NS-Cross Entropy Based MAGDM under Single Valued Neutrosophic Set Environment

Surapati Pramanik ${ }^{1 *}$, Shyamal Dalapati ${ }^{2}$, Shariful Alam ${ }^{2}$, F. Smarandache ${ }^{3}$, Tapan Kumar Roy ${ }^{2}$
${ }^{1}$ Department of Mathematics, Nandalal Ghosh B.T. College, Panpur, P.O.-Narayanpur, District -North 24
Parganas, Pin code-743126, West Bengal, India. *E-mail: sura_pati@yahoo.co.in
${ }^{2}$ Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, P.O.-Botanic
Garden, Howrah-711103, West Bengal, India. E-mail: shyamal.rs2015@math.iiests.ac.in (S. D.), salam50in@yahoo.co.in (S. A.), roy_t_k@yahoo.co.in (T. K. R)
${ }^{3}$ University of New Mexico, Mathematics \& Science Department, 705Gurley Ave., Gallup, NM 87301, U.S.A.; smarand@unm.edu
* Correspondence: e-mail: sura_pati@yahoo.co.in_; Tel.: +91-9477035544

Abstract

Single valued neutrosophic set has king power to express uncertainty characterized by indeterminacy, inconsistency and incompleteness. Most of the existing single valued neutrosophic cross entropy bears an asymmetrical behavior and produce an undefined phenomenon in some situations. In order to deal with these disadvantages, we propose a new cross entropy measure under single valued neutrosophic set (SVNS) environment namely SN- cross entropy and prove its basic properties. Also we define weighted SN-cross entropy measure and investigate its basic properties. We develop a new multi attribute group decision making (MAGDM) strategy for ranking of the alternatives based on the proposed weighted SN-cross entropy measure between each alternative and the ideal alternative. Finally, a numerical example of MAGDM problem of investment potential is solved to show the validity and efficiency of proposed decision making strategy. We also present comparative anslysis of the obtained result with the results obtained form the existing solution strategies in the solution.

Keywords: neutrosophic set; single valued neutrosophic set; SN-cross entropy function; multiattribute group decision making

1. Introduction

To tackle uncertainty and modeling real and scientific problems, Zadeh [1] first introduced the fuzzy set by definig membership function in 1965. Bellman and Zadeh [2] contributed an imporatnt research on fuzzy decision making using max and min operators. Atanassov [3] established intuitionistic fuzzy set (IFS) in 1986 by adding non-membership function as an indepent component to the fuzzy set. Theoretical and practical applications of IFSs in multi-criteria decision making (MCDM) have been reported in the literature [4-12]. Zadeh [13] introduced entropy measure in fuzzy environment. Burillo and Bustince [14] proposed distance measure between IFSs and offered an axiomatic definition of entropy measure. In IFS environment, Szmidt and Kacprzyk [15] proposed a new entropy measure based on geometric interpretation of IFS. Wei et al. [16] developed an entropy measure for interval-valued intuitionistic fuzzy set (IVIFS)and presented applications in pattern recognition and MCDM. Li [17] presented a new MADM strategy combining entropy and TOPSIS in IVIFS environment. Shang and Jiang [18] introduced the cross entropy in fuzzy environment. Vlachos and Sergiadis [19] presented intuitionistic fuzzy cross entropy by extending fuzzy cross entropy [18].

Ye [20] defined a new cross entropy in in IVIFS environment and presented an optimal decisionmaking strategy. Xia and Xu [21] put forward new entropy and cross entropy and employed them for multi- attribute criteria group decision making (MAGDM) strategy in IFS environment. Tong and Yu [22] defined cross entropy in IVIFs environment and applied it to MADM problems.
The study of uncertainty entered into a new direction after the publication of neutrosophic set (NS) [23] and single valued neutrosophic set (SVNS) [24]. SVNS draws more appeal to the rersearchers for its applicability in decision making [25-54], conflict resolution [55], educational problems [56, 57], image processing [58-60], cluster analysis [61, 62], social problems [63, 64], etc. The research on SVNS gets momentum after the inception of the international journal "Neutrosophic Sets and Systems". Combining with neutrosophic set, a number of hybrid sets such as neutrosophic soft set [65-70], neutrosophic complex set [71], interval complex neutrosophic set [72], rough neutrosophic set [7380], neutrosophic soft expert set [81, 82], rough neutrosophic bipolar set [83], rough neutrosophic tri complex set [84], neutrosophic rough hyper complex set [85], are reported in the literature. Wang et al. [86] defined interval neutrosophic set (INS). Majumdar and Samanta [87] defined an entropy measure and presented an MCDM strategy under SVNS environment. Ye [88] defined cross entropy for SVNS by extending the intuitionistic fuzzy cross entropy [7] and proposed MCDM strategy under SVNS environment. Sahin [89] proposed two cross entropy measures for INSs and proposed MCGDM strategy. Tian et al. [90] proposed a cross entropy for INSs and developed a MCDM strategy based on the cross entropy and TOPSIS. Ye [91] defined cross entropy measures for SVNSs and INSs to overcome the drawback of the existing cross entropy measures. Due to little research of cross entropy measures, we define a new cross entropy measure in SVNSs environment based on the distance function of two points and prove its basic properties. Also, we define single valued weighted cross entropy measure and investigate its properties. Getting motivation from the work of Ye [91] for MCDM, We propose a novel MAGDM strategy using the proposed weighted cross entropy.
The remaining of the paper is presented as follows:
Section 2 describes some concepts of SVNSs. In Section 3 we propose a new cross entropy measure between two SVNSs and investigate its properties.
In section 4, we develop a novel MAGDM strategy based on the proposed SN-cross entropy with SVNS information. In Section 5 we present comparative study and discussion. In section 6 an illustrative example is solved to demonstrate the applicability and efficiency of the developed MAGDM strategy under SVNS environment. Section 7 offers conclusions and perspectives of future work.

2. Preliminaries

This section presents a short list of mostly known definitions pertaining to this paper

Definition 1. [23] NS

Let U be a space of points (objects) with a generic element in U denoted by u, i.e. $u \in U$. A neutrosophic set A in U is characterized by truth-membership function $T_{A}(u)$, indeterminacymembership function $I_{A}(u)$ and falsity-membership function $F_{A}(u)$, where $T_{A}(u), I_{A}(u), F_{A}(u)$ are the functions from U to $]^{-} 0,1^{+}\left[\text {i.e. } T_{A}(u), I_{A}(u), F_{A}(u): U \rightarrow\right]^{-} 0,1^{+}[$. NS can be expressed as $A=\left\{<u ;\left(T_{A}(u), I_{A}(u), F_{A}(u)\right)>: \forall u \in U\right\}$. Since $T_{A}(u), I_{A}(u), F_{A}(u)$ are the subsets of $]^{-} 0,1^{+}[$, there the $\operatorname{sum}\left(T_{A}(u)+I_{A}(u)+F_{A}(u)\right)$ lies between ${ }^{-} 0$ and 3^{+}.
Example 1. Suppose that $U=\left\{u_{1}, u_{2}, u_{3}, \ldots\right\}$ be the universal set. Let R_{1} be any neutrosophic set in U. Then R_{1} expressed as $\mathrm{R}_{1}=\left\{\left\langle\mathrm{u}_{1} ;(0.6,0.3,0.4)\right\rangle\right.$: $\left.\mathrm{u}_{1} \in \mathrm{U}\right\}$.

Definition 2. [24] SVNS

Assume that U be a space of points (objects) with generic elements $\mathrm{u} \in \mathrm{U}$. A SVNS H in U is characterized by a truth-membership function $\mathrm{T}_{\mathrm{H}}(\mathrm{u})$, an indeterminacy-membership function $\mathrm{I}_{\mathrm{H}}(\mathrm{u})$, and a falsity-membership function $\mathrm{F}_{\mathrm{H}}(\mathrm{u})$, where $\mathrm{T}_{\mathrm{H}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}}(\mathrm{u}), \mathrm{F}_{\mathrm{H}}(\mathrm{u}) \in[0,1]$ for each point u in U. Therefore, a SVNS A can be expressed as $H=\left\{u,\left(T_{H}(u), I_{H}(u), F_{H}(u)\right) \mid \forall u \in U\right\}$, whereas, the sum
of $\mathrm{T}_{\mathrm{H}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}}(\mathrm{u})$ and $\mathrm{F}_{\mathrm{H}}(\mathrm{u})$ satisfy the condition $0 \leq \mathrm{T}_{\mathrm{H}}(\mathrm{u})+\mathrm{I}_{\mathrm{H}}(\mathrm{u})+\mathrm{F}_{\mathrm{H}}(\mathrm{u}) \leq 3$ and $\mathrm{H}(\mathrm{u})=<\left(\mathrm{T}_{\mathrm{H}}(\mathrm{u})\right.$, I_{H} $(\mathrm{u}), \mathrm{FH}(\mathrm{u})>$ call a single valued neutrosophic number (SVNN).

Example 1.

A SVNS H in U can be expressed as: $H=\{u,(0.7,0.3,0.5) \mid u \in U\}$ and SVNN presented $H=<0.7$, $0.3,0.5>$.

Definition 3. [24] Inclusion of SVNSs

The inclusion of any two SVNS sets H_{1} and H_{2} in U is denoted by $\mathrm{H}_{1} \subseteq \mathrm{H}_{2}$ and defined as follows: $\mathrm{H}_{1} \subseteq \mathrm{H}_{2}$, iff $\quad \mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u}) \leq \mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u}) \geq \mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u}) \geq \mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})$ for all $\mathrm{u} \in \mathrm{U}$.

Example 2.

Let H_{1} and H_{2} be any two SVNNs in U presented as follows: $\mathrm{H}_{1}=<(.7, .3, .5)>$ and $\mathrm{H}_{2}=<(.8, .2, .4)>$ for all $\mathrm{u} \in \mathrm{U}$. Using the property of inclusion of two SVNNs, we conclude that $\mathrm{H}_{1} \subseteq \mathrm{H}_{2}$.

Definition 4. [24] Equality of two SVNSs

The equality of any two SVNS H_{1} and H_{2} in U denoted by $\mathrm{H}_{1}=\mathrm{H}_{2}$ and defined as follows:
$\mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u})=\mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u})=\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})$ and $\mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u})=\mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})$ for all $\mathrm{u} \in \mathrm{U}$.

Definition 5. Complement of any SVNSs

The complement of any SVNS H in U denoted by H^{c} and defined as follows:

$$
\mathrm{H}^{\mathrm{c}}=\left\{\mathrm{u}, 1-\mathrm{T}_{\mathrm{H}}, 1-\mathrm{I}_{\mathrm{H}}, 1-\mathrm{F}_{\mathrm{H}} \mid \mathrm{u} \in \mathrm{U}\right\} .
$$

Example 3.

Let H be any SVNN in U presented as follows:
$\mathrm{H}=\langle(.7, .3, .5)\rangle$. Then compliment of H is obtained as $\mathrm{H}^{\mathrm{c}}=\langle(.3, .7, .5)\rangle$.

Definition 6. [24] Union

The union of two single valued neutrosophic sets H_{1} and H_{2} is a neutrosophic set H_{3} (say) written as $\mathrm{H}_{3}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$.
$\mathrm{T}_{\mathrm{H}_{3}}(\mathrm{u})=\max \left\{\mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u}), \mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u})\right\}, \mathrm{I}_{\mathrm{HJ}_{3}}(\mathrm{u})=\min \left\{\mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u}), \quad \mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right\}, \mathrm{F}_{\mathrm{H}_{3}}(\mathrm{u})=\min \left\{\mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u}), \quad \mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})\right\}, \forall u \in \mathrm{U}$.

Example 4. Let H_{1} and H_{2} be two SVNSs in U presented as follows:

$$
\begin{aligned}
& \mathrm{H}_{1}=\left\langle(0.6,0.3,0.4)>\text { and } \mathrm{H}_{2}=\langle(0.7,0.3,0.6)\rangle\right. \text {. Then union of them is presented as: } \\
& \mathrm{H}_{1} \cup \mathrm{H}_{2}=\langle(0.7,0.3,0.4)>
\end{aligned}
$$

Definition 7. [24] Intersection

The intersection of two single valued neutrosophic sets H_{1} and H_{2} denoted by H_{4} and defined as $\mathrm{H}_{4}=\mathrm{H}_{1} \cap \mathrm{H}_{2}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{H}_{4}}(\mathrm{u})=\min \left\{\mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u}), \mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u})\right\}, \mathrm{I}_{\mathrm{H}_{4}}(\mathrm{u})=\max \left\{\mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right\} \\
& \mathrm{F}_{\mathrm{H}_{4}}(\mathrm{u})=\max \left\{\mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u}), \mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})\right\}, \quad \forall \mathrm{u} \in \mathrm{U} .
\end{aligned}
$$

Example 5. Let H_{1} and H_{2} be two SVNSs in U presented as follows:
$\mathrm{H}_{1}=<(0.6,0.3,0.4)>$ and $\mathrm{H}_{2}=<(0.7,0.3,0.6)>$. Then intersection of H_{1} and H_{2} is presented as follows:
$\mathrm{H}_{1} \cap \mathrm{H}_{2}=<(0.6,0.3,0.6)>$

Some operations of SVNSs [24]:

Let H_{1} and H_{2} be any two SVNSs. Then, addition and multiplication are defined as:

1. $\mathrm{H}_{1} \oplus \mathrm{H}_{2}=<\mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u})+\mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u})-\mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u}) \cdot \mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u}) \cdot \mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u}) \cdot \mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})>\forall \mathrm{u} \in \mathrm{U}$.
2. $\mathrm{H}_{1} \otimes \mathrm{H}_{2}=<\mathrm{T}_{\mathrm{H}_{1}}(\mathrm{u}) \cdot \mathrm{T}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u})+\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})-\mathrm{I}_{\mathrm{H}_{1}}(\mathrm{u}) \cdot \mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u}), \mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u})+\mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})-\mathrm{F}_{\mathrm{H}_{1}}(\mathrm{u})$.

$$
\mathrm{F}_{\mathrm{H}_{2}}(\mathrm{u})>
$$

$$
\forall \mathrm{u} \in \mathrm{U} .
$$

Example 6. Let H_{1} and H_{2} be two SVNSs in U presented as follows:
$\mathrm{H}_{1}=\left\langle 0.6,0.3,0.4>\right.$ and $\mathrm{H}_{2}=<0.7,0.3,0.6 \gg$
Then, $\quad 1 . \mathrm{H}_{1} \oplus \mathrm{H}_{2}=<0.88,0.09,0.24>$
2. $\mathrm{H}_{1} \otimes \mathrm{H}_{2}=<0.42,0.51,0.76>$.

3. SN-cross entropy function

In this section, we define a new single valued neutrosophic cross-entropy function for measuring the deviation of single valued neutrosophic variables from an a priori one.

Definition 6. 1. SN-cross entropy function

Let H_{1} and H_{2} be any two SVNSs in $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$. Then, the single valued cross-entropy of H_{1} and H_{2} is denoted by CEss $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ and defined as follows:

$$
\begin{align*}
& \mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\frac{1}{2}\left\{\sum _ { \mathrm { i } = 1 } ^ { \mathrm { n } } \left\langle\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+\right.\right. \\
& {\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+} \\
& \left.\left[\begin{array}{l}
2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right| \\
\sqrt{1+\mid \mathrm{F}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}} \\
\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}
\end{array}\right]\right) \tag{1}
\end{align*}
$$

Example 4.

Let H_{1} and H_{2} be two SVNSs in U , which are given by $\mathrm{H}_{1}=\{\mathrm{u},(.7, .3, .4) \mid \mathrm{u} \in \mathrm{U}\}$ and $\mathrm{H}_{2}=\{\mathrm{u},(.6, .4$, .2)| $\mathrm{u} \in \mathrm{U}\}$. Using Equation (1), the cross entropy value of H_{1} and H_{2} is obtained as $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=0.707$.

Theorem

Single valued neutrosophic cross entropy $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ for any two SVNSs $\mathrm{H}_{1}, \mathrm{H}_{2}$, satisfies the following properties:
i) $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right) \geq 0$.
ii) $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=0$ if and only if $\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \quad \mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \quad \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U}$.
iii) $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}^{\mathrm{c}}, \mathrm{H}_{2}^{\mathrm{c}}\right)$
iv) $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{2}, \mathrm{H}_{1}\right)$

Proof: i)

For all values of $u_{i} \in U,\left|T_{H_{1}}\left(u_{i}\right)\right| \geq 0,\left|T_{H_{2}}\left(u_{i}\right)\right| \geq 0,\left|T_{H_{1}}\left(u_{i}\right)-T_{H_{2}}\left(u_{1}\right)\right| \geq 0,\left.\sqrt{1+\mid T_{H_{1}}\left(u_{i}\right)}\right|^{2} \geq 0,\left.\sqrt{1+\mid T_{H_{2}}\left(u_{i}\right)}\right|^{2} \geq 0$, $\left|\left(1-T_{H_{1}}\left(u_{i}\right)\right)\right| \geq 0,\left|\left(1-T_{H_{2}}\left(u_{i}\right)\right)\right| \geq 0,\left|\left(1-T_{\mathrm{H}_{1}}\left(u_{i}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right| \geq 0, \sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2} \geq 0,\left.\sqrt{1+\mid\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)}\right|^{2} \geq 0}$ Then,
$\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right] \geq 0$
Similarly, $\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{I}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\mid\left(1-\left.\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right] \geq 0$, and
$\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right] \geq 0$
So, $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right) \geq 0$.
Hence complete the proof.
ii)
$\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]=0$,
$\Leftrightarrow \mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)$
$\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]=0$
$\Leftrightarrow \mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)$, and
$\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]=0$,
$\Leftrightarrow \mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)$
So, $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=0$ iff $\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \quad \mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \quad \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U}$.
Hence complete the proof.
iii) Using definition 5, we obtain the following expression
$\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}^{\mathrm{c}}, \mathrm{H}_{2}^{\mathrm{c}}\right)=\frac{1}{2}\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}} /\left[\frac{2 \mid\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \mid\right.}{\sqrt{1+\mid\left(1-\left.\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\mid\left(1-\left.\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}}+\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}\right]+\right.$

$$
\left[\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}+\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}\right]+
$$

$$
\left.\left.\left[\frac{2\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}+\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}\right]\right\}\right\}
$$

$$
=\frac{1}{2}\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}} /\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{T}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+\right.
$$

$$
\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+
$$

$$
\left.\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{F}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\mid\left(1-\left.\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\mid\left(1-\left.\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}}\right]\right\}=\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)
$$

So, $\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}^{\mathrm{c}}, \mathrm{H}_{2}^{\mathrm{c}}\right)$.
Hence complete the proof.

iv) Since,

$$
\begin{aligned}
& \left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|,\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|, \\
& \left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|,\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|=\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|, \\
& \left|\left(1-I_{H_{1}}\left(u_{i}\right)\right)-\left(1-I_{H_{2}}\left(u_{i}\right)\right)\right|=\left|\left(1-I_{H_{2}}\left(u_{i}\right)\right)-\left(1-I_{H_{1}}\left(u_{i}\right)\right)\right|, \\
& \left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|=\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right| \text {, then } \\
& \sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}=\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}, \\
& \sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}=\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}, \\
& \sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}=\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}, \\
& \sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}=\sqrt{1+\mid\left(-\left.\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}, \\
& \sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}=\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}, \\
& \sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}=\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}, \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U} . \\
& \text { So, } \mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}\left(\mathrm{H}_{2}, \mathrm{H}_{1}\right) \text {. }
\end{aligned}
$$

Hence complete the proof.

Definition 7. Weighted SN-cross entropy function

Considering the weight of the element $u_{i}, i=1,2, \ldots, n$ into account, we introduce a weighted SNcross entropy.
We consider the weight $\mathrm{w}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{n})$ for the element $\mathrm{u}_{\mathrm{i}}(\mathrm{i}=1,2, . ., \mathrm{n})$ with the conditions $\mathrm{w}_{\mathrm{i}} \in[0,1]$ and $\sum \mathrm{w}_{\mathrm{i}}=1$.
Then the ${ }^{\mathrm{i}=1} \mathrm{e}$ eighted cross entropy between SVNSs H_{1} and H_{2} can be defined as follows:
$\mathrm{CE}_{5 \mathrm{~S}}^{\mathrm{v}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\frac{1}{2}\left\langle\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{W}_{\mathrm{i}}\left(\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{i}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)^{2}}+\sqrt{1+\left.\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+\right.\right.$
$\left.\left.\left.\left.\left[\frac{2\left|\left.\right|_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\left.\sqrt{1+\mid \mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)^{2}}\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}+\frac{2\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \mid\right.}{\sqrt{1+\mid\left(1-\left.\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\mid\left(1-\left.\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}}\right]+\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}{\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)}{\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left.\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]\right\}\right\rangle\right\}\right\rangle$

Theorem 2.

Single valued neutrosophic weighted SN- cross-entropy (defined in Equation (2)) satisfies the following properties:
i). $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right) \geq 0$.
ii). $C_{S N}^{w}\left(H_{1}, H_{2}\right)=0$, if and only if $T_{H_{1}}\left(u_{i}\right)=T_{H_{2}}\left(u_{i}\right) I_{H_{1}}\left(u_{i}\right)=I_{H_{2}}\left(u_{i}\right), F_{H_{1}}\left(u_{i}\right)=F_{H_{2}}\left(u_{i}\right), \forall u_{i} \in U$.
iii). $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}^{\mathrm{c}}, \mathrm{H}_{2}^{\mathrm{c}}\right)$
iv). $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{2}, \mathrm{H}_{1}\right)$

Proof: i).
For all values of $u_{i} \in U$,
$\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right| \geq 0\left|\mathrm{~T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right| \geq 0$,
$\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right| \geq 0, \sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}} \geq 0, \sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}} \geq 0,\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right| \geq 0,\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right| \geq 0$,
$\left|\left(1-T_{H_{1}}\left(u_{i}\right)\right)-\left(1-T_{H_{2}}\left(u_{i}\right)\right)\right| \geq 0, \sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(u_{i}\right)\right)\right|^{2}} \geq 0, \sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(u_{i}\right)\right)\right|^{2}} \geq 0$, then
$\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right] \geq 0$
Similarly, $\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2 \mid\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \mid\right.}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right] \geq 0$ and
$\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{F}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right] \geq 0$.
Since $\mathrm{w}_{\mathrm{i}} \in[0,1]$ and $\sum^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}=1$, therefore, $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right) \geq 0$.
Hence complete the ${ }^{i=1}$ proof.
ii).

Since,
$\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]=0$,
$\Leftrightarrow \mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)$,
$\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{I}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\mid\left(1-\left.\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}}\right]=0$,
$\Leftrightarrow \mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)$,
$\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]=0$,
$\Leftrightarrow \mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \quad$ and $\mathrm{w}_{\mathrm{i}} \in[0,1], \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}=1, \quad \mathrm{w}_{\mathrm{i}} \geq 0$. So, $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=0$ iff $\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)$,
$\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right), \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U}$.
Hence complete the proof.
iii). Using definition 5, we obtain the following expression
$\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}^{\mathrm{c}}, \mathrm{H}_{2}^{\mathrm{c}}\right)=\frac{1}{2}\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} /\left[\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}+\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}\right]+\right.$

$$
\left[\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\mid\left(1-\left.\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}+\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{I}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}\right]+
$$

$$
\left.\left[\frac{2 \mid\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \mid\right.}{\sqrt{1+\mid\left(1-\left.\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}+\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}\right] /\right\}
$$

$$
=\frac{1}{2}\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} /\left[\frac{2\left|\mathrm{~T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{T}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+\right.
$$

$$
\left[\frac{2\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{I}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}(\mathrm{u})\right|^{2}}}+\frac{2\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|}{\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}}\right]+
$$

$$
\left.\left.\left[\frac{2\left|\mathrm{~F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|}{\sqrt{1+\mid \mathrm{F}_{\mathrm{H}_{1}}\left(\left.\mathrm{u}_{\mathrm{i}}\right|^{2}\right.}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}}+\frac{2 \mid\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right) \mid\right.}{\sqrt{1+\mid\left(1-\left.\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\mid\left(1-\left.\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}}\right]\right)\right\}=\mathrm{CE}_{\mathrm{SN}_{\mathrm{N}}^{\mathrm{w}}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)
$$

So, $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)=\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}^{\mathrm{c}}, \mathrm{H}_{2}^{\mathrm{c}}\right)$.
Hence complete the proof.
iv).

Since $\left|T_{H_{1}}\left(u_{i}\right)-T_{H_{2}}\left(u_{i}\right)\right|=\left|T_{H_{2}}\left(u_{i}\right)-T_{H_{1}}\left(u_{i}\right)\right|,\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|$,
$\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|,\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|=\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|$,
$\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|=\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|,\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|=\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)-\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|$,
we obtain
$\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}=\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}$,
$\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}=\sqrt{1+\left|\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{IH}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}$,
$\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}=\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}+\sqrt{1+\left|\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}}$,
$\sqrt{1+\mid\left(1-\left.\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}=\sqrt{1+\mid\left(-\left.\mathrm{T}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{T}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}$,
$\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}=\sqrt{1+\mid\left(1-\left.\mathrm{I}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{I}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}$,
$\sqrt{1+\mid\left(1-\left.\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right|^{2}\right.}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}=\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{2}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}+\sqrt{1+\left|\left(1-\mathrm{F}_{\mathrm{H}_{1}}\left(\mathrm{u}_{\mathrm{i}}\right)\right)\right|^{2}}, \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U}$.
and $\mathrm{w}_{\mathrm{i}} \in[0,1], \sum^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}=1$.
So, $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}^{1}\right)=\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{H}_{2}, \mathrm{H}_{1}\right)$.
Hence complete the proof.

4. MAGDM strategy using proposed SN-cross entropy meaure under SVNS environment

In this section, we develop a new MAGDM strategy using the proposed NS-cross entropy measure.

4.1 Description of the MAGDM problem

Assume that $A=\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{m}\right\}$ and $G=\left\{G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right\}$ be the discrete set of alternatives and attributes respectively and $W=\left\{W_{1}, w_{2}, w_{3}, \ldots, W_{n}\right\}$ be the weight vector of attributes $G_{j}(j=1,2$, $3, \ldots, n$), where $w_{j} \geq 0$ and $\sum^{n} w_{j}=1$. Assume that $E=\left\{E_{1}, E_{2}, E_{3}, \ldots, E_{p}\right\}$ be the set of decision makers who are employed to evaluate the alternatives. The weight vector of the decision makers $\mathrm{E}_{\mathrm{k}}(\mathrm{k}=1,2,3, \ldots, \rho)$ is $\lambda=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{\rho}\right\}$ (where, $\lambda \geq 0$ and $\sum^{\rho} \lambda_{\mathrm{k}}=1$), which can be determined according to the decision makers expertise, judgment quality and ${ }^{k}{ }^{k}{ }^{1}$ omain knowledge.
Now, we describe the steps of the propsed MAGDM strategy using SN- cross entropy measure.

4.1.1. MAGDM strategy using SN- cross entropy function

Step: 1. Formulate the decision matrices

For MAGDM with SVNSs information, the rating values of the alternatives $A_{i}(i=1,2,3, \ldots, m)$ based on the attribute $G_{j}(j=1,2,3, \ldots, n)$ provided by the k-th decision maker can be expressed in terms of SVNN as $\mathrm{a}_{\mathrm{ij}}^{\mathrm{k}}=<\mathrm{T}_{\mathrm{ij}}^{\mathrm{k}}, I_{\mathrm{ij}}^{\mathrm{k}}, \mathrm{F}_{\mathrm{ij}}^{\mathrm{k}}>(\mathrm{i}=1,2,3, \ldots, \mathrm{~m} ; \mathrm{j}=1,2,3, \ldots, \mathrm{n} ; \mathrm{k}=1,2,3, \ldots, \rho)$. We present these rating values of alternatives provided by the decision makers in matrix form as follows:
$M^{k}=\left(\begin{array}{ccccc} & G_{1} & G_{2} & \ldots & . G_{n} \\ A_{1} & a_{11}^{k} & a_{12}^{k} \ldots & a_{1 n}^{k} \\ A_{2} & a_{21}^{k} & a_{22}^{k} & & a_{2 n}^{k} \\ \cdot & \cdot & \cdots & \cdot \\ A_{m} & a_{m 1}^{k} & a_{m 2}^{k} & \cdots & a_{m n}^{k}\end{array}\right)$
Step: 2. Formulate the weighted aggregated decision matrix
For obtaining one group decision, we aggregate all individual decision matrices to an aggregated decision matrix using the Equation (9) as follows:
$M=\left(\begin{array}{lllll} & G_{1} & G_{2} & \ldots & . G_{n} \\ A_{1} & a_{11} & a_{12} & \ldots & a_{1 n} \\ A_{2} & a_{21} & a_{22} & & a_{2 n} \\ . & \cdot & \ldots & \cdot & \\ A_{m} & a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right)$
Here, $a_{i j}=<1-\prod_{\mathrm{k}=1}^{\rho}\left(1-T_{\mathrm{ij}}^{\mathrm{k}}\right)^{\mathrm{w}_{\mathrm{j}}}, \prod_{\mathrm{k}=1}^{\rho}\left(I_{\mathrm{ij}}^{\mathrm{k}}\right)^{\mathrm{w}_{\mathrm{j}}}, \prod_{\mathrm{k}=1}^{\rho}\left(\mathrm{F}_{\mathrm{ij}}^{\mathrm{k}}\right)^{\mathrm{w}_{\mathrm{j}}}>\ldots \ldots$ (9) and $\quad(\mathrm{i}=1,2,3, \ldots, \mathrm{~m} ; \mathrm{j}=1,2,3, \ldots, \mathrm{n} ; \mathrm{k}$ $=1,2,3, \ldots, \rho)$.

Step: 3. Formulate priori/ ideal decision matrix

In the MAGDM, the priori decision matrix has been used to select the best alternatives among the set of collected feasible alternatives. In decision making situation, we use the following decision matrix as priori decision matrix.
$P=\left(\begin{array}{ccccc} & G_{1} & G_{2} & \ldots & G_{n} \\ A_{1} & a_{11}^{*} & a_{12}^{*} & a_{12} & \ldots \\ A_{2} & a_{1 n}^{*} \\ A_{2} & a_{21}^{*} & a_{22}^{*} & a_{2 n}^{*} \\ & & & \ldots & a_{2 n}^{*} \\ A_{m} & a_{m 1}^{*} & a_{m 2}^{*} & \ldots & a_{m n}^{*}\end{array}\right)$
where, $a_{i j}^{*}=<\max \left(T_{i j}^{k}\right), \min \left(I_{i j}^{k}\right), \min \left(F_{i j}^{k}\right)>$ and $(i=1,2,3, \ldots, m ; j=1,2,3, \ldots, n)$.

Step: 4. Calculate the weighted SN- cross entropy measure

Using equation (2), we calculate weighted cross entropy value between aggregate matrix and priori matrix. The cross entropy values can be presented in matrix form as follows:
${ }^{\mathrm{SN}} \mathrm{M}_{\mathrm{CE}}^{\mathrm{w}}=\left(\begin{array}{l}\mathrm{CE}_{\mathrm{SN}}^{w}\left(\mathrm{~A}_{1}\right) \\ \mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{A}_{2}\right) \\ \ldots . . \\ \ldots \ldots \ldots \ldots \\ \mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{A}_{\mathrm{m}}\right)\end{array}\right)$
Step: 5. Rank the priority
Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative. Therefore, the preference priority order of all the alternatives can be determined according to the increasing order of the cross entropy values $\mathrm{CE}_{\mathrm{SN}}^{\mathrm{w}}\left(\mathrm{A}_{\mathrm{i}}\right)(\mathrm{i}=1,2,3, \ldots, \mathrm{~m})$. Smallest cross entropy value indicates the best alternative and greatest cross entropy value indicates the worst alternative.

Step: 6. Select the best alternative

From the preference rank order (from step 5), we select the best alternative.

Figure. 1 Decision making procedure of proposed MAGDM method

5. Illustrative example

In this section, we solve an illustrative example adapted from [12] of MAGDM problems to reflect the feasibility, applicability and efficiency of the proposed strategy under SVNS environment.
Now, we use the example [12] for cultivation and analysis. A venture capital firm intends to make evaluation and selection to five enterprises with the investment potential:

1) Automobile company (A_{1})
2) Military manufacturing enterprise (A_{2})
3) TV media company (A_{3})
4) Food enterprises $\left(A_{4}\right)$
5) Computer software company (A_{5})

On the basis of four attributes namely:

1) Social and political factor $\left(\mathrm{G}_{1}\right)$
2) The environmental factor $\left(\mathrm{G}_{2}\right)$
3) Investment risk factor (G_{3})
4) The enterprise growth factor $\left(\mathrm{G}_{4}\right)$.

The investment firm makes a panel of three decision makers $E=\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}\right\}$ having their weight vector $\lambda=\{.42,28, .30\}$ and weight vector of attributes is $\mathrm{W}=\{.24, .25, .23, .28\}$.
The steps of decision making strategy (4.1.1.) to rank alternatives are presented as follows:

Step: 1. Formulate the decision matrices

We represent the rating values of alternatives $A_{i}(i=1,2,3,4,5)$ with respects to the attributes G_{j} $(j=1,2,3,4)$ provided by the decision makers $E_{k} \quad(k=1,2,3)$ in matrix form as follows:

Decision matrix for E_{1} decision maker
$M^{1}=\left(\begin{array}{cccc} & G_{1} & \mathrm{G}_{2} & \mathrm{G}_{3}\end{array} \mathrm{G}_{4} \quad\left(\begin{array}{cc} \\ \mathrm{A}_{1} & (0.9,0.5,0.4) \\ \mathrm{A}_{2} & (0.7,0.4,0.4)(0.7,0.3,0.4)(0.5,0.4,0.9) \\ \mathrm{A}_{3} & (0.8,0.4,0.4)(0.7,0.4,0.3)(0.9,0.6,0.5)(0.9,0.1,0.3) \\ \mathrm{A}_{4} & (0.5,0.8,0.7)(0.6,0.3,0.4)(0.9,0.7,0.6)(0.7,0.3,0.3) \\ \mathrm{A}_{5} & (0.8,0.4,0.3)(0.5,0.0 .5)(0.5,0.4,0.7) \\ & (0.0 .5)(0.6,0.4,0.4)(0.9,0.7,0.5)\end{array}\right)\right.$
Decision matrix for E_{2} decision maker

$$
M^{2}=\left(\begin{array}{ccc}
\mathrm{G}_{1} & \mathrm{G}_{2} & \mathrm{G}_{3} \tag{23}
\end{array} \mathrm{G}_{4} \mathrm{C}(0.6,0.5)\right.
$$

Decision matrix for E_{3} decision maker
$M^{3}=\left(\begin{array}{cccc}G_{1} & G_{2} & G_{3} & G_{4} \\ A_{1} & (0.7,0.2,0.5)(0.6,0.4,0.4)(0.7,0.4,0.5)(0.9,0.4,0.3) \\ A_{2} & (0.6,0.5,0.5)(0.9,0.3,0.4)(0.7,0.4,0.3)(0.8,0.4,0.5) \\ A_{3} & (0.8,0.3,0.5)(0.9,0.3,0.4)(0.8,0.3,0.4)(0.7,0.3,0.4) \\ A_{4} & (0.9,0.3,0.4)(0.6,0.3,0.4)(0.5,0.2,0.4)(0.7,0.3,0.5) \\ A_{5} & (0.8,0.3,0.3)(0.6,0.4,0.3)(0.6,0.3,0.4)(0.7,0.3,0.5)\end{array}\right)$

Step: 2. Formulate the weighted aggregated decision matrix

Using the equation (9), the aggregated decision matrix is presented as follows:

Aggregated decision matrix
$M=\left(\begin{array}{cccc} & \mathrm{G}_{1} & \mathrm{G}_{2} & \mathrm{G}_{3}\end{array} \mathrm{G}_{4} \quad\left(\begin{array}{ccc} \\ \mathrm{A}_{1} & (0.8,0.3,0.4) & (0.6,0.4,0.4) \\ \mathrm{A}_{2} & (0.8,0.4,0.4)(0.7,0.4,0.5) \\ \mathrm{A}_{3} & (0.8,0.4,0.4) & (0.8,0.3,0.4) \\ (0.8,0.4,0.3,0.3) & (0.9,0.5,0.5)(0.8,0.2,0.3) \\ \mathrm{A}_{4} & (0.7,0.0 .3,0.4) \\ \mathrm{A}_{5} & (0.8,0.4,0.4)(0.6,0.3,0.4) & (0.6,0.2,0.4)(0.7,0.4,0.5) \\ & (0.7,0.4,0.4)(0.8,0.5,0.5)\end{array}\right)\right.$

Step: 3. Formulate priori/ ideal decision matrix Priori/ ideal decision matrix

$$
P=\left(\begin{array}{ccccc}
& G_{1} & \mathrm{G}_{2} & \mathrm{G}_{3} & \mathrm{G}_{4} \tag{26}\\
\mathrm{~A}_{1} & (1,0,0) & (1,0,0) & (1,0,0) & (1,0,0) \\
\mathrm{A}_{2} & (1,0,0) & (1,0,0) & (1,0,0) & (1,0,0) \\
\mathrm{A}_{3} & (1,0,0) & (1,0,0) & (1,0,0) & (1,0,0) \\
\mathrm{A}_{4} & (1,0,0) & (1,0,0) & (1,0,0) & (1,0,0) \\
\mathrm{A}_{5} & (1,0,0) & (1,0,0) & (1,0,0) & (1,0,0)
\end{array}\right)
$$

Step: 4. Calculate the weighted SVNS cross entropy matrix

Using the equation (2), we calculate the single valued weighted cross entropy values between ideal matrix and weighted aggregated decision matrix.
$\mathrm{SN}_{\mathrm{M}}^{\mathrm{CE}} \mathrm{w}^{\mathrm{w}}=\left(\begin{array}{l}0.935 \\ 0.775 \\ 0.840 \\ 1.000 \\ 0.980\end{array}\right)$

Step: 5. Rank the priority

The cross entropy values of alternatives are arranged in increasing order as follows:
$0.775<0.840<0.935<0.980<1.000$.
Alternatives are then preference ranked as follows:
$\mathrm{A}_{2}>\mathrm{A}_{3}>\mathrm{A}_{1}>\mathrm{A}_{5}>\mathrm{A}_{4}$.

Step: 6. Select the best alternative

From step 5, we identify A_{2} is the best alternative. Hence, military manufacturing enterprise $\left(A_{2}\right)$ is the best alternative for investment.

Figure.2. Bar diagram of alternatives versus cross entropy values of alternatives

Figure.3. Relation between cross entropy values and acceptance level line of alternatives.
In Figure 3, we represent the relation between cross entropy values and acceptance values of alternatives. The range of acceptance level for five alternatives is taken five points. The high acceptance level of alternative indicates the best alternative for acceptance and low acceptance level of alternative indicates the poor acceptance alternative.

We see from Figure 3 that alternative A_{2} has the smallest cross entropy value and the highest acceptance level. Therefore A_{2} is the best alternative for acceptance. Figure 3 indicates that alternative A_{4} has highest cross entropy value and lowest acceptance value that means A_{4} is the worst alternative. Finally, we conclude that the relation between cross entropy values and acceptance value of alternatives is opposite in nature.

6. Comparative study and discussion

In literature only MADM strategy [88, 91] have been proposed. So the proposed MAGDM is noncomparable. However, for comparison purpose, the MADM strategies [88, 91] are transformed into MAGDM and for calculation purpose we assume the same set of weigts for the decision makers. Then the obtained result derived from the proposed method is compared the results obtained from two existing strategies [88, 91]under SVNS environment. We present ranking order of the alternatives (see Table 1) using same illustrative example for the proposed strategy and two [88, 91].
Table 1. Ranking order of alternatives using different single valued neutrosophic cross entropy function

Proposed Strategy	Ye [91] Strategy	Ye [88] Strategy
$\mathrm{CE}_{\mathrm{NS}}^{\mathrm{w}}\left(\mathrm{A}_{1}\right)=.935$	$\mathrm{~N}_{\mathrm{w}}\left(\mathrm{A}_{1}\right)=.493$	$\mathrm{D}\left(\mathrm{A}_{1}\right)=.365$
$\mathrm{CE}_{\mathrm{NS}}^{\mathrm{w}}\left(\mathrm{A}_{2}\right)=.775$	$\mathrm{~N}_{\mathrm{w}}\left(\mathrm{A}_{2}\right)=.367$	$\mathrm{D}\left(\mathrm{A}_{2}\right)=.244$
$\mathrm{CE}_{\mathrm{NS}}^{\mathrm{w}}\left(\mathrm{A}_{3}\right)=.840 \mathrm{CE}_{\mathrm{NS}} \mathrm{F}\left(\mathrm{A}_{4}\right)=1.00$	$\mathrm{~N}_{\mathrm{w}}\left(\mathrm{A}_{3}\right)=.415$	$\mathrm{D}\left(\mathrm{A}_{3}\right)=.288$
$\mathrm{CE}_{\mathrm{NS}}^{\mathrm{w}}\left(\mathrm{A}_{5}\right)=.980$	$\mathrm{~N}_{\mathrm{w}}\left(\mathrm{A}_{4}\right)=.410$	$\mathrm{D}\left(\mathrm{A}_{4}\right)=.414$
	$\mathrm{~N}_{\mathrm{w}}\left(\mathrm{A}_{5}\right)=.510$	$\mathrm{D}\left(\mathrm{A}_{5}\right)=.431$
Preference ranking order	Preference ranking order	Preference ranking order
$\mathrm{A}_{2} \succ \mathrm{~A}_{3} \succ \mathrm{~A}_{1} \succ \mathrm{~A}_{5} \succ \mathrm{~A}_{4}$	$\mathrm{~A}_{2} \succ \mathrm{~A}_{4} \succ \mathrm{~A}_{3} \succ \mathrm{~A}_{1} \succ \mathrm{~A}_{5}$	$\mathrm{~A}_{2} \succ \mathrm{~A}_{3} \succ \mathrm{~A}_{1} \succ \mathrm{~A}_{4} \succ \mathrm{~A}_{5}$

i). The MADM strategies [88] and [91] are not applicable for MAGDM problems.The proposed MAGDM strategy is free from such drawbacks.
ii). Ye [88] proposed cross entropy that does not satisfy the symmetrical property straightforward and is undefined for some situation [91] but the proposed strategy satisfies symmetry property and free from undefined phenomenon.
iii) The best alternative is the same for the three strategies. However, the preference ranking orders are not the same.

Figure.4. Graphical representation of ranking order of five alternatives based on three strategies.

7. Conclusion

In this paper we have defined a new cross entropy measure in SVNS environment which is free from all the drawback of existence cross entropy measures. We have proved the basic properties of the SN cross entropy measure. We also defined weighted SN-cross entropy measure and proved its basic properties. Based on the weighted SN - cross entropy measure we have developed a novel MAGDM strategy to solve neutrosophic group decision making problems. We have at first proposed MAGDM strategy based on SN - cross entropy measure. Other existing cross entropy measures can deal only MADM problem with single decision maker. So in general, our proposed MAGDM strategy is not comparable with the existing MADM strategies. However, for comparision with the existing strategies, at first we have made them MAGDM strategies and considerd the same set of weights of the decision makers and presented comparisonanalysis. Finally, we solve a MAGDM problem to show the feasibility, applicability and efficiency of the proposed MAGDM strategy. In future study, the proposed MAGDM stragey based on SN- cross entropy can be applied in teacher selection, pattern recognition, weaver selection, medical treatment selection option, and other practical problems.
Acknowledgments: The authors would like to acknowledge the constructive comments and suggestions of the anonymous referees.

Author Contributions: "Surapati Pramanik conceived and designed the problem; Shyamal Dalapati solved the problem; Surapati Pramanik, Shariful Alam, Florentin Smarandache and Tapan Kumar Roy analyzed the results; Surapati Pramanik and Shyamal Dalapati wrote the paper."
Conflicts of Interest: The authors declare that there is no conflict of interest for publication of the article.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-356.
2. Bellman, R.; Zadeh, L. A. Decision-making in A fuzzy environment. Manage. Sci. 1970, 17, 4, 141-164.
3. Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96.
4. Pramanik, S.; Mukhopadhyaya, D. Grey relational analysis based intuitionistic fuzzy multi-criteria group decision-making approach for teacher selection in higher education. Int. J. of Comput. Applic. 2011, 34, 21-29. doi: 10.5120/4138-5985.
5. Mondal, K.; Pramanik, S. Intuitionistic fuzzy multi criteria group decision making approach to qualitybrick selection problem. J. Appl. Quant. Methods. 2014, 9, 35-50.
6. Dey, P.P.; Pramanik, S.; Giri, B.C. Multi-criteria group decision making in intuitionistic fuzzy environment based on grey relational analysis for weaver selection in Khadi institution. J. Appl. Quant. Methods. 2015, 10, 1-14.
7. Ye, J. Multicriteria fuzzy decision-making method based on the intuitionistic fuzzy cross-entropy, in: Tang Y C, Lawry J and Huynh VN (eds), Proceedings in International Conference on Intelligent HumanMachine Systems and Cybernetics, IEEE Computer Society, 2009, 1, 59-61.
8. Chen, S. M.; Chang, C. H. A novel similarity measure between Atanassov's intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition. Inf. Sci. 2015, 291, 96-114.
9. Chen, S. M.; Cheng, S. H.; Chiou, C. H. Fuzzy multi-attribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf. Fusion 2016, 27, 215-227.
10. Wang, J.Q.; Han, Z.Q.; Zhang, H. Y. Multi-criteria group decision making method based on intuitionistic interval fuzzy information. Grp. Deci. Nego. 2014, 23, 4, 715-733.
11. Yue, Z. L. TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting. Inf. Sci. 2014, 277, 141-153.
12. He, X.; Liu, W. F. An intuitionistic fuzzy multi-attribute decision-making method with preference on alternatives. Operat. Res.\& Manage. Sci. 2013, 22, 36-40.
13. Zadeh, L. A. Probability Measures of Fuzzy Events. J. Math. Analy. Appl. 1968, 23, 421-427.
14. Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systs. 1996, 78, 305-316.
15. Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Systs. 2001, 118, 467-477.
16. Wei, C. P.; Wang, P.; Zhang, Y. Z. Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Inf. Sci. 2011, 181, 4273-4286
17. Li, X. Y. Interval-valued intuitionistic fuzzy continuous cross entropy and its application in multiattribute decision-making, Com. Engg. Appl. 2013, 49, 15, 234-237.
18. Shang, X. G.; Jiang, W. S. A note on fuzzy information measures, Patt. Recog. Lett. 1997, 18, 425-432.
19. Vlachos, I. K.; Sergiadis, G. D. Intuitionistic fuzzy information applications to pattern recognition. Patt. Recog. Lett. 2007, 28, 197-206.
20. Ye, J. Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision-making method based on the weights of alternatives, Expert Syst. Appl. 2011, 38, 6179-6183.
21. Xia, M. M.; Xu, Z. S. Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Inf. Fusion 2012, 13, 31-47.
22. Tong, X.; Yu, L. A novel MADM approach based on fuzzy cross entropy with interval-valued intuitionistic fuzzy sets. Math. Prob. engg. 2015. http://dx.doi.org/10.1155/2015/965040.
23. Smarandache, F. A unifying field in logics. In Neutrosophy: Neutrosophic probability, set and logic; American Research Press: Rehoboth, DE, USA, 1999.
24. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace multistructure 2010, 4, 410-413.
25. Pramanik, S.; Biswas, P; Giri, B. C. Hybrid vector similarity measures and their applications to multiattribute decision making under neutrosophic environment. Neural Comput. Appl. 2017, 28,1163-1176, doi:10.1007/s00521-015-2125-3.
26. Biswas, P.; Pramanik, S.; Giri, B. C. Entropy based grey relational analysis method for multi-attribute decision making under single valued neutrosophic assessments. Neut. Sets Syst. 2014, 2, 102-110.
27. Biswas, P.; Pramanik, S.; Giri, B. C. A new methodology for neutrosophic multi-attribute decision making with unknown weight information. Neut. Sets Syst. 2014, 3, 42-52.
28. Biswas, P.; Pramanik, S.; Giri, B. C. TOPSIS method for multi-attribute group decision-making under single valued neutrosophic environment. Neural Compt. Appl. 2015, doi: 10.1007/s00521-015-1891-2.
29. Biswas, P.; Pramanik, S.; Giri, B. C. Giri. Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neut. Sets Syst. 2016, 12, 20-40.
30. Biswas, P.; Pramanik, S.; Giri, B. C. Value and ambiguity index based ranking method of singlevalued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neut. Sets Syst. 2016, 12, 127-138.
31. Biswas, P.;Pramanik, S.; Giri, B. C. Giri. Multi-attribute group decision making based on expected value of neutrosophic trapezoidal numbers. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2017; Volume II, In Press.
32. Biswas, P.; Pramanik, S.; Giri, B. C. Non-linear programming approach for single-valued neutrosophic TOPSIS method. New Mat. Nat. Comp. 2017, In Press.
33. Deli. I.; Subas, Y. A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int. J. Mach. Learning and Cybernetics 2016, doi:10.1007/s13042016-0505-3.
34. Ji, P. Wang, J. Q.; Zang, H. Y. Zhang. Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third-party logistics providers. Neural Comput \mathcal{E} Applic, 2016 . doi:10.1007/s00521-016-2660-6.
35. Kharal, A. A neutrosophic multi-criteria decision making method. New Math. Nat. Comput. 2014, 10, 143-162.
36. Liang, R. X.; Wang, J. Q.; Li, L. Multi-criteria group decision making method based on interdependent inputs of single valued trapezoidal neutrosophic information. Neural Comput \mathcal{E} Applic. 2016, doi:10.1007/s00521-016-2672-2.
37. Liang, R. X.; Wang, J. Q.; Zhang, H. Y. A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information. Neural Comput \mathcal{E} Applic. 2017, Doi: 10.1007/s00521-017-2925-8.
38. Liu, P.; Chu, Y.; Li, Y.; Chen, Y. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. Int. J. Fuzzy Syst. 2014, 16, 242-255.
39. Liu, P. D.; Li; H. G. Multiple attribute decision-making method based on some normal neutrosophic Bonferroni mean operators. Neural Comput \& Applic, 2017, 28, 179-194.
40. Liu, P.; Wang, Y. Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput \& Applic, 2014, 25, 2001-2010.
41. Peng, J. J.; Wang, J. Q.; Wang, J.; Zhang, H. Y.; Chen, X. H. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342-2358.
42. Peng, J.; Wang, J.; Zhang, H.; Chen, X. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336-346.
43. Pramanik, S.; Banerjee, D.; Giri, B. C. Multi - criteria group decision making model in neutrosophic refined set and its application. Global J. Engg. Sci. \& Research Manage. 2016, 3, 12-18.
44. Pramanik, S.; Dalapati, S.; Roy, T. K. Logistics center location selection approach based on neutrosophic multi-criteria decision making. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, 161-174, ISBN 978-1-59973-498-9.
45. Sahin, R.; Karabacak, M. A multi attribute decision making method based on inclusion measure for interval neutrosophic sets. Int. J. Engg. \& Appl. Sci. 2014, 2, 13-15.
46. Sahin, R.; Kucuk, A. Subsethood measure for single valued neutrosophic sets. J. Intell. Fuzzy Syst. 2014, doi:10.3233/IFS-141304.
47. Sahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 2017-2029.
48. Sodenkamp, M. Models, strategies and applications of group multiple-criteria decision analysis in complex and uncertain systems. Dissertation, University of Paderborn, 2013, Germany.
49. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386-394.
50. Ye, J. Single valued neutrosophic cross-entropy for multi criteria decision making problems. Appl. Math. Modell. 2013, 38, 1170-1175.
51. Ye, J. A multi criteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. \& Fuzzy Syst. 2014, 26, 2459-2466.
52. Ye, J. Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Comput \& Applic, 2015, 26,1157-1166.
53. Ye, J. Bidirectional projection method for multiple attribute group decision making with neutrosophic number. Neural Comput \mathcal{E} Applic, 2015, doi: 10.1007/s00521-015-2123-5.
54. Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their decision - making method for mechanical design scheme. J. Exper. \& Theor. Arti. Intell. 2016, doi:10.1080/0952813X.2016.1259263.
55. Pramanik, S.; Roy, T. K. Neutrosophic game theoretic approach to Indo-Pak conflict over JammuKashmir. Neut. Sets \& Syst. 2014, 2, 82-101.
56. Mondal, K.; Pramanik, S. Multi-criteria group decision making approach for teacher recruitment in higher education under simplified Neutrosophic environment. Neut. Sets \& Syst. 2014, 6, 28-34.
57. Mondal, K.; Pramanik, S. Neutrosophic decision making model of school choice. Neut. Sets \& Syst. 2015, 7, 62-68.
58. Cheng, H. D.; Guo, Y. A new neutrosophic approach to image thresholding. New Math. \& Nat. Comput. 2008, 4, 291-308.
59. Guo, Y.; Cheng, H. D. New neutrosophic approach to image segmentation. Patt. Recog. 2009, 42, 587595.
60. Guo, Y.; Sengur, A.; Ye, J. A novel image thresholding algorithm based on neutrosophic similarity score. Measurement, 2014, 58, 175-186.
61. Ye, J. Single valued neutrosophic minimum spanning tree and its clustering method. J. Intell. Syst. 2014, 23,311-324.
62. Ye, J. Clustering strategies using distance-based similarity measures of single-valued neutrosophic sets. J. Intell. Syst. 2014, 23, 379-389.
63. Mondal, K.; Pramanik, S. A study on problems of Hijras in West Bengal based on neutrosophic cognitive maps. Neut. Sets \mathcal{E} Syst. 2014, 5, 21-26.
64. Pramanik, S.; Chakrabarti. S. A study on problems of construction workers in West Bengal based on neutrosophic cognitive maps. Int. J. Innovat. Research in Sci. Engg. \& Tech. 2013, 2, 6387-6394.
65. Maji, P. K. Neutrosophic soft set. Annals Fuzzy Math. \& Inf. 2012, 5, 157-168.
66. Maji, P. K. Neutrosophic soft set approach to a decision-making problem. Annals Fuzzy Math. \& Inf. 2013, 3, 313-319.
67. Sahin, R.; Kucuk, A. Generalized neutrosophic soft set and its integration to decision-making problem. Appl. Math. E Inf. Sci. 2014, 8, 2751-2759.
68. Dey, P.P.; Pramanik, S.; Giri, B.C. Neutrosophic soft multi-attribute decision making based on grey relational projection method. Neut. Sets \mathcal{E} Syst. 2016, 11, 98-106.
69. Dey, P.P.; Pramanik, S.; Giri, B.C. Neutrosophic soft multi-attribute group decision making based on grey relational analysis method. J. New Results in Sci. 2016, 10, 25-37.
70. Dey, P.P.; Pramanik, S.; Giri, B.C. Generalized neutrosophic soft multi-attribute group decision making based on TOPSIS. Critical Review, 2015, 11, 41-55.
71. Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput \& Applic 2016, DOI 10.1007/s00521-015-2154-y.
72. Ali, M.; Dat, L. Q.; Son, L. H.; Smarandache, F. Interval complex neutrosophic set: formulation and applications in decision-making. Int. J. Fuzzy syst. 2017. https://doi.org/10.1007/s40815-017-0380-4.
73. Broumi, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Ital. J. Pure \& Appl. Math. 2014, 32, 493502.
74. Broumi, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Neut. Sets \& Syst. 2014, 3, 60-66.
75. Yang, H. L.; Zhang, C. L.; Guo, Z. L.; Liu, Y. L.; Liao, X. A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model. Soft Comput. 2016, 1-15, doi:10.1007/s00500-016-2356-y.
76. Mondal, K.; Pramanik, S. Rough neutrosophic multi-attribute decision-making based on grey relational analysis. Neut. Sets \mathcal{E} Syst. 2015, 7, 8-17.
77. Mondal, K.; Pramanik, S. Rough neutrosophic multi-attribute decision-making based on rough accuracy score function. Neut. Sets \& Syst. 2015, 8, 14-21.
78. Mondal, K.; Pramanik, S.; Smarandache, F. Several trigonometric Hamming similarity measures of rough neutrosophic sets and their applications in decision making. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, 93103, ISBN 978-1-59973-498-9.
79. Mondal, K.; Pramanik, S.; Smarandache, F. Multi-attribute decision making based on rough neutrosophic variational coefficient similarity measure. Neut. Sets \& Syst, 2016, 13, 3-17.
80. Mondal, K.; Pramanik, S.; Smarandache, F. Rough neutrosophic TOPSIS for multi-attribute group decision making. . Neut. Sets \& Syst, 2016, 13, 105-117.
81. Şahin, M.; Alkhazaleh, S.; Uluçay, V. Neutrosophic soft expert sets. Appl. Math. 2015, 6, 116-127.
82. Pramanik, S.; Dey, P. P.; Giri, B. C. TOPSIS for single valued neutrosophic soft expert set based multiattribute decision making problems. Neut. Sets \& Syst, 2015, 10, 88-95.
83. Pramanik, S.; Mondal, K. Rough bipolar neutrosophic set. Global J. Engg. Sci. \& Research Manage. 2016, 3, 71-81.
84. Mondal, K.; Pramanik, S. Tri-complex rough neutrosophic similarity measure and its application in multi-attribute decision making. Critical Review. 2015, 11, 26-40.
85. Mondal, K.; Pramanik, S.; Smarandache, F. Rough neutrosophic hyper-complex set and its application to multi-attribute decision making. Critical Review, 2016, 13, 111-126.
86. Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing , 2005, Hexis, Phoenix, AZ, USA.
87. Majumdar, P.; Samanta, S. K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 1245-1252.
88. Ye, J. Single valued neutrosophic cross-entropy for multi criteria decision making problems. Appl. Math. Modell. 2014, 38, 1170-1175.
89. Sahin, R. Cross-entropy measure on interval neutrosophic sets and its applications in multi criteria decision making. Neural Comput \& Applic, 2015, DOI 10.1007/s00521-015-2131-5.
90. Tian, Z. P.; Zhang, H. Y.; Wang, J.; Wang, J. Q.; Chen, X. H. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2015. DOI: 10.1080/00207721.2015.1102359.
91. Ye, J. Improved cross entropy measures of single valued neutrosophic sets and interval neutrosophic sets and their multi criteria decision making strategies. Cybernetics \& Inf. Tech. 2015, 15, 13-26. DOI: 10.1515/cait-2015-0051.
