Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Neurodegeneration and Sensorimotor Deficits in the Mouse Model of Traumatic Brain Injury

Version 1 : Received: 27 December 2017 / Approved: 28 December 2017 / Online: 28 December 2017 (08:58:32 CET)

A peer-reviewed article of this Preprint also exists.

Bhowmick, S.; D‘Mello, V.; Ponery, N.; Abdul-Muneer, P.M. Neurodegeneration and Sensorimotor Deficits in the Mouse Model of Traumatic Brain Injury. Brain Sci. 2018, 8, 11. Bhowmick, S.; D‘Mello, V.; Ponery, N.; Abdul-Muneer, P.M. Neurodegeneration and Sensorimotor Deficits in the Mouse Model of Traumatic Brain Injury. Brain Sci. 2018, 8, 11.

Abstract

Traumatic brain injury (TBI) can result in persistent sensorimotor and cognitive deficits, which occur through a cascade of deleterious pathophysiological events over time. In this study, we investigated the hypothesis that neurodegeneration caused by TBI leads to impairments in sensorimotor function. TBI induces the activation of the caspase-3 enzyme, which triggers cell apoptosis in an in vivo model of fluid percussion injury (FPI). We analyzed caspase-3 mediated apoptosis by TUNEL staining and PARP and annexin V western blotting. We correlated the neurodegeneration with sensorimotor deficits by conducting the animal behavioral tests including grid walk, balance beam, inverted screen test, and climb test. Our study demonstrated that the excess cell death or neurodegeneration correlated with the neuronal dysfunction and sensorimotor impairments associated with TBI.

Keywords

traumatic brain injury; fluid percussion injury; neurodegeneration; apoptosis; sensorimotor deficit

Subject

Biology and Life Sciences, Neuroscience and Neurology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.