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Abstract: The statistical bundle is the set of couples (Q, W) of a probability density Q and a random1

variable W such that EQ [W] = 0. On a finite state space, we assume Q to be a probability density with2

respect to the uniform probability and give an affine atlas of charts such that the resulting manifold is3

a model for Information Geometry. Velocity and accelleration of a one-dimensional statistical model4

are computed in this set up. The Euler-Lagrange equations are derived from the Lagrange action5

integral. An example of Lagrangian using minus the entropy as potential energy is briefly discussed.6
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1. Introduction8

The set-up of classical Lagrangian Mechanics is a finite-dimensional Riemannian manifold. For9

example, see the monographs by V.I. Arnold [1] and by R. Abraham and J.E. Mardsen [2]. Classical10

Information geometry, as it was defined in the monograph by S.-I. Amari and H. Nagaoka [3] views11

parametric statistical models as a manifold endowed with a dually-flat connection. In a recent paper,12

M. Leok and J. Zhang [4] have pointed out the natural relation between these two topics and have13

given a wide overview of the mathematical structures involved.14

In the present paper, we take up the same research program with two further qualification. First,15

we assume a non-parametric approach by considering the full set of positive probability functions on a16

finite set, as it was done, for example, in our review paper [5]. The discussion is restricted here to a17

finite state space to avoid difficult technical problems. Second, we consider a specific expression of18

the tangent space of the statistical manifold, which is an Hilbert bundle that we call statistical bundle.19

Our aim is to emphasize the basic statistical intuition of the geometric quantities involved. Because20

of that, we choose to use systematically the language of non-parametric differential geometry as it is21

developed, for example, in S. Lang monograph [6].22

We use here our version of Information Geometry, see the review paper [5]. Preliminary versions23

of this paper have been presented at the SigmaPhy2017 Conference held in Corfu, Greece, Jul. 10-1424

2017 and at a seminar held at Collegio Carlo Alberto, Moncalieri, on Sep. 5, 2017. In these early25

versions we did not refer to Leok and Zhang work we where unaware of at that time.26

In Sec. 2 we review the definition and properties of the statistical bundle, and of the affine atlas27

that endows it with a manifold stucture, and a natural family of transports between the fibers. In Sec.28

3 we develop the formalism of the tangent space of the statistical bundle and define the velocity and29

accelleration of a one-dimensional statistical model. The derivation of the Euler-Lagrange equations,30

together with a relevant example, is discussed in Sec. 4.31
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2. Statistical bundle32

We cosider a finite sample space Ω, with #Ω = N. The probability simplex is ∆(Ω) and ∆◦(Ω)33

is its interior. The uniform probability on Ω is denoted µ, µ(x) = 1
N , x ∈ Ω. The maximal exponential34

family E (µ) is the set of all strictly positive probability densities of (Ω, µ). The expected value of35

f : Ω→ R with respect to the density P ∈ E (µ) is denoted EP [ f ] = Eµ [ f P] = 1
N ∑x∈Ω f (x)P(x).36

In [5,7,8] it is made the case for the statistical bundle being the key structure of Information37

Geometry.38

The statistical bundle with base Ω is39

S E (µ) =
{
(Q, V)

∣∣Q ∈ E (µ) ,EQ [V] = 0
}

. (1)

The statistical bundle is a semi-algebraic subset of R2N i.e., it is defined by algebraic equations40

and strict inequalities. It is trivially a real manifold. At each Q ∈ E (µ) the fiber SQ E (µ) is endowed41

with the scalar product42

(V1, V2) 7→ 〈V1, V2〉Q = EQ [V1V1] = CovQ (V1, V2) . (2)

We add to this structure a special affine atlas of charts in order to show a structure of affine43

manifold which is of interest in the statistical applications.44

The exponential atlas of the statistical manifold S E (µ) is the collection of charts given for each45

P ∈ E (µ) by46

sP : S E (µ) 3 (Q, V) 7→ (sP(Q), eUP
QV) ∈ SP E (µ)× SP E (µ) , (3)

where (with a slight abuse of notation)47

sP(Q) = log
Q
P
−EP

[
log

Q
P

]
, eUP

QV = V −EP [V] . (4)

As sP(P, V) = (0, V), we say that sP is the chart centered at P. If sP(Q) = U, it is easy to derive the48

exponential form of Q as a density with respect to P, namely Q = eU−EP

[
log Q

P

]
· P. As Eµ [Q] = 1, then49

1 = Ep

[
eU−EP

[
log P

Q

]]
= Ep

[
eU] e−EP

[
log P

Q

]
, so that the cumulant function KP is defined on SP E (µ)50

by51

Kp(U) = logEP

[
eU
]
= EP

[
log

P
Q

]
= D (P ‖Q) , (5)

that is, KP(V) is the expression in the chart at P of Kullback-Leibler divergence of Q 7→ D (P ‖Q), and52

we can write53

Q = eU−KP(U) · P = eP(U) . (6)

The patch centered at P is54

s−1
P = eP : (SP E (µ))2 3 (U, W) 7→ (eP(U), eUeP(U)

P W) ∈ S E (µ) . (7)

In statistical terms, the random variable log Q
P is the relative point-wise information about Q55

relative to the reference P, while sP(Q) is the deviation from its mean value at P. The expression of the56

other divergence in the chart centered at P is57

D (Q ‖P) = EQ

[
log

Q
P

]
= EQ [U − KP(U)] = EQ [U]− KP(U) . (8)
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The equation above shows that the two divergences are convex conjugate functions in the proper58

charts, see [9].59

The change of maps are60

sP2 ◦ eP1(U, W) = sP2

(
eP1(U), eUe1P(U)

P W
)
= sP2

(
eU−KP1 (U) · P1, W −EeP1 (U) [W]

)
=(

U − KP1(U) + log
P1

P2
−EP2

[
U − KP1(U) + log

P1

P2

]
, W −EeP1 (U) [W]−EP2

[
W −EeP1 (U) [W]

])
=(

eUP2
P1

U + sP2(P1), eUP2
P1

W
)

, (9)

so that they are indeed affine.61

3. The tangent space of the statistical bundle62

Let us compute the expression of the velocity at time t of a smooth curve t 7→ γ(t) =63

(Q(t), W(t)) ∈ S E (µ) in the chart centered at P. The expression of the curve is64

γP(t) = sP(γ(t)) =
(

sP(Q(t)), eUP
Q(t)W(t)

)
, (10)

and hence we have, by denoting the derivative in RN by the dot,65

d
dt

sP(Q(t)) =
d
dt

(
log

Q(t)
P
−EP

[
log

Q(t)
P

])
=

Q̇(t)
Q(t)

−EP

[
Q̇(t)
Q(t)

]
= eUP

Q(t)
Q̇(t)
Q(t)

, (11)

and66

d
dt

eUP
Q(t)W(t) =

d
dt

(W(t)−EP [W(t)]) = Ẇ(t)−EP
[
Ẇ(t)

]
= eUP

Q(t)

(
Ẇ(t)−EQ(t)

[
Ẇ(t)

])
.
(12)

If we define the velocity of t 7→ Q(t) = eU(t)−Kp(U(t)) · P to be67

?

Q(t) =
Q̇(t)
Q(t)

=
d
dt

log Q(t) = U̇(t)− dKP(U(t))[U̇(t)] ∈ SQ(t) E (µ) , (13)

then t 7→ (Q(t),
?

Q(t)) is a curve in the statistical bundle whose expression in the chart centered at P is68

t 7→ (U(t), U̇(t)).69

We define the second statistical bundle to be70

S2 E (µ) =
{
(Q, W, X, Y)

∣∣(Q, W) ∈ S E (µ) , X, Y ∈ SQ E (µ)
}

, (14)

with charts71

sP(Q, V, X, Y) =
(

sP(Q, V), eUP
QX, eUP

QY
)

, (15)

we can identify the second bundle with the tangent space of the first bundle as follows.72

For each curve t 7→ γ(t) = (Q(t), W(t)) in the statistical bundle, define its velocity at t to be73

?
γ(t) =

(
Q(t), W(t),

?

Q(t), Ẇ(t)−EQ(t)
[
Ẇ(t)

])
, (16)

because t 7→ ?
γ(t) is a curve in the second statistical bundle and that its expression in the chart at P has74

the last two components equal to the values given in Eq.s (11) and (12).75

In particular, consider the a curve t 7→ χ(t) = (Q(t),
?

Q(t)). The velocity is76
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?
χ(t) =

(
Q(t),

?

Q(t),
?

Q(t),
∗∗
Q(t)

)
, (17)

where the acceleration
∗∗
Q(t) is77

∗∗
Q(t) =

d
dt

Q̇(t)
Q(t)

−EQ(t)

[
d
dt

Q̇(t)
Q(t)

]
=

Q̈(t)
Q(t)

−
( ?

Q(t)2 −EQ(t)

[ ?

Q(t)2
])

(18)

Because of the affine structure of the exponential bundle, it would be more appropriate to consider78

other types of acceleration. Namely, we could consider an exponential acceleration eD2Q(t) =
∗∗
Q(t), a79

mixture acceleration mD2Q(t) = Q̈(t)/Q(t), and a 0-accelleration80

0D2Q(t) =
1
2

(
eD2Q(t) + mD2Q(t)

)
=

Q̈(t)
Q(t)

− 1
2

((
Q̇(t)
Q(t)

)2

−EQ(t)

[(
Q̇(t)
Q(t)

)2])
. (19)

We do not further discuss the different second order geometries associated to the statistical bundle in81

this paper.82

Example 1 (Boltzmann-Gibbs). Let us compare the formalism we have introduced above with standard83

computations in Statistical Physics. The Boltzmann-Gibbs distribution gives to point x ∈ Ω the probability84

e−(1/θ)H(x)/Z(θ), with Z(θ) = ∑x∈Ω e−(1/θ)H(x) and θ > 0, see Landau and Lifshits [10, Ch. 3]. As a85

curve in E (µ), it is Q(θ) = Ne−(1/θ)H/Z(θ) because of the reference to the uniform probability. The86

velocity defined above becomes in this case
?

Q(θ) = θ−2(H−Eθ [H]), while the acceleration of Eq. (18)87

is
∗∗
Q(θ) = −θ−3(H −Eθ [H]). Notice that we have the equation θ

∗∗
Q(θ) +

?

Q(θ) = 0.88

Following the original construction of Amari’s Information Geometry [3], we have defined89

on the statistical bundle a manifold structure which is both affine and Riemannian manifold. The90

base manifold E (µ) is actually an Hessian manifold with respect to any of the convex functions91

Kp(U) = logEp
[
eU], U ∈ Sp E (µ), see [11]. Many computations are actually performed using the92

Hessian structure. The following equations are easily checked and frequently used93

EeP(U) [H] = dKP(U)[H] ; (20)

eUeP(U)
P H = H − dKP(U)[H] ; (21)

d2KP(U)[H1, H2] =
〈

eUeP(U)
P H1, eUeP(U)

P H2

〉
eP(U)

; (22)

d3Kp(U)[H1, H2, H3] = EeP(U)

[
eUeP(U)

P H1 · eU
eP(U)
P H2 · eU

eP(U)
P H3

]
. (23)

We have defined a centering operation that can be thought of as a transport among fibers,94

eUQ
P : Sp E (µ)→ Sq E (µ) . (24)

The mapping mUp
q V = q

p V is the adjoint of eUq
p,95

〈
eUQ

P U, V
〉

Q
= EQ

[
(U −EQ [U])V

]
= EQ [UV] = EP

[
U
(

Q
P

V
)]

=
〈

U, mUP
QV
〉

P
(25)

Moreover, iff U, V ∈ SP E (µ), then96 〈
eUQ

P U, mUQ
P V
〉

Q
=
〈

eUP
Q

eUQ
P U, V

〉
P
= 〈U, V〉P . (26)
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Example 2 (Entropy flow). This example is taken from [7]. In the scalar field H (Q) = −EQ [log Q]97

there is no dependence on the fiber. If t 7→ Q(t) = eV(t)−KP(V(t)) · P is a smooth curve in E (µ)98

expressed in the chart centered at P, then we can write99

H (Q(t)) = −EQ(t) [V(t)− KP(V(t)) + log P] =

KP(V(t))−EQ(t) [V(t) + log P +H (P)] +H (P) =

KP(V(t))− dKP(V(t))[V(t) + log P +H (P)] +H (P) , (27)

where the argument of the last expectation belongs to the fiber SP E (µ) and we have expressed the100

expected value as a derivative by using Eq. (20).101

Using again Eq. (20), and also Eq. (22) we compute the derivative of the entropy along the given102

curve as103

d
dt
H (Q(t)) =

d
dt

KP(V(t))− d
dt

dKP(V(t))[V(t) + log P +H (P)] =

dKP(V(t))[V̇(t)]− d2KP(V(t))[V(t) + log P +H (P) , V̇(t)]− dKP(V(t))[V̇(t)] =

−EQ(t)

[
eUQ(t)

P (V(t) + log P) eUQ(t)
P V̇(t)

]
. (28)

We use now the equations V(t) + log P = log Q(t) + KP(V(t)), eUQ(t)
P (log Q(t) + KP(V(t))) =104

log Q(t) +H (Q(t)), and eUQ(t)
P V̇(t) =

?

Q(t), to obtain105

d
dt
H (Q(t)) = −

〈
log Q(t) +H (Q(t)) ,

?

Q(t)
〉

Q(t)
. (29)

We have identified the gradient of the entropy in the statistical bundle,106

gradH (Q) = −(log Q +H (Q)) . (30)

Notice that the previous computation could be done using the exponential family Q(t) = eP(tV).107

See in [7] the computation of the gradient flow.108

In the next section, we extend the computation illustrated in the example above to scalar fields on109

the statistical bundle.110

4. Lagrangian function111

A Lagrangian function is a smooth scalar field on the statistical bundle112

L : S E (µ) 3 (Q, W) 7→ L(Q, W) ∈ R .

At each fixed density Q ∈ E (µ), the partial mapping113

SQ E (µ) 3W 7→ L(Q, W) (31)

is a defined on the vector space Sq E (µ), hence we can use the ordinary derivative, which is called in114

this case fiber derivative,115

d2L(Q, W)[H2] =
d
dt

L(Q, W + tH2)

∣∣∣∣
t=0

, H2 ∈ SQ E (µ) . (32)

Example 3 (Running example I). If116
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L(Q, W) =
1
2
〈W, W〉Q +H (Q) , (33)

then d2L(Q, W)[H2] = 〈W, H2〉Q. The example is suggested by the form of the classical Lagrangian117

function in mechanics, where the first term is the kinetic energy and −H (Q) is the potential energy.118

As the statistical bundle S E (µ) is non-trivial, the computation of the partial derivative of the119

Lagrangian with respect to the first variable requires some care. We want to compute the expression of120

the total derivative in a chart.121

Let t 7→ γ(t) = (Q(t), W(t)) a smooth curve in the statistical bundle. In the chart centered at P122

we have123

Q(t) = eU(t)−KP(U(t)) · P = eP(U(t)), W(t) = eUeP(U(t))
P V(t) , (34)

with t 7→ γP(t) = (U(t), V(t)) being a smooth curve in (SP E (µ))2. Let us compute the variation of124

Lagrangian L along the curve γ.125

d
dt

L(γ(t)) =
d
dt

L(Q(t), W(t)) =
d
dt

L(eP(U(t)), eUeP(U(t))
P V(t)) =

d
dt

LP(U(t), V(t)) , (35)

with LP(U, V) = L(eP(U), eUeP(U)
P V). It follows that126

d
dt

L(Q(t), W(t)) = d1LP(U(t), V(t))[U̇(t)] + d2LP(U(t), V(t))[V̇(t)] . (36)

If we write Q = eP(U) and W = eUeP(U)
P V, then we have127

d2LP(U, V)[H2] =
d
dt

LP(U, V + tH2)

∣∣∣∣
t=0

=

d
dt

L(Q, W + t eUQ
P H2)

∣∣∣∣
t=0

= d2L(Q, W)[eUQ
P H2] , (37)

where d2L is the fiber derivative of L. As U̇(t) = eUP
Q(t)

?

Q(t) and eUeP(U(t))
P V̇(t) =

?

W(t), it follows128

from Eq.s (36) and (37), that129

d
dt

L(Q(t), W(t)) = d1LP(U(t), V(t))[eUP
Q(t)

?

Q(t)] + d2L(Q(t), W(t))[
?

W(t)] . (38)

In the equation above the first term in the RHS does not depend on P because the LHS and130

the second term of the RHS do not depend on P. hence we define the first partial derivative of the131

Lagrangian function to be132

d1(Q, W)[H1] = d1LP(U, V)[eUP
eP(U)H1] , H1 ∈ SQ E (µ) , (39)

so that the equation for the variation of L along γ becomes133

d
dt

L(Q(t), W(t)) = d1L(Q(t), W(t))[
?

Q(t)] + d2L(Q(t), W(t))[
?

W(t)] . (40)

If W(t) =
?

Q(t), then134

d
dt

L(Q(t),
?

Q(t)) = d1L(Q(t),
?

Q(t))[
?

Q(t)] + d2L(Q(t),
?

Q(t))[
∗∗
Q(t)] , (41)

see Eq. (18).135
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Example 4 (Running example II). With the Lagrangian of Eq. (33), we have136

LP(U, V) =
1
2

〈
eUeP(U)

P V, eUeP(U)
P V

〉
eP(U)

−EeP(U) [U − KP(U) + log P] =

1
2

d2KP(U)[V, V] + KP(U)− dKP(U)[U + log P +H (P)] +H (P) , (42)

see Eq.s (22) and (27). The first partial derivative is137

d1LP(U, V)[H1] =

1
2

d3KP(U)[V, V, H1] + dKP(U)[H1]− d2KP(U)[U + log P +H (P) , H1]− dKP(U)[H1] =

1
2

d3KP(U)[V, V, H1]− d2KP(U)[U + log P +H (P) , H1] =

1
2
EQ

[
W2 eUeP(U)

P H1

]
−EQ

[
(log Q +H (Q)) eUeP(U)

P H1

]
=

EQ

[(
1
2

(
W2 −EQ

[
W2
])
− (log Q +H (Q))

)
eP(U)H1

]
, (43)

where we have used Eq.s (22) and (23) together with eUeP(U)
P (U + log P +H (P)) = log Q +H (Q).138

We have found that139

d1L(Q, W)[H1] =

〈
1
2

(
W2 −EQ

[
W2
])
− (log Q +H (Q)), H1

〉
Q

, H1 ∈ SQ E (µ) , (44)

and also140

d1L(Q(t),
?

Q(t))[
?

Q(t)] =
〈

1
2

(
?

Q(t)
2
−EQ

[
?

Q(t)
2
])
− (log Q +H (Q)),

?

Q(t)
〉

Q
. (45)

Using the fiber derivative computed in the first part of the example, we find141

d
dt

L(Q(t),
?

Q(t)) =
〈

1
2

(
?

Q(t)
2
−EQ

[
?

Q(t)
2
])
− (log Q +H (Q)),

?

Q(t)
〉

Q
+
〈 ?

Q(t),
∗∗
Q(t)

〉
Q

. (46)

5. Action integral142

If [0, 1] 3 t 7→ Q(t) is a smooth curve in the exponential manifold, then the action integral

A(Q) =
∫ t1

t0

L(Q(t),
?

Q(t)) dt

is well defined. We consider the expression of Q in the chart centered at P, Q(t) = eU(t)−KP(U(t)) · P.143

Given ϕ ∈ C1([0, 1]) with ϕ(0) = ϕ(1) = 0, for each δ ∈ R and H ∈ SP E (µ) we define the144

perturbed curve145

Qδ(t) = e(U(t)+δϕ(t)H)−KP(U(t)+δϕ(t)H) · P . (47)

We have Qδ(0) = Q(0), Qδ(1) = Q(1), and146

?

Qδ(t) = U̇(t) + δϕ̇(t)H −EQδ(t)
[
(U̇(t) + δϕ̇(t))H

]
, (48)
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whose expression in the chart centered at P is U̇(t) + δϕ̇(t)H.147

For each fixed t ∈ [0, 1], we have a smooth curve in S E (µ) given by148

δ 7→ (Qδ(t),
?

Qδ(t)) . (49)

Let us consider the variation in δ of the action integral. By using Eq. (41) together with149

d
dδ

log Qδ(t) =
d
dδ

(U(t) + δϕ(t)H −EQδ(t)

[
d
dδ

(U(t) + δϕ(t)H)

]
= ϕ(t)(H −EQδ(t) [H]) (50)

and150

eUQδ(t)
P

d
dδ

(U̇(t) + δϕ̇(t)H) = φ̇(t)(H −EQδ(t) [H]) , (51)

we obtain151

d
dδ

A(Qδ) =
∫ 1

0
L(Qδ(t),

?

Qδ(t)) dt =∫ 1

0

(
ϕ(t)d1L(Qδ(t),

?

Qδ(t))[H −EQδ(t) [H]] + ϕ̇(t)d2(Qδ(t),
?

Qδ(t))[H −EQδ(t) [H]]
)

dt =∫ 1

0
ϕ(t)

(
d1L(Qδ(t),

?

Qδ(t))[H −EQδ(t) [H]]− d
dt

d2(Qδ(t),
?

Qδ(t))[H −EQδ(t) [H]]

)
dt . (52)

If Q is an extremal point of the action integral, then d
dδ A(Qδ)

∣∣∣
δ=0

= 0, hence for all ϕ and H we152

have153

∫ 1

0
ϕ(t)

(
d1L(Q(t),

?

Q(t))[H −EQ(t) [H]]− d
dt

d2(Q(t),
?

Q(t))[H −EQ(t) [H]]

)
dt = 0 . (53)

This, in turn, implies that for all t ∈ [0, 1] and all H ∈ SQ(t) E (µ) the Euler-Lagrange equation154

holds:155

d1L(Q(t),
?

Q(t))[H]− d
dt

d2(Q(t),
?

Q(t))[H] = 0 . (54)

We conclude here by adding the following remark. The derivation of the Euler-lagrange equations156

is classically done in the set-up od Riemannian geometry as it is in [1] and [2]. here we use the affine157

structure of Information Geometry. This fact will be of importance when computing the acceleration158

term in the equations above. Moreover, the related Hamiltonian formalism should be derived.159

6. Discussion160

We have show that the research program consisting is applying to Statistics concepts from Classical161

Mechanics makes sense, even if no practical application has been produced in this paper. Some simple162

examples have been discussed in order to show clearly that the language from classical mechanics is163

indeed suggestive when applied to typical concepts in Statistics such as Fisher score and statistical164

entropy. The present provisional results prompt to a generalization to non-finite sample spaces and165

the development of applied examples.166
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