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Abstract: Single valued neutrosophic set has king power to express uncertainty characterized by 12 
indeterminacy, inconsistency and incompleteness. Most of the existing single valued neutrosophic 13 
cross entropy bears an asymmetrical behavior and produce an undefined phenomenon in some 14 
situations. In order to deal with these disadvantages, we propose a new cross entropy measure 15 
under single valued neutrosophic set (SVNS) environment namely SN- cross entropy and prove its 16 
basic properties. Also we define weighted SN-cross entropy measure and investigate its basic 17 
properties. We develop a new multi attribute group decision making (MAGDM) strategy for 18 
ranking of the alternatives based on the proposed weighted SN-cross entropy measure between 19 
each alternative and the ideal alternative. Finally, a numerical example of MAGDM problem of 20 
investment potential is solved to show the validity and efficiency of proposed decision making 21 
strategy. We also present comparative anslysis of the obtained result with the results obtained form 22 
the existing solution strategies in the solution. 23 

Keywords: neutrosophic set; single valued neutrosophic set; SN-cross entropy function; multi-24 
attribute group decision making 25 
 26 

1. Introduction 27 

To tackle uncertainty and modeling real and scientific problems, Zadeh [1] first introduced the fuzzy 28 
set by definig membership function in 1965. Bellman and Zadeh [2] contributed an imporatnt 29 
research on fuzzy decision making using max and min operators. Atanassov [3] established 30 
intuitionistic fuzzy set (IFS) in 1986 by adding non-membership function as an indepent component 31 
to the fuzzy set. Theoretical and practical applications of IFSs in  multi-criteria decision making 32 
(MCDM) have been reported in the literature [4-12]. Zadeh [13] introduced entropy measure in fuzzy 33 
environment. Burillo and Bustince [14] proposed distance measure between IFSs and offered an 34 
axiomatic definition of entropy measure. In IFS environment, Szmidt and Kacprzyk [15] proposed a 35 
new entropy measure based on geometric interpretation of IFS. Wei et al. [16] developed an entropy 36 
measure for interval-valued intuitionistic fuzzy set (IVIFS)and presented applications in pattern 37 
recognition and MCDM. Li [17] presented a new MADM strategy combining entropy and TOPSIS in 38 
IVIFS environment. Shang and Jiang [18] introduced the cross entropy in fuzzy environment. Vlachos 39 
and Sergiadis [19] presented intuitionistic fuzzy cross entropy by extending fuzzy cross entropy [18]. 40 
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Ye [20] defined a new cross entropy in in IVIFS environment and presented an optimal decision-41 
making strategy. Xia and Xu [21] put forward new entropy and cross entropy and employed them 42 
for multi- attribute criteria group decision making (MAGDM) strategy in IFS environment. Tong and 43 
Yu [22] defined cross entropy in IVIFs environment and applied it to MADM problems. 44 
 The study of uncertainty entered into a new direction after the publication of neutrosophic set (NS) 45 
[23] and single valued neutrosophic set (SVNS) [24].  SVNS draws more appeal to the rersearchers 46 
for its applicability in decision making [25-54], conflict resolution [55], educational problems [56, 57], 47 
image processing [58-60], cluster analysis [61, 62], social problems [63, 64], etc. The research on SVNS 48 
gets momentum after the inception of the international journal “Neutrosophic Sets and Systems”. 49 
Combining with neutrosophic set, a number of hybrid sets such as neutrosophic soft set [65-70], 50 
neutrosophic complex set [71], interval complex  neutrosophic set [72], rough neutrosophic set [73-51 
80], neutrosophic soft expert set [81, 82], rough neutrosophic bipolar set [83], rough neutrosophic tri 52 
complex set [84], neutrosophic rough hyper complex set [85], are reported in the literature. Wang et 53 
al. [86] defined interval neutrosophic set (INS). Majumdar and Samanta [87] defined an entropy 54 
measure and presented an MCDM strategy under SVNS environment. Ye [88] defined cross entropy 55 
for SVNS by extending the intuitionistic fuzzy cross entropy [7] and proposed MCDM strategy under 56 
SVNS environment.  Sahin [89] proposed two cross entropy measures for INSs and proposed 57 
MCGDM strategy. Tian et al. [90] proposed a cross entropy for INSs and developed a MCDM strategy 58 
based on the cross entropy and TOPSIS. Ye [91] defined cross entropy measures for SVNSs and INSs 59 
to overcome the drawback of the existing cross entropy measures.  Due to little research of cross 60 
entropy measures, we define a new cross entropy measure in SVNSs environment based on the 61 
distance function of two points and prove its basic properties. Also, we define single valued weighted 62 
cross entropy measure and investigate its properties. Getting motivation from the work of Ye [91] for 63 
MCDM, We propose a novel MAGDM strategy using the proposed weighted cross entropy.  64 
The remaining of the paper is presented as follows: 65 
 Section 2 describes some concepts of SVNSs. In Section 3 we propose a new cross entropy measure 66 
between two SVNSs and investigate its properties. 67 
 In section 4, we develop a novel MAGDM strategy based on the proposed SN-cross entropy with 68 
SVNS information. In Section 5 we present comparative study and discussion. In section 6 an 69 
illustrative example is solved to demonstrate the applicability and efficiency of the developed 70 
MAGDM strategy under SVNS environment. Section 7 offers conclusions and perspectives of future 71 
work. 72 

2. Preliminaries 73 

This section presents a short list of mostly known definitions pertaining to this paper.  74 

Definition 1. [23] NS  75 

Let U be a space of points (objects) with a generic element in U denoted by u, i.e. uU. A 76 
neutrosophic set A in U is characterized by truth-membership function )u(TA , indeterminacy- 77 
membership function )u(IA and falsity-membership function )u(FA , where )u(TA , )u(IA , )u(FA are 78 
the functions from U to  ]0, 1  [  i.e. )u(TA , )u(IA , )u(FA :U  ]0, 1  [ . NS  can be expressed 79 
as A = {<u; ( )u(TA , )u(IA , )u(FA )>:  uU}. Since )u(TA , )u(IA , )u(FA are the subsets of  ]  0, 1  [ 80 
, there the sum  ( )u(TA + )u(IA + )u(FA ) lies between  0 and 3  . 81 
Example 1. Suppose that U = { ...,u,u,u 321 } be the universal set. Let 

1R be any neutrosophic set in U. 82 
Then 1R expressed as 

1R = {< 1u ; (0.6, 0.3, 0.4)>: 1u U}. 83 

Definition 2. [24] SVNS  84 

Assume that U be a space of points (objects) with generic elements u  U. A SVNS H in U is 85 
characterized by a truth-membership function TH(u), an indeterminacy-membership function IH(u), 86 
and a falsity-membership function FH(u), where TH(u), IH(u), FH(u) ∈ [0, 1] for each point u in U. 87 
Therefore, a SVNS A can be expressed as H = {u, (TH (u), I H (u), FH (u)) |  u∈ U}, whereas, the sum 88 
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of TH(u), IH(u) and FH(u) satisfy the condition  0 ≤ TH(u) + IH(u) + FH(u) ≤ 3 and H(u) = < (TH (u), I H 89 
(u), FH (u)> call a single valued neutrosophic number (SVNN). 90 
Example 1. 91 
A SVNS H in U can be expressed as:   H = {u, (0.7, 0.3, 0.5) | u∈ U} and SVNN presented H = < 0.7, 92 
0.3, 0.5>. 93 

Definition 3. [24] Inclusion of SVNSs 94 

The inclusion of any two SVNS sets H1 and H2 in U is denoted by H1 ⊆ H2 and defined as follows: 95 
H1 ⊆ H2, iff )u()u(,)u()u(,)u()u( FFIITT 2H1H2H1H2H1H  for all u ∈ U. 96 
Example 2.  97 
Let  H1 and H2 be any two SVNNs in U presented as follows: H1 = < (.7, .3, .5)> and H 2 = < (.8, .2, .4)> 98 
for all u ∈ U. Using the property of inclusion of two SVNNs, we conclude that H1 ⊆ H2.  99 

Definition 4. [24] Equality of two SVNSs  100 

The equality of any two SVNS H1 and H2 in U denoted by H1 = H2 and defined as follows: 101 
)u()u(and)u()u(,)u()u( FFIITT 2H1H2H1H2H1H  for all u ∈ U. 102 

Definition 5.  Complement of any SVNSs 103 

The complement of any SVNS H in U denoted by cH and defined as follows: 104 
 U}u|F1,I1,T1,u{H HHH

c  . 105 
Example 3.  106 
Let H be any SVNN in U presented as follows: 107 
H = < (.7, .3, .5)>. Then compliment of H is obtained as cH = < (.3, .7, .5) >.  108 
Definition 6. [24] Union  109 
The union of two single valued neutrosophic sets H1 and H2 is a neutrosophic set H3 (say) written as 110 
 H3 = H1  H2. 111 

)u(T 3H = max { )u(T 1H , )u(T 2H }, )u(I 3HJ  = min { )u(I 1H , )u(I 2H }, F 3H (u) = min { )u(F 1H , )u(F 2H }, uU.  112 

Example 4. Let H1 and H2 be two SVNSs in U presented as follows: 113 

H1 = <(0.6, 0.3, 0.4)> and  H2 = <(0.7, 0.3, 0.6)>. Then union of them is presented as: 

 HH 21  = <(0.7, 0.3, 0.4)>. 

Definition 7. [24] Intersection  114 
The intersection of two single valued neutrosophic sets H1 and H2 denoted by H4 and defined as 115 
 H4 = H1  H2  116 

T 4H (u) = min { )u(T 1H , )u(T 2H }, )u(I 4H = max{ )u(I 1H , )u(I 2H } 117 

)u(F 4H = max { )u(F 1H , )u(F 2H },  uU. 118 

Example 5. Let H1 and H2 be two SVNSs in U presented as follows: 119 

H1 = <(0.6, 0.3, 0.4)> and  H2 = <(0.7, 0.3, 0.6)>. Then intersection of H1 and H2 is presented 
as follows: 

H1  H2 = <(0.6, 0.3, 0.6)> 
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Some operations of SVNSs [24]:  120 
Let H1 and H2 be any two SVNSs. Then, addition and multiplication are defined as: 121 

1. H1  H2 =  )u(T 1H  )u(T 2H  )u(T 1H . )u(T 2H , )u(I 1H . )u(I 2H , )u(F 1H . )u(F 2H  uU. 122 

2. H1  H2 = )u(T 1H . )u(T 2H , )u(I 1H )u(I 2H )u(I 1H . )u(I 2H , )u(F 1H )u(F 2H )u(F 1H .123 

)u(F 2H  124 

 uU.  125 

Example 6. Let H1 and H2 be two SVNSs in U presented as follows: 126 

H1 = <0.6, 0.3, 0.4> and H2 = <0.7, 0. 3, 0. 6>.  127 

Then,  1. H1  H2 = <0.88, 0.09, 0.24> 128 

2. H1  H2 = <0.42, 0.51, 0.76>. 129 

3. SN-cross entropy function 130 

In this section, we define a new single valued neutrosophic cross-entropy function for measuring the 131 
deviation of single valued neutrosophic variables from an a priori one.  132 

Definition 6. 1. SN-cross entropy function 133 

Let H1 and H2 be any two SVNSs in U = { }u...,,u,u,u n321 .  Then, the single valued cross-entropy 134 
of H1 and H2 is denoted by CESN (H1, H2) and defined as follows:  135 

)1(
))u(F1(1))u(F1(1

))u(F1())u(F1(2

)u(F1)u(F1

)u(F)u(F2

))u(I1(1))u(I1(1

))u(I1())u(I1(2
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)u(I)u(I2
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2
1 = )H ,(H CE

2
i2H

2
i1H

i2Hi1H

2
i2H

2
i1H

i2Hi1H

2
i2H

2
i1H

i2Hi1H

2

2H
2

i1H

i2Hi1H

n

1i 2
i2H

2
i1H

i2Hi1H

2
i2H

2
i1H

i2Hi1H
21SN












































































































136 

 137 
Example 4.  138 
Let H1 and H2 be two SVNSs in U, which are given by H1 = {u, (.7, .3, .4)| u ∈U} and H2 = {u, (.6, .4, 139 
.2)| u ∈U}. Using Equation (1), the cross entropy value of H1 and H2 is obtained as )H ,(H CE 21SN = 0.707.  140 
Theorem  141 
Single valued neutrosophic cross entropy  )H ,(H CE 21SN for any two SVNSs  H ,H 21 , satisfies the 142 
following properties:  143 
i) 0)H ,(H CE 21SN  . 144 
ii) 0)H ,(H CE 21SN  if and only if )u(T)u(T i2Hi1H  , )u(I)u(I i2Hi1H  , )u(F)u(F i2Hi1H  , .Uui   145 
iii) )H ,(H CE)H ,(H CE c

2
c
1SN21SN   146 

iv) )H ,(H CE)H ,(H CE 12SN21SN   147 
Proof: i) 148 
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For all values of Uu i  , 0)u(T i1H  , 0)u(T i2H  , 0)u(T)u(T i2Hi1H  , 0)u(T1
2

i1H  , 0)(1
2

i2H uT  ,149 
0))u(T1( i1H  , 0))u(T1( i2H  , 0))u(T1())u(T1( i2Hi1H  , 0))(1

2

i1H uT1(   , 0))u(T1(1
2

i2H   150 
 Then, 151 

0
))u(T1(1))u(T1(1
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2
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))u(I1(1))u(I1(1

))u(I1())u(I1(2

)u(I1)u(I1

)u(I)u(I2
2

i2H

2
i1H

i2Hi1H

2

2H
2

i1H

i2Hi1H


























, and 153 

0
))u(F1(1))u(F1(1

))u(F1())u(F1(2

)u(F1)u(F1

)u(F)u(F2
2

i2H

2
i1H

i2Hi1H

2
i2H

2
i1H

i2Hi1H




























 154 

So, 0)H ,(H CE 21SN  . 155 
 Hence complete the proof.  156 
ii)  157 

,0
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So, 0)H ,(H CE 21SN  iff )u(T)u(T i2Hi1H  )u(I)u(I i2Hi1H  , )u(F)u(F i2Hi1H  , .Uui   164 
Hence complete the proof. 165 
iii) Using definition 5, we obtain the following expression 166 
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




















171 

So, )H ,(H CE)H ,(H CE c
2

c
1SN21SN  . 172 

 Hence complete the proof. 173 
iv) Since, 174 

)u(T)u(T)u(T)u(T i1Hi2Hi2Hi1H  , )u(I)u(I)u(I)u(I i1Hi2Hi2Hi1H  ,175 

)u(F)u(F)u(F)u(F i1Hi2Hi2Hi1H  , ))u(T1())u(T1())u(T1())u(T1( i1Hi2Hi2Hi1H  ,176 

))u(I1())u(I1())u(I1())u(I1( i1Hi2Hi2Hi1H  ,177 

))u(F1())u(F1())u(F1())u(F1( i1Hi2Hi2Hi1H  , then  178 

2
i1H

2
i2H

2
i2H

2
i1H )u(T1)u(T1)u(T1)u(T1  ,179 

2
i1H

2
i2H

2
i2H

2
i1H )u(I1)u(I1)u(I1)u(I1  ,180 

2
i1H

2
i2H

2
i2H

2
i1H )u(F1)u(F1)u(F1)u(F1  ,181 

2
i1H

2
i2H

2
i2H

2
i1H ))u(T1(1))u(T(1))u(T1(1))u(T1(1  ,182 

2
i1H

2
i2H

2
i2H

2
i1H ))u(I1(1))u(I1(1))u(I1(1))u(I1(1  , 183 

2
i1H

2
i2H

2
i2H

2
i1H ))u(F1(1))u(F1(1))u(F1(1))u(F1(1  , .Uui   184 

So, )H ,(H CE)H ,(H CE 12SN21SN  . 185 
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 Hence complete the proof. 186 

Definition 7. Weighted SN-cross entropy function 187 
Considering the weight of the element ui, i = 1, 2, .., n into account, we introduce a weighted  SN-188 
cross entropy. 189 
We consider the weight wi ( i= 1, 2, ..., n) for the element ui (i = 1, 2, .., n) with the conditions 190 

.1wand]1,0[w
n

1i
ii  


 191 

Then the weighted cross entropy between SVNSs H1 and H2 can be defined as follows: 192 

)2(
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





193 

Theorem 2.  194 
Single valued neutrosophic weighted SN- cross-entropy (defined in Equation (2)) satisfies the 195 
following properties: 196 
i). 0.)H ,(H CE 21

w
SN   197 

ii). 0)H ,(H CE 21
w
SN  , if and only if )u(T)u(T i2Hi1H  )u(I)u(I i2Hi1H  , )u(F)u(F i2Hi1H  , .Uui   198 

iii). )H ,H( CE)H ,(H CE c
2

c
1

w
SN21

w
SN   199 

iv). )H ,H ( CE )H ,(H CE 12
w
SN21

w
SN   200 

Proof: i).  201 
For all values of Uu i  , 202 

0)u(T i1H  0)u(T i2H  , 203 

0)u(T)u(T i2Hi1H  , 0)u(T1
2

i1H  , 0)u(T1
2

i2H  , 0))u(T1( i1H  , 0))u(T1( i2H  ,204 

0))u(T1())u(T1( i2Hi1H  , 0))u(T1(1
2

i1H  , 0))u(T1(1
2

i2H  , then     205 

0
))u(T1(1))u(T1(1

))u(T1())u(T1(2

)u(T1)u(T1

)u(T)u(T2
2
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2
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
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Similarly, 0
))u(I1(1))u(I1(1
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)u(I)u(I2
2
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0
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







. 208 

Since 1wand]1,0[w
n

1i
ii 


, therefore, 0)H ,(H CE 21

w
SN  .  209 

Hence complete the proof. 210 
ii). 211 
Since, 212 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 8 of 20 

 

,0
))u(T1(1))u(T1(1

))u(T1())u(T1(2

)u(T1)u(T1

)u(T)u(T2
2

i2H

2
i1H

i2Hi1H

2
i2H

2
i1H

i2Hi1H




























 213 

)u(T)u(T i2Hi1H  , 214 

0
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
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)u(F)u(F i2Hi1H   and 1w,]1,0[w
n

1i
ii 


, 0w i  . So, 0)H ,(H CE 21

w
SN  iff )u(T)u(T i2Hi1H  , 218 

)u(I)u(I i2Hi1H  , )u(F)u(F i2Hi1H  , .Uu i   219 

Hence complete the proof. 220 
iii). Using definition 5, we obtain the following expression 221 
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So, )H ,H( CE)H ,(H CE c
2

c
1

w
SN21

w
SN  .  226 

Hence complete the proof. 227 
iv).  228 

Since )u(T)u(T)u(T)u(T i1Hi2Hi2Hi1H  , )u(I)u(I)u(I)u(I i1Hi2Hi2Hi1H  ,229 

)u(F)u(F)u(F)u(F i1Hi2Hi2Hi1H  , ))u(T1())u(T1())u(T1())u(T1( i1Hi2Hi2Hi1H  ,230 

))u(I1())u(I1())u(I1())u(I1( i1Hi2Hi2Hi1H  , ))(1())(1())(1())( uFuFuFuF1( i1Hi2Hi2Hi1H  , 231 

we obtain  232 

2
i1H

2
i2H

2
i2H

2
i1H )u(T1)u(T1)u(T1)u(T1  ,233 

2
i1H

2
i2H

2
i2H

2
i1H )u(I1)u(I1)u(I1)u(I1  ,234 

2
i1H

2
i2H

2
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2
i1H )u(F1)u(F1)u(F1)u(F1  ,235 

2
i1H

2
i2H

2
i2H

2
i1H ))u(T1(1))u(T(1))u(T1(1))u(T1(1  ,236 

2
i1H

2
i2H

2
i2H

2
i1H ))u(I1(1))u(I1(1))u(I1(1))u(I1(1  , 237 

2
i1H

2
i2H

2
i2H

2
i1H ))u(F1(1))u(F1(1))u(F1(1))u(F1(1  , .Uu i   238 

and 1w,]1,0[w
n

1i
ii 


. 239 

So, )H ,H ( CE )H ,(H CE 12
w
SN21

w
SN  .  240 

Hence complete the proof. 241 

4. MAGDM strategy using proposed SN-cross entropy meaure under SVNS environment 242 

In this section, we develop a new MAGDM strategy using the proposed NS-cross entropy measure.    243 
4.1  Description of the MAGDM problem 244 
Assume that }A...,,A,A,A{A m321 and }G...,,G,G,G{G n321 be the discrete set of alternatives 245 
and attributes respectively and }w...,,w,w,w{W n321 be the weight vector of attributes jG  (j = 1, 2, 246 
3, …, n), where 0w j  and 1w

n

1j
j 


. Assume that }E...,,E,E,E{E 321  be the set of decision makers 247 

who are employed to evaluate the alternatives. The weight vector of the decision makers 248 
),...,3,2,1k(Ek  is }...,,,,{ 321  (where, 1and0

1k
k 




), which can be determined according 249 

to the decision makers expertise, judgment quality and domain knowledge.  250 
Now, we describe the steps of the propsed MAGDM strategy using SN- cross entropy measure.  251 

4.1.1. MAGDM strategy using SN- cross entropy function  252 
 Step: 1. Formulate the decision matrices 253 
For MAGDM with SVNSs information, the rating values of the alternatives )m...,,3,2,1i(Ai  based on 254 
the attribute )n...,,3,2,1j(G j  provided by the k-th decision maker can be expressed in terms of SVNN 255 
as  k

ij
k
ij

k
ij

k
ij F,I,Ta  (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ). We present these rating values of 256 

alternatives provided by the decision makers in matrix form as follows: 257 
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k           (7) 258 

Step: 2. Formulate the weighted aggregated decision matrix 259 
For obtaining one group decision, we aggregate all individual decision matrices to an aggregated 260 
decision matrix using the Equation (9) as follows: 261 
 262 
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Here,  










 1k

jwk
ij

1k

jwk
ij

jw

1k

k
ijij )F(,)I(,)T1(1a ……(9) and  (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k 264 

= 1, 2, 3, …, ). 265 
Step: 3. Formulate priori/ ideal decision matrix    266 
In the MAGDM, the priori decision matrix has been used to select the best alternatives among the set 267 
of collected feasible alternatives. In decision making situation, we use the following decision matrix 268 
as priori decision matrix. 269 
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          (10) 270 

where,  )F(min),I(min),T(maxa k
ij

k
ij

k
ij

*
ij and (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n). 271 

Step: 4. Calculate the weighted SN- cross entropy measure 272 
Using equation (2), we calculate weighted cross entropy value between aggregate matrix and priori 273 
matrix. The cross entropy values can be presented in matrix form as follows: 274 
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w
SN

1
w
SN

w
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SN        (11) 275 

Step: 5. Rank the priority 276 
Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative. 277 
Therefore, the preference priority order of all the alternatives can be determined according to the 278 
increasing order of the cross entropy values )(A CE i

w
SN (i = 1, 2, 3, …, m). Smallest cross entropy value 279 

indicates the best alternative and greatest cross entropy value indicates the worst alternative.  280 
Step: 6. Select the best alternative 281 
From the preference rank order (from step 5), we select the best alternative.   282 
 283 
 284 
 285 
 286 
 287 
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 295 
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 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
                Figure.1 Decision making procedure of proposed MAGDM method 334 
 335 
                336 
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 Multi attribute group decision making problem 

Formation of decision matrix provided 
by decision makers Step-1 

Formation of weighted aggregated 
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entropy measure 
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Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 12 of 20 

 

5. Illustrative example 337 

In this section, we solve an illustrative example adapted from [12] of MAGDM problems to reflect 338 
the feasibility, applicability and efficiency of the proposed strategy under SVNS environment. 339 
Now, we use the example [12] for cultivation and analysis. A venture capital firm intends to make 340 
evaluation and selection to five enterprises with the investment potential: 341 

1) Automobile company (A1) 342 
2) Military manufacturing enterprise (A2) 343 
3) TV media company (A3) 344 
4) Food enterprises (A4) 345 
5) Computer software company (A5) 346 

On the basis of four attributes namely: 347 
1) Social and political factor (G1) 348 
2) The environmental factor (G2)  349 
3) Investment risk factor (G3) 350 
4) The enterprise growth factor (G4). 351 

The investment firm makes a panel of three decision makers }E,E,E{E 321  having their weight vector 352 
}30.,28.,42{.  and weight vector of attributes is }28.,23.,25.,24{.W . 353 

The steps of decision making strategy (4.1.1.) to rank alternatives are presented as follows: 354 
Step: 1. Formulate the decision matrices 355 
We represent the rating values of alternatives iA  (i = 1, 2, 3, 4, 5) with respects to the attributes jG  356 
 (j = 1, 2, 3, 4) provided by the decision makers kE  (k = 1, 2, 3) in matrix form as follows: 357 
     Decision matrix for 1E  decision maker 358 



























)5.0,7.0,9.0()4.0,4.0,6.0()5.0,4.0,5.0()3.0,4.0,8.0(A
)7.0,4.0,5.0()5.0,2.0,7.0()4.0,3.0,6.0()7.0,8.0,5.0(A

)3.0,3.0,7.0()6.0,7.0,9.0()2.0,4.0,7.0()4.0,4.0,8.0(A
)3.0,1.0,9.0()5.0,6.0,9.0()3.0,4.0,8.0()3.0,2.0,7.0(A
)9.0,4.0,5.0()4.0,3.0,7.0()4.0,4.0,7.0()4.0,5.0,9.0(A

GGGG     

M

5

4

3

2

1

4321

1        (22) 359 

     Decision matrix for 2E  decision maker 360 



























)5.0,4.0,5.0()6.0,5.0,8.0()5.0,4.0,6.0()3.0,4.0,9.0(A
)4.0,5.0,8.0()4.0,4.0,7.0()6.0,3.0,6.0()3.0,5.0,7.0(A
)6.0,5.0,6.0()4.0,5.0,9.0()5.0,3.0,5.0()4.0,4.0,6.0(A
)3.0,4.0,6.0()4.0,3.0,7.0()4.0,3.0,7.0()4.0,4.0,7.0(A
)3.0,5.0,6.0()5.0,4.0,9.0()5.0,4.0,5.0()3.0,2.0,7.0(A

GGGG     

M

5

4

3

2

1

4321

2        (23) 361 

Decision matrix for 3E  decision maker 362 



























)5.0,3.0,7.0()4.0,3.0,6.0()3.0,4.0,6.0()3.0,3.0,8.0(A
)5.0,3.0,7.0()4.0,2.0,5.0()4.0,3.0,6.0()4.0,3.0,9.0(A
)4.0,3.0,7.0()4.0,3.0,8.0()4.0,3.0,9.0()5.0,3.0,8.0(A
)5.0,4.0,8.0()3.0,4.0,7.0()4.0,3.0,9.0()5.0,5.0,6.0(A
)3.0,4.0,9.0()5.0,4.0,7.0()4.0,4.0,6.0()5.0,2.0,7.0(A

GGGG     

M

5

4

3

2

1

4321

3         (24) 363 

Step: 2. Formulate the weighted aggregated decision matrix  364 
Using the equation (9), the aggregated decision matrix is presented as follows: 365 
           366 
 367 
 368 
 369 
 370 
 371 
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          Aggregated decision matrix 372 



























)5.0,5.0,8.0()4.0,4.0,7.0()4.0,4.0,6.0()4.0,4.0,8.0(A
)5.0,4.0,7.0()4.0,2.0,6.0()4.0,3.0,6.0()5.0,5.0,7.0(A
)4.0,3.0,7.0()5.0,5.0,9.0()3.0,3.0,8.0()4.0,4.0,8.0(A
)3.0,2.0,8.0()4.0,4.0,8.0()4.0,3.0,8.0()4.0,3.0,7.0(A
)5.0,4.0,7.0()4.0,4.0,8.0()4.0,4.0,6.0()4.0,3.0,8.0(A

GGGG     

M

5

4

3

2

1

4321

        (25) 373 

Step: 3. Formulate priori/ ideal decision matrix   374 
     Priori/ ideal decision matrix    375 



























)0,0,1()0,0,1()0,0,1()0,0,1(A
)0,0,1()0,0,1()0,0,1()0,0,1(A
)0,0,1()0,0,1()0,0,1()0,0,1(A
)0,0,1()0,0,1()0,0,1()0,0,1(A
)0,0,1()0,0,1()0,0,1()0,0,1(A

GGGG     

P

5

4

3

2

1

4321

                      (26) 376 

Step: 4. Calculate the weighted SVNS cross entropy matrix 377 
Using the equation (2), we calculate the single valued weighted cross entropy values between ideal 378 
matrix and weighted aggregated decision matrix. 379 
 380 

























0.980
1.000
0.840
0.775
0.935

M w
CE

SN                                     (27) 381 

Step: 5. Rank the priority 382 
The cross entropy values of alternatives are arranged in increasing order as follows: 383 
0.775 < 0.840 < 0.935 < 0.980 < 1.000.  384 
Alternatives are then preference ranked as follows: 385 
A2 > A3 > A1 > A5 > A4. 386 
Step: 6. Select the best alternative 387 
From step 5, we identify A2 is the best alternative. Hence, military manufacturing enterprise (A2) is 388 
the best alternative for investment. 389 
 390 

 391 
Figure.2. Bar diagram of alternatives versus cross entropy values of alternatives  392 
 393 
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 394 
Figure.3. Relation between cross entropy values and acceptance level line of alternatives.  395 
 396 

In Figure 3, we represent the relation between cross entropy values and acceptance values of 397 
alternatives. The range of acceptance level for five alternatives is taken five points. The high 398 
acceptance level of alternative indicates the best alternative for acceptance and low acceptance level 399 
of alternative indicates the poor acceptance alternative.  400 

We see from Figure 3 that alternative A2 has the smallest cross entropy value and the highest 401 
acceptance level. Therefore A2 is the best alternative for acceptance. Figure 3 indicates that alternative 402 
A4  has highest cross entropy value and lowest acceptance value that means A4 is the worst 403 
alternative. Finally, we conclude that the relation between cross entropy values and acceptance value 404 
of alternatives is opposite in nature. 405 

6. Comparative study and discussion 406 

In literature only MADM strategy [88, 91] have been proposed. So the proposed MAGDM is non-407 
comparable. However, for comparison purpose, the MADM strategies [88, 91] are transformed into 408 
MAGDM and for calculation purpose we assume the same set of weigts for the decision makers. Then 409 
the obtained result derived from the proposed method is compared the results obtained from two 410 
existing strategies [88, 91]under SVNS environment. We present ranking order of the alternatives ( 411 
see Table 1) using same illustrative example for the proposed strategy and two  [88, 91]. 412 
Table 1. Ranking order of alternatives using different single valued neutrosophic cross entropy 413 
function  414 
 415 

Proposed Strategy Ye [91]
Strategy 

Ye [88]
Strategy 

935.)A( CE 1
w
NS   

.775)A(CE 2
w
NS   

.840)A( CE 3
w
NS  1.00)A( CE 4

w
NS 

.980)A( CE 5
w
NS   

493.)A(N 1w 

.367)A(N 2w   

.415)A(N 3w   

.410)A(N 4w   

.510)A(N 5w 

365.)A( D 1 

.244)A( D 2   

.288)A( D 3   

.414)A( D 4   

.431)A( D 5 

Preference ranking order 
45132 AAAAA   

 

Preference ranking order
51342 AAAAA   

Preference ranking order 
54132 AAAAA   

i). The MADM strategies [88] and [91] are not applicable  for MAGDM problems.The proposed 416 
MAGDM strategy is free from such drawbacks.  417 
ii). Ye [88] proposed cross entropy that does not satisfy the symmetrical property straightforward 418 
and is undefined for some situation [91] but the proposed strategy satisfies symmetry property and 419 
free from undefined phenomenon. 420 
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iii) The best alternative is the same for the three strategies. However, the preference ranking orders 421 
are not the same. 422 
 423 

 424 
Figure.4. Graphical representation of ranking order of five alternatives based on three strategies.  425 

7. Conclusion 426 

In this paper we have defined a new cross entropy measure in SVNS environment which is free from 427 
all the drawback of existence cross entropy measures. We have proved the basic properties of the SN-428 
cross entropy measure. We also defined weighted SN-cross entropy measure and proved its basic 429 
properties. Based on the weighted SN- cross entropy measure we have developed a novel MAGDM 430 
strategy to solve neutrosophic group decision making problems. We have at first proposed MAGDM 431 
strategy based on  SN- cross entropy measure. Other existing  cross entropy measures can deal only 432 
MADM problem with single decision maker. So in general, our proposed MAGDM strategy is not 433 
comparable with the existing MADM strategies. However, for comparision with the existing 434 
strategies, at first we have made them MAGDM strategies and considerd the same set of weights of 435 
the decision makers and presented comparisonanalysis. Finally, we solve a MAGDM problem to 436 
show the feasibility, applicability and efficiency of the proposed MAGDM strategy. In future study, 437 
the proposed MAGDM stragey based on SN- cross entropy can be applied in teacher selection, 438 
pattern recognition, weaver selection,  medical treatment selection option, and other practical 439 
problems.   440 

Acknowledgments: The authors would like to acknowledge the constructive comments and suggestions of the 441 
anonymous referees.  442 

Author Contributions: “Surapati Pramanik conceived and designed the problem; Shyamal Dalapati 443 
solved the problem; Surapati Pramanik, Shariful Alam, Florentin Smarandache and Tapan Kumar 444 
Roy analyzed the results; Surapati Pramanik and Shyamal Dalapati wrote the paper.”  445 
Conflicts of Interest: The authors declare that there is no conflict of interest for publication of the article. 446 

   References 447 

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356.  448 
2. Bellman, R.; Zadeh, L. A. Decision-making in A fuzzy environment. Manage. Sci. 1970, 17, 4, 141–164. 449 
3. Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. 450 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 16 of 20 

 

4. Pramanik, S.; Mukhopadhyaya, D. Grey relational analysis based intuitionistic fuzzy multi-criteria 451 
group decision-making approach for teacher selection in higher education. Int. J. of Comput. Applic. 2011,  452 
34, 21-29. doi: 10.5120/4138-5985. 453 

5. Mondal, K.; Pramanik, S. Intuitionistic fuzzy multi criteria group decision making approach to quality-454 
brick selection problem. J. Appl. Quant. Methods. 2014, 9, 35–50. 455 

6. Dey, P.P.; Pramanik, S.; Giri, B.C. Multi-criteria group decision making in intuitionistic fuzzy 456 
environment based on grey relational analysis for weaver selection in Khadi institution.  J. Appl. Quant. 457 
Methods.  2015, 10, 1–14. 458 

7. Ye, J. Multicriteria fuzzy decision-making method based on the intuitionistic fuzzy cross-entropy, in: 459 
Tang Y C, Lawry J and Huynh VN (eds), Proceedings in International Conference on Intelligent Human-460 
Machine Systems and Cybernetics, IEEE Computer Society, 2009, 1, 59-61. 461 

8. Chen, S. M.; Chang, C. H. A novel similarity measure between Atanassov’s intuitionistic fuzzy sets 462 
based on transformation techniques with applications to pattern recognition. Inf. Sci. 2015, 291, 96–114. 463 

9. Chen, S. M.; Cheng, S. H.; Chiou, C. H. Fuzzy multi-attribute group decision making based on 464 
intuitionistic fuzzy sets and evidential reasoning methodology. Inf. Fusion 2016, 27, 215–227. 465 

10. Wang, J.Q.; Han, Z.Q.; Zhang, H. Y. Multi-criteria group decision making method based on 466 
intuitionistic interval fuzzy information. Grp. Deci.  Nego. 2014, 23, 4, 715–733. 467 

11. Yue, Z. L. TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting. Inf. Sci. 468 
2014, 277 , 141–153. 469 

12. He, X.; Liu, W. F. An intuitionistic fuzzy multi-attribute decision-making method with preference on 470 
alternatives. Operat. Res.& Manage. Sci. 2013, 22, 36–40. 471 

13. Zadeh, L. A. Probability Measures of Fuzzy Events. J. Math. Analy. Appl. 1968, 23, 421-427. 472 
14. Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy 473 

Sets and Systs. 1996, 78, 305–316. 474 
15. Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Systs. 2001, 118 , 467–477.  475 
16. Wei, C. P.; Wang, P.; Zhang, Y. Z.  Entropy, similarity measure of interval-valued intuitionistic fuzzy 476 

sets and their applications. Inf. Sci. 2011, 181, 4273–4286 477 
17. Li, X. Y. Interval-valued intuitionistic fuzzy continuous cross entropy and its application in multi-478 

attribute decision-making, Com. Engg. Appl. 2013, 49, 15, 234–237. 479 
18. Shang, X. G.; Jiang, W. S. A note on fuzzy information measures, Patt. Recog. Lett. 1997, 18, 425–432. 480 
19. Vlachos, I. K.; Sergiadis, G. D. Intuitionistic fuzzy information applications to pattern recognition. Patt. 481 

Recog. Lett. 2007, 28, 197–206. 482 
20. Ye, J. Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision-making 483 

method based on the weights of alternatives, Expert Syst.  Appl. 2011, 38, 6179–6183. 484 
21. Xia, M. M.; Xu, Z. S. Entropy/cross entropy-based group decision making under intuitionistic fuzzy 485 

environment. Inf. Fusion 2012, 13, 31–47. 486 
22. Tong, X.; Yu, L. A novel MADM approach based on fuzzy cross entropy with interval-valued 487 

intuitionistic fuzzy sets. Math. Prob. engg. 2015. http://dx.doi.org/10.1155/2015/965040. 488 
23. Smarandache, F. A unifying field in logics. In Neutrosophy: Neutrosophic probability, set and logic; American 489 

Research Press: Rehoboth, DE, USA, 1999. 490 
24. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace 491 

multistructure 2010, 4, 410–413. 492 
25. Pramanik, S.; Biswas, P; Giri, B. C. Hybrid vector similarity measures and their applications to multi-493 

attribute decision making under neutrosophic environment. Neural Comput. Appl. 2017, 28,1163–1176, 494 
doi:10.1007/s00521-015-2125-3. 495 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 17 of 20 

 

26. Biswas, P.; Pramanik, S.; Giri, B. C. Entropy based grey relational analysis method for multi-attribute 496 

decision making under single valued neutrosophic assessments. Neut. Sets Syst. 2014, 2, 102–110.  497 

27. Biswas, P.; Pramanik, S.; Giri, B. C. A new methodology for neutrosophic multi-attribute decision 498 

making with unknown weight information. Neut. Sets Syst. 2014, 3, 42–52. 499 

28. Biswas, P.; Pramanik, S.; Giri, B. C. TOPSIS method for multi-attribute group decision-making under 500 

single valued neutrosophic environment. Neural Compt. Appl.  2015, doi: 10.1007/s00521-015-1891-2. 501 

29. Biswas, P.; Pramanik, S.; Giri, B. C. Giri. Aggregation of triangular fuzzy neutrosophic set information 502 

and its application to multi-attribute decision making. Neut. Sets Syst. 2016, 12, 20-40.  503 

30. Biswas, P.; Pramanik, S.; Giri, B. C. Value and ambiguity index based ranking   method of single-504 

valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neut. 505 

Sets Syst. 2016, 12, 127-138.  506 

31. Biswas, P.; Pramanik, S.; Giri, B. C. Giri. Multi-attribute group decision making based on expected value 507 

of neutrosophic trapezoidal numbers. In New Trends in Neutrosophic Theory and Applications; 508 

Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2017; Volume II, In Press. 509 

32. Biswas, P.; Pramanik, S.; Giri, B. C. Non-linear programming approach for single-valued neutrosophic 510 

TOPSIS method. New Mat. Nat. Comp. 2017, In Press. 511 

33. Deli. I.; Subas, Y. A ranking method of single valued neutrosophic numbers and its applications to 512 

multi-attribute decision making problems. Int. J. Mach. Learning and Cybernetics 2016, 513 

doi:10.1007/s13042016-0505-3. 514 

34. Ji, P. Wang, J. Q.; Zang, H. Y. Zhang.  Frank prioritized Bonferroni mean operator with single-valued 515 

neutrosophic sets and its application in selecting third-party logistics providers. Neural Comput & 516 

Applic, 2016 . doi:10.1007/s00521-016-2660-6. 517 

35. Kharal, A. A neutrosophic multi-criteria decision making method. New Math. Nat. Comput. 2014, 10, 518 

143–162.  519 

36. Liang, R. X.; Wang, J. Q.; Li, L. Multi-criteria group decision making method based on interdependent 520 

inputs of single valued trapezoidal neutrosophic information. Neural Comput & Applic. 2016, 521 

doi:10.1007/s00521-016-2672-2.  522 

37. Liang, R. X.; Wang, J. Q.; Zhang, H. Y. A multi-criteria decision-making method based on single-valued 523 

trapezoidal neutrosophic preference relations with complete weight information. Neural Comput & 524 

Applic. 2017, Doi: 10.1007/s00521-017-2925-8. 525 

38. Liu, P.; Chu, Y.; Li, Y.; Chen, Y. Some generalized neutrosophic number Hamacher aggregation 526 

operators and their application to group decision making. Int. J. Fuzzy Syst. 2014, 16, 242–255.  527 

39. Liu, P. D.; Li; H. G. Multiple attribute decision-making method based on some normal neutrosophic 528 

Bonferroni mean operators. Neural Comput & Applic, 2017, 28, 179–194. 529 

40. Liu, P.; Wang, Y. Multiple attribute decision-making method based on single-valued neutrosophic 530 

normalized weighted Bonferroni mean. Neural Comput & Applic, 2014, 25, 2001–2010.  531 

41. Peng, J. J.; Wang, J. Q.; Wang, J.; Zhang, H. Y.; Chen, X. H. Simplified neutrosophic sets and their 532 

applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342-2358.  533 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 18 of 20 

 

42. Peng, J.; Wang, J.; Zhang, H.; Chen, X. An outranking approach for multi-criteria decision-making 534 

problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. 535 

43. Pramanik, S.; Banerjee, D.; Giri, B. C. Multi – criteria group decision making model in neutrosophic 536 

refined set and its application. Global J.  Engg. Sci. & Research Manage. 2016, 3, 12-18. 537 

44. Pramanik, S.; Dalapati, S.; Roy, T. K. Logistics center location selection approach based on neutrosophic 538 

multi-criteria decision making. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., 539 

Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, 161-174, ISBN 978-1-59973-498-9. 540 

45. Sahin, R.; Karabacak, M. A multi attribute decision making method based on inclusion measure for 541 

interval neutrosophic sets.  Int. J. Engg. & Appl. Sci. 2014, 2, 13–15.  542 

46.  Sahin, R.; Kucuk, A. Subsethood measure for single valued neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 543 

doi:10.3233/IFS-141304. 544 

47. Sahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making 545 
with incomplete weight information. Neural Comput. Appl. 2016, 27, 2017–2029. 546 

48. Sodenkamp, M. Models, strategies and applications of group multiple-criteria decision analysis in 547 

complex and uncertain systems. Dissertation, University of Paderborn, 2013, Germany. 548 

49. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued 549 

neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. 550 

50. Ye, J. Single valued neutrosophic cross-entropy for multi criteria decision making problems. Appl. Math. 551 

Modell. 2013, 38, 1170–1175. 552 

51. Ye, J. A multi criteria decision-making method using aggregation operators for simplified neutrosophic 553 

sets. J. Intell. & Fuzzy Syst. 2014, 26, 2459–2466. 554 

52. Ye, J. Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural 555 

Comput & Applic, 2015, 26,1157–1166. 556 

53. Ye, J. Bidirectional projection method for multiple attribute group decision making with neutrosophic 557 

number. Neural Comput & Applic, 2015, doi: 10.1007/s00521-015-2123-5. 558 

54. Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their 559 

decision – making method for mechanical design scheme. J. Exper. & Theor. Arti. Intell. 2016, 560 

doi:10.1080/0952813X.2016.1259263.  561 

55. Pramanik, S.; Roy, T. K. Neutrosophic game theoretic approach to Indo-Pak conflict over Jammu-562 
Kashmir. Neut. Sets & Syst. 2014, 2, 82-101. 563 

56. Mondal, K.;  Pramanik, S. Multi-criteria group decision making approach for teacher recruitment in 564 
higher education under simplified Neutrosophic environment. Neut. Sets & Syst. 2014, 6, 28-34. 565 

57. Mondal, K.; Pramanik, S. Neutrosophic decision making model of school choice. Neut. Sets & Syst. 2015, 566 
7, 62-68. 567 

58. Cheng, H. D.; Guo, Y. A new neutrosophic approach to image thresholding. New Math. & Nat. Comput. 568 

2008, 4, 291–308. 569 

59. Guo, Y.; Cheng, H. D. New neutrosophic approach to image segmentation. Patt. Recog. 2009, 42, 587–570 

595.  571 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 19 of 20 

 

60.  Guo, Y.; Sengur, A.; Ye, J. A novel image thresholding algorithm based on neutrosophic similarity 572 

score. Measurement, 2014, 58, 175–186.  573 

61. Ye, J. Single valued neutrosophic minimum spanning tree and its clustering method. J. Intell. Syst. 2014, 574 

23, 311–324.  575 

62.  Ye, J.  Clustering strategies using distance-based similarity measures of single-valued neutrosophic 576 

sets. J. Intell. Syst. 2014, 23, 379–389. 577 

63. Mondal, K.; Pramanik, S. A study on problems of Hijras in West Bengal based on neutrosophic 578 

cognitive maps. Neut. Sets & Syst. 2014, 5, 21-26.  579 

64. Pramanik, S.; Chakrabarti. S. A study on problems of construction workers in West Bengal based on 580 

neutrosophic cognitive maps. Int. J. Innovat. Research in Sci. Engg. & Tech. 2013, 2, 6387-6394. 581 

65. Maji, P. K. Neutrosophic soft set. Annals Fuzzy Math. & Inf. 2012, 5, 157–168. 582 

66.  Maji, P. K. Neutrosophic soft set approach to a decision-making problem. Annals Fuzzy Math. & Inf. 583 

2013, 3, 313–319.  584 

67.  Sahin, R.; Kucuk, A. Generalized neutrosophic soft set and its integration to decision-making problem. 585 

Appl. Math. & Inf. Sci. 2014, 8, 2751–2759.  586 

68. Dey, P.P.; Pramanik, S.; Giri, B.C. Neutrosophic soft multi-attribute decision making based on grey 587 

relational projection method. Neut. Sets & Syst. 2016, 11, 98-106. 588 

69. Dey, P.P.; Pramanik, S.; Giri, B.C. Neutrosophic soft multi-attribute group decision making based on 589 

grey relational analysis method. J. New Results in Sci. 2016, 10, 25-37. 590 

70. Dey, P.P.; Pramanik, S.; Giri, B.C. Generalized neutrosophic soft multi-attribute group decision making 591 
based on TOPSIS. Critical Review, 2015, 11, 41-55. 592 

71. Ali, M.; Smarandache, F.  Complex neutrosophic set. Neural Comput & Applic 2016, DOI 593 
10.1007/s00521-015-2154-y. 594 

72. Ali, M.; Dat, L. Q.; Son, L. H.; Smarandache, F.  Interval complex neutrosophic set: formulation and 595 
applications in decision-making. Int. J. Fuzzy syst. 2017. https://doi.org/10.1007/s40815-017-0380-4. 596 

73. Broumi, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Ital. J. Pure & Appl. Math. 2014, 32, 493-597 
502. 598 

74. Broumi, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Neut. Sets & Syst. 2014, 3, 60-66. 599 

75. Yang, H. L.; Zhang, C. L.; Guo, Z. L.; Liu, Y. L.; Liao, X. A hybrid model of single valued neutrosophic 600 

sets and rough sets: single valued neutrosophic rough set model. Soft Comput. 2016, 1-15, 601 

doi:10.1007/s00500-016-2356-y. 602 

76. Mondal, K.; Pramanik, S. Rough neutrosophic multi-attribute decision-making based on grey relational 603 

analysis. Neut. Sets & Syst. 2015, 7, 8-17.  604 

77. Mondal, K.; Pramanik, S. Rough neutrosophic multi-attribute decision-making based on rough 605 

accuracy score function. Neut. Sets & Syst. 2015, 8, 14-21.  606 

78. Mondal, K.; Pramanik, S.; Smarandache, F. Several trigonometric Hamming similarity measures of 607 

rough neutrosophic sets and their applications in decision making. In New Trends in Neutrosophic Theory 608 

and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, 93-609 

103, ISBN 978-1-59973-498-9. 610 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1


 20 of 20 

 

79. Mondal, K.; Pramanik, S.; Smarandache, F. Multi-attribute decision making based on rough 611 

neutrosophic variational coefficient similarity measure. Neut. Sets & Syst, 2016, 13, 3-17. 612 

80. Mondal, K.; Pramanik, S.; Smarandache, F.  Rough neutrosophic TOPSIS for multi-attribute group 613 

decision making. . Neut. Sets & Syst, 2016, 13, 105-117. 614 

81. Şahin, M.; Alkhazaleh, S.; Uluçay, V.  Neutrosophic soft expert sets. Appl. Math. 2015, 6, 116-127. 615 
82. Pramanik, S.; Dey, P. P.; Giri, B. C. TOPSIS for single valued neutrosophic soft expert set based multi-616 

attribute decision making problems.  Neut. Sets & Syst, 2015, 10, 88-95. 617 

83. Pramanik, S.; Mondal, K. Rough bipolar neutrosophic set. Global J. Engg. Sci. & Research Manage. 2016, 618 

3, 71-81. 619 

84. Mondal, K.; Pramanik, S. Tri-complex rough neutrosophic similarity measure and its application in 620 
multi-attribute decision making. Critical Review. 2015, 11, 26-40. 621 

85. Mondal, K.; Pramanik, S.; Smarandache, F. Rough neutrosophic hyper-complex set and its application 622 

to multi-attribute decision making. Critical Review, 2016, 13, 111-126. 623 

86. Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory 624 
and Applications in Computing , 2005, Hexis, Phoenix, AZ, USA.  625 

87. Majumdar, P.; Samanta, S. K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 626 
26, 1245–1252. 627 

88. Ye, J. Single valued neutrosophic cross-entropy for multi criteria decision making problems. Appl. Math. 628 
Modell. 2014, 38, 1170-1175. 629 

89. Sahin, R. Cross-entropy measure on interval neutrosophic sets and its applications in multi criteria 630 
decision making. Neural Comput & Applic, 2015, DOI 10.1007/s00521-015-2131-5. 631 

90. Tian, Z. P.; Zhang, H. Y.; Wang, J.; Wang, J. Q.; Chen, X. H. Multi-criteria decision-making method 632 
based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2015. DOI: 633 
10.1080/00207721.2015.1102359. 634 

91. Ye, J. Improved cross entropy measures of single valued neutrosophic sets and interval neutrosophic 635 
sets and their multi criteria decision making strategies. Cybernetics & Inf. Tech. 2015, 15, 13-26. DOI: 636 
10.1515/cait-2015-0051. 637 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2018                   doi:10.20944/preprints201801.0006.v1

http://dx.doi.org/10.20944/preprints201801.0006.v1

