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1 Abstract: The statistical bundle is the set of couples (Q, W) of a probability density Q and a random
= variable W such that Eg [W] = 0. On a finite state space, we assume Q to be a probability density with
s respect to the uniform probability and give an affine atlas of charts such that the resulting manifold is
« amodel for Information Geometry. Velocity and accelleration of a one-dimensional statistical model
s are computed in this set up. The Euler-Lagrange equations are derived from the Lagrange action
s  integral. An example of Lagrangian using minus the entropy as potential energy is briefly discussed.
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s 1. Introduction

° The set-up of classical Lagrangian Mechanics is a finite-dimensional Riemannian manifold. For
1o example, see the monographs by V.I. Arnold [1] and by R. Abraham and J.E. Mardsen [2]. Classical
1 Information geometry, as it was defined in the monograph by S.-1. Amari and H. Nagaoka [3] views
12 parametric statistical models as a manifold endowed with a dually-flat connection. In a recent paper,
1z M. Leok and J. Zhang [4] have pointed out the natural relation between these two topics and have
1 given a wide overview of the mathematical structures involved.

1 In the present paper, we take up the same research program with two further qualification. First,
16 We assume a non-parametric approach by considering the full set of positive probability functions on a
= finite set, as it was done, for example, in our review paper [5]. The discussion is restricted here to a
1« finite state space to avoid difficult technical problems. Second, we consider a specific expression of
1o the tangent space of the statistical manifold, which is an Hilbert bundle that we call statistical bundle.
20 Our aim is to emphasize the basic statistical intuition of the geometric quantities involved. Because
=z of that, we choose to use systematically the language of non-parametric differential geometry as it is
22 developed, for example, in S. Lang monograph [6].

23 We use here our version of Information Geometry, see the review paper [5]. Preliminary versions
2a  of this paper have been presented at the SigmaPhy2017 Conference held in Corfu, Greece, Jul. 10-14
= 2017 and at a seminar held at Collegio Carlo Alberto, Moncalieri, on Sep. 5, 2017. In these early
26 versions we did not refer to Leok and Zhang work we where unaware of at that time.

27 In Sec. 2 we review the definition and properties of the statistical bundle, and of the affine atlas
2s that endows it with a manifold stucture, and a natural family of transports between the fibers. In Sec.
20 3 we develop the formalism of the tangent space of the statistical bundle and define the velocity and
3o accelleration of a one-dimensional statistical model. The derivation of the Euler-Lagrange equations,
a1 together with a relevant example, is discussed in Sec. 4.
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> 2. Statistical bundle

w

3 We cosider a finite sample space (), with #Q = N. The probability simplex is A(Q2) and A°(Q2)
s is its interior. The uniform probability on Q is denoted y, u(x) = &, x € Q. The maximal exponential
ss family € (u) is the set of all strictly positive probability densities of (Q, it). The expected value of
. f:Q — R with respect to the density P € & (u) is denoted Ep [f] = E, [fP] = & Lyeq f(x)P(x).

37 In [5,7,8] it is made the case for the statistical bundle being the key structure of Information
s Geometry.
30 The statistical bundle with base () is

SEm) ={(QV)|Qee (1), Eq[V] =0} . )
40 The statistical bundle is a semi-algebraic subset of R?V i.e., it is defined by algebraic equations

a1 and strict inequalities. It is trivially a real manifold. At each Q € £ (u) the fiber Sg £ (u) is endowed
«2  with the scalar product

(1, V2) = (V1,V2) g = Eg [ViV1] = Covg (W1, V2) . 2
a3 We add to this structure a special affine atlas of charts in order to show a structure of affine
«« manifold which is of interest in the statistical applications.
a5 The exponential atlas of the statistical manifold S £ (p) is the collection of charts given for each
w6 PEE (‘lzl) by

sp: SE (1) 3 (Q V) = (sp(Q),°U{V) € Sp& () X Sp& () , 3)
4z where (with a slight abuse of notation)
Q Q P
sp(Q) zlogF—Ep logﬁ , UgV=V-Ep[V]. (4)
a8 Assp(P,V) = (0,V), we say that sp is the chart centered at P. If sp(Q) = U, it is easy to derive the

- Q
s exponential form of Q as a density with respect to P, namely Q = et [k)g P ] P. AsE, [Q] =1, then

_ P _ P
0o 1=E, {eu Ep [log Q}] =Ep [eY]e Ep [log £ , so that the cumulant function Kp is defined on Sp € (i)

51 by

Ky(U) = logEp el =Ep logE =D(P|Q), ()
Q

s= thatis, Kp(V) is the expression in the chart at P of Kullback-Leibler divergence of Q — D (P ||Q), and
53 We can write

Q=T p=ep(U). (6)

54 The patch centered at P is
spl =ep: (SpE ()% 3 (UW) = (ep(U),UF W) € S € (n) . @)
55 In statistical terms, the random variable log % is the relative point-wise information about Q

se relative to the reference P, while sp(Q) is the deviation from its mean value at P. The expression of the
s other divergence in the chart centered at P is

D(QIIP) = Eq [1og 3| = Eq U~ Ke(1)] = o U] - Ke(U) ®
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ss The equation above shows that the two divergences are convex conjugate functions in the proper
so charts, see [9].
60 The change of maps are

sp, o ep (U, W) = sp, (epl(U),eUf}P(u)W) = sp, (eU—Kpl(U) Py, W = Eg, 1 [WD -
P P
(LI - Kp1 (U) + IOg F; - EPZ |:u — Kp1 (U) + log P;:| W — Eepl(ll) [W] - EPZ [W — Eepl(ll) [W]}) =

(CURU +sp,(P),“UEW) , ©)

o

1 so that they are indeed affine.

e2 3. The tangent space of the statistical bundle

63 Let us compute the expression of the velocity at time ¢ of a smooth curve t — (t) =
sa (Q(t),W(t)) € SE (p) in the chart centered at P. The expression of the curve is

Te(t) = sp(7() = (sp(Q(1)), UG W(H)) (10)

s and hence we have, by denoting the derivative in RN by the dot,

fror(@e) = 5 (105 X0~k 105 A0] ) = S g, [0 —ewp &y

Tt P Q(t) Q(t) Q(H)”’
es and
%GUZMWU) = % (W(t) —Ep [W(H)]) = W(t) = Ep [W(t)] = Ug, (W(f) —Eq [W(f)]) :
(12)
o7 If we define the velocity of t — Q(t) = U)K (U() . ptobe
A(t) = 88 = L log Q) = L) — dKp(UB)[U(1)] € S € (1) (13)

then t — (Q(t), é(t)) is a curve in the statistical bundle whose expression in the chart centered at P is
t (U(t), U()).
70 We define the second statistical bundle to be

o
©

o
©

SPE () ={(QW,X,Y)|(QW)€SE(n),X,YESQE ()}, (14)

7n  with charts

sp(QV,X,Y) = <SP(Q, V),eUgX,eUgy) , (15)
72 we can identify the second bundle with the tangent space of the first bundle as follows.
73 For each curve t — (t) = (Q(t), W(t)) in the statistical bundle, define its velocity at t to be
F(6) = (QU8), W(E), Q1) W(t) — Egqyy [W(H)] ) (16)

~
&

because t — 7(t) is a curve in the second statistical bundle and that its expression in the chart at P has
the last two components equal to the values given in Eq.s (11) and (12).

~
o

76 In particular, consider the a curve t — x(t) = (Q(#), é(t)) The velocity is
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x() = (), O, (1), Q1) a7
72 where the acceleration é(t) is
S dQM) dQM)] _ QM) (A 52
3) = g ~Eaw | o] = o — (202 ~Eap [Q0]) s
78 Because of the affine structure of the exponential bundle, it would be more appropriate to consider

7o other types of acceleration. Namely, we could consider an exponential acceleration ‘D?>Q(t) = é(t), a

so  mixture acceleration "D?Q(t) = Q(t)/Q(t), and a 0-accelleration

. . 2
DQ() = § (D) + ) = 20 ] ((88) ~Equ

- 2
Q) )
= . 19
(o )
e We do not further discuss the different second order geometries associated to the statistical bundle in
ez this paper.

es  Example 1 (Boltzmann-Gibbs). Letus compare the formalism we have introduced above with standard
s computations in Statistical Physics. The Boltzmann-Gibbs distribution gives to point x € () the probability
s e (VOHE) /7(9), with Z(0) = Yyeq e /OH®) and 6 > 0, see Landau and Lifshits [10, Ch. 3]. Asa
s curvein £ (i), itis Q(8) = Ne~(1/)H /7 (9) because of the reference to the uniform probability. The
sz velocity defined above becomes in this case Q*(O) = 02(H — Eg [H]), while the acceleration of Eq. (18)
ss 1S 5(9) = —073(H — Eq [H]). Notice that we have the equation 96(9) + é(@) =0.

80 Following the original construction of Amari’s Information Geometry [3], we have defined
%o on the statistical bundle a manifold structure which is both affine and Riemannian manifold. The
o1 base manifold £ (i) is actually an Hessian manifold with respect to any of the convex functions
= Ky(U) =logE, [eY], U € S, € (1), see [11]. Many computations are actually performed using the
»s Hessian structure. The following equations are easily checked and frequently used

Ee,uy [H] = dKp(U)[H] ; (20)
curH = H — dKp(U)[H] ; 1)
d*Kp(U)[Hy, Hy] = <EU;P(U) Hy, eU;P(u)H2>eP(u) ; (22)
d°K,(U)[Hy, Hy, Hs) = Ee, ) [GU;P(”) H -eurWp, eyt H3} . (23)
0s We have defined a centering operation that can be thought of as a transport among fibers,
CUS: S, E (1) — Se& (u) - (24)

os The mapping "U/V = %V is the adjoint of °U%,

=[O

<9U§U,V>Q = Eq [(U—Eq [U])V] = Eq [UV] = Ep [u (V)] = <u,m1UgV>P (25)
e Moreover, iff U,V € Sp & (p), then

<GU§u,mU§V>Q = (*URUFU V) = (U, V)p . (26)
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oz Example 2 (Entropy flow). This example is taken from [7]. In the scalar field H (Q) = — Eq [log Q]
o there is no dependence on the fiber. If t — Q(t) = eV()=Kp(V()) . P is a smooth curve in & (k)
oo expressed in the chart centered at P, then we can write

H(Q(t) = —Eq [V(t) — Kp(V(t)) +1log P] =
Kp(V(t)) —Equy [V(t) +log P+ H (P)] +H (P) =
Kp(V(t)) —dKp(V(£))[V(t) +logP+H (P)|+ H (P) , (27)

10 Where the argument of the last expectation belongs to the fiber Sp £ (4) and we have expressed the
11 expected value as a derivative by using Eq. (20).

102 Using again Eq. (20), and also Eq. (22) we compute the derivative of the entropy along the given
103 Curve as

LH(QU) = TKo(V(0) — TAKp(V(D)[V(E) + log P+ H (P)] =

dKp(V (1) [V ()] — d*Kp(V(£))[V(t) +log P+ H (P),V(t)] — dKp(V(t))[V(t)] =
—Eqq [*URY(V() +10g P) UV (1)] . (28)

104 We use now the equations V() +log P = log Q(t) + Kp(V (t)), eUg(t) (log Q(t) + Kp(V (1)) =

1s log Q(t) +H (Q(t)), and eUg(t)V(t) = Q(t), to obtain

d «
4 QW) =~ (log (1) +H (Q(1), Q1) , - 29)
106 We have identified the gradient of the entropy in the statistical bundle,
grad# (Q) = —(logQ +# (Q)) - (30)
107 Notice that the previous computation could be done using the exponential family Q(t) = ep(tV).

10s  See in [7] the computation of the gradient flow.

100 In the next section, we extend the computation illustrated in the example above to scalar fields on
1o  the statistical bundle.

11 4. Lagrangian function

112 A Lagrangian function is a smooth scalar field on the statistical bundle
L:SE(n)>(QW)— L(QW)eR.

us At each fixed density Q € £ (i), the partial mapping

So€&(u) >W— L(Q W) (31)

ua is a defined on the vector space S; £ (1), hence we can use the ordinary derivative, which is called in
us  this case fiber derivative,

d,L(Q,W)[Hp] = %L(Q,W—i—tHz) o Hy € Sq&(p) - (32)

1us  Example 3 (Running example I). If
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L(QW) = 5 (W, W)g + H(Q) 3)

a7 then d,L(Q, W)[Ha] = (W, Hy) . The example is suggested by the form of the classical Lagrangian
us  function in mechanics, where the first term is the kinetic energy and — # (Q) is the potential energy.

119 As the statistical bundle S £ (p) is non-trivial, the computation of the partial derivative of the
120 Lagrangian with respect to the first variable requires some care. We want to compute the expression of
121 the total derivative in a chart.

122 Lett — () = (Q(t), W(t)) a smooth curve in the statistical bundle. In the chart centered at P
123 we have

Q(t) — eU(t)—I(p(U(t)) .P = ep(U(t)), W(i’) — eU;P(u(t))V(t) , (34)

12 with t = yp(t) = (U(t), V(t)) being a smooth curve in (Sp € (1))?. Let us compute the variation of
125 Lagrangian L along the curve 1.

d d d ep d
SLOr(1) = ZLQ(, W) = ZLep(U®), UF V() = ZLo(Un), V(1) ©5)
w2 with Lp(U, V) = L(ep(U), U V). Tt follows that

LLIQU), W(H) = diLp(U(), V() U] + daLp(U), V) V(). 6)

127 If we write Q = ep(U) and W = °U}’ WY then we have

daLp(U, V)[Hz] = %LP(U/V+tH2) =
t=0

LQW US| = dLQ W) USH,], 37

t=0

12s  where d,L is the fiber derivative of L. As U(t) = eUg(t)é(t) and eI[Jf,”(u(t))\'/(t) = W(t), it follows
120 from Eq.s (36) and (37), that

d x «
T L(Q(D, W(E) = diLp(U(t), V(D) [FUg, Q(H)] + d2L(Q(1), WD) [W(#)] - (38)
130 In the equation above the first term in the RHS does not depend on P because the LHS and

11 the second term of the RHS do not depend on P. hence we define the first partial derivative of the
1:2  Lagrangian function to be

d1(QW)[Hi] = diLp(U, V)[*Ug, i Hil,  Hi € Sg € (n) (39)

133 50 that the equation for the variation of L along 7y becomes

LLIQU), W) = dL(Q(), W(E) O] + daL(Q(E), W(E) WD) (40)
134 If W(t) = é(t), then
LL(Q(), A1) = dLQ(), A1) O] +dL(Q(), A1) ()], @)

15 see Eq. (18).
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13s  Example 4 (Running example II). With the Lagrangian of Eq. (33), we have

Lp(U, V) = % <GU;P(”>V,9U;P(”)V> —Ee,u) [U — Kp(U) +1log P] =

ep(U)

SPKp(U)V, V] + Kp(U) — dKp(U)[U +log P+ H (P)] +H (P) , (42)

137 see Eq.s (22) and (27). The first partial derivative is

diLp(U,V)[Hy] =
SPKp(U)[V, V, Ha] + dKp(U) [Hy] — &Kp(U)[U +log P+ H (P), Hi] — dKp(U)[Hy] =
SPKp(U)[V, V, Hy] — Kp(U)[U + log P+ H (P), Hy] =

SEq WUy W | —Eq [0g Q +# (Q)) Uy W | =
o | (5 (W2~ Ea [W]) - (tog Q-+ 1(@) ) erWitt| , 43

13s  where we have used Eq.s (22) and (23) together with SU;P(U) (U+1logP+H (P)) =logQ+H(Q).
139 We have found that

HLQ W] = (5 (W5 [W]) ~(ogQ+H (@) ) . HieSeE(), @

1o and also

HLQ, Q)G = (5 (40" e |00)|) ~tos0+H(@).G0) - @)

141 Using the fiber derivative computed in the first part of the example, we find

d 1 * 2

100,00 = (5 (@0 ~Bo |07 ) - tos -+ 1(@),000) +(A(0,0), - (9

Q

12z 5. Action integral
If [0,1] > t — Q(t) is a smooth curve in the exponential manifold, then the action integral
ty *
A(Q) = [ L), () dt
0

13 is well defined. We consider the expression of Q in the chart centered at P, Q(t) = eU()—Kp(U(H)) . p,
144 Given ¢ € C([0,1]) with ¢(0) = ¢(1) = 0, for each 6 € Rand H € Sp &€ (i) we define the
s perturbed curve

Qs(t) = (U +00()H)~Ke(U(D)+59()H) . p 47)

146 We have Qs(0) = Q(0), Qs(1) = Q(1), and

*

Qs(t) =U(t) +6¢(t)H —Eq, ) [(U(t) +69(t))H] , (48)
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17 whose expression in the chart centered at P is U(t) + 6¢(t)H.
148 For each fixed t € [0, 1], we have a smooth curve in S € (1) given by
6= (Qs(t), Qs(t)) - (49)
140 Let us consider the variation in ¢ of the action integral. By using Eq. (41) together with

35198.0:(8) = J5 () +69(0)H ~Eg | (U +09(0)H)| = p()(H ~Eqy () 60)
150 and
em%“”%(tl(t) +6¢(HH) = ¢(t)(H = Eq, ) [H]) , GD)

151 We obtain

T A(Q:) = [ 1Qs(e), Gs(0) dt =

/01 (@B L(Qs (1), Qu(1))[H — Eq ) [HI] + 9(£)d(Qs (), Qs(#)) [H — Eqyqp) [H]) ) dt =

l * d *
/0 o(t) (dlL(Qé(t)rQé(t))[H —Eqsr) [H]] = adz(Qa(t)/Qé(f))[H —Eg,) [HH> dt. (52)
152 If Q is an extremal point of the action integral, then %A(Qg) ’5_0 =0, hence for all ¢ and H we

153 have

1 * d *
[ o0) (200, Q) ~ Eqq (1] - 2(00), Q) ~ gy [H]) dt =0 (53
154 This, in turn, implies that for all t € [0,1] and all H € Sp;) € (1) the Euler-Lagrange equation
155 holds:
* d *
d1L(Q(#), Q1)) [H] — 7d2(Q(#), Q(1))[H] = 0. (54)
156 We conclude here by adding the following remark. The derivation of the Euler-lagrange equations

» is classically done in the set-up od Riemannian geometry as it is in [1] and [2]. here we use the affine
s structure of Information Geometry. This fact will be of importance when computing the acceleration

1

o

1se term in the equations above. Moreover, the related Hamiltonian formalism should be derived.

o 6. Discussion

1

o

161 We have show that the research program consisting is applying to Statistics concepts from Classical
162 Mechanics makes sense, even if no practical application has been produced in this paper. Some simple
16z examples have been discussed in order to show clearly that the language from classical mechanics is
1es indeed suggestive when applied to typical concepts in Statistics such as Fisher score and statistical
16 entropy. The present provisional results prompt to a generalization to non-finite sample spaces and
166 the development of applied examples.
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