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Abstract: Internal and mesoscopic variables differ from each other fundamentally: both are state space1

variables, but mesoscopic variables are additional equipped with a distribution function introducing2

a statistical item into consideration which is missing in connection with internal variables. Thus, the3

alignment tensor of liquid crystal theory can be introduced as an internal variable or as one generated4

by a mesoscopic background using the microscopic director as mesoscopic variable. Because the5

mesoscopic variable is part of the state space, the corresponding balance equations change into6

mesoscopic balances, and additionally an evolution equation of the mesoscopic distribution function7

appears. The flexibility of the mesoscopic concept is not only demonstrated for liquid crystals, but is8

also discussed for dipolar media and flexible fibers.9

Keywords: mesoscopic theory; internal variables; liquid crystals; damage parameter; dipolar media;10

flexible fibers11

1. Introduction12

There are two different possibilities to deal with complex materials within continuum13

thermodynamics: The first way is to introduce additional state space variables which depend on14

position and time and extend the state space accounting for the internal structure of the complex15

material. These additional fields can be internal variables [1,2], order or damage parameters [3],16

Cosserat triads [4–6], directors [7,8], alignment and conformation tensors [9,10]. It is possible as well,17

to introduce internal variables, without specifying their physical meaning in the beginning1. This has18

been applied for instance, successfully in rheology [11–14].19

The other way is the so called mesoscopic theory whose idea is to enlarge the domain of the field20

quantities beyond position and time by mesoscopic variables. Consequently, the fields –now called21

mesoscopic fields– are defined on the mesoscopic space R3
x ×Rt ×M. The manifoldM is given by22

the set of mesoscopic variables which represent internal degrees of freedom depending on the internal23

structure of the complex material under consideration.24

Beyond the additional mesoscopic variables m ∈ M which belong to each particle in a volume25

element around x at time t, the mesoscopic concept introduces a statistical element, the mesoscopic26

distribution function f (x, t, m) which describes the distribution of m contained in the considered27

volume element. This distribution function generates the term "mesoscopic" because this concept28

includes more information than a "macroscopic" theory on R3
x ×Rt, but the microscopic level is not29

considered like in a kinetic theory, molecular dynamics, quantum-theoretical or other "microscopic"30

∗In Memory of Stefan Blenk
1 but obviously, the physical meaning of the considered internal variable has to make clear finally
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approaches. Thus, the mesoscopic level of information is between the microscopic and the macroscopic31

ones.32

The aim of the present paper is to discuss the connection between the macroscopic theory of33

internal variables on space-time and the mesoscopic theory on the mesoscopic state space. An equation34

of motion of the internal variables can be derived from macroscopic thermodynamics. But starting35

out with the mesoscopic theory, the mesoscopic origin of the internal variable and its equation of36

motion becomes visible. Obviously, the mesoscopic distribution function cannot be determined by37

only one macroscopic internal variable: it is determined by all its (infinity of) moments [15]. Because38

only a finite set of macroscopic variables is available, the reconstruction of the mesoscopic distribution39

function is only possible within a certain restricted class of functions, namely the distribution functions40

maximizing the entropy under the constraint of a prescribed value of certain moments. In the following,41

we will investigate the relation between an internal variable theory and a mesoscopic one considering42

the example of liquid crystals and some other mesoscopic items.43

2. Fundamental Balances and Basic Fields44

We consider here a special part of the realm of non-linear field theories of classical physics,45

especially Continuum Thermodynamics [16] whose aim is the determination of the wanted (or basic)46

fields which obey balance equations. In Continuum Mechanics, these seven basic fields are the mass47

density $, the velocity v of the material and its spin density s48

Bmech(x, t) = ($, v, s)(x, t). (1)

The domain of these fields is the non-relativistic space-time. Seven balance equations belong to49

these seven basic fields: the mass balance, the momentum and the spin balance. Constitutive fields50

appear in them: the stress tensor T and the couple stress W . Momentum supply $k and spin supply51

$g are externally given quantities.52

Two basic fields are added to Continuum Mechanics to obtain Continuum Thermodynamics: the53

densities of internal energy e and entropy η54

B(x, t) = ($, v, s, e, η)(x, t). (2)

The heat flux q and the entropy flux Φ are the additional constitutive fields. The corresponding55

external supplies are the internal energy supply $r and the entropy supply $γ. If constitutive equations56

are not presupposed, a balance equation of the temperature T does not exist: temperature can be57

defined by T := r/γ.58

The constitutive fields of simple Continuum Thermodynamics59

R(x, t) = (T , W , q, Φ, s, η)(x, t) (3)

do not only depend on basic fields (2), but also on their derivatives, as the "Fourier law of60

heat conduction" q($, T,∇T) = −κ($, T,∇T)∇T shows 2. Fourier’s law demands, that we have to61

introduce a domain of the constitutive fields Z(x, t) which also contains derivatives of the basic fields.62

We call this domain "state space" or "constitutive space". The most simple state space is that of a fluid63

without internal friction and missing heat conduction which contains the mass density and the internal64

energy65

Z(x, t) = ($, e)(x, t). (4)

2 Here, the internal energy is replaced by the temperature.
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The velocity v does not occur in state spaces because the relative velocity between material and66

observer does not influence constitutive properties3 in contrast to ∇v on which the stress tensor may67

depend.68

Additional internal friction and heat conduction makes a state space necessary which contains69

the spatial derivatives of mass density, internal energy and velocity70

Z(x, t) = ($, e,∇$,∇e,∇v)(x, t). (5)

Aging processes need additionally time derivatives71

Z(x, t) = ($, e,∇$,∇e,∇v,
•
$,
•
e,
•
v)(x, t). (6)

According to (3), we obtain the following scheme for the representation of constitutive properties72

R
(

Z(x, t)
)

= (T , W , q, Φ, s, η)
(

Z(x, t)
)

. (7)

That means, constitutive properties depend on the space-time via the space-time dependence of73

the state space variables, and the derivatives ∇ and ∂t need a state space and have to be performed by74

use of the chain rule.75

Considering the examples (4), (5) and (6), the state space (4) is extended by derivatives of basic76

fields. Obviously, other extensions of a state space taking other than the basic fields into account are77

possible resulting in state spaces which belong to so-called complex materials.78

3. Complex Materials79

Complex materials are characterized by a state space which contains variables beyond the80

basic fields and their derivatives. A famous example for such a state space is that of the Extended81

Thermodynamics. Other examples of extended state spaces are those belonging to thermoviscoelastic82

and thermoviscoplastic materials and materials showing thermal after-effects.83

3.1. Extended Thermodynamics84

The extended state space of Extended Thermodynamics is [18,19]85

Z(x, t) = ($, e, T + p1, q)(x, t). (8)

Here the state space is extended by the originally constitutive quantities viscous part of the86

stress tensor and heat flux density which now are on equal foot in the state space with mass density87

and internal energy. In Extended Thermodynamics, the state space (4) is extended by well defined88

fields. Another possibility of extension is the introduction of for the present undefined variables as89

place-holders defining them later. Such kind of variables are called internal ones.90

3.2. Internal Variables91

Historically, the concept of internal variables can be traced back to Bridgman [20], Meixner [21]92

and many others. The introduction of internal variables makes possible to use large state spaces,93

that means, material properties can be described by mappings defined on the state space variables94

(including the internal ones), thus avoiding the use of their histories which appear in small state spaces95

[22]. Those are generated, if the internal variables are eliminated. Consequently, internal variables96

allow to use the methods of Irreversible and/or Extended Thermodynamics [23].97

3 Especially, we consider acceleration-insensitive materials which do not need a so-called "second entry" [17].
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Internal variables cannot be chosen arbitrarily: there are concepts which restrict their introduction98

[22]. The most essential ones are:99

1. For the present, internal variables can be introduced as place-holders for elucidating the100

considered constitutive structure, but finally, they need a model or an interpretation,101

2. Beyond the constitutive and the balance equations, internal variables require rate equations which102

can be adapted to different situations, making the use of internal variables flexible and versatile,103

3. The internal variables and their time rates do not occur in the balance equation of the internal104

energy,105

4. A local isolation does not influence the internal variables locally,106

5. In equilibrium, the internal variables become dependent on the variables of the equilibrium107

sub-space.108

Satisfying these concepts, the internal variables entertain an ambiguous relationship with109

constitutive microstructure [2]. A state space extended by internal variables is e.g.110

Z(x, t) = ($, e,∇$,∇e,∇v, ξ)(x, t), (9)

and the evolution equations may have the shape111

•
ξ = f (⊗) + g(⊗)

•
e + h(⊗) · ∇e + k(⊗) · ∇v, ⊗ = ($, e,∇$,∇e,∇v, ξ). (10)

Special one-dimensional cases are112

relaxation type:
•
ξ (t) = − 1

τ(⊗)

(
ξ(t)− ξeq

)
, (11)

reaction type [22]:
•
ξ (t) = γ(⊗)

[
1− exp

(
− µ(t)β(⊗)

)]
. (12)

If the condition #3 is not satisfied, that means, if internal variables occur in the balance eequation of113

the internal energy, these variables of an extended state space are called "internal degrees of freedom".114

3.3. The Mesoscopic Theory115

As already mentioned in the introduction, there is another possibility for describing complex116

materials: Instead of using extended state spaces which modify the constitutive equations (7), the117

domain of the basic fields (2) is extended by so-called mesoscopic variables m [16]118

Bmeso(m, x, t) = ($, v, s, e, η)(m, x, t). (13)

These mesoscopic variables are on equal foot with the space-time variables resulting in the fact,119

that the mesoscopic balance equation of the density X defined on120

(·) ≡ (m, x, t) ∈ M×R3 ×R1 (14)

is well known121

∂

∂t
X(·) +∇x ·

[
v(·)X(·)− S(·)

]
+∇m ·

[
u(·)X(·)− R(·)

]
= Σ(·). (15)

Here the independent field u(·), defined on the mesoscopic space, describes the change in time of122

the set of mesoscopic variables: With respect to m the mesoscopic change velocity u(·) is the analogue to123

the mesoscopic material velocity v(·) referring to x: If a particle is characterized by (m, x, t), then for124

∆t→ +0 it is characterized by (m + u(·)∆t, x + v(·)∆t, t + ∆t). Besides the usual gradient ∇x also the125

gradient ∇m with respect to the set of mesoscopic variables appears. The non-convective fluxes are126

S(·) and R(·), supply and production are collected in Σ(·).127
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Beyond the use of additional mesoscopic variables m the mesoscopic concept introduces a128

statistical element, the so-called mesoscopic distribution function (MDF) f (m, x, t) generated by the129

different values of the mesoscopic variable in a volume element130

f (m, x, t) ≡ f (·). (16)

The MDF describes the distribution of m in a volume element around x at time t, and therefore it131

is normalized132 ∫
f (m, x, t) dM = 1. (17)

Now the fields as mass density, momentum density, etc. are defined on the mesoscopic space. For133

distinguishing these fields from the macroscopic ones we add the word “mesoscopic". Consequently134

the mesoscopic mass density is defined by135

$(·) := $(x, t) f (·) . (18)

Here $(x, t) is the macroscopic mass density. By use of (17) we obtain136

$(x, t) =
∫

$(m, x, t) dM. (19)

This equation shows, that the system can be formally treated as a mixture of components having137

the partial density $(·) [24]. Here the “component index" m is a continuous one. Because mixture138

theory is well developed [25], [26] mesoscopic balance equations can be written down very easily [27].139

The special case of liquid crystals is considered in [28].140

Other mesoscopic fields defined on the mesoscopic space are the mesoscopic material velocity v(·)
of the particles belonging to the mesoscopic variable m at time t in a volume element around x, the
external mesoscopic acceleration k(·), the mesoscopic stress tensor T(·), and the mesoscopic heat flux density
q(·), etc. Macroscopic quantities are obtained from mesoscopic ones as averages with the MDF as
probability density:

A(x, t) =
∫
M

A(·) f (·)dM (20)

This again shows that the complex material can be seen as a mixture of components with different141

values of the mesoscopic variable.142

4. Liquid Crystals143

4.1. The Macroscopic Theory144

4.1.1. General remarks145

The molecules of nematic liquid crystals are orientable, that means, each molecule has a preferred146

direction n –the microscopic director– which indicates the orientation of the "needle-shaped" molecule. In147

a particle of the liquid crystal continuum theory are a lot of molecules of different orientation resulting148

in a mean orientation belonging to the considered particle described by a unit vector d. This unit vector149

–called the macroscopic director– is a basic field d(x, t) of the macroscopic director theory of nematic150

liquid crystals [29,30]4 whose microscopic background is out of scope5. As an internal variable, the151

4 the Ericksen-Leslie theory [28]
5 If the microscopic background is taken into account, the Ericksen-Leslie one-director theory allows only parallel or planar

orientation of the microscopic directors [31].
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macroscopic director needs an evolution equation6. The macroscopic director as a basic field does not152

contain any information about the degree of orientation of the microscopic directors. The same holds153

true for a macroscopic alignment tensor which is introduced by use of the macroscopic director or as a154

basic field on its own [9,32]7.155

4.1.2. Alignment tensor as an internal variable156

In the liquid crystalline state material properties are anisotropic, in contrast to the isotropic liquid157

state. On the other hand, liquid crystalline phases behave like fluids, as they do not have a well defined158

shape but flow like highly viscous fluids. The anisotropic properties of liquid crystals can be described159

in terms of a second order tensor, the alignment tensor.160

A purely macroscopic definition of the alignment tensor in terms of the dielectric tensor reads:161

a :=
εe − 1

3 trace(εe)δ
1
3 trace(εe)

(21)

with the dielectric tensor εe (D = εe · E)162

The second order tensor –defined in equation (21)– has the following properties:163

1. It vanishes in the high temperature phase (the isotropic, ordinary liquid phase), because in the164

ordinary liquid phase the dielectric tensor is proportional to the unit tensor δ, and the traceless165

part vanishes,166

2. It is non-zero in the low temperature phase (the nematic liquid crystal phase), because in this167

phase, the dielectric tensor has a non-zero traceless part,168

3. It is a dimensionless quantity due to the normalization with the trace in the denominator.169

With these properties, the second order alignment tensor can be considered as an order parameter170

in the sense of Landau-theory of phase transitions. The Landau-theory was developed to deal with171

second order phase transitions [33], originally with phase transitions in ferromagnetic materials. It has172

been applied to various kinds of phase transitions, for instance: the transition nematic/isotropic phase173

in liquid crystals [34–39], or other transitions between liquid crystalline phases [40,41].174

Starting out with the macroscopic director d, the corresponding alignment tensor is of the form8:175

a = S dd = S
(

dd− 1
3

δ
)

, tr(dd) = d · d = 1, (22)

with a scalar quantity, denoted as Maier-Saupe-order parameter S. The Maier-Saupe-order parameter176

is a measure of the degree of liquid crystalline order, and in equilibrium its value is determined by177

temperature (and eventually an electric or magnetic field). For the physical interpretation of S, we178

need the mesoscopic background which is treated in sect.4.2.3.179

4.1.3. Evolution equation of the alignment tensor180

For the exploitation of the dissipation inequality with methods of irreversible thermodynamics181

[9,32,42], the alignment tensor –but not its gradient– is included in the set of variables. The alignment182

tensor a(x, t) may vary from continuum element to continuum element, but its gradient does not183

influence constitutive properties, and therefore it does not appear in the set of variables. This184

assumption can be looked at as a version of the local equilibrium hypothesis generalized to internal185

variables. In some situations, no alignment tensor gradient is present at all. For instance, in a nematic186

6 see sect.4.2.4
7 see sect.4.1.2
8 AB is the symmetric and traceless part of the tensor AB [47].
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liquid crystal between two planar glass plates, with homogeneous boundary conditions and no187

temperature gradient, the alignment is homogeneous in space [43–45].188

For the entropy density η and the internal energy density e, the following constitutive assumption189

is made: both quantities are decomposed into a part depending on the equilibrium variables –mass190

density $ and internal energy density e– and an alignment tensor dependent part191

η = η0(e, $) + ηa(a) (23)

e = ε0(a = 0) + εa(a). (24)

For the alignment tensor-independent parts, the Gibbs equation in the usual form holds with192

pressure p and temperature T:193

dη0

dt
=

1
T

dε0

dt
− p

$2T
d$

dt
. (25)

With the usual assumptions of Thermodynamics of Irreversible Processes concerning the194

dependence of the entropy flux Φ = q/T on the heat flux q and of the entropy supply ϕ = r/T195

on the energy supply r, we start out with the balance equation of entropy196

σ = $
dη

dt
+∇ ·Φ− ϕ. (26)

Taking the balance equation of the internal energy of a medium with an internal angular197

momentum Θ · s198

$
de
dt

= −∇ · q + t : ∇v + r + $
ds
dt
·Θ · s (27)

into account (stress tensor: t, material velocity: v, moment of inertia: Θ, spin density: s), and199

presupposing a material of vanishing couple stress and couple force200

$
ds
dt

= −ε : t, (28)

we obtain for the entropy production201

σ = $

(
dηa

da
− 1

T
dεa

da

)
︸ ︷︷ ︸

f1

:
da
dt︸︷︷︸
J1

+ q︸︷︷︸
J2

·
(
− 1

T2

)
∇T︸ ︷︷ ︸

f2

+

+
1
T

(
p +

1
3

trace(t)
)

︸ ︷︷ ︸
J3

∇ · v︸ ︷︷ ︸
f3

+
1
T

t︸ ︷︷ ︸
J4

: ∇v︸︷︷︸
f4

+

+
1
T

tantisym︸ ︷︷ ︸
J5

:
(
(∇v)antisym − ε : (θ · s)

)
︸ ︷︷ ︸

f5

. (29)

Linear constitutive relations between the fluxes J1 . . . J5 and the forces f1 . . . f5 are considered. It202

is assumed that the anisotropy of the liquid crystal is given explicitly by the dependence of internal203

energy and entropy on the alignment tensor, but otherwise material coefficients are scalars. Then204

the Curie principle applies, and there is no coupling between fluxes and forces of different tensorial205

order, and no coupling between symmetric and antisymmetric tensors. With these assumptions, the206

flux-force-relations read207
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da
dt

= −L11
$

T
d fa

da
+L14 ∇v , (30)

q = − 1
T2 L22∇T, (31)

1
T

(
p +

1
3

trace(t)
)

= L33∇ · v, (32)

t = −L41$
d fa

da
+L44 ∇v , (33)

1
T

tantisym = L55

(
(∇v)antisym − ε · (θ · s)

)
, (34)

by introducing the anisotropic part of the free energy density208

fa = εa − Tηa. (35)

Equation (30) is the evolution equation of the internal variable, the alignment tensor. It is of the209

form of a pure relaxation equation without a flux term. In the following, the expression in the bracket210

εa − Tηa = fa is abbreviated as the alignment-tensor-dependent part of the free energy density fa.211

The constitutive equation (31) is the classical Fourier equation with heat conductivity κ = L22/T2.212

From (32) follows for vanishing flow field, p = − 1
3 trace(t). The remaining two equations are the213

constitutive relations for the symmetric traceless part of the stress tensor t , and for the antisymmetric214

part of the stress tensor tantisym. In order to exploit further equations (30) and (33), expressions for215

the alignment tensor dependence of ηa and εa are needed. We will make constitutive assumptions216

involving terms up to fourth and second order, respectively:217

ηa(a) = −1
2

A0a : a +
1
3

B trace (a · a · a)−

−1
4

C1 (a : a)2 − C2 trace (a · a · a · a) , (36)

εa(a) = −1
2

εa : a. (37)

The coefficients A0, B, C1, C2, and ε are material dependent parameters which are assumed to be218

constant, and, especially independent of temperature. Here the Cayleigh-Hamilton theorem could be219

used to transform the expression a · a · a · a, because this is not an independent invariant. However,220

the above form is the most practical one. The derivations are carried out:221

dηa

da
= −A0a + Ba · a− C1a : aa− C2a · a · a, (38)

dεa

da
= −εa. (39)

Using these ansatzes, from (30) the relaxation equation222

da
dt

= −L11$
1
T

d fa

da
+L14 ∇v =

= L11$

(
−A(T)a + Ba · a− C1a : aa− C2a · a · a

)
+ L14 ∇v (40)

follows, with223
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A(T) = A0 −
1
T

ε. (41)

For the symmetric traceless part of the stress tensor, we obtain the constitutive equation:224

t = −L41$
d fa

da
+L44T ∇v =

= L41T$

(
−A(T)a + Ba · a− C1a : aa− C2a · a · a

)
+ L44T ∇v . (42)

4.1.4. Evolution equation of the alignment tensor without flow field225

For vanishing velocity field226

v ≡ 0→ ∇v ≡ 0 (43)

the relaxation equation for the alignment tensor simplifies to:227

da
dt

= −L11$
1
T

d fa

da
=

= L11$ −A(T)a + Ba · a− C1a : aa− C2a · a · a . (44)

The right hand side of this equation is proportional to the derivative of a potential, the free energy228

density fa. In other words, for vanishing velocity field, the time derivative of the alignment tensor is229

governed by a potential. For a non-vanishing velocity gradient, such a derivation from a potential is230

possible only in very special flow geometries but not in general.231

4.2. The Mesoscopic Theory232

4.2.1. General remarks233

The mesosocpic theory introduces the microscopic director n as a mesoscopic variable, that means,234

the MDF f (m, x, t) (16) becomes the orientation distribution function (ODF) f (x, t, n) which describes the235

orientational distribution of the molecules in the considered volume element of the nematic liquid236

crystal exactly as points on the 2-dimensional unit sphere S2. The drawback is that one have to know237

this distribution function which is not directly measurable. Consequently, approximation methods are238

necessary for exploiting the advantages of the mesoscopic procedure against the macroscopic one. The239

ODF has a special property: the head-tail-symmetry240

f (x, t, n) = f (x, t,−n) ≡ f (·). (45)

which takes into account that each microscopic director generates two points on the S2, one241

on the "northern hemisphere" and the other is the opposite pole on the "southern hemisphere".242

This head-tail-symmetry forbids the interpretation that the macroscopic director describes the mean243

orientation of the microscopic directors in a particle of the liquid crystal244 ∫
S2

n f (x, t, n)d2n = 0. (46)

Consequently, the question arises "what is the macroscopic director in the framework of the245

mesoscopic theory ?"246
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Figure 1. The orientation distribution function (ODF) in the uniaxial and biaxial liquid crystalline
phases. In the isotropic phase, all orientations are equally probable, whereas in the liquid crystalline
phases, the ODF is anisotropic.

4.2.2. The orientation distribution function247

Thermotropic liquid crystals consist of rigid non-spherical molecules which are rotation symmetric.248

The axis of this molecular rotation symmetry determines the microscopic director n. The molecules249

themseves can be rod-like or disc-like. In all liquid crystalline phases, there exists an orientational250

order of the microscopic directors which is described by the ODF which has often uniaxial symmetry.251

The ODF allows the identification of the different phases. In the isotropic phase, all molecule252

orientations are equally probable, and the orientation distribution function is isotropic, i.e., a253

homogeneous function on the unit sphere S2. The other extreme is the totally ordered phase, where254

all molecule orientations are identical. The corresponding distribution function has a non-zero value255

only for this single common orientation, i.e., it is delta-shaped. Due to thermal motion, this totally256

ordered phase does not occur at non-zero temperature. There is a partial ordering of orientations, and257

the corresponding distribution functions show some concentration around a preferred orientation.258

There are two possibilities: that the ODF is rotation symmetric around an axis e, or that there is no such259

rotation symmetry. In the first case, the phase is called uniaxial; in the second case, it is called biaxial9.260

In most cases, nematic liquid crystalline phases are observed to be uniaxial as sketched in Figure 1.261

If we denote the angle between the uniaxial symmetry axis e and a microscopic director n by Θ,262

the ODF depends only on cos Θ because of this uniaxial symmetry263

f (x, t, n) = g(x, t, cos Θ). (47)

The uniaxial symmetry of the ODF causes a special form of the alignment tensor which is discussed264

in sect.4.2.3.265

4.2.3. The mesoscopic root of the alignment tensor family266

According to (22), the alignment tensor is symmetric, traceless and of second order. Using the ODF267

and the microscopic director n as a mesoscopic variable, we introduce the family of the macroscopic268

fields of order parameters defined by different moments of the ODF269

9 The terms "uniaxial" and "biaxial" are related to the ODF and not to the molecules.
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a(x, t) :=
∫

S2
f (·) nn d2n, (48)

a(4)(x, t) :=
∫

S2
f (·) nnnn d2n, (49)

a(k)(x, t) :=
∫

S2
f (·) n . . . n︸ ︷︷ ︸

k times

d2n, etc. (50)

These tensors are macroscopic fields of successive order. The even order tensors are non-zero,270

due to the head-tail symmetry of the orientation distribution function (45).271

Starting out with the uniaxial ODF (47), the alignment tensors of second and higher order become272

[34]273

aunax(x, t) = S(x, t) e(x, t)e(x, t) , e · e = 1, (51)

a(k)
unax(x, t) = S(k)(x, t) e(x, t) . . . . . . e(x, t)︸ ︷︷ ︸

k times

. (52)

A comparison with (22) allows the following interpretation which answers the question posed at274

the end of sect.4.2.1: the macroscopic director d is defined by the uniaxial symmetry axis e of the ODF.275

d(x, t) ≡ e(x, t). (53)

Beyond that, the following statement is true: If the macroscopic director is a basic field as in the276

well-known Ericksen-Leslie-theory, all microscopic directors are totally aligned along the symmetry277

axis of the ODF or perpendicular to it [31].278

The eigenvalue problems of the alignment tensor of uniaxial ODF are according to (51) and (53)279

aunax · d = S
(

d− 1
3

d
)
=

2
3

Sd, (54)

aunax · d⊥ = −S
1
3

d⊥, d⊥ · d = 0. (55)

The Maier-Saupe parameter becomes a scalar field which can be interpreted mesoscopically:280

1. Isotropy (Ordinary liquid phase)281

Each direction is eigenvalue of aunax belonging to the same eigenvalue. According to (54) and282

(55), we obtain283

2
3

S = −S
1
3
−→ Siso = 0 −→ aiso = 0. (56)

2. Total alignment (Ericksen-Leslie-theory)284

If dtot is the direction of total alignment, the ODF is according to (45)285

ftot(·) =
1
2

(
δ(n− dtot) + δ(n + dtot)

)
, (57)

resulting in286
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atot =
∫

S2

1
2

(
δ(n− dtot + δ(n + dtot)

)(
nn− 1

3
δ
)

d2n =

=
(

dtotdtot −
1
3

δ
)
−→ Stot = 1, (58)

according to (51) and (53). Also the scalar order parameters become S(k)
tot = 1.287

Consequently, we obtain: the ordinary liquid phase is characterized by S = 0 and aiso = 0, the case288

S = 1 corresponds to the totally ordered phase, where all molecule orientations with respect to the289

macroscopic director dtot are equal. This is the case for the well-known Ericksen-Leslie-theory where290

all molecules have exactly the same orientation and all scalar order parameters S(k) are equal to one.291

The value S = −1/2 is the other extreme value (−1/2 ≤ S ≤ 1) which corresponds according to292

(55) to a totally ordered planar phase, where all molecule axes n lie in the plane perpendicular to the293

macroscopic director d. In experiments, partially ordered phases with 0 < S < 1 are observed.294

The fields of order parameters a(k)(x, t) describe macroscopically the mesoscopic state of the295

system introduced by the mesoscopic variable n and its distribution function. Consequently, these fields296

are the link between the mesoscopic background description of the liquid crystal and its description297

by additional macroscopic fields as internal variables. In the isotropic phase, all alignment tensors298

are zero, whereas in the liquid crystalline phases, at least some alignment tensors are non-zero. In299

equilibrium, they are determined by the equilibrium variables mass density and temperature. The300

most important one is the alignment tensor of second order (k = 2) which is easily measured via301

optical properties of the liquid crystalline phase.302

4.2.4. Evolution equation of the alignment tensor303

From the mesoscopic point of view, the equation of motion of the alignment tensor is derived304

from balance equations of the mesoscopic fields. The orientation distribution function is defined as the305

mass fraction:306

f (x, t, n) =
ρ(x, t, n)
ρ(x, t)

. (59)

The macroscopic mass density ρ(x, t) satisfies the continuity equation, assuming additionally307

incompressibility. The mesoscopic mass density satisfies, the following balance equation [28,46]308

∂

∂t
$(·) + ∇x · {$(·)v(·)}+∇n · {$(·)u(·)} = 0, (60)

with the mesoscopic material velocity v(·) and the orientation change velocity u(·) which are309

defined by310

(x, t, n) −→
(

x + v(·)∆t, t + ∆t, n + u(·)∆t
)

. (61)

The orientation distribution function satisfies a balance equation because of the definition (59), of311

the mesoscopic mass balance (60) and of the incompressibility condition. A straight forward calculation312

results in [47]313

∂ f (x, n, t)
∂t

+ v(x, n, t) · ∇ f (x, n, t) +∇n · (u(x, n, t) f (x, n, t)) = 0 . (62)

The differential equation (62) of the ODF allows the derivation of a system of differential equations314

for the alignment tensors of successive order, after inserting an expression for the orientation change315

velocity u(·). In these equations, the alignment tensors of all orders may be coupled, depending on316

the expression for u(·). In general, a closure relation is needed in order to deal with only a limited317
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number of moments (see [54]). A closure relation expresses the higher order alignment tensors a(k)(x, t)318

(k = 4, 6, . . . ) in terms of the second order one. Together with such a closure relation, these equations319

are the differential equations for the internal variable alignment tensor of second order a(x, t).320

4.3. Combination of mesoscopic and macroscopic description321

A unique reconstruction of the orientation distribution function (59) defined on the higher322

dimensional mesoscopic space from a macroscopic internal variable is not possible. Only a distribution323

function in a restricted class of functions can be determined in such a way, that the averages calculated324

with it, give the correct value of the internal variables, which are assumed to be known. The class of325

distribution functions is chosen in such a way, that it maximizes the statistical entropy. This idea of326

entropy maximization goes back to Jaynes [48,49], and is applied widely in information theory. In327

the kinetic theory of gases, this principle is applied in order to calculate higher order moments of the328

velocity distribution [50–53]. In the context of the mesoscopic theory, it has been applied in [54].329

Starting out with the ODF maximizing the statistical entropy [54]:330

f (x, t, n) .
=

e−Λ(x,t): nn∫
S2 e−Λ(x,t): nn d2n

=:
e−Λ(x,t): nn

Z
, Λ>

.
= Λ,

•
Λ: δ

.
= 0 (63)

by use of a symmetric tensor Λ whose time derivative
•
Λ is traceless, we obtain for the alignment331

tensor (48)332

a(x, t) =
∫

S2
nn

e−Λ(x,t): nn

Z
d2n =

1
Z

∫
S2
− ∂

∂Λ
e−Λ: nn d2n =

= − 1
Z

∂

∂Λ

∫
S2

e−Λ: nn d2n = − 1
Z

∂Z
∂Λ

= −∂ ln Z
∂Λ

. (64)

This implicit relation between the alignment tensor and the parameter Λ cannot be solved for Λ.333

Instead, we will use the entropy density for the identification of Λ.334

The part of the entropy density ηa in (23) which depends only on the alignment tensor is335

introduced on the microscopic level using the Shannon entropy of the ODF [54]336

ηa(x, t) = K
∫

S2
f (x, t, n) ln f (x, t, n)d2n. (65)

Inserting the orientation distribution function (63), this results in337

1
K

ηa(x, t) =
∫

S2
−Λ(x, t) : nn f (x, t, n)d2n− ln Z = −Λ : a− ln Z. (66)

Taking338

•
Z=

d
dt

(∫
S2

e−Λ(x,t): nn d2n
)
= −

•
Λ:
∫

S2
e−Λ(x,t): nn nn d2n = −

•
Λ: aZ (67)

into account, we obtain according to (64)4339

(ln Z)
•
= −

•
Λ: a =

•
Λ:

∂ ln Z
∂Λ

. (68)

The LHS of (68) is a total differential. Consequently according to (68)2, ln Z depends only on Λ.340

Because ln Z is a scalar under changing the observer (frame independence), its dependence on Λ is via341

its scalar invariants [55,56]. Here we choose a simple case342
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ln Z .
= g

(
Λ− 1

3
(trΛ)δ

)
:
(

Λ− 1
3
(trΛ)δ

)
= g

(
Λ : Λ− 1

3
(trΛ)2

)
, (69)

∂g
∂t

.
= 0,

∂g
∂Λ

.
= 0. (70)

Taking (63)3,4 into account, we obtain from (69)2 and (68)1343

(ln Z)
•
= g

(
2
•
Λ: Λ− 2

3
(trΛ)(trΛ)

•)
= 2g

•
Λ: Λ = −

•
Λ: a. (71)

Because of (63)4, we can identify from (71)2344

2g
(

Λ− 1
3
(trΛ)δ

) .
= −a −→ Λ = − 1

2g
a +

1
3
(trΛ)δ. (72)

Taking (72)2 and (69)2 into consideration, we obtain345

−Λ : nn =
( 1

2g
a− 1

3
(trΛ)δ

)
: nn =

1
2g

a : nn −1
3
(trΛ)(tr nn ) =

1
2g

a : nn , (73)

ln Z = g
(
− 1

2g
a +

1
3
(trΛ)δ

)
:
(
− 1

2g
a +

1
3
(trΛ)δ

)
− g

3
(trΛ)2 =

1
4g

a : a. (74)

Taking (73) into account, the ODF (63) becomes346

f (x, t, n) =
1
Z

exp
( 1

2g
a(x, t) : nn

)
, Z =

∫
S2

exp
( 1

2g
a(x, t) : nn

)
d2n, (75)

and the alignment tensor (64) results in347

a(x, t) =
1
Z

∫
S2

nn exp
( 1

2g
a(x, t) : nn

)
d2n. (76)

The entropy density (66) becomes by use of (72)2 and (74)2348

1
K

ηa(a) =
( 1

2g
a− 1

3
(trΛ)δ

)
: a− 1

4g
a : a =

1
4g

a : a. (77)

By the choice (69)1 –which was induced by frame independence– we obtained (77)2, the quadratic349

dependence of the entropy density on the alignment tensor. This simple expression is often a too rough350

approximation: the quadratic term has to be extended by terms of higher order which must also be351

scalar invariants according to observer independence.352

5. Further Applications of Mesoscopic Theory353

The mesoscopic concept has been applied to various kind of materials with an internal structure,354

like solids damaged by micro-cracks [57–64], dipolar media [65], mixtres [66,67], granular materials355

[68], magnetorheological fluids [69] and fiber reinforced concrete [70,71]. Three different applications356

will be sketched in the following.357

5.1. Solids, damaged by micro-cracks358

An important mechanism of material damage in solids is the growth of micro-cracks under the359

action of an external load. These microcracks can be modelled as penny-shaped, i.e. flat and rotation360

symmetric. Then each single crack is characterized by its diameter and orientation of the surface361

normal [58,59,61]. In case of microscopically small cracks there is a large number of cracks in the362

volume element with a distribution of crack sizes and crack orientations. The crack length may take363

values between a minimal length lm of the smallest preexisting cracks and a maximal length lM, which364
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is limited by the linear dimension of the continuum element. The orientation of the unit vector n is365

given by an element of the unit sphere S2. Therefore in the example of microcracks the manifoldM of366

the mesoscopic variables is given by [lm, lM]× S2.367

5.1.1. Definition of the crack distribution function368

Due to its definition as probability density the crack distribution function (CDF) is the number369

fraction370

f (l, n, x, t) =
N(l, n, x, t)

N(x, t)
, (78)

in volume elements for which the number density N(x, t) is non-zero. Here N(x, t) is the371

macroscopic number density of cracks of any length and orientation. If N(x, t) = 0, we define372

additionally that in this case f (l, n, x, t) .
= 0. As there is no creation of cracks in our model, the373

distribution function will be zero for all times in these volume elements. In all other volume elements374

with a non-zero crack number it is normalized375

∫ lM

lm

∫
S2

f (l, n, x, t)l2d2ndl = 1. (79)

5.1.2. Balance of crack number376

In our model the cracks move together with the material element. Consequently, their flux is the377

convective flux, having a part in position space, a part in orientation space and a part in the length378

interval. There is no production and no supply of the crack number. Therefore we have for the crack379

number density N:380

∂

∂t
N(·) +∇x · {N(·)v(x, t)}+∇n · {N(·)u(x, t)}+ 1

l2
∂

∂l

(
l2 l̇N(·)

)
= 0. (80)

We obtain a balance of the CDF (78) by inserting N(·) into (80):381

∂

∂t
f (l, n, x, t) +∇x · (v(x, t) f (l, n, x, t)) +

+∇n · (u(x, t) f (l, n, x, t)) +
1
l2

∂

∂l

(
l2 l̇ f (l, n, x, t)

)
=

=
− f (l, n, x, t)

N(x, t)

(
∂

∂t
+ v(x, t) · ∇x

)
N(x, t) =

=
− f (l, n, x, t)

N(x, t)
dN(x, t)

dt
= 0. (81)

This balance equation of the CDF corresponds to that of the ODF (62) in liquid crystal theory.382

5.1.3. Definition of a damage parameter383

The damage parameter is introduced as a macroscopic quantity growing with progressive damage384

in such a way that it should be possible to relate the change of material properties to the growth of the385

damage parameter. We define the damage parameter as the fraction of cracks, which have reached a386

certain length L. The idea is that cracks of this and larger sizes considerably decrease the strength of387

the material, and therefore their fraction is a measure of the damage. This idea is related to the slender388

bar model of Krajcinovic [72], where the damage parameter is introduced as the number of ‘broken389

bars‘ in the sample .390

D(x, t) =
∫ ∞

L

∫
S2

f (l, n, x, t)d2nl2dl. (82)
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In this definition of the damage parameter the possibility of cracks of any length (lM → ∞) is391

included. This is consistent with different laws of crack growth, where the crack does not stop growing.392

5.1.4. Differential equation for the damage parameter393

Differentiating the definition of the damage parameter (82) with respect to time, we get the394

following differential equation for it:395

dD(x, t)
dt

= −
[
l2 f (l, n, x, t)l̇

]lM

L
+ 2

∫ lM

L

∫
S2

f (l, n, x, t)ll̇d2ndl. (83)

The differential equation of the damage parameter depends on the crack distribution function,396

and consequently on the initial crack distribution. Additionally, the time rate of the damage parameter397

(83) depends on the differential equation of the crack length.398

5.1.5. Closing the differential equation of the crack distribution function399

Some model on the growth velocity of a single crack is needed in order to make a closed differential400

equation for the length and orientation distribution function according to (81). We suppose that for a401

given load not all cracks start growing, but only cracks exceeding a certain critical length lc, which is402

given by the Griffith-criterion. As in many examples of a crack length change dynamics, the cracks403

do not stop growing, but extend infinitely. In all these cases the maximal crack length has to be set404

to lM = ∞. However, when the cracks become macroscopic their growth dynamics becomes more405

complicated (showing for instance branching) than our example dynamics here.406

5.1.6. Onset of growth: Griffith-criterion407

The criterion for cracks to start growing adopted in the example is the energy criterion introduced408

originally by Griffith [73]. According to that, there is a criticality condition for the crack growth to409

start, and for cracks larger than a critical length there is a velocity of crack growth l̇. From energetic410

considerations Griffith [73] derived a critical length of cracks so that cracks exceeding this length start411

to grow. This critical length is given by:412

lc =
K
σ2

n
, (84)

where K is a material constant, and σn is the stress applied perpendicular to the crack surface. It413

is assumed that a stress component within the crack plane does not cause crack growth. For cracks414

smaller than the critical length lc, the energy necessary to create the crack surface exceeds the energy415

gain due to release of stresses.416

5.1.7. Rice-Griffith dynamics417

An example of crack dynamics, taking into account the criticality condition of Griffith is derived418

from a generalization of the Griffith energy criterion on thermodynamic grounds, by introducing a419

Gibbs potential which includes the stress normal to the crack surface and the crack length as variables.420

The resulting crack evolution law has the form421

l̇ = −α + βσ2l for l ≥ lc , (85)

l̇ = 0 for l < lc, (86)

with material coefficients α and β. In case of a constant time rate of the applied stress, σ = vσt, it422

results in:423
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Figure 2. Time evolution for the crack length distribution function for stepwise initial condition.

l̇ = −α + βv2
σlt2 for l ≥ lc , (87)

l̇ = 0 for l < lc . (88)

vσ is the time derivative of the applied stress normal to the crack surface. The dependence of this424

normal stress on the crack orientation results in the following orientation dependence of the dynamics:425

l̇ = −α + βv2
σ 0lt2(ez · n)4 for l ≥ lc , (89)

l̇ = 0 for l < lc, (90)

where vσ0 is the change velocity of the stress applied in the z-direction. After averaging over all426

orientations this orientation dependence results in a dependence on the fourth moment
∫

S2 nnnn f d2n427

of the crack distribution function. This dynamics also includes a criticality condition for starting the428

crack growing.429

With this model for the length change velocity, we end up with the following differential equation430

for the crack distribution function:431

d f (l, n, x, t)
dt

= − 1
l2

∂

∂l

(
l2
(
−α + βvσ(n)2lt2

) )
for l ≥ lc, (91)

d f (l, n, x, t)
dt

= 0 for l < lc. (92)

Solutions of this differential equation for different initial conditions have been discussed in [61].432

An example taken from [61] is depicted in fig.2.433

5.2. Dipolar media434

Let us denote the orientation of a single dipole by a unit vector n. The orientation of the dipole can435

take any value on the unit sphere S2. According to the concept of the mesoscopic theory, we introduce436

mesoscopic fields, defined on the mesoscopic space R3
x ×Rt × S2. The last argument in the domain of437
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the fields is the orientation of the dipole n. This mesoscopic space is the same as for liquid crystals,438

and consequently, the mesoscopic balance equations look the same for a dipolar medium as for liquid439

crystals. The difference between these two materials shows up in the constitutive theory. An important440

difference is that the head-tail-symmetry (45) of liquid crystals does not exist for dipoles because the441

dipole and its reverse are distinguishable.442

5.2.1. Orientation distribution function and alignment tensors443

Macroscopically, the dipole moments show up as a magnetization only if their orientations are444

not distributed isotropically, but they are oriented more or less parallel. This orientational order can445

be described by using the orientation distribution function (ODF) of liquid crystal theory which is446

sketched in sect.4.2.4. Thus the definition of the ODF (59) and its balance equation (62) are also valid447

for dipolar media, except that of the head-tail-symmetry (45). Also the alignment tensor family (48) to448

(50) mentioned in sect.4.2.3 is identical for (nematic) liquid crystals and dipolar media. In contrast to449

the vanishing first order alignment tensor (46) of liquid crystal theory, it is here proportional to the450

macroscopic magnetization.451

It is convenient to introduce also alignment tensors A(k) which are not traceless:452

A(k)(x, t) :=
∫

S2
f (x, n, t) n . . . n︸ ︷︷ ︸

k

d2n. (93)

5.2.2. Exploitation of the spin balance equation453

The domain of the mesoscopic constitutive mappings –the state space Z– is chosen to be:454

Z = {$, T, B, Ḃ, a(1), a(2), n}. (94)

Here T is the temperature and B the magnetic induction. The state space includes macroscopic and455

mesoscopic variables. The macroscopic variables are temperature, mass density, magnetic induction,456

its time derivative, and the first and second order alignment tensors. These alignment tensors in the457

state space account for the fact that the dipoles tend to align parallel, i.e., the surrounding dipoles exert458

an aligning ”mean field”.459

In a simpler model, it would be sufficient to include only the first order alignment tensor which460

expresses the tendency of the dipoles to align parallel. The second order alignment tensor accounts for461

the influence of a quadrupolar ordering. We will discuss the case without the second order alignment462

tensor as a special case later. The mass density $ in the state space is the macroscopic one because the463

dependence on the orientation n is written out explicitly.464

An exploitation of the balance of spin together with a constitutive function for the stress tensor465

results in the orientation change velocity466

u = (δ− nn) ·
(

β1B + β2Ḃ + β4a(1) + β3a(2) · n
)

. (95)

The coefficients β j are functions of the macroscopic mass density $(x, t) and the temperature467

T(x, t).468

5.2.3. Equation of motion of the magnetization469

The first moment of equation (62) reads:470

∂

∂t

∫
S2

f nd2n + v · ∇
∫

S2
f nd2n +

∫
S2

n · ∇n( f u)d2n = 0. (96)
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On the other hand, the variable n is proportional to the microscopic magnetization (magnetization471

per unit mass), i.e., it is the orientation of the microscopic dipole moment: m = αn with α = const.. The472

first moment of the orientation distribution function is proportional to the average of the microscopic473

magnetization, i.e., the macroscopic magnetization:474

M(x, t) = α$(x, t)
∫

S2
f nd2n = α$(x, t)a(1). (97)

The first two terms in equation (96) are derivatives of the first order alignment tensor. The third475

term is integrated by parts using Gauss’ theorem on the unit sphere. The resulting equation reads:476

∂a(1)

∂t
+ v · ∇a(1) =

da(1)

dt
=
∫

S2
f u · ∇n(n)d2n. (98)

Then, inserting the equation for the orientation change velocity equation (95) and taking into477

account ∇n(n) = P = δ− nn and n · ∇n(. . . ) = 0 (because ∇n is the covariant derivative on the unit478

sphere), we obtain:479

da(1)

dt
=
∫

S2

(
β1B + β2Ḃ + β4a(1) + β5a(2) · n −

−β1nn · B− β2nn · Ḃ− β4nn · a(1)
)

f d2n, (99)

using the fact that P is a projector (P · P = P).480

The first moment of the dipole distribution function is proportional to the magnetization (see481

equation (97)). In the resulting equation there enters also the second orientational moment A(2) of the482

dipole distribution function:483

A(2) =
∫

S2
f (·)nnd2n . (100)

For an incompressible material, we end up with484

1
α$

dM
dt

= β1B + β2Ḃ + β4
1

α$
M −

−β1 A(2) · B− β2 A(2) · Ḃ− β4
1

α$
A(2) ·M. (101)

A closure relation is needed, expressing the higher order moments in terms of the second order485

one. Such a closure relation can be derived from the principle of maximum entropy [54], or it has to be486

postulated as a constitutive equation. The simplest assumption is that the orientations of the dipoles487

are statistically independent (which is an approximation only). Then the closure relation is a very488

simple one:489

A(2) =
∫

S2
f (x, n, t)nnd2n =

∫
S2

f (x, n, t)nd2n
∫

S2
f (x, n, t)nd2n =

= a(1)a(1), (102)
dM
dt

= β1α$B + β2α$Ḃ + β4M −

−β1
1

α$
MM · B− β2

1
α$

MM · Ḃ− β4
1

α2$2 MM ·M. (103)
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If the value of the magnetization is sufficiently small, we can neglect quadratic and higher order490

terms of the magnetization. In this linear limit, (103) simplifies to:491

dM
dt

= β1α$B + β2α$Ḃ + β4M. (104)

This expression is of the form of the well-known Debye equation for dielectric relaxation492

phenomena, here in an analogous form for magnetic relaxation. This fact can be used to identify the493

coefficients β1, β2, and β4.494

5.3. Suspensions of flexible fibers495

5.3.1. Deformation of a fiber496

The fibers are assumed to be straight, if not loaded. Then one can choose a coordinate s along497

this fiber orientation and an orthogonal tensor U(s) describing the distortion of the fiber. The angular498

distortion tensor defined by499

ϕ := UT · dU
ds

(105)

takes into account the local deformation of the flexible fibers. s is the local coordinate along the500

fiber, and x is the position of the continuum element. s is only introduced in order to describe the local501

fiber deformation. The tensor ϕ is obviously skew-symmetric because U is orthogonal,502

We introduce the angular distortion vector (the vector invariant of the angular distortion tensor)503

as504

~ϕ× δ = ϕ. (106)

Only in this case we will denote the vector by the symbol~ in order to distinguish it from the505

tensor ϕ.506

Let n denote the unit vector tangential to the undeformed fiber. The scalar product of ~ϕ and n507

results in the twist:508

t = ~ϕ · n, (107)

and the component of ~ϕ perpendicular to n is the bend:509

b = ~ϕ− n(n · ~ϕ). (108)

The element of internal structure in our example is the orientation and deformation of the fiber.510

The orientation of an undeformed fiber is described by a unit vector n, where turning around the fiber511

by π does not change the orientation and therefore n→ −n is a symmetry transformation. The vector512

n is an element of the unit sphere S2. The deformation of the fiber is given by the vector ~ϕ introduced513

previously.514

5.3.2. Orientational order parameter and deformation variable515

The aim is to introduce macroscopic quantities from this mesoscopic background which describe516

the distribution of fiber orientations and the average distortion of fibers:517

Orientational order parameters:518

Ak =
∫

S2

∫
R3

f (~ϕ, n, x, t) n . . . n︸ ︷︷ ︸
k

d3 ϕd2n, (109)
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deformation order parameters:519

Φk =
∫

S2

∫
R3

f (~ϕ, n, x, t) ~ϕ . . . ~ϕ︸ ︷︷ ︸
k

d3 ϕd2n. (110)

mixed orientation-deformation parameters:520

am~φn =
∫

S2

∫
R3

f (~ϕ, n, x, t) n . . . n︸ ︷︷ ︸
m

~ϕ . . . ~ϕ︸ ︷︷ ︸
n

d3 ϕd2n. (111)

These order parameters are tensors of successive order. They are macroscopic fields depending521

on position and time. With respect to fiber orientations we have the symmetry transformation n→ −n.522

Therefore all odd order orientational order parameters vanish, and the first non-zero order parameter,523

apart from the isotropic part A0 = 1 is the second order one: A = A2.524

5.3.3. Mesoscopic and macroscopic stress tensor525

In the case that all fibers have the same translational velocity, the macroscopic stress tensor is the526

integral over all mesoscopic ones:527

t =
∫

S2

∫
R3

t̂(·)d3 ϕd2n̂. (112)

The mesoscopic stress tensor is a constitutive quantity, defined on a suitable set of variables. This528

set of variables may include mesoscopic quantities as well as macroscopic ones. A reasonable choice529

for this set of variables is:530

Ẑ = {ρ, T, n, ~ϕ, ∇v ,∇× v}. (113)

Using this set of variables and a representation theorem up to linear order in the velocity gradient531

and the deformation variable ~ϕ, we obtain the following expression for the mesoscopic stress tensor:532

t̂ =
ρ̂

ρ

(
α1nn + α2n~ϕ + α3~ϕn + α4n(∇× v) + α5(∇× v)n + α6 ∇v +

+α7nn· ∇v +α8n· ∇v n + α9n· ∇v ·nnn
)

. (114)

The material coefficients α1 to α9 may all depend on the (macroscopic) mass density ρ and533

temperature T.534

We assume, that the material velocity v does not depend on fiber orientation or fiber deformation.535

In this case, the stress tensor is obtained by averaging over the mesoscopic variables according to536

equation (112):537

t =
∫

S2

∫
R3

ρ̂

ρ
(α1nn + α2n~ϕ + α3~ϕn + α4n(∇× v) + α5(∇× v)n+

+α6 ∇v +α7nn· ∇v +α8n· ∇v n + α9n· ∇v ·nnn
)

d3 ϕd2n =

= α1 A + α2〈nϕ〉+ α3〈ϕn〉+ α6 ∇v +

+α7 A· ∇v +α8 ∇v ·A + α9 ∇v : A(4). (115)

The average of α4n(∇ × v) vanishes, because
∫

S2 f nd2n = 0 due to the symmetry n ↔ −n,538

analogously for the term with α5. The averages 〈n~ϕ〉 and 〈~ϕn〉 are non-zero, because they are even539

functions of n:540
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ϕ(−n) = −ϕ(n), (116)

and therefore541

− n~ϕ(−n) = n~ϕ(n). (117)

The stress tensor (115) clearly may have an antisymmetric part ta
542

ta =
1
2
(α2 − α3) (〈n~ϕ〉 − 〈~ϕn〉) + 1

2
(α7 − α8)

(
A· ∇v −d̊ · A

)
. (118)

which indicates that the spin balance equation of the material in consideration does not vanish543

identically.544

6. Discussion545

Constitutive equations of complex materials require a domain which is extended in comparison546

with that of hydrodynamics. These additional variables are macroscopic fields defined on space-time,547

often internal variables –"measurable, but not contollable"–. There are two cases: these additional548

variables are basic fields, that means, they are entities of their own, or there exists a microscopic549

background which allows to derive these additional variables. These two possibilities are discussed550

using the (macroscopic) director and the alignment tensor of nematic liquid crystals.551

The microscopic background can be quantum-theoretical, statistical or mesoscopic which is chosen552

here. Mesoscopic means, the domain of space-time is extended by so-called mesoscopic variables553

to each of them a mesoscopic distribution function (MDF) belongs describing the distribution of the554

mesoscopic variable in a volume element around the space-time event.555

The mesoscopic tools of nematic liquid crystal theory are the microscopic director describing the556

alignment of each molecule in the considered volume element and the corresponding orientation557

distribution function (ODF) describing their alignment distribution.558

The Ericksen-Leslie theory [7,8] introduces the macroscopic director as a basic field. This means,559

mesoscopically investigated, locally total or planar alignment of all molecules [31]. If the ODF is560

uniaxial, the alignment tensor has the Maier-Saupe form (22). The Hess theory [42] introduces the561

alignment tensor as a basic field inducing that the ODF may be arbitrary.562

The advantage of the mesoscopic description is not only to interpret the macroscopic quantities,563

but also to reflect the phase transition liquid-nematic. The shape of the mesoscopic balance quations is564

well known from mixture theory, including the evolution equation of the MDF.565

Acknowledgments: The authors thank Kolumban Hutter and Yongqi Wang for publishing this paper in open566

access.567

Conflicts of Interest: The authors declare no conflict of interest.568

References569

1. Muschik, W. Internal variables in non-equilibrium thermodynamics. J. Non-Equilib. Thermodyn. 1990, 15,570

127-137.571

2. Maugin, G.A., Muschik, W. Thermodynamics with internal variables. I. General Concepts, II. Applications. J.572

Non-Equilib. Thermodyn. 1994, 19, 217-249, 250-289.573

3. Maugin, G.A. The Thermomechanics of Plasticity and Fracture; Cambridge University Press, Cambridge, 1992.574

4. Truesdell C., Noll W. Non-Linear Field Theories of Mechanics. In , Encyclopedia of Physics, Vol. III/3, Sect. 98;575

Springer Verlag, Berlin, 1965.576

5. Cosserat, E., Cosserat, F. Théorie des Corps Déformables. Hermann and Fils, Paris, 1909.577

6. Cosserat, E., Cosserat, F. Sur la mechanique générale. In Acad. Sci. Paris, 1907; 145 pp.1139–1142578

7. Ericksen, J..L. Anisotropic fluids. Arch. Rat. Mech. Anal. 1960, 4, 231.579

8. Leslie, F.J. Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 1965, 28, 265.580

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2017                   doi:10.20944/preprints201712.0190.v1

Peer-reviewed version available at Entropy 2018, 20, 81; doi:10.3390/e20010081

http://dx.doi.org/10.20944/preprints201712.0190.v1
http://dx.doi.org/10.3390/e20010081


23 of 25

9. Hess, S. Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in581

liquid crystals. Z. Naturforsch. 1975, 30a, 728–733.582

10. G.A. Maugin, G.A., Drouot, R. Thermodynamic modelling of polymers in solution. In Constitutive Laws and583

Microstructure; Axelrad, D.R., Muschik, W., Eds.; Springer Verlag, Berlin, Wien, New York, 1988; pp. 137–161.584

11. Verhas, J. Thermodynamics and Rheology; Akadémiai Kiadó, Budapest, 1997.585

12. Verhas, J. The thermodynamic theory of non-Newtonian flows. J. Non-Equilib. Thermodyn. 1993, 18, 311.586

13. Verhas, J. Irreversible thermodynamics for rheological properties of colloids. Int. J. Heat Mass Transfer 1987,587

30, 1001-1006.588

14. Verhas, J. A thermodynamic approach to viscoanelasticity and plasticity. Acta Mechanica 1984, 53, 125-139.589

15. Ehrentraut, H., Muschik, W. On symmeric irreducible tensors in d dimensions. ARI 1998, 51, 149-159.590

16. Muschik, W. A sketch of continuum thermodynamics. J. Non-Newtonian Fluid Mech. 2001, 96, 255-290.591

17. Muschik, W. Objectivity and frame indifference of acceleration-sensitive materials. J. Theor. Appl. Mech. 2012,592

50, 807-817.593

18. Jou, D., Casas-Vázquez, J., Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin, Germany, 1993.594

19. Müller, I., Ruggeri, T. Extended Thermodynamics; Springer: New York, USA, 1993.595

20. Bridgman, W. The Nature of Thermodynamics; Harvard University Press: Cambridge (Mass), 1943; Reprint:596

Harper and Brothers: New York, USA, 1961.597

21. Meixner, J. Zur Thermodynamik der irreversiblen Prozesse. Z. Phys. Chem. 1943, 538, 235-263.598

22. Muschik, W. Internal Variables in Non-Equilibrium Thermodynamics. J. Non-Equilib. Thermodyn. 1990, 15,599

127-137.600

23. Maugin, G.A. The Thermomechanics of Nonlinear Irreversible Behaviors - An Introduction; World Scientific:601

Singapore, 1999.602

24. Blenk, S., Ehrentraut, H., Muschik, W. A continuum theory for liquid crystals describing different degrees of603

orientational order. Liquid Crystals, 1993, 14, 1221-1226.604

25. Blenk, S., Ehrentraut, H., Muschik, W. Orientation balances for liquid crystals and their representation by605

alignment tensors. Mol. Cryst. Liq. Cryst. 1991, 204, 133–141.606

26. Muschik, W., Ehrentraut, H., Papenfuss, C. Concepts of mesoscopic continuum physics with application to607

liquid crystals. J. Non-Equilib. Thermodyn. 2000, 25, 179–197.608

27. Blenk, S., Muschik, W. Orientational balances for nematic liquid crystals. J. Non-Equilib. Thermodyn. 1991, 16,609

67–87.610

28. Muschik, W., Papenfuss, C., Ehrentraut, H. Sketch of the mesoscopic description of nematic liquid crystals. J.611

Non-Newtonian Fluid Mech. 2004, 119, 91-104.612

29. Ericksen, J.L. Liquid crystals with variable degree of orientation. Arch. Rat. Mech. Anal. 1991, 113, 97–120.613

30. Leslie, F.M. Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Math. 1966, 19, 357–370.614

31. Muschik, W., Ehrentraut, H., Blenk, S. Ericksen-Leslie Liquid Crystal Theory Revisited from a Mesoscopic615

Point of View. J. Non-Equilib. Thermodyn. 1995, 20, 92-101.616

32. Hess, S. Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in617

liquid crystals ii. Z. Naturforsch. 1975, 30a, 1224-1232.618

33. Landau, L.D., Lifschitz, E.M. Statistische Physik. In Lehrbuch der Theoretischen Physik; Akademie-Verlag:619

Berlin, Germany, 1984; 6th edition, volume V, translated into German.620

34. Vertogen, G., deJeu, W.H.. Thermotropic Liquid Crystals, Fundamentals. In Chemical Physics, Number 45;621

Springer: Berlin, Heidelberg, Germany, 1988.622

35. Longa, L., Monselesan, L., Trebin, H.-R. An extension of the Landau-Ginzburg-de Gennes theory for liquid623

crystals. Liquid Crystals 1987, 2, 769-796.624

36. deGennes, P.G. The Physics of Liquid Crystals; Clarendon Press: Oxford, UK, 1974.625

37. deGennes, P.G., Prost, J.. The Physics of Liquid Crystals, Monographs on Physics 2 edition; Clarendon Press:626

Oxford, UK, 1995.627

38. Virga, E.G. Variational Theories for Liquid Crystals; Chapman and Hall: London, UK, 1994.628

39. deGennes, P.G. Simple Views on Condensed Matter. Series in Modern Condensed Matter Physics Volume 4;629

World Scientific: Singapore, New Jersey, London, Hong Kong, 1992.630

40. Grebel, H., Hornreich, R.M., Shtrikman S. Landau theory of cholesteric blue phases: The role of higher631

harmonics. Phys. Rev. A, 1984, 30, 3264.632

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2017                   doi:10.20944/preprints201712.0190.v1

Peer-reviewed version available at Entropy 2018, 20, 81; doi:10.3390/e20010081

http://dx.doi.org/10.20944/preprints201712.0190.v1
http://dx.doi.org/10.3390/e20010081


24 of 25

41. Grebel, H., Hornreich, R.M., Shtrikman S. Landau theory of cholesteric blue phases. Phys. Rev. A, 1983, 28,633

1114.634

42. Pardowitz, I., Hess, S. On the theory of irreversible processes in molecular liquids and liquid crystals,635

nonequilibrium phenomena assosiated with the second and fourth rank alignment-tensors. Physica 1980,636

100A, 540-562.637

43. Ván, P. Exploiting the second law in weakly non-local continuum physics. Periodica Polytechnica Ser.Mech.638

Eng. 2005, 49, 79–94.639

44. Ván, P. The ginzburg-landau equation as a consequence of the second law. Continuum Mech. Thermodyn.640

2005, 17, 165-169.641

45. Ván, P. Weakly nonlocal irreversible thermodynamics. Annalen der Physik (Leipzig) 2003, 12, 142–169.642

46. Papenfuss, C. Theory of liquid crystals as an example of mesoscopic continuum mechanics. Computational643

Materials Science 2000, 19, 45-52.644

47. Blenk, S., Ehrentraut, H., Muschik, W. Statistical foundation of macroscopic balances for liquid crystals in645

alignment tensor formulation. Physica A, 1991, 174, 119-138.646

48. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620-630.647

49. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 108, 171-197.648

50. Dreyer, W. Kinetic Theory and Extended Thermodynamics; Müller, I., Ruggeri, T., Eds.; Pitagora Editrice Bologna,649

Bologna, Italy, 1987.650

51. Dreyer, W. Maximization of the entropy in non-equilibrium. J. Phys. A 1987, 20, 6505-6517.651

52. Müller, I., Ruggeri T. Extended Thermodynamics; Springer Tracts in Natural Philosophy, Vol. 37, Berlin,652

Heidelberg, Germany, 1993.653

53. Cerciniani, C. Theory and Application of the Boltzmann Equation; Elsevier, Amsterdam, the Netherlands, 1975.654

54. Papenfuss, C., Muschik, W. Orientational order in free standing liquid crystalline films and derivation of a655

closure relation for higher order alignment tensors. Mol. Cryst. Liq. Cryst. 1999, 330, 541 – 548.656

55. Muschik, W., Restuccia, L. Systematic remarks on objectivity and frame-indifference, liquid crystal theory as657

an example. Archive of Applied Mechanics 2008, 78, 837-854.658

56. Muschik, W., Restuccia, L. Changing the Observer and Moving Materials in Continuum Physics: Objectivity659

and Frame-Indifference. Technische Mechanik 2002, 22, 152-160.660

57. Papenfuss, C., Ván, P., Muschik, W. Mesoscopic theory of microcrack dynamics. In Solmech, 2000, Volume of661

Abstracts, 2000, pp. 305-306.662

58. Ván, P., Papenfuss, C., Muschik. W. Mesoscopic dynamics of microcracks. Phys. Rev. E 2000, 62, 6206-6215.663

59. Papenfuss, C., Ván, P., Muschik, W.. Mesoscopic theory of microcracks. Archive of Mechanics 2003, 55, 481-499.664

60. Papenfuss, C. A closure relation for the higher order alignment tensors in liquid crystal theory and the665

alignment-Fabric tensors in damage mechanics from a statistical background. Physica A 2003, 331, 23-41.666

61. Ván, P., Papenfuss, C., Muschik. W. Griffith cracks in the mesoscopic microcrack theory. J. Phys. A 2004,37,667

5315-5328. published online: Condensed Matter, abstract, cond-mat/0211207; 2002.668

62. Papenfuss, C. Damage evolution in micro-cracked materials under load. In Trends in Continuum Physics;669

Maruszewski, B.T., Muschik, W., Radowicz, A., Eds.; World Scientific, Singapore, 2004.670

63. Papenfuss, C., Böhme, T., Herrmann, H., Muschik, W., Verhás, J.. Dynamics of the size and orientation671

distribution of microcracks and evolution of macroscopic damage parameters. J. Non-Equilib. Thermodyn.672

2007, 32, 1-14.673

64. Papenfuss, C., Ván, P. Scalar, vectorial, and tensorial damage parameters from the mesoscopic background.674

Proceedings of the Estonian Academie of Sciences 2008, 57, 132-141.675

65. Papenfuss, C., Ciancio, V., Rogolino, P. Application of the mesoscopic theory to dipolar media. Technische676

Mechanik 2002, 22.677

66. Palumbo, N., Papenfuss, C., Rogolino, P. A mesoscopic approach to diffusion phenoma in mixtures. J.678

Non-Equilib. Thermodyn. 2005, 30, 401-419.679

67. Florindo, C., Papenfuss, C., Bassi, A. Mesoscopic continuum thermodynamics for mixtures of particles with680

orientation. J. Math. Chem., Accepted for publication: 29 June 2017, 2017.681

68. Chen, Kuo-Ching. A mesoscopic continuum description of dry granular materials. Journal of Non-Equilibrium682

Thermodynamics 2008, 33, 255-274.683

69. Chen, Kuo-Ching. On the macroscopic-mesoscopic mixture of a magnetorheological fluid. Proceedings of The684

Royal Society A 2006, 462, 1123-1144.685

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2017                   doi:10.20944/preprints201712.0190.v1

Peer-reviewed version available at Entropy 2018, 20, 81; doi:10.3390/e20010081

http://dx.doi.org/10.20944/preprints201712.0190.v1
http://dx.doi.org/10.3390/e20010081


25 of 25

70. Eik, M., Puttonen, J., Herrmann, H. An orthotropic material model for steel fibre reinforced concrete based686

on the orientation distribution of fibres. Composite Structures 2014, 121.687

71. Eik, M., Puttonen, J., Herrmann, H. The effect of approximation accuracy of the orientation distribution688

function on the elastic properties of short fibre reinforced composites. Composite Structures 2016, 148.689

72. Krajcinovic, D. Damage mechanics; North-Holland Series in Applied Mathematics and Mechanics, Elsevier,690

Amsterdam-etc., the Netherlands, 1996.691

73. Griffith, A.A. The theory of rupture. Trans. First Intl. Cong. Appl. Mech. Delft 1924; pp. 55-63.692

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2017                   doi:10.20944/preprints201712.0190.v1

Peer-reviewed version available at Entropy 2018, 20, 81; doi:10.3390/e20010081

http://dx.doi.org/10.20944/preprints201712.0190.v1
http://dx.doi.org/10.3390/e20010081

	Introduction
	Fundamental Balances and Basic Fields
	Complex Materials
	Extended Thermodynamics
	Internal Variables
	The Mesoscopic Theory

	Liquid Crystals
	The Macroscopic Theory
	General remarks
	Alignment tensor as an internal variable
	Evolution equation of the alignment tensor
	Evolution equation of the alignment tensor without flow field

	The Mesoscopic Theory
	General remarks
	The orientation distribution function
	The mesoscopic root of the alignment tensor family
	Evolution equation of the alignment tensor

	Combination of mesoscopic and macroscopic description

	Further Applications of Mesoscopic Theory
	Solids, damaged by micro-cracks
	Definition of the crack distribution function
	Balance of crack number
	Definition of a damage parameter
	Differential equation for the damage parameter
	Closing the differential equation of the crack distribution function
	Onset of growth: Griffith-criterion
	Rice-Griffith dynamics

	Dipolar media 
	Orientation distribution function and alignment tensors
	Exploitation of the spin balance equation
	Equation of motion of the magnetization

	Suspensions of flexible fibers
	Deformation of a fiber
	Orientational order parameter and deformation variable
	Mesoscopic and macroscopic stress tensor


	Discussion
	References

