Supplementary Materials:

Predictor packing in developing unprecedented shaped colloidal particles

Mubarak Ali a'*, I -Nan Lin b and C. -J. Yeh c

^a Department of Physics, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan, * Email: mubarak74@mail.com

^b Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.). e-mail: <u>inanlin@mail.tku.edu.tw</u>

^c Department of Engineering and system Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (R.O.C.). e-mail: arayray220@gmail.com

Figure S1: Internal diameter and thickness of copper capillary just placed over the solution surface (~ 4 mm above) in glass beaker having inner diameter 10.5 cm

Figure S2: Signatures of nano shape energy, impinging electron streams and light glow including photons of varying wavelengths dealing monolayer assembly of gold atoms at solution surface

Figure S3: Approximate distribution of surface format axes with respect opposite poles along with zero-force axis where along the rear north and south poles low degree angles packing of triangular-shaped tiny particles take place resulting into develop their rod-/bar-shaped particles

Figure S4: Different geometric anisotropic shaped particles developed under predictor packing of triangular-shaped tiny particles having structure of smooth elements on modifying their one-dimensional arrays of atoms; (1) hexagonal-, (2) rhombus-, (3) bar-, (4) pentagonal-, (5) rod-shaped particles