Preparation, Characterization and Catalytic Activity of Nickel Molybdate NiMoO₄ Nanoparticles

Hicham Oudghiri-Hassani 1,2,*, and Fahd T. Al Wadaani 1

1Taibah University, College of Science, Chemistry Department, Almadinah 30002 Saudia Arabia
2Cégep de Drummondville, Département Sciences de la nature, 960 rue Saint-Georges, Drummondville, Québec, Canada J2C 6A2
*Corresponding Author: Tel. +966543549454; E-mail address: oudghiri_hassani_hicham@yahoo.com

Abstract: Nickel molybdate, NiMoO₄, nanoparticles were synthesized via calcination of an oxalate complex in static air at 500 °C. The oxalate complex was analyzed by thermal gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The as-synthesized nickel molybdate was characterized by Brunauer–Emmett–Teller technique (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and its catalytic efficiency was tested in the reduction reaction of the three-nitrophenol isomers. The nickel molybdate displays a very high activity in the catalytic reduction of the nitro functional group to an amino. The reduction progress was controlled using UV-Vis absorption.

Keywords: nickel molybdate; nanoparticles; catalysis; reduction of nitrophenol

1. Introduction

The increasing industrial activity produces effluents containing large amounts of organic pollutants such as paranitrophenol, which was classified as priority pollutant [1]. Its reduction will decrease its toxicity. Moreover, the reduction of the paranitrophenol to paraaminophenol is an important step in the industrial production of pharmaceutical analgesics such as paracetamol or acetaminophen (Figure 1) [2].

Figure 1. Schematic synthesis of the paracetamol from paranitrophenol.

The first step did not occur spontaneously, it requires the use of a catalyst. It becomes then useful and of interest to find a good and low cost catalyst that can be used in this reduction reaction. Recently, Nickel molybdate (NiMoO₄) was intensively pursued because of its many applications. This promising compound was used as a catalyst for hydrodesulfurization and hydrodenitrogenation reactions [3, 4], oxidative dehydrogenation of light alkanes [5-9], partial oxidation of hydrocarbons [10], and microwave applications [11]. It was also used as a humidity...
sensor [12], supercapacitor [13, 14], optical fibers, and military devices [15]. Nickel molybdate has attractive structures, electrochemical and magnetic properties [16, 17], and can be found in two crystalline forms, $\alpha$-NiMoO$_4$ and $\beta$-NiMoO$_4$. Several methods were reported in literature to synthesize the nickel molybdate such as sonochemical [18, 19], hydrothermal [15, 20-21], precipitation [22, 23], sol–gel [22], mechanochemical synthesis [24], and solid state at high temperature [25, 26]. Different shapes were reported going from nanospherical, nanorods to nanosheets [15, 21, 26, 27]. However, all of the previously reported methods required a strict reaction conditions, and high temperature or high pressure.

In this study, the nickel molybdate nanoparticles were synthesized using a new method and tested in the reduction of the three nitrophenol isomers (paranitrophenol 4-NP, metanitrophenol 3-NP and orthonitrophenol 2-NP). The results of the catalytic reaction tests are presented.

2. Experimental

2.1. Catalyst preparation

The nickel molybdate nanocatalyst was synthesized in two steps. First, a well-ground mixture of nickel nitrate Ni(NO$_3$)$_2$·6H$_2$O, ammonium molybdate (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O, and oxalic acid H$_2$C$_2$O$_4$·2H$_2$O in the molar ratio 1/0.143/10 [28] was used to obtain an oxalate precursor after heating at 160 °C. In fact, the oxalic acid was used in excess in order to reduce molybdenum and nitrate anions and to form a coordination complex of molybdenum and nickel. The appearance of light green color for the nickel molybdenum complex, and the production of the NO$_2$ gas (orange/brownish color) after heating at 160 C are results of the reduction reactions of molybdenum VI and the nitrate anion NO$_3$– respectively. The last step was the thermal decomposition of the obtained nickel molybdenum complex for two hours under static air at 500 °C in a tubular furnace open both sides to obtain the nickel molybdate [29, 30].

2.2. Characterization

The precursor synthesized was analyzed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) using a SDT Q 600 instrument, and by FTIR using a Shimadzu 8400S apparatus at the frequency range of 400-4000 cm$^{-1}$ using the sample that was prepared as KBr pellet. On other hand, X-ray diffractometer 6000, equipped with $\lambda$ Cu-K$_\alpha$ = 1.5406 Å with a Ni filter was used to identify the crystallized particles of the prepared nanocatalyst in the range of 10°–80° in 2$\theta$. The Scherrer equation $D_{\text{Scherrer}} = 0.9 \lambda / (B \cos \theta)$, was used to calculate the presumed spherical particle size, where $\theta$ is the Bragg angle, $B$ is the full width at half maximum (FWHM) expressed in radians, and $\lambda$ is the Cu-Ka wavelength. A Micromeritics ASAP 2020 surface area and porosity analyzer was used to measure the adsorption-desorption isotherms, and calculate the particle size with the following equation: $D_{\text{BET}} = 6000/dS$ where S is the specific surface area, and $d$ is the density. A JEM – 1400 electron microscope was used to reach the shape and size of the particles, while the Varian Cary 100 spectrometer was used to measure the evolution of the solution concentration during the reduction reaction of the three-nitrophenol isomers.

2.3. Test of nitrophenol isomers reduction.

The reduction reaction of the three-nitrophenol isomers (4-NP, 3-NP, and 2-NP) was used to test the catalytic performance of nickel molybdate. In a typical test, 40 ml of the nitrophenol isomer aqueous solution 10$^{-2}$ M was poured into, 40 ml of sodium tetrahydroborate NaBH$_4$ aqueous solution 2x10$^{-2}$ M under continuous stirring at room temperature. A dark yellow color appears due to the formation of the nitrophenolate ion, and an absorption peak appears located at 401 nm, 393 nm, and 415 nm for 4-NP, 3-NP, and 2-NP respectively. The nickel molybdate nanocatalyst (0.1 g) was then added to the aqueous solution under stirring. The disappearance of the yellow color of the solution under the effect of the catalyst was followed by a UV-Vis spectrophotometer.
3. Results and discussion

3.1. Characterizations of the complex

The FTIR spectroscopy was used to identify the functional groups present in the complex synthesized by the solid-state reaction of the nickel nitrate, the ammonium molybdate and the oxalic acid, well ground mixture heated at 160 °C. In fact, the IR spectrum given in Figure 2 shows the presence of several wide bands. The deconvolution of these bands reveals bands at 1738 cm\(^{-1}\) and 1678 cm\(^{-1}\), which can be assigned to the C=O vibration of the oxalate group [31]. This attribution is in accordance with the existence of the C-O stretch [31] located at 1400 cm\(^{-1}\). While, both bands situated at 1361 and 1316 cm\(^{-1}\) can be assigned to \(\nu(C-O)\) and \(\delta(OCO)\) respectively [32]. At high frequencies the FTIR spectrum shows a band at 3398 cm\(^{-1}\) that corresponds to O-H bridging group between two metal ions [33], and two other bands at 3005 cm\(^{-1}\), and 3195 cm\(^{-1}\), which can be assigned to the stretching vibration of NH\(^{+}\) ion [34]. However, the bands located at 1240 cm\(^{-1}\) and 1384 cm\(^{-1}\) can be assigned to \(\delta(NH^+)\) [34], while that situated at 1638 cm\(^{-1}\) was attributed to \(\delta(H_2O)\) [35]. In the other hand, the spectrum shows also, the Mo=O stretch [31] via the presence of the bands at 924 cm\(^{-1}\) and 962 cm\(^{-1}\). These results confirm the existence of the functional groups of oxalate, hydroxyl (-OH), water, oxo (Mo=O), and NH\(^{+}\) ion in the synthesized complex.

![Figure 2. Fourier transform infrared spectrum of the synthesized complex.](image)

The thermogravimetric analysis was used in static air on the obtained complex, and recorded (Figure 3). The recorded curve can be divided in four parts. In the first part, a 4.5% weight loss was observed until 150 °C, which can be due to water molecules existing in the complex, confirmed by infrared spectroscopy studies reported above. In the second and third parts, a strongly and rapid exothermic loss occurs between 150 and 350 °C corresponding to the decomposition of the complex. In the fourth and last part, the curve shows a small and final loss between 350 and 450 °C. A similar loss in the same range that was also obtained in the previous study of bismuth oxalate complex can be attributed to OH group [33]. By compiling the results obtained by FTIR, TGA and the possible oxidation degree of nickel and molybdenum, we can suggest that the formula of the oxalate complex is (NH\(_3\))NiMoO(C\(_2\)O\(_4\))\(_2\)(OH).H\(_2\)O. The total weight loss observed is 47% in comparison with the
theoretical value of 45.3% for the suggested formula. The temperature of 500 °C was chosen to obtain the nickel molybdate by the calcination of the complex in static air.

![Graph showing thermal gravimetric and thermal differential curves](image)

Fig. 3. Thermal gravimetric and thermal differential curves of the synthesized complex.

3.2. Nickel molybdate characterization

3.2.1 X-ray diffraction

The powder obtained after the calcination of the complex at 500 °C was analyzed by the XRD technique and the recorded pattern is presented in Figure 4. The XRD pattern is indexed in accordance with JCPDS file # 31-0902, which corresponds to the monoclinic phase α-NiMoO₄ that crystallizes in the space group C2/m (12) with the parameters a= 9.592 Å, b=8.755 Å, and c= 7.655 Å and β = 114.24°.

The two peaks located at 2θ =14.8° (110) and 2θ= 33.16° (310) were chosen to calculate the crystallites size Dₓₓ, which was found to be of 18 and 25 nm respectively.
3.2.2 Specific surface area determination

The specific surface area of the nickel molybdate NiMoO$_4$ synthetized by this simple method was estimated by the Brunauer–Emmett–Teller technique (BET). It was found to be of $S_{BET} = 29.86$ m$^2$/g. Knowing the value of the nickel molybdate density, $d = 3.3723$ g/cm$^3$, the particle size $D_{BET}$ was calculated to be approximately 60 nm.

3.2.3 Transmission electron microscopy

The micrograph of the nickel molybdate prepared is shown in Figure 45. The particles are spherical and of 10 to 20 nm in size. However agglomerates of these nanoparticles of about 100 nm are formed.

![X-ray diffraction pattern of the synthesized nickel molybdate.](image-url)
3.3. Reduction test of nitrophenol isomers

The reduction reaction of three nitrophenol isomers with NaBH₄ was investigated to test the catalytic efficiency of the successfully synthesized nickel molybdate (Figure 6 (a, b, and c)). Once the NaBH₄ was added, the nitrophenol isomers were converted to the NP ion nitrophenolate isomers (Figure 7). Before the addition of the as prepared catalyst, the dark yellow color of the solution stays unchanged during a period of 24 hours. However, after the addition of the nanocatalyst, the solution becomes uncolored in few minutes for all of the three-nitrophenol isomers. The higher peaks of absorption located at 401 nm, 393 nm, and 415 nm disappear in favor to new peaks situated at 317 nm, 328 nm, and 347 nm for the 4-NP, 3-NP and 2-NP, respectively. In fact, 8 min, 3 min, and 8 min were the necessary time to achieve the reaction with the appearance of the corresponding aminophenol isomers at room temperature. This result demonstrates the high catalytic efficiency of the synthesized nickel molybdate in the reduction of the nitrophenol isomers compared to previous research works found in the literature as presented in Table 1.
Table 1. A comparison of Reaction time for the reduction of 2-NP 3-NP and 4-Np by NiMoO₄ with other nanocatalysts reported in the literature.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Type</th>
<th>Concentration of NP (mol/L)</th>
<th>Reaction time (min)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiMoO₄</td>
<td>Nanoparticles</td>
<td>5 x 10⁻³</td>
<td>8 for 4NP</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 for 3NP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 for 2NP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 for 4NP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 for 3NP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 for 2NP</td>
<td></td>
</tr>
<tr>
<td>CuFe₂O₄</td>
<td>Nanoparticles</td>
<td>3.6 x 10⁻²</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>NiFe₂O₄</td>
<td>Nanoparticles</td>
<td>3.6 x 10⁻²</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>CuO/γAl₂O₃</td>
<td>Nanocomposites</td>
<td>2.9 x 10⁻⁵</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>Ni/C black</td>
<td>Nanocomposites</td>
<td>5.0 x 10⁻⁴</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 6. UV-visible spectra of the reduction reaction solution of (a) 4-nitrophenol, (b) 3-nitrophenol, and (c) 2-nitrophenol in the presence of NaBH₄ using nickel molybdate.
Fig. 7. UV–vis spectra of: (a) 4-nitrophenol, (b) 3-nitrophenol, and (c) 2-nitrophenol (NP) isomers before and after adding NaBH₄.

A mechanism for this reduction reaction can be supposed as follows. The nickel molybdate nanoparticles (NiMoNPs) dissociated the BH₄⁻ to form NiMoNPs-H and NiMoNPs-BH₃⁻ as reactive intermediates (Eq. (1)) [39]. Afterward, these intermediates reduce the nitrophenol isomers by (Eqs. (2) and (3)). Six electrons are involved in the formation of the aminophenol isomers (APi) from the corresponding nitrophenol (NPi).

2 NiMoNPs + BH₄⁻ \rightarrow NiMoNPs-H + NiMoNPs-BH₃⁻ (1)

6 NiMoNPs-H + NPi \rightarrow APi + 6 NiMoNPs + 6 H⁺ (2)

6 NiMoNPs-BH₃⁻ + NPi \rightarrow APi + 6 NiMoNPs + 6 BH₃ (3)
4. Conclusion

The nickel molybdate, α-NiMoO$_4$, was satisfyingly prepared as nanoparticles using a new and simple method. The high efficiency of the as-prepared nanocatalyst was confirmed in the reduction of the 4-NP, 3-NP, and 2-NP nitrophenol isomers. The studied nickel molybdate can be presented as a potential catalyst candidate for the reduction of the nitro functional group to an amino group.

References


