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Abstract: Especially for drought periods, the higher the accuracy of reservoir inflow forecasting, the 9 
more reliable the water supply from a dam. The article focuses on probabilistic forecasting of 10 
seasonal inflow to reservoirs and determines estimates from the probabilistic seasonal inflow 11 
according to drought forecast results. The probabilistic seasonal inflow was forecasted by a copula-12 
based Bayesian network employing a Gaussian copula function. Drought forecasting was 13 
performed by calculation of the standardized streamflow index value. The calendar year is divided 14 
into four seasons; the total inflow volume of water to a reservoir for a season is referred to as the 15 
seasonal inflow. Seasonal inflow forecasting curves conforming to drought stages produce estimates 16 
of probabilistic seasonal inflow according to the drought forecast results. The forecasted estimates 17 
of seasonal inflow were calculated by using the inflow records of Soyanggang and Andong dams in 18 
the Republic of Korea. Under the threshold probability of drought occurrence ranging from 50 to 55 19 
%, the forecasted seasonal inflows reasonably matched critical drought records. Combining the 20 
drought forecasting with the seasonal inflow forecasting may produce reasonable estimates of 21 
drought inflow from the probabilistic forecasting of seasonal inflow to a reservoir. 22 

Keywords: drought; copula; Bayesian network; inflow; reservoir 23 
 24 

1. Introduction 25 

The higher the accuracy of reservoir inflow forecasting, the more reliable the water supply from 26 
a dam, especially for drought periods. Ensemble streamflow prediction (ESP) has been a method to 27 
forecast streamflow [1-6]. ESP is a typical method of probabilistic forecasting which combines a river 28 
basin's initial conditions and past weather conditions, which can reappear in the future, to forecast 29 
basin runoff. The forecast results of ESP, however, are greatly influenced by the accuracy of the 30 
watershed runoff model as well as the method used to assign weights to the flow scenarios [7]. ESP 31 
also assumes that the rainfall scenarios which occurred in the past will also occur in the future. 32 
Because of this assumption, ESP can have limitations in properly forecasting severe droughts that 33 
have not occurred in the past if the results are not adequately analyzed or combined with other 34 
techniques. 35 

Bayesian networks are a probabilistic forecasting method for forecasting future streamflow. 36 
Recently in the field of hydrology, research is actively being performed on using Bayesian networks 37 
for inflow forecasting and drought forecasting. Madadgar and Moradkhani [8] used a copula-based 38 
Bayesian network to forecast flows and droughts in the Gunnison River in the United Sates and the 39 
flow forecast results were compared with flow forecast results that used the ESP technique. 40 
Madadgar and Moradkhani [8] divided the calendar year into four seasons and forecast the flow for 41 
a season based on the flow of the previous season. The flow forecast results that used a copula-based 42 
Bayesian network showed a tendency to forecast an increase in the streamflow of a season if the 43 
previous season's streamflow increased. However, the streamflow forecast results, which used the 44 
ESP technique, showed no tendency with regards to the flow status of the previous season. In 45 
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Madadgar and Moradkhani's [9] later research, they used a copula-based Bayesian network to 46 
forecast droughts in the Gunnison River Basin temporally and spatially. Kim et al. [10] developed 47 
BAYES-ESP which applies Bayesian theory to the ESP technique to forecast the monthly inflow of 48 
multipurpose dams in the Republic of Korea. The monthly inflow forecast results for the Chungju 49 
Dam using BAYES-ESP were better than the ESP forecast results that had been too small compared 50 
to observed values, but the predicted inflow was far larger than the observed inflow in the period of 51 
severe drought in 2015 and the error was very large. Shin et al. [11] used a Bayesian network to 52 
perform meteorological drought forecasts and evaluate the accuracy of drought forecasts based on 53 
the Republic of Korea’s weather observatories. Shin et al. [11] concluded that drought forecasts that 54 
use Bayesian networks can be extended for use for not only meteorological droughts but also 55 
hydrological droughts. 56 

The goal of this study is to forecast the probabilistic seasonal inflows of dams while taking 57 
drought forecast results into account so that dams can reliably provide water. The probabilistic 58 
seasonal inflows are forecast results using a copula-based Bayesian network. The drought forecasts 59 
for considering future droughts are performed by calculating the drought index. Probabilistic 60 
seasonal inflow forecasting combining the drought forecast results has the advantage of being able 61 
to forecast reservoir inflow while taking into account the droughts that could occur in the future. 62 

2. Status of the dams for the research 63 

To perform probabilistic forecasting of seasonal inflow and evaluate the results, we must have 64 
data that has been recorded over a long period of time. The Korean dams that are suitable for 65 
performing our research are the Soyanggang Dam and the Andong Dam, which are relatively 66 
important among all the multipurpose dams in the Republic of Korea and have long periods of 67 
recordkeeping. The two dams are located on the Han River basin and the Nakdong River basin, 68 
respectively (Figure 1). Data on the Soyanggang Dam's inflow has been provided since January 1974, 69 
and data on the Andong Dam's inflow has been provided since January 1977. The basin area of the 70 
Soyanggang Dam is 2,703 km2. The Soyanggang Dam's total storage volume is 2.90 billion m3, making 71 
it the largest multipurpose dam in the Han River basin. The Soyanggang Dam's yearly average inflow 72 
is 1.75 billion m3, and it provides 1.213 billion m3 of water for use every year. The Andong Dam is 73 
located on the Nakdong River, and its basin area is 1,584 km2. The Andong Dam's total storage 74 
volume is 1.24 billion m3 and it is the largest multipurpose dam in the Nakdong River basin. The 75 
Andong Dam's yearly average inflow is 0.940 billion m3 and it provides 0.926 billion m3 of water for 76 
use every year. 77 
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 78 

Figure 1. Locations of the Soyanggang Dam and Andong Dam. 79 

 80 
The Andong Dam's inflow data were collected from January 1977 to December 2016 and the 81 

Soyanggang Dam's inflow data were collected from January 1974 to December 2016. To forecast 82 
seasonal inflow, the calendar year was divided into four seasons: spring is from April to June; 83 
summer is from July to September; fall is from October to December; winter is from January to March. 84 
Total inflow volume of water to a reservoir for a season is referred to as the seasonal inflow. Fig. 2 85 
shows the Soyanggang Dam and Andong Dam's seasonal inflow time series. The Soyanggang Dam's 86 
average summer inflow is 1.439 billion m3. The year in which the summer inflow was the smallest 87 
was 2014. At that time, the summer inflow was 0.513 billion m3, which is around 35 % of the average 88 
inflow. Also, in 2015 the Soyanggang Dam's summer inflow was 0.578 billion m3, which is 40 % of 89 
the average inflow. The Andong Dam's average summer inflow is 607 million m3. In 2015 when the 90 
Andong Dam's summer inflow was the smallest, it was 98 million m3, which is 16 % of the average 91 
inflow. Unlike the Soyanggang Dam, the Andong Dam's 2013 summer inflow was smaller than in 92 
2014. The 2013 summer inflow was 243 million m3, which is 40 % of the average inflow. As can be 93 
realized from the two dam's inflow states, the drought that occurred in the Republic of Korea from 94 
2013 to 2015 was fairly severe. We used the seasonal inflow data from the first year of observation to 95 
2010 to train the copula-based Bayesian network model. The seasonal inflow data from 2011 and 2016 96 
were used to verify the forecast results from the trained copula-based Bayesian network module. 97 
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(a)

 
(b)

Figure 2. Seasonal inflow of dams. (a) Soyanggang Dam; (b) Andong Dam. 98 

3 Methodology 99 

3.1 Procedures of seasonal inflow forecasting 100 

The following shows the overall procedures used to forecast a seasonal inflow to a reservoir 101 
combining the copula-based Bayesian network method with drought forecasting: 1) a preparation for 102 
a current seasonal inflow and its standardized streamflow index (SSI): 2) drought forecasting using 103 
the SSI from a Bayesian network (BN): 3) taking a seasonal inflow forecasting curve developed from 104 
a BN conforming to the forecasted drought stage: and 4) deciding a forecasted seasonal inflow on the 105 
selected seasonal inflow forecasting curve. The following sections describe the details of the above 106 
procedures. 107 

3.2 Copula-based Bayesian network 108 

Bayesian networks are probabilistic models that describe the conditional dependencies of a set 109 
of random variables via directed acyclic graphs (DAG). A DAG represents the sequence of events in 110 
a direct ordering with no direct circuits. The random variables (x) that evolve over time (e.g., 111 
streamflow or drought states) can be shown in a DAG and their probabilistic queries can be 112 
represented within a Bayesian network. The joint probability density function of the set of random 113 
variables in vector x , ⋯ ,  forming a Bayesian network can be written as the product of 114 
individual density functions conditional on their parent variables [8,12]. If the dependency ordering 115 
of random variables exactly follows the temporal sequence and the parent variables of  is the set 116 
of all prior variables , ⋯ , , the joint probability density function of the x can be written 117 
as Equation (1). 118 ( ) = ,⋯ , = ,⋯ ,∀ ∈  (1)

where Π	is the product operator, 	  represents the random variable at time , and  is the length 119 
of the time period over which the random variables evolve. That is the chain rule in the probability 120 
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theory, and the conditional probabilities from Equation (1) can be shown simply by introducing 121 
copulas as in Equation (2) [8]. 122 

 123 

, ⋯ , = ( ,⋯ , )∏ ( )( ,⋯ , )∏ ( ) (2)

where  is the copula density function,  means ( ), and (⋅) is the density function of a 124 
marginal distribution. A detailed description of copula-based Bayesian network is found in 125 
Madadgar and Moradkhani [8]. 126 

In this study, Equation (3) was used to calculate the conditional probability of two successive 127 
seasons’ inflows. 128 = ( , ) ( ) ( )( ) = ( , ) ( ) (3)

here,  is the seasonal inflow to be forecast, and  is the previous season's inflow. In the 129 
hydrological field, the Archimedean and elliptical families have been the main copula families. 130 
Madadgar and Moradkhani [8] showed that the Gaussian copula is the most suitable for forecasting 131 
the flow of the Gunnison river in the United States. Also, Yoo et al. [13] used a copula function on 132 
Korean weather observatories and performed bivariate frequency analysis for droughts. They 133 
presented results showing that the Gaussian copula was the most suitable for the data from 32 out of 134 
the 57 target weather observatories. In this study, we selected the Gaussian copula as the copula 135 
function to calculate Equation (3). The Gaussian copula is in the elliptical family, and it is easy to 136 
calculate compared to other copula functions. This is because the parameters do not need to be 137 
estimated and it can be calculated using only the correlation coefficient between two variables. The 138 
Gaussian copula equation is as follows [14]: 139 ( , ,⋯ , ; ) = 1| | exp −12 ( − )  (4)

here, = ( , ,⋯ , )  and = Φ ( ) . The Φ ( )  is the inverse function of the 140 
cumulative normal distribution function, and  is the correlation coefficient matrix made from ρ, the 141 
correlation coefficient between two variables. 142 

In this study, we used the probability distribution of the next season's inflow calculated via 143 
Equation (3) from the previous season's inflow to make inflow forecasts. Figure 3 shows the 144 
probability distribution of the Andong Dam's summer inflow when the spring flow is 100 million m3, 145 
calculated using Equation (3). According to the probability distribution, when the spring inflow is 146 
100 million m3, the summer inflow with the greatest probability density function value is around 480 147 
million m3. The next-season inflow with the greatest probability density function value is used as the 148 
inflow forecast value when a drought is not forecast in an inflow prediction that incorporates drought 149 
forecasting, which will be discussed later. 150 
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 151 

Figure 3. Probability density function of summer inflow conditioned on a spring inflow of 100 million 152 
m3. 153 

3.3 Drought Forecasting Using Drought Index 154 

Determining the forecast inflow to be the inflow that has the largest probability density function 155 
value (as in Figure 3) has the limitation of not taking the probability of a drought into account. 156 
Because of this, in this study we also performed a drought forecast to create an inflow forecast that 157 
has a focus on droughts. The drought forecast is performed using the standardized streamflow index 158 
(SSI), which is one of the drought indexes. The SSI is similar in concept to the standardized 159 
precipitation index developed by Mckee et al. [15], but it is a drought index that is derived from 160 
calculating the lack of streamflow rather than the lack of precipitation. Table 1 shows the categories 161 
of drought stages using SSI [16]. A negative SSI is categorized as a drought and a larger negative 162 
value means a more severe drought. 163 

Table 1. Classification of drought severity by the range of SSI. 164 

SSI range Drought category 
2.00 ≤ Z Extreme wet 

1.50 ≤ Z < 2.00 Very wet 
1.00 ≤ Z < 1.50 Moderately wet 
0.00 ≤ Z < 1.00 Near normal 
-1.00 ≤ Z < 0.00 Mild drought (D1) 
-1.50 ≤ Z < -1.00 Moderate drought (D2) 
-2.00 ≤ Z < -1.50 Sever drought (D3) 

Z < -2.00 Extreme drought (D4) 
 165 

To calculate the SSI for each season, we must first determine the probability distribution of the 166 
seasonal inflow. A set of distributions is tested to find the best one fitted to the seasonal inflow. The 167 
following five distributions are considered in this study: lognormal, gamma, Gumbel, Weibull, and 168 
Gaussian distributions. The method of maximum likelihood estimation (MLE) is used to estimate the 169 
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parameters of each distribution. To find the best distribution fitted to the seasonal inflow, the 170 
Kolmogorov-Smirnov (K-S) test [17] is applied. K-S test returns the  value.  is the maximum 171 
value among the differences between the theoretical cumulative probability distributions derived 172 
from estimated parameters and the probability distributions derived from observed data. The value 173 
of  is limited by the number of data values and the significance level of α . A probability 174 
distribution in which  is calculated to be beyond these values is considered to be inappropriate 175 
for the data. In this study, we compared the  of several probability distributions and chose the 176 
probability distributions with the smallest calculated  as the seasonal inflow probability 177 
distribution. If an optimal probability distribution is determined for each seasonal inflow, calculating 178 
the cumulative probability for a certain inflow becomes possible, and this can be used to calculate the 179 
SSI. In this study, we used the method proposed by Abromowitz and Stegun [18] to calculate the SSI, 180 
which uses cumulative probability, the equation for which is as follows. 181 

= 1( ) , 0.0 < ( ) ≤ 0.5 (5)

 182 

= 11 − ( ) , 0.5 < ( ) ≤ 1.0 (6)

 183 = − − + +1 + + + , 0.0 < ( ) ≤ 0.5 (7)

 184 = + − + +1 + + + , 0.5 < ( ) ≤ 1.0 (8)

here, ( ) is the cumulative probability calculated from the probability distribution function;  is 185 
2.515517;  is 0.802853;  is 0.010328;  is 1.432788;  is 0.189267;  is 0.001308. 186 

If the seasonal SSI is calculated through the process above, Equation (3) is used to calculate the 187 
probability distribution of the next season's SSI from the previous season's SSI. The non-exceedance 188 
probability of the next-season SSI probability distribution in which the SSI is less than or equal to 189 
zero is the probability that a drought will occur in the next season. Figure 4 shows the probability 190 
distribution of the Andong Dam's summer SSI when the spring SSI is -1. Here, the area of the shaded 191 
part is the probability that the SSI is less than zero in summer. Drought forecasting is performed by 192 
comparing the probability that the SSI is less than zero and the threshold probability of drought 193 
occurrence. If the probability of a drought occurring next season exceeds the threshold probability of 194 
drought occurrence, then a drought is predicted for the next season, otherwise a drought is not 195 
predicted. 196 
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 197 

Figure 4. Probability density function of summer SSI conditioned on a spring SSI of -1. 198 

3.4 Inflow Forecasting Combined with Drought Forecasting 199 

If we want to forecast the inflow using the drought forecast results, we must estimate the inflow, 200 
which represents each drought stage. To do this we estimated the seasonal inflow forecasting curves 201 
conforming to drought stages. The seasonal inflow forecasting curves conforming to drought stages 202 
are estimated through the following method: 203 
(1) Use the probability distribution of the next season inflow (like that in Figure 5) to calculate the 204 
cumulative probability that corresponds to a specific inflow of the next season. 205 
(2) Use the cumulative probability to calculate the SSI. 206 
(3) When the calculated SSI is the same as the lower bound value of each drought stage, set the 207 
corresponding inflow as the inflow that represents that drought stage. (For D4, the inflow where the 208 
SSI is -2.5) 209 
(4) Repeat steps (1) to (3) for all seasons and inflows. 210 

If seasonal inflow forecasting curves conforming to drought stages are made, we must determine 211 
which curve will be selected to forecast the inflow when a drought has been forecast. If a dam is being 212 
operated, especially for the purpose of municipal and irrigation water supplies, a drought over two 213 
successive seasons could be fatal. Furthermore, continuous droughts in spring and summer can be 214 
very fatal due to the climate characteristics of Korea where rain is concentrated in the summer season. 215 
In this study, if a drought occurred in the previous season and a drought is forecast for the following 216 
season, the following season's forecast inflow is determined through the inflow forecasting curve of 217 
the drought stage that is raised one stage above the drought stage of the previous season. On the 218 
other hand, if a drought is not forecast, the inflow with the largest probability density function value 219 
is used as the following season's inflow forecast value, as explained in Section 3.1. 220 
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 221 

Figure 5. Example of estimating representive inflows corresponding to lower bounds of SSI ranges of 222 
drought stages.  223 

4. Research Results 224 

4.1 Seasonal Inflow Forecasting Curves Conforming to Drought Stages 225 

To create a copula-based Bayesian network, we must first determine the best distribution of the 226 
seasonal inflow. Figure 6 and Figure 7 show histograms and five kinds of probability distribution 227 
curves calculated from the parameters estimated by the MLE from the seasonal inflow data for the 228 
Soyanggang Dam and the Andong Dam, respectively. Table 2 shows the results of the K-S test with 229 
a significance level α set at 0.05. In Table 2, the values shown in bold are the smallest values of  230 
that do not exceed the threshold values and lognormal distribution is found to be the best fit to the 231 
seasonal inflow volumes except summer inflow volumes of Andong Dam. 232 

Next, Table 3 shows the results of calculating the correlation coefficient of the inflows between 233 
the two successive seasons, which is a variable used in the Gaussian copula function. Looking at 234 
Table 3, the correlation coefficients of the inflows between two successive seasons at the Soyanggang 235 
Dam are not large with the exception of winter and spring. The small correlation coefficient between 236 
spring and summer inflows means that the linear dependence between spring and summer inflows 237 
is weak. On the other hand, in the case of the Andong Dam, the inflow correlation coefficients 238 
between winter and spring and between spring and summer were found to be larger than those from 239 
other seasons. These results mean that there is strong linear dependence between the inflows in 240 
spring and summer and the inflows in the previous seasons. 241 
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(a) 

 
(b) 

(c) (d) 

Figure 6. Histogram against the five distributions of the Soyanggang Dam seasonal inflow volumes 242 
during the training period of 1974-2010. (a) Spring; (b) Summer; (c) Fall; (d) Winter. 243 

  244 
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(a) 

 
(b) 

(c) (d)

Figure 7. Histogram against the five distributions of the Andong Dam seasonal inflow volumes 245 
during the training period of 1977-2010. (a) Spring; (b) Summer; (c) Fall; (d) Winter. 246 

  247 
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Table 2. The  value of the K-S test. 248 

Dam Distribution 
Season Threshold

value Spring Summer Fall Winter 

Soyanggang 

Lognormal 0.0636 0.0898 0.1242 0.0724 

0.219 
Gamma 0.0898 0.1110 0.1583 0.1062 
Gumbel 0.2029 0.1534 0.2334 0.2189 
Weibull 0.1127 0.1261 0.1601 0.1169 

Gaussian 0.1570 0.1438 0.2082 0.1691 

Andong 

Lognormal 0.1001 0.1057 0.0813 0.0915 

0.232 
Gamma 0.1123 0.0771 0.1072 0.1267 
Gumbel 0.1930 0.1288 0.2396 0.2457 
Weibull 0.1038 0.0736 0.1380 0.1394 

Gaussian 0.1205 0.0932 0.1713 0.1871 
 249 

Table 3. The correlation coefficient of each season’s inflow to that of prior season. 250 

Dam 
Spring - 
Summer 

Summer - 
Fall

Fall -  
Winter

Winter - 
Spring 

Soyanggang 0.0543 -0.1770 0.0739 0.4781 

Andong 0.4828 0.1281 0.1831 0.3767 
 251 

The previously determined probability distribution of seasonal inflow and the Gaussian copula 252 
function were used to create the two dams' copula-based Bayesian networks. Figure 8 and Figure 9 253 
show the seasonal inflow forecasting curves conforming to drought stages that were determined 254 
using the networks. In the figures, the horizontal axis denotes the previous season's inflow and the 255 
vertical axis denotes the next season's inflow. The black circles in the image show the observed 256 
seasonal inflows from 2011 to 2016. In Figure 8(a) the spring inflow forecasting curve conforming to 257 
drought stages shows a trend due to the effect of the correlation coefficient of inflow between winter 258 
and spring. On the other hand, there are few such trends for other seasons. Looking at the 259 
Soyanggang Dam's summer inflow forecasting curve conforming to drought stages, there are two 260 
observed inflows that are much less than the other observed inflows. The two values, which represent 261 
the observed inflows in summer 2014 and 2015 when a severe droughts occurred at the Soyanggang 262 
Dam, are located close to the curve that corresponds to drought stage D3. If a drought had occurred 263 
in the spring of 2014 and 2015 and a drought was forecast for summer, it would have been possible 264 
to forecast the inflows corresponding to these two observed values. 265 

At the Andong Dam, the correlation coefficients of inflows for winter-spring and spring-summer 266 
were relatively large. As a result, the slopes of the Andong Dam's spring inflow forecasting curves 267 
and summer inflow forecasting curves conforming to drought stages were larger than the slopes of 268 
the other two seasons' curves. At the Andong Dam as well, there are two observed inflows located in 269 
the vicinity of D2 and D3 curves on the summer inflow forecast curves. These points are the observed 270 
summer inflows for 2013 and 2015. As for the inflows corresponding to these two points, if droughts 271 
had occurred in the spring of 2013 and 2015 and droughts had been forecast for the summers, they 272 
could have been adequately forecast. 273 
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 8. Seasonal inflow forecasting curves conforming to drought stages for Soyanggang Dam. (a) 274 
Spring; (b) Summer; (c) Fall; (d) Winter. 275 

  276 
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(a) 

 
(b) 

 
(c) 

 
(d)

Figure 9. Seasonal inflow forecasting curves conforming to drought stages for Andong Dam. (a) 277 
Spring; (b) Summer; (c) Fall; (d) Winter. 278 

4.2 Seasonal Drought Forecast Results 279 

Figure 10 shows the results of calculating the seasonal SSI of the two dams to forecast the two 280 
dams' seasonal droughts. The black colored portions in Figure 10 are the areas where the SSI is below 281 
zero, which can be distinguished as droughts. Looking at the two dams' seasonal SSI, it can certainly 282 
be recognized that severe and moderate droughts occurred from 2013 to 2015. 283 

First, we evaluated the drought forecasting accuracy during the training period of the Bayesian 284 
network. The results showed that at the Soyanggang Dam, drought forecasting based on the previous 285 
period had a 75 % probability of success, and at the Andong Dam, drought forecasting based on the 286 
previous period had a 65 % probability of success, meaning the probability of drought forecasting 287 
success at both dams was high.  288 

Figure 11 shows the results of calculating the probability of a drought occurring at the two dams 289 
by season from 2011 to 2016. There was an over 50 % probability of a drought occurring at the 290 
Soyanggang Dam in the summer of 2014 and the summer of 2015, when extreme droughts with SSI 291 
below -2 occurred. These results mean that drought forecasts were reliable for the two seasons if the 292 
threshold probability of drought occurrence was set at 50 %. However, at the Andong dam, in the 293 
summer of 2015 when an extreme drought occurred, the probability of a drought occurring was fairly 294 
high, but in the summer of 2013 when a moderate drought with an SSI of -1.2 occurred, the probability 295 
of a drought occurring was calculated to be below 50 %. It is believed that these results occurred due 296 
to the large correlation coefficient between spring and summer inflows. Specifically, the 2013 spring 297 
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inflow at the Andong Dam was greater than the average spring inflow. Because of this, the summer 298 
inflow, which has a large correlation coefficient with the spring inflow, was predicted to also be large, 299 
so the probability of a drought occurring in the summer of 2013 was calculated to be very low. Unlike 300 
2013, the probability of a drought occurring in the summer of 2014 was calculated to be high because 301 
the spring inflow was small. This means that the drought forecasting method has limitations in 302 
forecasting moderate droughts that randomly occur without relation to the prior season's inflow at 303 
dams with a large correlation coefficient for the inflows of successive seasons. On the other hand, it 304 
was successful at adequately forecasting extreme droughts that occur after some continued droughts. 305 

 
(a)

 
(b)

Figure 10. Seasonal SSI. (a) Soyanggang Dam; (b) Andong Dam. 306 

  307 
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(a)

 
(b)

Figure 11. The results of seasonal drought forecast. (a) Soyanggang Dam; (b) Andong Dam. 308 

4.3. Seasonal Inflow Forecast Results 309 

The results of seasonal inflow forecasting without or with drought forecasting under a threshold 310 
probability of drought occurrence of 50 % are shown in Figure 12 and Tables 4 and 5. In the results 311 
without drought forecasting, there was a failure to forecast the inflow for the summer seasons when 312 
both dams experienced drought. The results of forecasting inflow at the Soyanggang Dam with the 313 
threshold probability of drought occurrence set at 50 % had inflow forecast absolute errors of 14.2 % 314 
and 18.6 % for the summers of 2014 and 2015, respectively, during which extreme drought occurred. 315 
Those results reasonably match the extreme drought records. The reason for this is that D3 droughts 316 
occurred in the spring of both years, so summer droughts were predicted and a D4 inflow forecasting 317 
curve was used. In the results of Andong Dam inflow forecasting combined with drought forecasting 318 
at a threshold probability of drought occurrence of 50 %, the inflow forecast for summer 2015, which 319 
had an extreme drought, was 32.1 %, which reasonably matches the extreme drought record. 320 
However, the inflow forecast for summer 2013, which had a moderate drought, failed due to the 321 
limitations of drought forecasting previously mentioned. Also, it showed a tendency to forecast little 322 
inflows for most seasons. We believe that it showed this tendency because the threshold probability 323 
of drought was set at 50 % and the correlation coefficient between spring and summer inflows were 324 
high. At the Andong Dam, the correlation coefficient between spring and summer inflows was high 325 
so the summer forecast inflow changed linearly according to the spring inflow. This characteristic 326 
had an effect on the correlation coefficient of the SSI as well, and even though the spring inflow 327 
corresponded to a very weak drought stage, the probability of a drought occurrence in summer 328 
increased. That is, in the case of the Andong Dam, setting the threshold probability of drought at 50 329 
% means that frequent drought forecasts can occur. In actuality, during the 40 years for which 330 
Andong Dam inflow data exists, there have been 67 seasons where the actual drought index was 331 
below zero out of a total of 160 seasons. On the other hand, when the threshold probability of drought 332 
was set at 50 %, the number of times a drought was forecast for all seasons was 82, which is 15 more 333 
than the actual number of times droughts occurred. 334 
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Figure 13 shows the results when the threshold probability of drought occurrence for the 335 
Andong Dam is increased to 55 % to improve on this trend and the inflow is forecast. Looking at 336 
Figure 13, this improved the tendency to forecast small inflow during many seasons including the 337 
summer of 2012. Also, the absolute error of the inflow forecast for the summer of 2015, when an 338 
extreme drought occurred, was further improved to 9.4 %. 339 

 
(a)

 
(b)

Figure 12. The results of seasonal inflow forecasting without or with drought forecast under the 340 
threshold probability of drought occurrence to 50 %. (a) Soyanggang Dam; (b) Andong Dam. 341 

 342 

Figure 13. The results of seasonal inflow forecasting without or with drought forecast under the 343 
threshold probability of drought occurrence ranging 50 to 55 % for Andong Dam. 344 

  345 
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Table 4. Seasonal inflow forecasting errors for Soyanggang Dam. 346 

Cases 
Absolute error 

for summer 
2014 (%) 

Absolute error 
for summer 

2015 (%) 

Range of 
absolute error 

for summer (%) 

Range of 
absolute error 
for all seasons 

(%) 
BN forecast 

without drought 
forecast 

103.6 93.3 4.1 ~ 103.6 3.2 ~ 103.6 

BN forecast with 
drought forecast 
by 50 % criteria 

14.2 18.6 4.1 ~ 48.0 3.2 ~ 100.1 

 347 

Table 5. Seasonal inflow forecasting errors for Andong Dam. 348 

Cases 
Absolute error 

for summer 
2013 (%) 

Absolute error 
for summer 

2015 (%) 

Range of 
absolute error 

for summer (%) 

Range of 
absolute error 
for all seasons 

(%) 
BN forecast 

without drought 
forecast 

169.7 355.6 2.2 ~ 355.6  1.2 ~ 355.6 

BN forecast with 
drought forecast 
by 50 % criteria 

169.7 32.1 32.1 ~ 169.7 1.2 ~ 169.7 

BN forecast with 
drought forecast 
by 50 % criteria 

169.7 9.4 9.4 ~ 169.7 1.2 ~ 169.7 

 349 

5. Conclusion 350 

In this study, we used a copula-based Bayesian network combined with drought forecasting to 351 
forecast the seasonal inflows of multipurpose dams. The study's target dams were the Soyanggang 352 
Dam and the Andong Dam and 2011 to 2016 seasonal inflow data was used to evaluate the accuracy 353 
of the forecast results. The calendar year was divided into four seasons: spring is from April to June; 354 
summer is from July to September; fall is from October to December; winter is from January to March. 355 
From the results of determining the probability distribution of seasonal inflow, lognormal 356 
distribution was found to be the best fit to the seasonal inflow volumes except summer inflow 357 
volumes of the Andong Dam. At the Soyanggang Dam, the correlation coefficient of inflows between 358 
two successive seasons was very small with the exception of winter and spring. In the case of the 359 
Andong Dam, the correlation coefficients of inflows for winter-spring and spring-summer were large, 360 
but the correlation coefficients of inflows for the other two seasons were calculated to be small. We 361 
used the copula-based Bayesian network to determine the seasonal inflow forecasting curves 362 
conforming to drought stages, and then we used the standardized streamflow index (SSI) to forecast 363 
seasonal droughts. In the drought forecasts, we calculated the probability distribution of the SSI for 364 
a season based on the previous season's SSI, found the non-exceedance probability of the drought 365 
index being less than or equal to zero, and compared it to the threshold probability of drought 366 
occurrence.  367 
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We drew the following conclusions from the study results. The results of seasonal inflow 368 
forecasting by a Bayesian network without drought forecasting are very unsuitable as future inflow 369 
data for operating a dam. If drought forecasting is not used, then the inflow of the next season is 370 
simply the value with the largest probability density function out of the next-season probability 371 
inflows that are based on the previous season. Because of this characteristic, the inflow forecast results 372 
were very poor when droughts occurred at the two dams. 373 

When drought forecasting is used, there is a need to vary the threshold probability of drought 374 
occurrence according to the hydrologic characteristics of the dam. We believe that the reason the 375 
proper threshold probability of drought occurrence is different for each dam is that the correlation 376 
coefficients of inflows between successive seasons are different for the two dams. According to the 377 
results of this study, the threshold probability of drought occurrence must be slightly larger than 50 378 
% for dams with a large correlation coefficient of inflows between successive seasons, and the 379 
threshold probability of drought occurrence does not need to be made large for dams with a small 380 
correlation coefficient of inflows between successive seasons. 381 

Under the above limitations, reasonable estimates of drought inflow to a reservoir may be 382 
forecast by combining the drought forecasting with the probabilistic forecasting of seasonal inflow 383 
using a copula-based Bayesian network. 384 

In the future, one can apply the techniques used in this study to various other dams, which might 385 
screen proper threshold probabilities of drought occurrence according to the dams' hydrological 386 
characteristics. We can also consider methods for finding a threshold probability of drought 387 
occurrence that minimizes the absolute error using an optimization technique. Finally, if weather 388 
forecasts are reliable, they can be used in drought forecasting. 389 
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