

1 Article

2

The fracture of plasma-treated polyurethane surface 3 under fatigue loading

4 Ilya A. Morozov ^{1,2,*}, Alexander S. Mamaev ³, Mikhail V. Bannikov ¹, Anton Yu. Beliaev ¹ and Irina
5 V. Osorgina ²6 ¹ Institute of continuous media mechanics UB RAS, Academika Koroleva st. 1, 614013, Perm, Russia7 ² Perm State University, Bukireva st. 15, 614990, Perm, Russia8 ³ Institute of Electrophysics UB RAS, Amundsen st. 106, 620016, Ekaterinburg, Russia

9 * Correspondence: ilya.morozov@gmail.com; Tel.: +7-342-237-8315

10 **Abstract:** Plasma treatment of soft polymers is the promising technique to improve biomedical
11 properties. The response to the deformation of such materials is not yet clear. Soft elastic
12 polyurethane treated with plasma immersion ion implantation is subjected to fatigue uniaxial
13 loading (50000 cycles, frequency – 1 Hz, strain amplitude – 10, 20, 40%). The influence of the strain
14 amplitude and the plasma treatment regime on damage character is discussed. Surface defects are
15 studied in unloaded and stretched states of the material. As a result of fatigue loading, transverse
16 cracks (with closed overlapping edges as well as with open edges deeply propagating into the
17 polymer) and longitudinal folds which are break and bend inward, appear on the surface. Hard
18 edges of cracks cut the soft polymer which is squeezed from the bulk to the surface.19 **Keywords:** ion plasma treatment; fatigue loading; fracture; polyurethane; surface morphology
2021

1. Introduction

22 Surface modification by plasma methods improves various material properties: corrosion and
23 wear resistance [1], hardness, adhesion characteristics. Metals, ceramics and stiff polymers are
24 widely used materials in this area. Considerable applied studies are focused on the plasma
25 modification of products with complex three-dimensional shape [2] and/or small size. One of the
26 most promising areas of research is the effect of plasma treatment on the biomedical characteristics
27 of materials (antibacterial properties, thrombogenesis, biocompatibility, friction, drug transport) [3].28 Polyurethane is non-toxic polymer which is common in the design of biomedical products.
29 Depending on the composition and manufacture conditions, the mechanical properties of the
30 polyurethane are varied in a wide range: from soft elastomers to hard plastics. Polyurethanes are
31 suitable for the creating catheters, cardio- and breast-implants, interphalangeal endoprostheses, etc.
32 Plasma treatment of the polymers changes the relief, physico-chemical and mechanical properties of
33 the surface. In particular, surface energy, i.e. wettability, changes significantly, which affects the
34 interaction with biological objects [4]: an increase of surface energy decreases the number of platelets
35 adsorbed onto the surface [5, 6]. This is directly related to the adhesion of two blood proteins –
36 albumin, which prevents the adhesion of platelets to the surface and fibrinogen, which has an
37 opposite effect. Protein adsorption also depends on the texture of the relief – Alekhin et al. shown
38 that the distance between clusters of islet carbon coating (created by pulsed ion-plasma deposition)
39 stops adsorption of large fibrinogen molecules, but does not prevent albumin adsorption [7].40 As a result of ion-plasma implantation free radicals appear in the treated surface layer [8], some
41 authors suppose that these radicals make the surface more favorable for the protein adsorption,
42 which results in better biocompatibility with the living cells [9-11]. However, it is unclear: does the
43 radicals preserve on the surface or only in the inner surface layer. In the literature, there are a lot of
44 publications devoted to exploration of plasma-treated polymers: polyurethane coating of a hard
45 metal catheter [12], polyethylene, polystyrene, polymethylmethacrylate and other hard polymers for
46 medical use are considered [13]. The usage of silver [14] or copper [15] ions improves the

47 antimicrobial properties of the material. Treatment of soft polymer leads to the formation of a
48 pronounced wrinkled texture on the surface [16], which improves the antibacterial properties of the
49 coating [17, 18].

50 In all the known works devoted to plasma treatment of polymers, the materials are tested and
51 studied in a relatively immobile state, even in the case of implantation of samples into the body. The
52 real conditions for exploitation of elastomeric implants imply the presence of large cyclic
53 deformations. The stiffness of the plasma-modified layer is in many times greater than the elastic
54 modulus of the soft polymer "substrate" [19]. As a result, even simple uniaxial deformations lead to
55 fracture of modified surface [18] and could damage of implant and body tissues.

56 This work is devoted to the study of the effect of fatigue uniaxial deformation on the surface of
57 soft elastic polyurethane treated with plasma immersion ion implantation. The formation of cracks
58 (including bulging of the polymer), folds and the areas with an exfoliated surface layer are
59 investigated. The results depend both on the energy and fluence of treatment as well as the strain
60 amplitude.

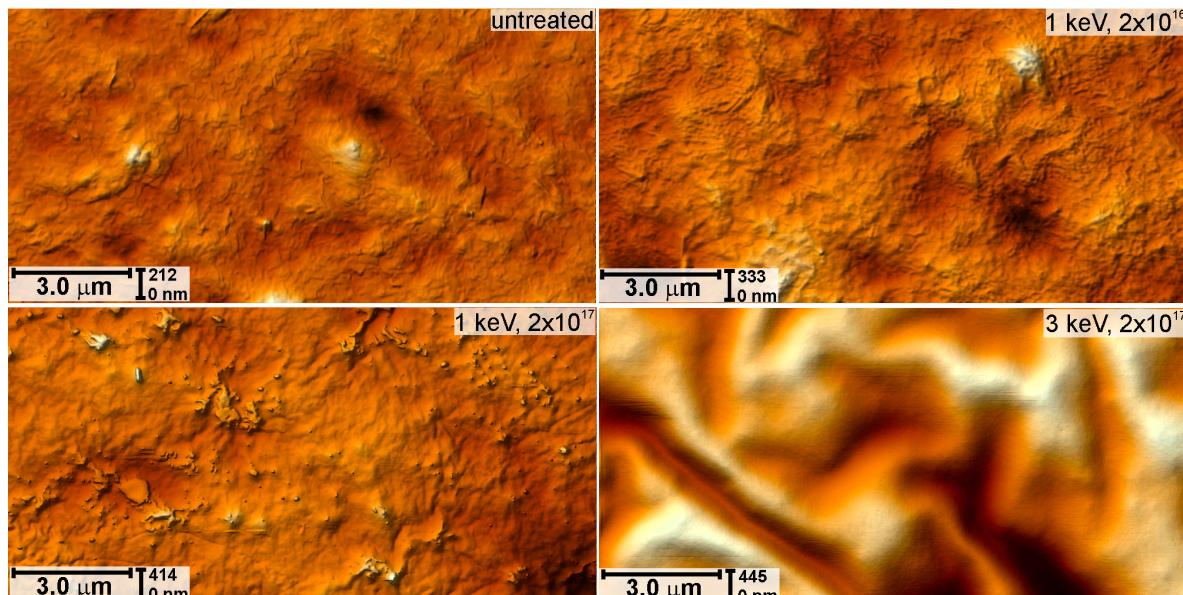
61 2. Materials and Methods

62 *Manufacturing of materials.* A polyurethane composition (PU) was investigated. Prepolymer was
63 urethane prepolymer based on a simple polyether and toluene diisocyanate. The prepolymer was
64 heated to 50 °C and vacuumed for 7 minutes. Then the remaining components (per 100 wt. parts of
65 prepolymer: 9.6 wt. parts of hardener (MOKA) and 34.2 wt. parts of plasticizer (polyfurite)) were
66 heated to 60 °C and added to the polymer. The mixture was stirred and again vacuumed at 50 °C for
67 5 minutes. The composition was press-molded and cured in the vacuum oven at 100 °C for 18 hours.
68 The thickness of the plates was 2 mm. Dogbone samples were cut from the plates (working
69 dimensions 25x4 mm) for the mechanical tests.

70 *Plasma treatment.* The samples were treated from both sides with plasma immersion
71 implantation of N_2^+ ions. A source of electrons with a plasma cathode based on a glowing discharge
72 was used to generate plasma in the vacuum chamber [20]. The chamber was filled with nitrogen at a
73 rate of 20 ml/min and the working gas pressure was 0.2 Pa. The electrons were accelerated up to the
74 energy of 10 - 20 eV in the region of the plasma cathode grid. An electrically isolated sample holder
75 cooling by running water to a temperature of 20 °C was located inside the vacuum chamber at a
76 distance of 150 mm from the grid of the electron source. The samples were placed inside the holder
77 and covered with a metal mesh with a mesh space of 10 mm. A constant negative bias voltage of 1 or
78 3 kV was applied to the holder. Plasma ions were generated by the electron beam and accelerated in
79 the layer of a space charge region created near the mesh. The treatment modes were determined
80 from the condition that the average intensity of the ion flow to the sample surface does not exceed 15
81 mW / cm². This allowed maintaining the sample at a temperature ≤ 80 °C. Three different treatment
82 modes were applied: energy 1 keV (fluence 2x10¹⁶ or 2x10¹⁷ ion/cm²) and energy 3 keV (fluence
83 2x10¹⁷ ion/cm²). These regimes will be shortly named as 1-16, 1-17 and 3-17 in further discussion.

84 *Mechanical fatigue tests* were carried out on the Bis 00-100 machine with a frequency of 1 Hz and
85 strain amplitude ϵ of 10, 20 or 40%. The frequency and strain were selected from considerations of
86 real exploitation conditions of the implants. The samples were remained preloaded to deformation
87 of 2, 5 or 10% respectively to prevent bending of the samples due to residual strain. The stiffness of
88 the samples was decreased and after ~50000 cycles (~14 hours of testing) approached the asymptote.
89 It was assumed that the sample reached steady working mode and could operate during a
90 considerable number of cycles in this load range. After that, the surface of the sample was examined
91 by optical and atomic force microscopy.

92 *Microscopy.* An optical 3D-microscope (Hirox KH-7700) was used to obtain information on the
93 microstructure of the surface at the scale of tens of microns. For detailed analysis of the relief an
94 atomic force microscope (Dimension Icon) was used in the semi-contact mode as well as in the
95 nanomechanical mapping regime (PeakForce Capture). In the latter mode, together with the relief
96 capturing, an indentation of the surface occurs. As a result, each point of the relief has its own

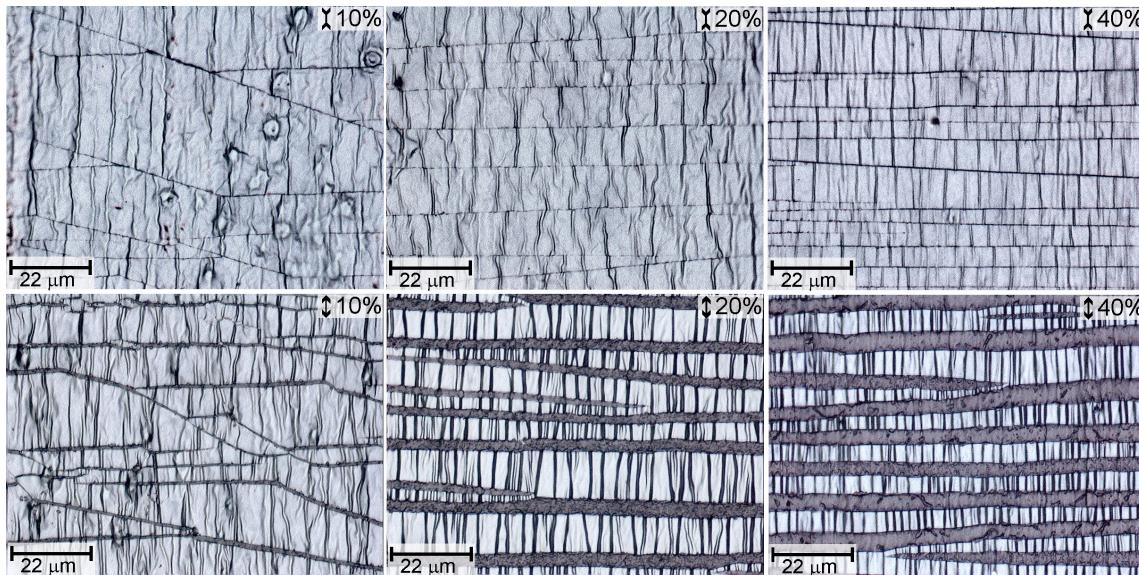

98 force-displacement curve $F(z)$, which is expressed as: $F(z) = kd$, where k and d are the stiffness and
 99 deflection of the AFM-cantilever. The obtained curves $F(z)$ were processed by the Maugis-Dugdale
 100 model [21]. Two types of probes were used: 1) $k \sim 3\ldots6$ N/m, radius R of the tip is ~ 10 nm; 2) $k = 0.5$
 101 N/m, $R \sim 4$ nm. The stiffness was calibrated by the method of free thermal oscillations (built in the
 102 microscope software). The geometry of the probe tip was estimated by the blind estimation method
 103 [22] using the calibration grating of porous aluminum (PA01, manufactured by MikroMash).

104 The surface structure of stretched materials is of particular interest. In this case, the samples that
 105 passed the fatigue tests were fixed in a miniature tensile device and stretched to the strain of
 106 previously applied fatigue load. After completion of the relaxation processes the surfaces were
 107 examined by optical and atomic force microscopy.

108 The cross-sections of the treated polyurethanes were studied to estimate the thickness of the
 109 hard modified layer. The PIII-treated surface was coated with the same polyurethane (~ 1 mm thick).
 110 Some portion of the material was then removed from the side surface of the sample by the
 111 cryo-ultramicrotome (Leica UC7) at -100 °C using a diamond knife. By this way, the surface
 112 containing the cross-section of modified layer in the middle was prepared and its thickness was
 113 measured by the AFM [19].

114 3. Results and discussion

115 Depending on the energy and fluence, the relief acquires a wrinkled structure and surface
 116 becomes harder. The AFM images of untreated and treated materials are shown in Figure 1. The
 117 surface roughness rises with increasing energy and fluence. After PIII 3-17 the entire surface is
 118 covered with wrinkles.



121 **Figure 1.** AFM images of untreated and treated surfaces.

122 Detailed analysis of structural-mechanical properties of the treated surfaces and the
 123 cross-sections of the modified layer are given in the work [19]. In particular, the elastic modulus of
 124 the surface, determined by the AFM nanoindentation, increases with the plasma energy and fluence
 125 and was 20 MPa for the untreated PU, 125 MPa (PIII 1-16), 254 MPa (1-17) and 1900 MPa (3-17). As a
 126 result of ion implantation, a hard layer is formed on the surface of the material. Its thickness was
 127 estimated on the basis of the experimental measurements: 25, 30 and 50 nm [19].

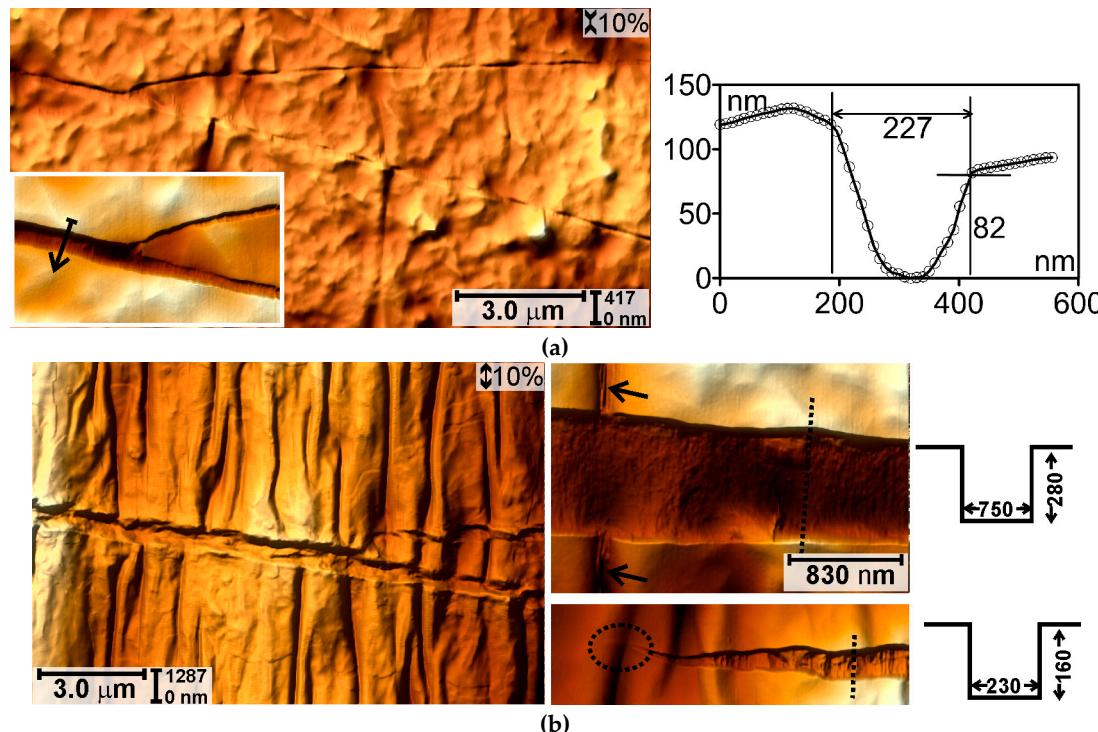
128 The treated surfaces after fatigue loading are covered by cracks orthogonal to the strain
 129 direction and by folds (parallel to the loading) – a result of material compression. In the material
 130 subjected to PIII 3-17 these cracks and folds are clearly visible in the optical microscope (Figure 2).
 131 Hereinafter (Figure 2) the direction of fatigue loading is vertical.

132

133

134
135

Figure 2. Optical images of PU after PIII 3-17 and fatigue loading ($\epsilon = 10, 20, 40\%$) in the unloaded and stretched states.


136

Non-orthogonal cracks (Figure 2) are visible after $\epsilon = 10\%$, this is due to bending/torsion of the samples caused by the residual deformation.

137

Let us investigate the damage of modified surface in greater detail. The surface after the 1-16 treatment and the fatigue loading 10%, in the unloaded state covered by straight open cracks (Figure 3a) with a depth of 10...100 nm and a width of 50...700 nm (the average values are given below in Table 1). Such a spread is related to an inhomogeneous deformation at small strain amplitude. The profile of such crack is shown in Figure 3a. The edges of the cracks are always located at different heights relative to each other. The depth of the crack is measured from the lowest one edge.

144

145

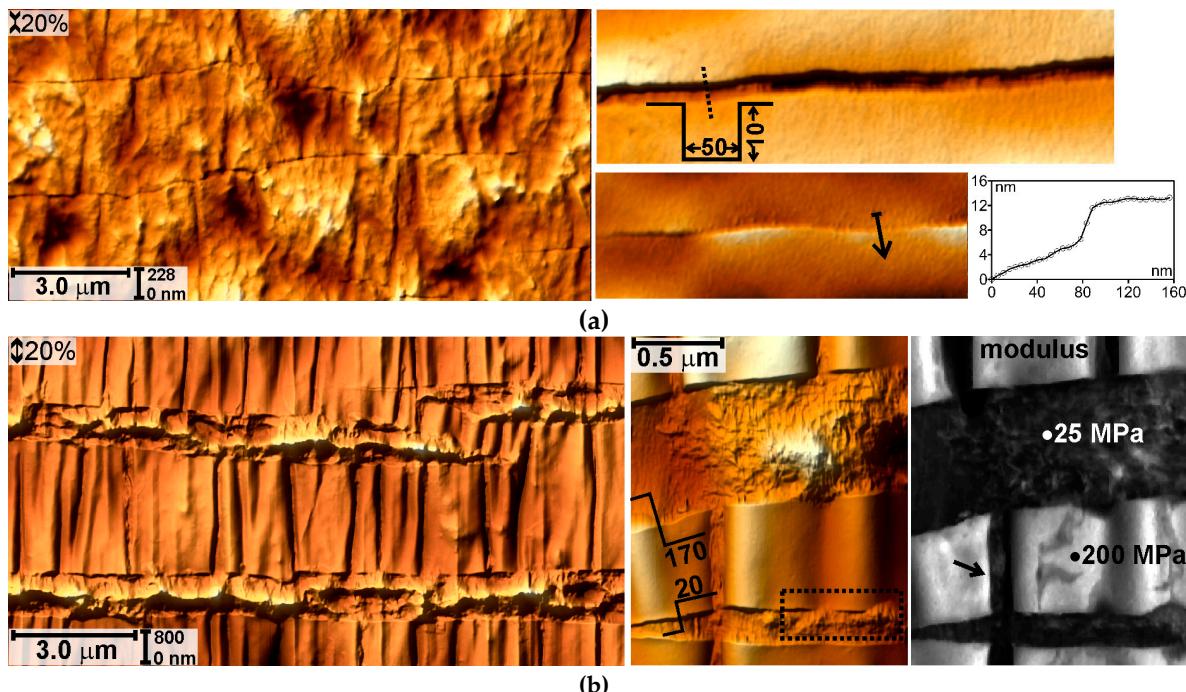
146

147

148

149
150
151

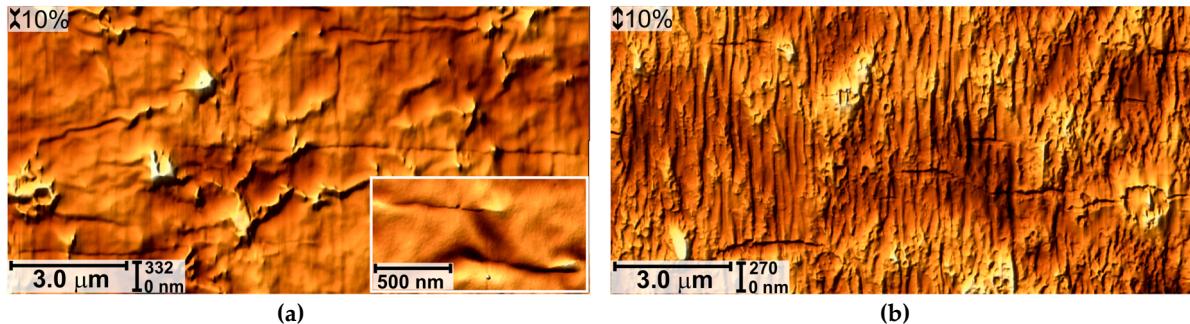
Figure 3. AFM images of PU after the PIII 1-16 and fatigue loading to 10% in the unloaded (a) and stretched (b) states; in (b) the width and depth of cracks in the marked places are indicated schematically.


152 Apart from the cracks, the longitudinal folds appear on the surface after loading, which are the
 153 result of compression of the material in the transverse direction. In some cases, such folds break
 154 (shown by the arrows in Figure 3b) and bend inward. Note, that the folds stop the propagation of
 155 transverse cracks (marked by the circle in Figure 3b).

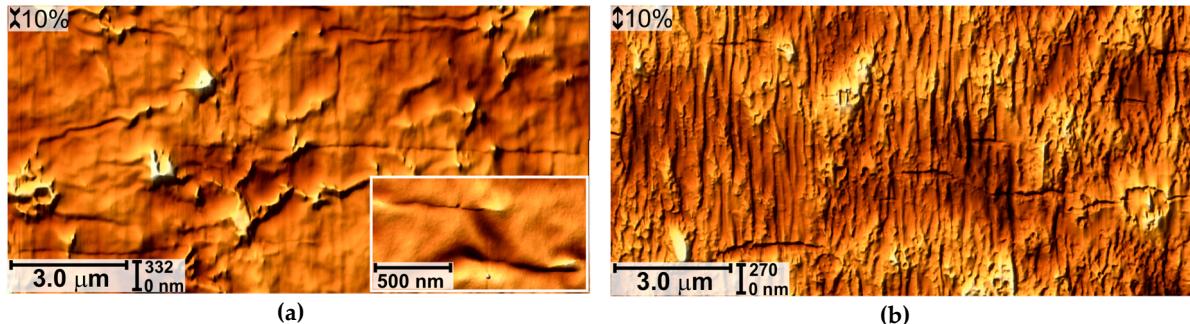
156 The depth of the cracks is more than order of magnitude greater the thickness of the modified
 157 surface layer. It means that cracks are generated on a hard surface and then propagate deep into the
 158 material.

159 With an increase of the fatigue deformation to 20% (Figure 4a), cracks with overlapping edges
 160 were observed on the 1-16 treated surface. In the stretched state some longitudinal folds break and
 161 bend inward. The map of the elastic modulus (Figure 4b) shows contrast between soft PU and hard
 162 coating. It is visible, that the hard edges of the bent folds destroy the polymer and squeeze it out to
 163 the surface (shown by the arrow in Figure 4b).

164 During the fatigue loading, the hard crack edges cut soft polymer in the crack zone, which
 165 causes its partial detachment from the rest of the matrix and squeezing out of the crack edges
 166 (denoted by a rectangular in Figure 4b).

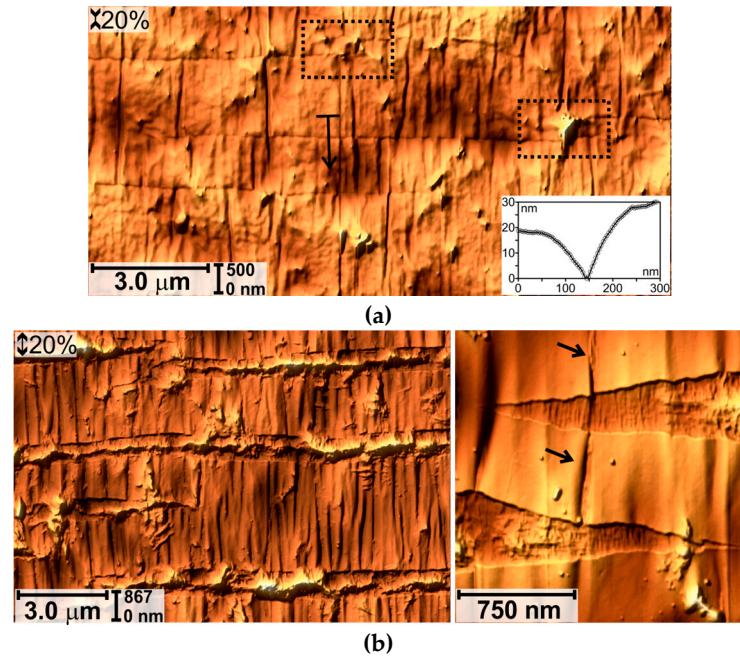

167

172 **Figure 4.** AFM images of PU after the PIII 1-16 and fatigue loading to 20% in the unloaded (a) and
 173 stretched (b) states. The height differences in the cracks are indicated; arrow and rectangle indicate
 174 polymer squeezed from the cracks.


175 After $\epsilon = 40\%$ irregular cracks occur on the surface of the 1-16-treated material (Figure 5a). The
 176 propagation of these cracks is hampered by the longitudinal folds and surface irregularities. The
 177 observation of such surface in the stretched state showed, that the outer hard part of the modified
 178 layer is partially destroyed; the damaged surface takes a step-like form (Figure 5b).

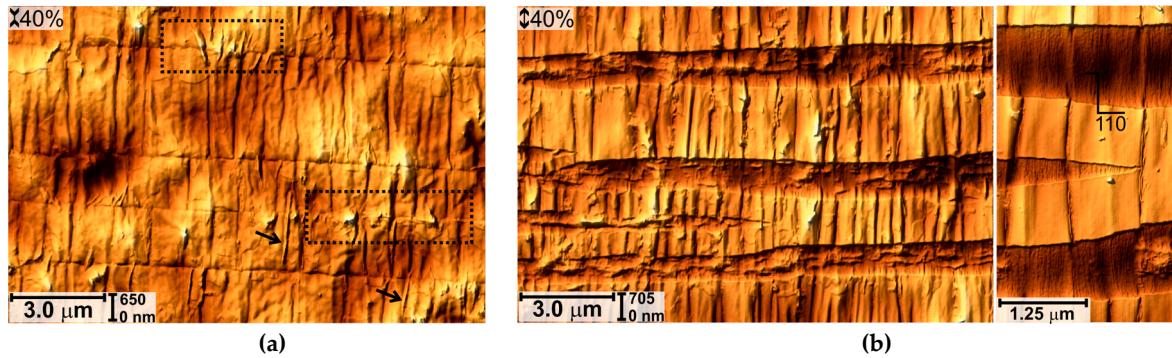
179

180 **Figure 5.** AFM images of PU after the PIII 1-16 and fatigue loading to 40% in the unloaded (a) and
 181 stretched (b) states.


182 The surface of the material treated with higher fluence (PIII 1-17) after the fatigue tests is more
 183 uniform. After loading up to 10 and 20% only straight closed cracks with the edges bent inward were
 184 observed on the surfaces (Figures 6a, 7a). The profile of one of these cracks is shown in the inset in
 185 Figure 7a. No open cracks were detected. After $\epsilon = 10\%$ there are predominantly separate, short
 186 cracks (see the inset in Figure 6a), which are opened in stretched state (Figure 6b).
 187

188 **Figure 6.** AFM images of PU after the PIII 1-17 and fatigue loading to 10% in the unloaded (a) and
 189 stretched (b) states.

190 Amplification of fatigue deformation to 20% increases the length of the cracks. The surface
 191 inhomogeneities inhibit the development of cracks (enclosed in frames in Figure 7a). In the stretched
 192 state, as in the previous case (see Figure 4b), the longitudinal folds break, and the dissected by the
 193 crack edges polymer rises on the surface in the middle of the cracks (see Figure 7b).
 194


195 A similar picture of the surface fracture is observed after $\epsilon = 40\%$ (Figure 8). Figure 8a shows the
 196 unloaded state: clots of the polymer squeezed from the cracks are marked by the frames and
 197 polymer squeezed out of the broken longitudinal folds is shown by the arrows. Note, that raw
 198 polymer in the open cracks in the stretched state (Figures 7b, 8b) has an oriented structure along the
 199 axis of deformation.

200
201202
203

204 **Figure 7.** AFM images of PU after the PIII 1-17 and fatigue loading to 20% in the unloaded (a) and
205 stretched (b) states.

206 Increase of treatment energy results in the even more fractured surface. Closed cracks with
207 overlapping edges, clots of polymer were observed after the PIII 3-17 and $\epsilon = 10\%$. In the stretched
208 state the width and depth of these cracks reach 1 μm and $\sim 350 \text{ nm}$ respectively. The surface of the
209 polymer in the open cracks is quite rough; this is the result of its damage during fatigue
210 deformation.

211

212
213

214 **Figure 8.** AFM images of PU after the PIII 1-17 and fatigue loading to 40% in the unloaded (a) and
215 stretched (b) state.

216 After $\epsilon = 40\%$ open cracks (200...500 nm wide, 120...600 nm deep) appear on the unloaded
217 material as well as longitudinal folds and fragments of the squeezed polymer (Figure 10a). The
218 width of cracks on the stretched material is $\sim 3.0 \mu\text{m}$ (Figure 9b). The surface is extremely
219 heterogeneous, fragments of polymer and hard layer are visible in the cracks. Small cracks of
Figure 9b).

220
221

The morphology of the surfaces after fatigue loading is summarized in Table 1.

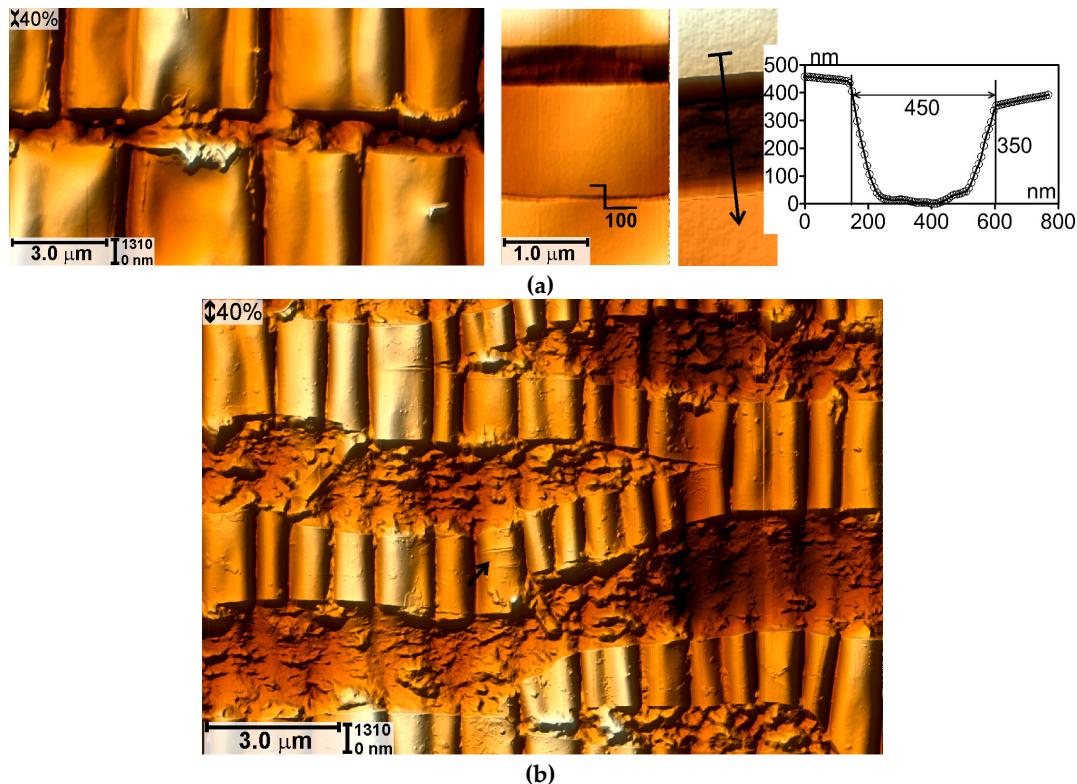


Figure 9. AFM images of PU after the PIII 3-17 and fatigue loading to 40% in the unloaded (a) and stretched (b) states.

Table 1. Surface morphology after the fatigue loading.

Treatment regime	1 keV			1 keV			3 keV		
	2x10 ¹⁶ ions/cm ²			2x10 ¹⁷ ions/cm ²			2x10 ¹⁷ ions/cm ²		
Fatigue strain, %	10	20	40	10	20	40	10	20	40
Open cracks	+	+	+	-	-	+	-	+	+
Closed cracks	-	+	+	+	+	+	+	+	+
Overlapping of crack edges	-	+	+	+	+	-	+	+	+
Clots of matrix	-	+	+	-	+	+	+	+	+
Fracture of folds	+	+	+	-	+	+	-	+	+
Fracture of the hard layer	-	-	+	-	-	-	-	-	-
Width of cracks, μm	0.67	0.96	1.61	0.42	0.75	1.2	0.9	2.9	4.5
Depth of cracks, μm	0.17	0.155	0.185	0.07	0.05	0.12	0.26	0.66	0.50

Regardless the loading and treatment regimes, the treated materials are damaged both on the surface layer and in the polymer. Judging by the width and depth of cracks, the most significant damage occurs in PUs treated with 1-16 and 3-17. Apparently, this is related with the peculiarities of the interphase between the stiff part of the modified layer and the bulk polymer. In the case of 1-16 treatment due to low energy and fluence, a hard layer with thickness of several nanometers is formed in the material without transition region of intermediate stiffness. In the case of highest treatment 3-17, hardening takes place almost to the entire depth of ion penetration in the material, so the transition zone is also weak. In treatment 1-17, ions can penetrate to the same depth as in the case 3-17; although a smaller fluence allows a smoother gradient from the bulk polymer to the treated surface.

The plasma treatment also affects the residual deformations of the polymer: only closed cracks were observed after the 1-17 treatment at $\epsilon \leq 20\%$. In other cases, both open and closed cracks were

242 detected. Moreover, the width of cracks in the stretched 1-17-treated PU was smaller in comparison
243 with other regimes.

244 4. Conclusions

245 The effect of fatigue loading on the surface of polyurethane treated with plasma immersion ion
246 implantation was investigated. It has been found that depending on the strain and treatment
247 parameters different types of damage occur on the surface of the materials after loading (see Table
248 1): open and closed cracks transverse to the strain axes, longitudinal folds that can break and bend
249 inward. The edges of the cracks cut the polymer during the deformation, which causes polymer
250 bugling and squeezing to the surface.

251 The lower is the amplitude of external deformations the less is the resulting damage. However,
252 even at small amplitude of 10% the depth of the cracks is an order of magnitude greater than the
253 thickness of the modified layer.

254 From the viewpoint of treatment the character of the damage is associated with the transition
255 region between the hard layer, which is formed near the surface, and the bulk polymer. Increase in
256 the ion energy and reduction of the fluence can facilitate the development of coatings with higher
257 deformation resistance.

258 The usage of these materials in the present state in deformable biomedical products can lead to
259 damage of the implant and eventually of body tissues.

260

261 **Acknowledgments:** The work is supported by Russian Science Foundation, Grant №17-79-20042.

262 **Author Contributions:** I.A. Morozov designed and performed AFM experiments and wrote the paper; A.S.
263 Mamaev designed and performed plasma treatment; M.V. Bannikov designed and performed fatigue tests;
264 A.Y. Beliaev analysed the data; I.V. Osorgina prepared the polymers.

265 **Conflicts of Interest:** The authors declare no conflict of interest.

266 References

267

- 268 1. Xi, Y.; Liu, D.; Han, D. Improvement of corrosion and wear resistances of AISI 420 martensitic stainless
269 steel using plasma nitriding at low temperature. *Surf. Coat. Tech* **2008**, *202*, 2577–2583,
270 10.1016/j.surfcoat.2007.09.036.
- 271 2. Jiang, L.; Tang, Z.; Clinton, R.M.; Breedveld, V.; Hess, D.W. Two-step process to create “roll-off”
272 superamphiphobic paper surfaces. *ACS Applied Materials & Interfaces* **2017**, *9*, 9195–9203,
273 10.1021/acsami.7b00829.
- 274 3. Cheruthazhekatt, S.; Černák, M.; Slavíček, P.; Havel, J. Gas plasmas and plasma modified materials in
275 medicine. *J. Appl. Biomed* **2010**, *8*, 55–66, 10.2478/v10136-009-0013-9.
- 276 4. Hauert, R.; Thorwarth, K.; Thorwarth, G. An overview on diamond-like carbon coatings in medical
277 applications. *Surf. Coat. Tech* **2013**, *233*, 119–130, 10.1016/j.surfcoat.2013.04.015.
- 278 5. Stüber, M.; Niederberger, L.; Danneil, F.; Leiste, H.; Ulrich, S.; Welle, A.; Marin, M.; Fischer, H. Surface
279 topography, surface energy and wettability of magnetron-sputtered amorphous carbon (a-C) films and
280 their relevance for platelet adhesion. *Adv. Eng. Mater* **2007**, *10*, 1114–1122, 10.1002/adem.200700224.
- 281 6. Wang, J.; Yang, P.; Sun, H.; Chen, J.Y.; Leng, Y.X.; Wan, G.J.; Huang, N. Surface modification of medical
282 polyurethane by acetylene plasma immersion ion implantation. *30th International Conference on Plasma
283 Science. Abstracts* **2003**, 282.
- 284 7. Alekhin, A.P.; Boleiko, G.M.; Gudkova, S.A.; Markeev, A.M.; Sigarev, A.A.; Toknova, V.F.; Kirilenko, A.G.;
285 Lapshin, R.V.; Kozlov, E.N.; Tetyukhin, D.V. Synthesis of biocompatible surfaces by nanotechnology
286 methods. *Nanotechnologies in Russia* **2010**, *5*, 696–708, 10.1134/S1995078010090144.
- 287 8. Kosobrodova, E.A.; Kondyurin, A.V.; Fisher, K.; Moeller, W.; McKenzie, D.R.; Bilek, M.M.M. Free radical
288 kinetics in a plasma immersion ion implanted polystyrene: theory and experiment. *Nucl. Instrum. Meth. B*
289 **2012**, *280*, 26–35, 10.1016/j.nimb.2012.02.028.
- 290 9. Kondyurin, A.; Bilek, M. Etching and structure changes in PMMA coating under argon plasma immersion
291 ion implantation. *Nucl. Instrum. Meth. B* **2011**, *269*, 1361–1369, 10.1016/j.nimb.2011.04.001.

292 10. Melnig, V.; Apetroaei, N.; Dumitrascu, N.; Suzuki, Y.; Tura, V. Improvement of polyurethane surface
293 biocompatibility by plasma and ion beam techniques. *J. Optoelectron. Adv. M* **2005**, *7*, 2521–2528.

294 11. Bax, D.V.; Kondyurin, A.; Waterhouse, A.; McKenzie, D.R.; Weiss, A.S.; Bilek, M.M.M. Surface plasma
295 modification and tropoelastin coating of a polyurethane co-polymer for enhanced cell attachment and
296 reduced trombogenicity. *Biomaterials* **2014**, *35*, 6795–6809, 10.1016/j.biomaterials.2014.04.082.

297 12. Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M. Urinary catheter with
298 polyurethane coating modified by ion implantation. *Nucl. Instrum. Meth. B* **2015**, *342*, 39–46,
299 10.1016/j.nimb.2014.09.011.

300 13. Kondyurin, A.; Bilek, M. Ion beam treatment of Polymers. Publisher: Elsevier, 2014, ISBN:
301 978-0-08-044692-9.

302 14. Cao, H.; Liu, X.; Meng, F.; Chu, P.K. Biological actions of silver nanoparticles embedded in titanium
303 controlled by micro-galvanic effects. *Biomaterials* **2011**, *32*, 693–705, 10.1016/j.biomaterials.2010.09.066.

304 15. Zhang, W.; Zhang, Y.; Ji, J.; Yan, Q.; Huang, A.; Chu, P.K. Antimicrobial polyethylene with controlled
305 copper release. *J. Biomed. Mater. Res. A* **2007**, *83A*, 838–844, 10.1002/jbm.a.31436.

306 16. Tsougeni, K.; Tserepi, A.; Boulousis, G.; Constantoudis, V.; Gogolides, E. Control of nanotexture and
307 wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma
308 processing. *Plasma Process. Polym.* **2007**, *4*, 398–405, 10.1002/ppap.200600185.

309 17. Perera-Costa, D.; Bruque, J.M.; González-Martín, M.L.; A. C. Gómez-García, A.C.; Vadillo-Rodríguez, V.
310 Studying the influence of surface topography on bacterial adhesion using spatially organized
311 microtopographic surface patterns. *Langmuir* **2014**, *30*, 4633–4641, 10.1021/la5001057.

312 18. Morozov, I.A.; Mamaev, A.S.; Osorgina, I.V.; Lemkina, L.M.; Korobov, V.P.; Belyaev, A.Yu.; Porozova,
313 S.E.; Sherban, M.G.. Structural-mechanical and antibacterial properties of a soft elastic polyurethane
314 surface after plasma immersion N₂⁺ implantation. *Mat. Sci. Eng. C* **2016**, *62*, 242–248,
315 0.1016/j.msec.2016.01.062.

316 19. Morozov, I.A.; Mamaev, A.S.; Osorgina, I.V.; Beliaev, A.Y.; Izumov, R.I.; Oschepkova, T.E. Soft
317 polyurethanes treated by plasma immersion ion implantation: structural-mechanical properties of surface
318 modified layer. *J. Appl. Polym. Sci* **2018**, *135*, 45983-11, 10.1002/app.45983.

319 20. Gavrilov, N.V.; Mamaev, A.S. Low-temperature nitriding of titanium in low-energy electron beam excited
320 plasma. *Tech. Phys Lett* **2009**, *35*, 713–716, 10.1134/S1063785009080082.

321 21. Piétrement, O.; Troyon, M. General equations describing elastic indentation depth and normal contact
322 stiffness versus load. *J. Colloid Interf. Sci* **2000**, *226*, 166–171, 10.1006/jcis.2000.6808.

323 22. Villarrubia, J.S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and
324 tip estimation. *J. Res. Natl. Inst. Stan* **1997**, *102*, 425–454, 10.6028/jres.102.030.