation of meta-aminobenzoic acid
 59 from aqueous solutions: *ab initio* molecular dynamics (MD) simulations of the hydration of mABA[±]
 60 and mABA in water; density functional theory (DFT) calculations of the structure and energetics of
 61 formation in water of (mABA)₂, (mABA)(mABA[±]) and (mABA[±])₂ dimers; classical MD simulations of
 62 mixed mABA–mABA[±] aqueous solutions to quantify the aggregation of meta-aminobenzoic acid.

63 2. Computational Methods

64 2.1. Density functional theory calculations

65 Electronic structure calculations were carried out with the NWChem (version 6.3)¹⁷ and
 66 Gaussian09¹⁸ codes. The Grimme's density functional (B97-D)¹⁹ and the Minnesota 06 global hybrid
 67 functional with 54% HF exchange (M06-2X)²⁰ were used together with the Gaussian 6-31+G(d,p) basis
 68 set. Free energies of solvation were calculated using the SMD solvation model.²¹

69 The free energies of formation of nonionic, (mABA)₂, nonionic-zwitterionic, (mABA)(mABA[±]),
 70 and zwitterionic, (mABA[±])₂, dimers were computed according to the following equation:

$$\Delta G_{ass}^* = G_{AB}^* - G_A^* - G_B^* \quad (1)$$

71 In Eq. 1, G_X^* is the total Gibbs free energy of the species X ($X = AB$, A or B) in the liquid. This quantity
 72 was evaluated using two different approaches. The first one follows the recommendation by Ho et
 73 al. that free energies of molecules in solution should be obtained from separate gas- and solution-
 74 phase calculations²² and the application of the following expression:

$$G_X^* = E_{e,gas} + \delta G_{VRT,gas}^\circ + \Delta G_{solv}^* + RT \ln[\tilde{R}T] \quad (2)$$

75 In Eq. 2, $E_{e,gas}$ is the gas-phase total electronic energy of the gas-phase optimized geometry of the
 76 species X, $\delta G_{VRT,gas}^\circ$ is the vibrational-rotational-translational contribution to the gas-phase Gibbs
 77 free energy at $T = 298$ K under a standard-state partial pressure of 1 atm, ΔG_{solv}^* is the solvation free
 78 energy of the solute corresponding to transfer from an ideal gas at a concentration of 1 mol L⁻¹ to an
 79 ideal solution at a liquid-phase concentration of 1 mol L⁻¹, and the last term is the free energy change
 80 of 1 mol of an ideal gas from 1 atm to 1 mol L⁻¹ ($RT \ln[\tilde{R}T] = 1.89$ kcal mol⁻¹ at 298 K, $\tilde{R} = 0.082$ K⁻¹).²³
 81 However, the gas-phase optimization of zwitterionic dimers, (mABA[±])₂, and nonionic-zwitterionic
 82 dimers, (mABA)(mABA[±]), caused the H-transfer between the molecular units (e.g. (mABA[±])₂ \rightarrow
 83 (mABA)₂). In these instances, stationary points in the solution do not correspond to stationary points

84 in the gas-phase, making it impossible to compute relevant gas-phase vibrational, translational and
 85 rotational contributions ($\delta G_{VRT,gas}^\circ$). Therefore, the other approach adopted was to optimize the
 86 structure of $(mABA^\pm)_2$, $(mABA)(mABA^\pm)$, and of the monomers $mABA$ and $mABA^\pm$, in the aqueous
 87 phase. The total free energy in the solution of these species was then obtained from the expression:

$$G_X^* = E_{soln}^{Tot} + \delta G_{VRT,soln}^* \quad (3)$$

88 where $\delta G_{VRT,soln}^*$ is the vibrational-rotational-translational contribution to the liquid-phase, and
 89 E_{soln}^{Tot} is given by the sum of the liquid-phase expectation value of the gas-phase Hamiltonian ($E_{e,soln}$),
 90 the electronic polarization contribution to the solvation free energy based on bulk electrostatic (ΔG_{EP}),
 91 and the contribution from cavitation, dispersion and solvent structural effects (G_{CDS}):

$$E_{soln}^{Tot} = E_{e,soln} + \Delta G_{EP} + G_{CDS} \quad (4)$$

92 Since the potential energy surface (PES) of molecular clusters is characterized multiple low-lying
 93 energy isomers, the free energy of the dimers $(mABA)_2$, $(mABA)(mABA^\pm)$ and $(mABA^\pm)_2$ was
 94 determined from the Boltzmann ensemble average

$$\langle G(X) \rangle = \sum_{i=1}^N f_i G(X_i) \quad (5)$$

95 where f_i is the Boltzmann factor corresponding to the i^{th} configuration, $G(X_i)$ is the corresponding free
 96 energy and N is the number of low-lying energy isomers. The Boltzmann factor was determined
 97 according to

$$f_i = \frac{e^{-G(X_i)/RT}}{\sum_j e^{-G(X_j)/RT}} \quad (6)$$

98 where R is the universal gas constant, T is the absolute temperature ($T = 298$ K) and the index j runs
 99 over all isomers. The low-lying energy structures of the meta-aminobenzoic acid dimers were located
 100 using the following computational protocol. (1) For each type of dimer [$(mABA)_2$, $(mABA)(mABA^\pm)$
 101 and $(mABA^\pm)_2$] *hundreds of thousands* of candidate structures were generated using Granada,^{24,25} a code
 102 designed to distribute randomly one or more molecules around a central unit (a monomer, dimer,
 103 trimer etc.) placed at the centre of a cube of defined side length. (2) Configurations satisfying the
 104 condition that at least one atom of each mobile molecule was within 4 Å from at least one atom of the
 105 central unit were selected as potential low-lying energy structures. (3) The energies of these structures
 106 were evaluated at the B97-D/6-31+G(d,p) level of theory and the Boltzmann factor f_i corresponding to
 107 the i^{th} configuration was determined as

$$f_i = \frac{e^{-(E_i - E_0)/RT}}{\sum_j e^{-(E_j - E_0)/RT}} \quad (7)$$

108 where E_i was the energy of the i^{th} candidate structure and E_0 was the energy of the most stable
 109 candidate structure. (4) The candidate structures with a Boltzmann factor $f_i \geq 0.01$ and ten to fifteen
 110 randomly selected structure such that $3 \leq E_i - E_0 \leq 15$ kcal mol⁻¹ were selected. (4) Geometry
 111 optimization, thermochemical properties and solvation energies of the selected configurations were
 112 computed at the M06-2X/6-31+G(d,p) level of theory.

113 2.2. Molecular dynamics simulations

114 *Ab initio* (Born-Oppenheimer) molecular dynamics (AIMD) simulations were conducted with
 115 the electronic structure code CP2K/Quickstep code, version 4.1.²⁶ CP2K implements density
 116 functional theory (DFT) based on a hybrid Gaussian plane wave. We used the PBE²⁷ generalized
 117 gradient approximation for the exchange and correlation terms together with the general dispersion
 118 correction termed DFT-D3. Goedecker-Teter-Hutter pseudopotentials²⁸ were used to describe the
 119 core-valence interactions. All atomic species were represented using a double-zeta valence polarized
 120 basis set. The plane wave kinetic energy cut off was set to 1000 Ry. k-sampling was restricted to the
 121 Γ point of the Brillouin zone. Simulations were carried out with a wave function optimization

122 tolerance of 10^{-6} au that allows for 1.0 fs time steps with reasonable energy conservation. Periodic
123 boundary conditions were applied throughout. Simulations were carried out in the NVT ensemble
124 using a Nosé-Hoover chain thermostat to maintain the average temperature at $T = 300$ K.

125 Classical molecular dynamics (MD) simulations were performed using version 5.0.4 of the
126 GROMACS molecular dynamics package.^{46,47} The leapfrog algorithm with a time step of 2 fs was used
127 to integrate the equations of motion. The isothermal-isobaric (constant NPT) ensemble was used to
128 maintain a temperature of 300 K and a pressure of 1 bar. The velocity rescale thermostat and the
129 isotropic Parrinello-Rahman barostat were used with 0.4 ps and 2.0 ps as the thermostat and barostat
130 relaxation times, respectively. The electrostatic forces were calculated by means of the particle-mesh
131 Ewald approach with a cutoff of 1.2 nm. The same cutoff was used for the van der Waals forces. The
132 LINCS algorithm was applied at each step to preserve the bond lengths. The general AMBER
133 forcefield (GAFF)²⁹ was used to model the nonionic and zwitterionic ($mABA^\pm$) forms of meta-
134 aminobenzoic acid; this family of forcefields has been previously used to compute the aggregation
135 and crystal growth of organic molecules.^{12,30-32} Water molecules were modelled using the SPC/E
136 potential.³³ The interactions between $mABA$ and $mABA^\pm$ molecules and between meta-aminobenzoic
137 acid and water were described using the GAFF potential. To generate the GAFF parameters for
138 $mABA$ and $mABA^\pm$ the structure and molecular electrostatic potential of these molecules were
139 computed using the Hartree-Fock method and the 6-31G* basis set, and then using the Antechamber
140 package was then used to compute partial charges according to the restrained electrostatic potential
141 formalism. The GAFF forcefields and partial charges of $mABA$ and $mABA^\pm$ are reported in
142 Supporting Information (SI, Table SI.1.1 and SI.1.2).

143 Aqueous solutions of a single nonionic and zwitterionic meta-aminobenzoic acid molecule were
144 carried out by embedding, respectively, one $mABA$ and one $mABA^\pm$ in a box of 215 water molecules.
145 Classical MD simulations were first conducted for approximately 5 ns and the last snapshot was used
146 to conduct 20 ps of *ab initio* MD simulations.

147 Simulations of mixed $mABA$ - $mABA^\pm$ aqueous solutions containing an equal amount of $mABA$
148 and $mABA^\pm$ molecules were generated with the *insert-molecules* and *solvate* utilities of the
149 GROMACS package to insert the required $mABA$ and $mABA^\pm$ molecules in an empty cubic box of
150 size 5 nm, and solvate them with water, respectively. Each solution was at first minimized using the
151 conjugate-gradient algorithm with a tolerance on the maximum force of 200 kJ mol^{-1} , and the
152 temperature and volume of each system were equilibrated by running 100 ps of constant volume,
153 constant temperature (NVT) simulation followed by 200 ns of NPT simulations; analysis were
154 conducted on the last 40 ns of simulation. Details of the simulation times, number of solute and
155 solvent molecules, and equilibrated values of the average cell length are reported in Supporting
156 Information (Table SI.2).

157 3. Results

158 3.1. Intermolecular properties and hydration structure

159 The stability of the nonionic ($mABA$) and zwitterionic ($mABA^\pm$) in aqueous solution and the
160 interaction of these molecules with the surrounding water molecules are discussed in this section.
161 Hereafter, the oxygen and nitrogen atoms of $mABA$ or $mABA^\pm$ are denoted by O_m and N_m , the
162 hydrogen of amino group are denoted by H_a , the hydrogen atoms of carboxylic group are denoted
163 by H_c , and oxygen and hydrogen of water are denoted by O_w and H_w , respectively.

164 Figure 1 reports the time evolution of the intra- (O_m - H_c and N_m - H_a) and inter-molecular (O_m ... H_w
165 and N_m ... H_w) distances during the AIMD simulations of the $mABA$ and $mABA^\pm$ species in water.
166 Taking 1 Å as the average intramolecular X-H (X = N, O) bond distance, then $mABA$ and $mABA^\pm$ are
167 not involved in any proton (H) transfer reactions with the surrounding water molecules. Both $mABA$
168 and $mABA^\pm$ molecules are therefore stable in water and should be considered when modelling the
169 aggregation of meta-aminobenzoic acid in aqueous solution. The insets in Figures 2(a) and 2(b)
170 indicate that the lifetime of the H-bond between $mABA$ and the surrounding water molecules is less
171 than 5 ps.

172
173 **Figure 2.** Time evolution of the X-H (X = N or O) distances during the AIMD simulation of the
174 nonionic (mABA) and zwitterionic (mABA $^{\pm}$) forms of meta-aminobenzoic acid in water: (a)
175 Intramolecular (N-H) and intermolecular (N···H) distances of the mABA molecule; (b) Intramolecular
176 (O-H) and intermolecular (O···H) distances of the mABA molecule; (c) Intramolecular (N-H) and
177 intermolecular (N···H) distances of the mABA $^{\pm}$ molecule; (d) Intramolecular (O-H) and intermolecular
178 (O···H) distances of the mABA $^{\pm}$ molecule.

179 A detailed characterization of this H-bonding interaction can be obtained from the analysis of
180 the radial distribution function (RDF), $g_{\alpha\beta}(r)$, which represents the probability relative to a random
181 distribution of finding an atom of type β at a distance r from an atom of type α . Figure 3 reports the
182 O_m-H_w and N_m-H_w RDFs together with the running coordination number, $n(r) = (4\pi N/V) \int_0^r g(r')dr'$, where N is the number of hydrogen or oxygen atoms and V is the volume of the
183 simulation cell. In the X_m-H_w (X = N or O) RDFs, a maximum in the [1.5–2.0] Å region and a minimum
184 at around 2.5 Å indicate the presence of a H-bond with the surrounding water molecules.³⁴ On
185 average, less than one water molecule is coordinated to each oxygen atom of the –COOH and to the
186 nitrogen atom of the –NH₂ groups. On the other hand, approximately four water molecules are
187 coordinated to the –COO[–] group mABA $^{\pm}$ and no water molecule is H-bonded to the nitrogen atom of
188 the –NH₃ $^+$ group. Table 1 summarizes the positions (r_{\max} and r_{\min}) and amplitudes (g_{\max} and g_{\min}) of
189 the maxima and minima of the X_m-H_w RDFs together with the ratios $g_{\max}^{X_m-H_w}/g_{\min}^{X_m-H_w}$, which values
190 can be used as a proxy for the strength of the H-bonding interactions between the X_m-H_w pairs (X =
191 O and N).^{34,35} For mABA, the $g_{\max}^{O_m-H_w}/g_{\min}^{O_m-H_w}$ ratio of the carboxyl oxygen atoms (9.0) is higher than
192 nitrogen (4.5) but lower than the value obtained of $g_{\max}^{O_w-H_w}/g_{\min}^{O_w-H_w} = 19.6$ obtained from AIMD
193 simulations of pure water. Similar behavior is observed for mABA $^{\pm}$ where the interaction of the
194 COO[–] group ($g_{\max}^{O_w-H_w}/g_{\min}^{O_w-H_w} = 14.0$) is significantly stronger than mABA.
195

196
197
198
199 **Figure 3.** The radial distribution functions, $g(r)$, and running coordination numbers, $n(r)$, of mABA
200 and $mABA^\pm$ with water obtained from AIMD simulations: (a) O_m – H_w RDFs (O_m = oxygen atoms of
201 meta-aminobenzoic acid; H_w = hydrogen atoms of water); (b) N_m – H_w RDFs (N_m = nitrogen atoms of
202 meta-aminobenzoic acid; H_w = oxygen atoms of water).

200 **Table 1.** Positions (r_{max}^{X-H} and r_{min}^{X-H} in Å, $X = O$ and N) and amplitudes (g_{max}^{X-H} and g_{min}^{X-H}) of the
201 maxima and minima of the first peak of the O_m – H_w and O_m – H_w RDFs, and first shell hydration
202 number (n_w) obtained from the AIMD simulations of mABA and $mABA^\pm$ in water.

	mABA	$mABA^\pm$
$r_{max}^{O_m-H_w}$	1.79	1.72
$g_{max}^{O_m-H_w}$	0.81	2.38
$r_{min}^{O_m-H_w}$	2.50	2.52
$g_{min}^{O_m-H_w}$	0.09	0.17
$g_{max}^{O_m-H_w}/g_{min}^{O_m-H_w}$	9.00	14.00
$n_w^{O_m}$	1.0	2.6
$r_{max}^{N_m-H_w}$	1.88	–
$g_{max}^{N_m-H_w}$	0.27	–
$r_{min}^{N_m-H_w}$	2.46	–
$g_{min}^{N_m-H_w}$	0.06	–
$g_{max}^{N_m-H_w}/g_{min}^{N_m-H_w}$	4.50	–
$n_w^{N_m}$	0.5	0

203 The RDFs and structural data of the H_c – O_w and H_a – O_w intermolecular interactions are reported
204 in Figure 4 and Table 2. For the carboxylic group of mABA, the H_c – O_w RDF has a very well defined
205 maximum at 1.51 Å and the running coordination number ($n_w^{H_c}$) is characterized by a clear plateau at
206 the first RDF minimum (Figure 4(a)). The value of $g_{max}^{H_c-O_w}/g_{min}^{H_c-O_w}$ is significantly larger than
207 $g_{max}^{O_w-H_w}/g_{min}^{O_w-H_w}$ of pure water (19.6) and consequently the H_c – O_w interaction is stronger than the
208 intermolecular H-bonding in bulk water. The hydrogen of –COOH is therefore stably coordinated to
209 one water molecule. For the amino group of mABA, as the H_a – O_w RDF in the [1.5–2.0] Å is not
210 characterized by a well-defined peak, the hydrogen atoms of the –NH₂ group do not interact
211 significantly with the surrounding water molecules (Figure 4(b)). On the other hand, the H_a – O_w RDF
212 of the –NH₃⁺ in $mABA^\pm$ is characterized by a distinct peak at 1.77 Å.

213 To summarize, the analysis of the X_m – H_w ($X = N$ or O), H_c – O_w and H_a – O_w RDFs indicates that in
214 aqueous solution the $mABA^\pm$ –water interaction is stronger than mABA–water, and for both species
215 the interaction with the surrounding water molecules is stronger around the carboxylic acid than the
216 amino group.

217
218 **Figure 4.** The radial distribution functions, $g(r)$, and running coordination numbers, $n(r)$, of mABA
219 and mABA[±] with water obtained from AIMD simulations: (a) H_c -O_w RDFs (O_c = oxygen atoms of the
220 carboxylic group of mABA; H_w = hydrogen atoms of water); (b) H_a -O_w RDFs N_m = nitrogen atoms of
the amino group of mABA and mABA[±]; O_w = oxygen atoms of water).

221 **Table 2.** Positions (r_{max}^{H-O} and r_{min}^{H-O} in Å) and amplitudes (g_{max}^{H-O} and g_{min}^{H-O}) of the maxima and
222 minima of the first peak of the H_a-O_w and H_c-O_w RDFs, and first shell hydration number (n_w)
223 obtained from the AIMD simulations of mABA and mABA[±] in water.

	mABA	mABA [±]
$r_{max}^{H_c-O_w}$	1.51	—
$g_{max}^{H_c-O_w}$	3.06	—
$r_{min}^{H_c-O_w}$	2.31	—
$g_{min}^{H_c-O_w}$	0.01	—
$g_{max}^{H_c-O_w}/g_{min}^{H_c-O_w}$	306.00	—
$n_w^{H_c}$	1.0	—
$r_{max}^{H_a-O_w}$	—	1.77
$g_{max}^{H_a-O_w}$	—	2.15
$r_{min}^{H_a-O_w}$	—	2.23
$g_{min}^{H_a-O_w}$	—	0.03
$g_{max}^{H_a-O_w}/g_{min}^{H_a-O_w}$	—	71.7
$n_w^{H_a}$	0	1.0

224 The probability distribution of the number of water molecules in the first hydration shell (HS)
225 of mABA and mABA was determined by computing the pair correlation functions between the
226 center-of-masses (COM) of meta-aminobenzoic acid and water molecules (Figure 5). The position of
227 the first HS was approximated by the first minimum in the COM(mABA)-COM(H₂O) RDFs [insets
228 of Figure 5]. Although a hydration shell can be located for both molecules, the probability
229 distributions of the number of water molecules surrounding mABA and mABA[±] show that these
230 species display a flexible first coordination shell, where the flexibility increases on going from mABA[±]
231 to mABA. There are an average of 24 water molecules in the HS of mABA with a Mean Absolute
232 Deviation (MAD) of 1.4, and 27 water molecules in the HS of mABA[±] with a MAD of 1.0.

233
234
235
236
237
238
Figure 5. (a) Probability distribution of the coordination number in the hydration shell of mABA,
239 together with the mABA-H₂O radial distribution function of the center-of-masses of mABA and
240 water, and the optimized structure of the hydration shell of mABA. (b) Probability distributions of
241 the coordination number in the first hydration shell of mABA[±], together with the mABA[±]-H₂O radial
242 distribution function of the center-of-masses of mABA[±] and water, and the optimized structure of the
243 hydration shell of mABA[±].

244 3.2. Dimerization of meta-aminobenzoic acid

245 Stable dimers in solution have often been linked to the structural synthon found in the crystal
246 polymorph that crystallizes from solution.^{36,37} This section reports therefore results from extensive
247 DFT calculations to determine the structure and the thermodynamic stability in water of dimers of
248 meta-aminobenzoic acid. The Boltzmann averaged energetics of formation of the nonionic, (mABA)₂,
249 zwitterionic, (mABA[±])₂ and nonionic-zwitterionic, [(mABA)(mABA[±])], dimers are reported in Table
250 3. The free energy of formation (mABA)₂ ranges from -0.1 to 2.4 kcal mol mol⁻¹, depending on the
251 method used to compute the total free energies of the dimers and monomer in water. The formation
252 of (mABA)(mABA[±]) (2.4 kJ mol⁻¹) is also endergonic. On the other hand, the dimerization free energy
253 of the zwitterionic aggregate (mABA[±])₂ is large and negative (-5.8 kJ mol⁻¹).

254 **Table 3.** Energetics of dimerization of meta-aminobenzoic acid: $\Delta E_{e,gas}$ is the gas phase interaction
255 energy; ΔG_{ass}° is the standard state (1 atm) gas-phase association free energy at 298 K; ΔG_{ass}^* is the
256 standard state (1 mol/L) free energy of reactions in the liquid-phase. Calculations conducted at the
257 M06-2X/6-31+G(d,p) level of theory using the SMD solvation model. Values obtained from the
258 Boltzmann average of the energies, or free energies, of the isomers of nonionic (mABA)₂,
259 zwitterionic (mABA[±])₂ and mixed (mABA)(mABA[±]) dimers. Values in kcal mol⁻¹.

Reaction	$\Delta E_{e,gas}$	ΔG_{ass}°	ΔG_{ass}^*
2 mABA \rightarrow (mABA) ₂	-18.3	-6.6	-0.1 ¹ 2.4 ²
mABA + mABA [±] \rightarrow (mABA)(mABA [±])			1.3 ²
2 mABA [±] \rightarrow (mABA [±]) ₂	-	-	-5.8 ²

255 ¹ Gas-phase optimized geometries and free energies in water obtained using Eq. 2. ² Solution-phase optimized
256 geometries and free energies in water obtained using Eq. 3.

257 Figure 6 reports the structures of the two thermodynamically most stable (mABA)₂ and
258 (mABA)(mABA[±]) species in water. The (mABA)₂ dimer corresponds to the structural synthon found
259 in Form II,² where the two nonionic meta-aminobenzoic acid molecules interact through a double H-
260 bond to form a classic carboxylic dimer (Figure 6(a)). In the (mABA)(mABA[±]) dimer the two
261 monomers are arranged to maximize the concomitant H-bonding and π - π interactions (Figure 6(b)).
262 All other (mABA)₂ and (mABA)(mABA[±]) dimeric structure have significantly higher free energies of
263 formation in water ($2.5 \text{ kcal mol}^{-1} < \Delta G_{ass}^* < 10 \text{ kcal mol}^{-1}$) and consequently they are very unstable in

264 aqueous solution. On the other hand, several very stable zwitterionic dimers, $(mABA^\pm)_2$, were found
 265 in solution (Figure 6(c)). Therefore, despite the distribution between zwitterions and nonionic
 266 molecules in water is close to unity,^{13–15} the selective crystallization of the polymorphs that only
 267 contain zwitterionic molecules (Form I, III and V) could be driven by the higher stability in water of
 268 zwitterionic $(mABA^\pm)_2$ dimers.

269 **Figure 6.** Optimized structures of most stable meta-aminobenzoic acid dimers in water: (a) nonionic
 270 $(mABA)_2$ dimer (in parenthesis value obtained using the gas-phase optimized geometries of $(mABA)_2$
 271 and $mABA$); (b) nonionic-zwitterionic $(mABA)(mABA^\pm)$ dimer; (c) zwitterionic $(mABA^\pm)_2$ dimer.
 272 Beneath the structure is reported free energy of dimer formation in water.

273 3.3. Molecular aggregation in mixed $mABA-mABA^\pm$ aqueous solutions

274 Extensive classical MD simulations (≥ 200 ns) of mixed $mABA-mABA^\pm$ aqueous solutions were
 275 conducted to examine the aggregation behaviour of meta-aminobenzoic acid as a function of
 276 concentration. Four solution were considered: 0.04 mol L⁻¹, which corresponds to conditions below
 277 the limit of aqueous solubility of meta-aminobenzoic acid (5.9 g L⁻¹);³⁸ 0.08 mol L⁻¹, 0.16 mol L⁻¹ and
 278 0.31 mol L⁻¹, which correspond to increasingly supersaturated conditions. Representative
 279 configurations of these solutions are reported in Figure 7, where the number of molecular aggregates
 280 that form in solution increases as a function of solute concentration. This aggregation process has
 281 been quantified in terms of the number of $(mABA \cdots mABA)$, $(mABA^\pm \cdots mABA^\pm)$ and $(mABA \cdots mABA^\pm)$
 282 pairs within 4.0 Å (Figure 8 and Figure SI.3.1, ESI). The number of molecular pairs increases with the
 283 concentration but the number of nonionic clusters is significantly higher than mixed and zwitterionic
 284 species. As the dehydration of the molecules of solute is a crucial step during crystal nucleation from
 285 solution,³⁹ the stronger interaction of $mABA^\pm$ with the surrounding water molecules discussed in
 286 Section 3.1 could explain the observed different level of aggregation of nonionic and zwitterionic
 287 species in water.

288 Moreover, a close view of the clusters formed during the MD simulations reveals that meta-
 289 aminobenzoic acid interact via a manifold of inter-molecular interactions: H-bonding X-H \cdots X (X = O
 290 or N) between amino (NH_2 and NH_3^+) and carboxylic ($COOH$ and COO^-) groups; π - π interactions
 291 between benzene (C_6H_4) groups; X-H \cdots π interactions.

292

Figure 7. Configuration at 200 ns of mixed mABA–mABA $^{\pm}$ aqueous solutions. Water removed.

293 To obtain a characterization of these interactions during the aggregation process, a three-body
 294 simplified representation of the nonionic mABA (A–B–C) and zwitterionic mABA $^{\pm}$ (A * –B * –C *)
 295 molecules has been adopted (Figure 8), where A and A * represent the center-of-masses of –NH₂ and
 296 –NH₃ $^+$; B and B * represent the center-of-masses of the benzene (C₆H₄) groups; C and C * represent the
 297 center-of-masses of –COOH and –COO $^-$.

298
299**Figure 8.** Time evolution of the number of pairs between meta-benzoic acid molecules in mixed mABA–mABA $^{\pm}$ aqueous solutions computed during the last 40 ns of the MD simulations.

300 **Figure 8.** Three-body representations (A–B–C) and (A*–B*–C*) of the nonionic, mABA,
 301 zwitterionic, mABA \pm forms of meta-aminobenzoic acid: A and A* are the center-of-masses (COMs)
 302 of the –NH₂ and –NH₃⁺ groups; B and B* are the COMs of the benzene (C₆H₄) group; C and C* are the
 303 COM of the –COOH and –COO[–] groups.

304 A symmetric pairwise interaction matrix (PIM) can therefore be defined to quantify the
 305 interactions between (A–B–C) and (A*–B*–C*):
 306

$$PIM = \begin{bmatrix} p_{A^*A^*} & p_{A^*B^*} & p_{A^*C^*} & p_{A^*A} & p_{A^*B} & p_{A^*C} \\ p_{A^*B^*} & p_{B^*C^*} & p_{B^*A} & p_{B^*B} & p_{B^*C} & \\ p_{A^*C^*} & p_{C^*A} & p_{C^*B} & p_{C^*C} & & \\ p_{A^*A} & p_{AB} & p_{AC} & & & \\ p_{A^*B} & p_{BB} & p_{BC} & & & \\ p_{A^*C} & & & & & p_{CC} \end{bmatrix} \quad (8)$$

307
 308 In Eq. (6) the elements of the PIM matrix are defined as
 309

$$p_{ij} = \left\langle \sum_i \sum_{i>j} f(r_{ij}) \right\rangle \quad (9)$$

310
 311 where the pairwise interaction function $f(r_{ij})$ quantifies to the existence of a (i, j) pair within a cutoff
 312 distance of 4.0 Å:
 313

$$f(r_{ij}) = \begin{cases} 0, & r_{ij} > 4.0 \text{ Å} \\ 1, & r_{ij} < 4.0 \text{ Å} \end{cases} \quad (10)$$

314 For example: the element p_{AA} corresponds to COOH···COOH interactions found in the classic
 315 carboxylic dimer (mABA)₂ (Figure 6(a)); p_{A^*A} and p_{C^*C} correspond to the COO[–]···COOH and
 316 NH₃⁺···NH₂ interactions in the nonionic-zwitterionic dimer (mABA)(mABA \pm) (Figure 6(b)); p_{B^*B} and
 317 $p_{A^*C^*}$ correspond to π ··· π and NH₃⁺···COO[–] interacting pairs in the structures of the most stable
 318 zwitterionic dimers (mABA \pm)₂ (Figure 6(c)). For the mixed 0.08 mol L^{–1} mABA–mABA \pm aqueous
 319 solutions, the pairwise interaction matrix in Table 4 reveals a higher proportion of NH₃⁺···COO[–]
 320 (A \pm ···C \pm = 8.7%) and π ··· π (B \pm ···B \pm = 9.1%) pairs than COOH ··· COOH (C···C = 6.5%), COO[–]···COOH
 321 (C \pm ···C = 6.5%) and NH₃⁺···NH₂ (A \pm ···A = 5.3%). Very similar PIM matrices were obtained from the
 322 calculation of the three-body pairwise interactions of the other systems (SI, Tables SI.4.1-3). This
 323 analysis consequently implies that aqueous solutions of meta-aminobenzoic acid contain a higher
 324 proportion of stable zwitterionic (mABA \pm)₂ pairs, in agreement with the DFT calculations of
 325 dimerization free energies.
 326

327
328**Table 4.** Matrix elements p_{ij} of the pairwise interaction matrix for the mixed 0.08 mol L⁻¹ mABA–mABA[±] aqueous solutions. Values of p_{ij} expressed as percentage.

	A*	B*	C*	A	B	C
A*	0.2	0.6	8.7	5.3	3.4	3.5
B*		9.1	2.7	2.6	10.0	7.6
C*			0.1	3.6	2.3	3.6
A				4.3	4.2	5.2
B					6.1	10.6
C						6.5

329 **5. Conclusions**

330 Atomistic simulations of aqueous solutions of meta-aminobenzoic acid, an important model
331 system to understand polymorphism in active pharmaceutical ingredients, were conducted to
332 determine the solvation and aggregation of nonionic (mABA) and zwitterionic (mABA[±]) molecules.

333 *Ab initio* molecular dynamics (AIMD) of mABA and mABA[±] were conducted to determine the
334 stability, intermolecular and hydration properties of these species. AIMD were performed on
335 simulation cells where single mABA and mABA[±] species were considered in combination with
336 around 200 water molecules. A detailed analysis of the number and strength of hydrogen bonds
337 between mABA and mABA[±] and the surrounding water molecules, shows that the mABA[±]–water
338 interaction is stronger than mABA–water, and that for both species the interaction with the
339 surrounding water molecules is stronger around the carboxylic acid than around the –NH₂ (mABA)
340 and –NH₃⁺ (mABA[±]) groups. Analysis of the mABA–H₂O and mABA[±]–H₂O pair correlation functions
341 indicate that although a hydration shell can be located for both molecules, the probability
342 distributions of the number of water molecules surrounding mABA and mABA[±] show that these
343 species display a flexible first coordination shell, where the flexibility increases on going from mABA[±]
344 to mABA.

345 Density functional theory calculations with a polarizable continuum model to describe the
346 aqueous environment were used to locate the low-lying energy structures and thermodynamic
347 stability in water of nonionic, (mABA)₂, zwitterionic, (mABA[±])₂ and nonionic-zwitterionic,
348 (mABA)(mABA[±]), dimers. Results show that the only thermodynamically dimers in solution are
349 (mABA[±])₂, whereas the formation of the nonionic classic carboxylic dimer (mABA)₂ and the π – π
350 stacked (mABA)(mABA[±]) dimer is endoergic.

351 Classical molecular dynamics simulations of meta-aminobenzoic acid aqueous solutions
352 containing an equal amount of nonionic and zwitterionic species were conducted to examine the
353 aggregation behavior as a function of concentration of solute. Analysis of the aggregates formed
354 during the simulation shows a higher proportion of π – π and NH₃⁺–COO[–] pairs, which interactions
355 occur in the most stable zwitterionic dimers (mABA[±])₂ located using DFT calculations.

356 According to these simulations the selective crystallization of the polymorph which constituent
357 molecules are zwitterionic is driven by the formation of zwitterionic dimers in solution, which are
358 thermodynamically more stable than (mABA)₂ and (mABA)(mABA[±]) pairs.

359 The atomistic simulations reported in this work suggest therefore that the selective
360 crystallization polymorphs which constituent molecules are zwitterionic is driven by the higher
361 stability of zwitterionic species in solution. This work represents a paradigm of the role of molecular
362 processes during the early stages of crystal nucleation in affecting polymorph selection during
363 crystallization from solution.

364 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Table SI.1: General
365 AMBER forcefield parameters used to model mABA in GROMACS, Table SI.2: General AMBER forcefield
366 parameters used to model mABA[±] in GROMACS, Table SI.3: Details of molecular dynamics simulation, Figure
367 SI.3.1: Time evolution of the number of pairs between meta-benzoic acid molecules in mixed mABA–mABA[±]

368 aqueous solutions computed during the last 40 ns of the MD simulations, Table SI.4.1: Matrix elements p_{ij} of the
369 pairwise interaction matrix for the mixed 0.04 mol L⁻¹ mABA–mABA[±] aqueous solutions.

370 **Acknowledgments:** Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded
371 by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service
372 (<http://www.archer.ac.uk>). This research utilised Queen Mary's Apocrita HPC facility, supported by QMUL
373 Research-IT. <http://doi.org/10.5281/zenodo.438045>

374 **Author Contributions:** E.G. and D.D.T. conceived and designed the experiments; E.G. and D.D.T. performed
375 the experiments; E.G. and D.D.T. analyzed the data; D.D.T. wrote the paper.

376 **Conflicts of Interest:** "The authors declare no conflict of interest."

377 References

- 378 (1) Alcolea Palafox M., G. & J. L. N. M. *Spectrosc. Lett.* **1996**, 29:4 (January 2015), 609–629.
- 379 (2) Williams, P. A.; Hughes, C. E.; Lim, G. K.; Kariuki, B. M.; Harris, K. D. M. *Cryst. Growth Des.* **2012**, 12 (6),
380 3104–3113.
- 381 (3) Théorêt, A. *Spectrochim. Acta Part A Mol. Spectrosc.* **1971**, 27 (1), 11–18.
- 382 (4) Svärd, M.; Nordström, F. L.; Jasnobulka, T.; Rasmuson, Å. C. *Cryst. Growth Des.* **2010**, 10 (1), 195–204.
- 383 (5) Lahav, M.; Leiserowitz, L. *Chem. Eng. Sci.* **2001**, 56 (7), 2245–2253.
- 384 (6) ter Horst, J. H.; Geertman, R. M.; van Rosmalen, G. M. J. *Cryst. Growth* **2001**, 230 (1–2), 277–284.
- 385 (7) Gaines, E.; Maisuria, K.; Di Tommaso, D. *CrystEngComm* **2016**, 18 (16), 2937–2948.
- 386 (8) Blagden, N.; Davey, R. J. *Cryst. Growth Des.* **2003**, 3 (6), 873–885.
- 387 (9) Musumeci, D.; Hunter, C. A.; McCabe, J. F. *Cryst. Growth Des.* **2010**, 10 (4), 1661–1664.
- 388 (10) Kitamura, M.; Umeda, E.; Miki, K. *Ind. Eng. Chem. Res.* **2012**, 51 (39), 12814–12820.
- 389 (11) Hughes, C. E.; Williams, P. A.; Harris, K. D. M. *Angew. Chemie Int. Ed.* **2014**, 53 (34), 8939–8943.
- 390 (12) Gaines, E.; Maisuria, K.; Di Tommaso, D. *CrystEngComm* **2016**, 18 (16), 2937–2948.
- 391 (13) KUMLER, W. D. *J. Org. Chem.* **1955**, 20 (6), 700–706.
- 392 (14) Cohn, E. J.; Edsall, J. T. *Proteins, Amino Acids and Peptides*; Reinhold Publishing Corporation: New York,
393 1943.
- 394 (15) Bjerrun, N. Z. *Phys. Chem.* **1923**, 104, 147.
- 395 (16) Hughes, C. E.; Williams, P. A.; Harris, K. D. M. *Angew. Chemie Int. Ed.* **2014**, 53 (34), 8939–8943.
- 396 (17) Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J. Van; Wang, D.;
397 Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. *Comput. Phys. Commun.* **2010**, 181 (9), 1477–1489.
- 398 (18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;
399 Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov,
400 A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Had, D. J. In *Gaussian, Inc Wallingford CT*; 2009.
- 401 (19) Grimme, S. *J. Comput. Chem.* **2006**, 27 (15), 1787–1799.
- 402 (20) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2008**, 215–241.
- 403 (21) Marenich, A. V; Cramer, C. J.; Truhlar, D. G. *J.Phys.Chem. B* **2009**, 113, 6378–6396.
- 404 (22) Ho, J.; Klamt, A.; Coote, M. L. *J. Phys. Chem. A* **2010**, 114 (51), 13442–13444.
- 405 (23) Ribeiro, R. F.; Marenich, A. V; Cramer, C. J.; Truhlar, D. G. *Phys. Chem. Chem. Phys.* **2011**, 13 (23), 10908–
406 10922.
- 407 (24) Montero, L. A.; Esteva, A. M.; Molina, J.; Zapardiel, A.; Herna, L.; Márquez, H.; Acosta, A. *J. Am. Chem.
408 Soc.* **1998**, 120 (6), 12023–12033.
- 409 (25) Sanchez-Garcia, E.; Studentkowski, M.; Montero Luis, A.; Sander, W. *ChemPhysChem* **2005**, 6 (4), 618–
410 624.
- 411 (26) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2014**, 4

412 (1), 15–25.

413 (27) Perdew, J.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* **1996**, *77* (18), 3865–3868.

414 (28) Goedecker, S.; Teter, M.; Hutter, J. *Phys. Rev. B* **1996**, *54* (3), 1703–1710.

415 (29) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. **2004**, *25* (9), 1157–1174.

416 (30) Salvalaglio, M.; Perego, C.; Giberti, F.; Mazzotti, M.; Parrinello, M. *Proc. Natl. Acad. Sci. U. S. A.* **2014**, *112* (1), E6–E14.

417 (31) Salvalaglio, M.; Giberti, F.; Parrinello, M. *Acta Crystallogr. Sect. C Struct. Chem.* **2014**, *70*, 132–136.

419 (32) Toroz, D.; Hammond, R. B.; Roberts, K. J.; Harris, S.; Ridley, T. *J. Cryst. Growth* **2014**, *401*, 38–43.

420 (33) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. *J. Phys. Chem.* **1987**, *91* (24), 6269–6271.

421 (34) Gaigeot, M.-P.; Sprik, M. *J. Phys. Chem. B* **2004**, *108* (22), 7458–7467.

422 (35) Tang, E.; Di Tommaso, D.; de Leeuw, N. H. *J. Chem. Phys.* **2009**, *130* (23), 234502.

423 (36) Davey, R. J.; Dent, G.; Mughal, R. K.; Parveen, S. *Cryst. Growth Des.* **2006**, *6* (8), 1788–1796.

424 (37) Du, W.; Cruz-Cabeza, A. J.; Woutersen, S.; Davey, R. J.; Yin, Q. *Chem. Sci.* **2015**, *6* (6), 3515–3524.

425 (38) National Center for Biotechnology Information. PubChem Compound Database. 3-AMINOBENZOIC
426 ACID <https://pubchem.ncbi.nlm.nih.gov/compound/7419> (accessed Jan 2, 2018).

427 (39) Khamar, D.; Zeglinski, J.; Mealey, D.; Rasmussen, Å. C. *J. Am. Chem. Soc.* **2014**, *136* (33), 11664–11673.

428

429

430