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1 Abstract: Internal and mesoscopic variables differ from each other fundamentally: both are state space
:  variables, but mesoscopic variables are additional equipped with a distribution function introducing
s a statistical item into consideration which is missing in connection with internal variables. Thus, the
s alignment tensor of liquid crystal theory can be introduced as an internal variable or as one generated
s by a mesoscopic background using the microscopic director as mesoscopic variable. Because the
s mesoscopic variable is part of the state space, the corresponding balance equations change into
»  mesoscopic balances, and additionally an evolution equation of the mesoscopic distribution function
e  appears. The flexibility of the mesoscopic concept is not only demonstrated for liquid crystals, but is
o also discussed for dipolar media and flexible fibers.

1o Keywords: mesoscopic theory; internal variables; liquid crystals; damage parameter; dipolar media;
u  flexible fibers

12 1. Introduction

13 There are two different possibilities to deal with complex materials within continuum
1« thermodynamics: The first way is to introduce additional state space variables which depend on
15 position and time and extend the state space accounting for the internal structure of the complex
1s material. These additional fields can be internal variables [1,2], order or damage parameters [3],
17 Cosserat triads [4-0], directors [7,8], alignment and conformation tensors [9,10]. It is possible as well,
1 to introduce internal variables, without specifying their physical meaning in the beginning'. This has
1»  been applied for instance, successfully in rheology [11-14].

20 The other way is the so called mesoscopic theory whose idea is to enlarge the domain of the field
=z quantities beyond position and time by mesoscopic variables. Consequently, the fields -now called
22 mesoscopic fields— are defined on the mesoscopic space R3 x R; x M. The manifold M is given by
23 the set of mesoscopic variables which represent internal degrees of freedom depending on the internal
2¢ structure of the complex material under consideration.

25 Beyond the additional mesoscopic variables m € M which belong to each particle in a volume
26 element around x at time ¢, the mesoscopic concept introduces a statistical element, the mesoscopic
2z distribution function f(x,t,m) which describes the distribution of m contained in the considered
22 volume element. This distribution function generates the term "mesoscopic” because this concept
20 includes more information than a "macroscopic” theory on R? xRy, but the microscopic level is not
30 considered like in a kinetic theory, molecular dynamics, quantum-theoretical or other "microscopic"

*In Memory of Stefan Blenk

1 put obviously, the physical meaning of the considered internal variable has to make clear finally
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a1 approaches. Thus, the mesoscopic level of information is between the microscopic and the macroscopic
;2 ones.

33 The aim of the present paper is to discuss the connection between the macroscopic theory of
s« internal variables on space-time and the mesoscopic theory on the mesoscopic state space. An equation
35 of motion of the internal variables can be derived from macroscopic thermodynamics. But starting
s out with the mesoscopic theory, the mesoscopic origin of the internal variable and its equation of
s»  motion becomes visible. Obviously, the mesoscopic distribution function cannot be determined by
ss only one macroscopic internal variable: it is determined by all its (infinity of) moments [15]. Because
3o only a finite set of macroscopic variables is available, the reconstruction of the mesoscopic distribution
20 function is only possible within a certain restricted class of functions, namely the distribution functions
«1  maximizing the entropy under the constraint of a prescribed value of certain moments. In the following,
2 we will investigate the relation between an internal variable theory and a mesoscopic one considering
a3 the example of liquid crystals and some other mesoscopic items.

12 2. Fundamental Balances and Basic Fields

as We consider here a special part of the realm of non-linear field theories of classical physics,
s especially Continuum Thermodynamics [16] whose aim is the determination of the wanted (or basic)
4«7 fields which obey balance equations. In Continuum Mechanics, these seven basic fields are the mass
s density g, the velocity v of the material and its spin density s

Bmech(x’t) = (Q/v/s)(x/t)' (1)

a9 The domain of these fields is the non-relativistic space-time. Seven balance equations belong to
so these seven basic fields: the mass balance, the momentum and the spin balance. Constitutive fields
51 appear in them: the stress tensor T and the couple stress W. Momentum supply ¢k and spin supply
s2 (g are externally given quantities.

53 Two basic fields are added to Continuum Mechanics to obtain Continuum Thermodynamics: the
s« densities of internal energy e and entropy #

B(x,t) = (¢v,8,¢,1)(xt). €

55 The heat flux g and the entropy flux ® are the additional constitutive fields. The corresponding
ss external supplies are the internal energy supply or and the entropy supply 0. If constitutive equations
sz are not presupposed, a balance equation of the temperature T does not exist: temperature can be
se definedby T :=r/.

59 The constitutive fields of simple Continuum Thermodynamics
R(x,t) = (T,W,q,®,s,1)(x,t) (3)
60 do not only depend on basic fields (2), but also on their derivatives, as the "Fourier law of

sr  heat conduction" q(o, T, VT) = —«(0, T, VT)VT shows 2. Fourier’s law demands, that we have to
ez introduce a domain of the constitutive fields Z(x, t) which also contains derivatives of the basic fields.
es  We call this domain "state space” or "constitutive space". The most simple state space is that of a fluid
e« without internal friction and missing heat conduction which contains the mass density and the internal
es energy

Z(x,t) = (ee)(xt). @

2 Here, the internal energy is replaced by the temperature.
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o6 The velocity v does not occur in state spaces because the relative velocity between material and
e» Observer does not influence constitutive properties® in contrast to Vo on which the stress tensor may
es depend.
69 Additional internal friction and heat conduction makes a state space necessary which contains
7 the spatial derivatives of mass density, internal energy and velocity
Z(x,t) = (0,e,Vo, Ve, Vv)(x,t). 5)
7 Aging processes need additionally time derivatives
Z(x,t) = (0,6,V0,Ve,Vo,0,¢,0)(x,t). ©)
72 According to (3), we obtain the following scheme for the representation of constitutive properties
R(Z(x1) = (T,W,q,@,5,7)(Z(x1)). @)
73 That means, constitutive properties depend on the space-time via the space-time dependence of

s the state space variables, and the derivatives V and o; need a state space and have to be performed by
s use of the chain rule.

76 Considering the examples (4), (5) and (6), the state space (4) is extended by derivatives of basic
7z fields. Obviously, other extensions of a state space taking other than the basic fields into account are
s possible resulting in state spaces which belong to so-called complex materials.

7 3. Complex Materials

80 Complex materials are characterized by a state space which contains variables beyond the
s1 basic fields and their derivatives. A famous example for such a state space is that of the Extended
e2 Thermodynamics. Other examples of extended state spaces are those belonging to thermoviscoelastic
es and thermoviscoplastic materials and materials showing thermal after-effects.

ea 3.1. Extended Thermodynamics

e The extended state space of Extended Thermodynamics is [18,19]
Z(xt) = (0.6, T+p1q)(xt). ®)
86 Here the state space is extended by the originally constitutive quantities viscous part of the

ez stress tensor and heat flux density which now are on equal foot in the state space with mass density
e and internal energy. In Extended Thermodynamics, the state space (4) is extended by well defined
e fields. Another possibility of extension is the introduction of for the present undefined variables as
% place-holders defining them later. Such kind of variables are called internal ones.

o1 3.2. Internal Variables

02 Historically, the concept of internal variables can be traced back to Bridgman [20], Meixner [21]
o and many others. The introduction of internal variables makes possible to use large state spaces,
s that means, material properties can be described by mappings defined on the state space variables
s (including the internal ones), thus avoiding the use of their histories which appear in small state spaces
o6 [22]. Those are generated, if the internal variables are eliminated. Consequently, internal variables
oz allow to use the methods of Irreversible and/or Extended Thermodynamics [23].

3 Especially, we consider acceleration-insensitive materials which do not need a so-called "second entry" [17].
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98 Internal variables cannot be chosen arbitrarily: there are concepts which restrict their introduction
ss [22]. The most essential ones are:

w0 1. For the present, internal variables can be introduced as place-holders for elucidating the

101 considered constitutive structure, but finally, they need a model or an interpretation,
12 2. Beyond the constitutive and the balance equations, internal variables require rate equations which
103 can be adapted to different situations, making the use of internal variables flexible and versatile,

1ws 3. The internal variables and their time rates do not occur in the balance equation of the internal

105 energy,

s 4. Alocal isolation does not influence the internal variables locally,

w7 5. In equilibrium, the internal variables become dependent on the variables of the equilibrium
108 sub-space.

100 Satisfying these concepts, the internal variables entertain an ambiguous relationship with
10 constitutive microstructure [2]. A state space extended by internal variables is e.g.

Z(x,t) = (0,e,Vo,Ve,Vv,&)(x,1), 9)

111 and the evolution equations may have the shape
F= f(®) +g(®) e +h(®) Ve+k(®)- Vo, ® = (0,e,Vo, Ve, Vov,§). (10)

112 Special one-dimensional cases are
relaxation type: é (t) = 1 (C(t) - (’,‘8‘7), (11)
7(®)

reaction type [22]: &) = y(®) [1 —exp ( - y(t)ﬁ(@))} (12)
113 If the condition #3 is not satisfied, that means, if internal variables occur in the balance eequation of

ue the internal energy, these variables of an extended state space are called "internal degrees of freedom".

us  3.3. The Mesoscopic Theory

116 As already mentioned in the introduction, there is another possibility for describing complex
1z materials: Instead of using extended state spaces which modify the constitutive equations (7), the
us domain of the basic fields (2) is extended by so-called mesoscopic variables m [16]

Bueso(m, x,t) = (0,v,s,e,1)(m,x,t). (13)

110 These mesoscopic variables are on equal foot with the space-time variables resulting in the fact,
120 that the mesoscopic balance equation of the density X defined on

()= (m,x,t) € M xR3xR! (14)
121 is well known
]
SX()+ Vi [0(0X () = S()| + Vin - [u(-X() = R()| = 2(-). (15)
122 Here the independent field u(-), defined on the mesoscopic space, describes the change in time of

123 the set of mesoscopic variables: With respect to m the mesoscopic change velocity u(-) is the analogue to
12« the mesoscopic material velocity v(-) referring to x: If a particle is characterized by (m, x, t), then for
125 At — +0 it is characterized by (m + u(-)At, x + v(-)At, t + At). Besides the usual gradient V also the
126 gradient V,,, with respect to the set of mesoscopic variables appears. The non-convective fluxes are
12z §(-) and R(+), supply and production are collected in X(-).
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128 Beyond the use of additional mesoscopic variables m the mesoscopic concept introduces a
120 statistical element, the so-called mesoscopic distribution function (MDF) f(m, x,t) generated by the
130 different values of the mesoscopic variable in a volume element

flm,x,t) = f(-). (16)

131 The MDF describes the distribution of m in a volume element around x at time ¢, and therefore it
132 is normalized

/f(m,x, HAM = 1. (17)

133 Now the fields as mass density, momentum density, etc. are defined on the mesoscopic space. For

13a  distinguishing these fields from the macroscopic ones we add the word “mesoscopic”. Consequently
135 the mesoscopic mass density is defined by

()= alx )f (). (18)

136 Here o(x, t) is the macroscopic mass density. By use of (17) we obtain
o(x,t) = /Q(m, x, t) dM. (19)
137 This equation shows, that the system can be formally treated as a mixture of components having

1:s  the partial density o(-) [24]. Here the “component index" m is a continuous one. Because mixture
130 theory is well developed [25], [26] mesoscopic balance equations can be written down very easily [27].
140 The special case of liquid crystals is considered in [28].

Other mesoscopic fields defined on the mesoscopic space are the mesoscopic material velocity v(-)
of the particles belonging to the mesoscopic variable m at time ¢ in a volume element around x, the
external mesoscopic acceleration k(-), the mesoscopic stress tensor T(-), and the mesoscopic heat flux density
q(-), etc. Macroscopic quantities are obtained from mesoscopic ones as averages with the MDF as
probability density:

Al t) = [ ACOF)IM 20)

11 This again shows that the complex material can be seen as a mixture of components with different
12 values of the mesoscopic variable.

13 4. Liquid Crystals
14 4.1. The Macroscopic Theory

s 4.1.1. General remarks

146 The molecules of nematic liquid crystals are orientable, that means, each molecule has a preferred
17 direction n —the microscopic director— which indicates the orientation of the "needle-shaped" molecule. In
e a particle of the liquid crystal continuum theory are a lot of molecules of different orientation resulting
140 in a mean orientation belonging to the considered particle described by a unit vector d. This unit vector
10 —called the macroscopic director— is a basic field d(x, t) of the macroscopic director theory of nematic
151 liquid crystals [29,30]* whose microscopic background is out of scope®. As an internal variable, the

the Ericksen-Leslie theory [28]
If the microscopic background is taken into account, the Ericksen-Leslie one-director theory allows only parallel or planar
orientation of the microscopic directors [31].

5
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12 macroscopic director needs an evolution equation®. The macroscopic director as a basic field does not
153 contain any information about the degree of orientation of the microscopic directors. The same holds
1sa  true for a macroscopic alignment tensor which is introduced by use of the macroscopic director or as a
s basic field on its own [9,32]7.

16 4.1.2. Alignment tensor as an internal variable

157 In the liquid crystalline state material properties are anisotropic, in contrast to the isotropic liquid
1ss  state. On the other hand, liquid crystalline phases behave like fluids, as they do not have a well defined
150 shape but flow like highly viscous fluids. The anisotropic properties of liquid crystals can be described
160 in terms of a second order tensor, the alignment tensor.

161 A purely macroscopic definition of the alignment tensor in terms of the dielectric tensor reads:

€® — 1 trace(e®)d

a:= 21
1 trace(e?) @
162 with the dielectric tensor € (D = €° - E)
163 The second order tensor —defined in equation (21)- has the following properties:

1ea 1. It vanishes in the high temperature phase (the isotropic, ordinary liquid phase), because in the

165 ordinary liquid phase the dielectric tensor is proportional to the unit tensor §, and the traceless
166 part vanishes,

167 2. Itis non-zero in the low temperature phase (the nematic liquid crystal phase), because in this
168 phase, the dielectric tensor has a non-zero traceless part,

16 3. Itis a dimensionless quantity due to the normalization with the trace in the denominator.

170 With these properties, the second order alignment tensor can be considered as an order parameter
11 in the sense of Landau-theory of phase transitions. The Landau-theory was developed to deal with
172 second order phase transitions [33], originally with phase transitions in ferromagnetic materials. It has
173 been applied to various kinds of phase transitions, for instance: the transition nematic/isotropic phase
w7a  in liquid crystals [34-39], or other transitions between liquid crystalline phases [40,41].

175 Starting out with the macroscopic director d, the corresponding alignment tensor is of the form®:
7 1

a=S5 dd:s(dd—ga), tr(dd) =d-d =1, (22)

176 with a scalar quantity, denoted as Maier-Saupe-order parameter S. The Maier-Saupe-order parameter

177 is a measure of the degree of liquid crystalline order, and in equilibrium its value is determined by
1zs temperature (and eventually an electric or magnetic field). For the physical interpretation of 5, we
17e  need the mesoscopic background which is treated in sect.4.2.3.

10 4.1.3. Evolution equation of the alignment tensor

181 For the exploitation of the dissipation inequality with methods of irreversible thermodynamics
w2 [9,32,42], the alignment tensor —but not its gradient— is included in the set of variables. The alignment
13 tensor a(x, t) may vary from continuum element to continuum element, but its gradient does not
12a  influence constitutive properties, and therefore it does not appear in the set of variables. This
s assumption can be looked at as a version of the local equilibrium hypothesis generalized to internal
1es  variables. In some situations, no alignment tensor gradient is present at all. For instance, in a nematic

6
7

see sect.4.2.4
see sect.4.1.2

8 'AB isthe symmetric and traceless part of the tensor AB [47].
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17 liquid crystal between two planar glass plates, with homogeneous boundary conditions and no
s temperature gradient, the alignment is homogeneous in space [43-45].

189 For the entropy density # and the internal energy density e, the following constitutive assumption
10 is made: both quantities are decomposed into a part depending on the equilibrium variables —mass
11 density ¢ and internal energy density e- and an alignment tensor dependent part

n = tole Q) +1a(a) (23)
= ¢ey(a=0)+e,(a). (24)
102 For the alignment tensor-independent parts, the Gibbs equation in the usual form holds with

103 pressure p and temperature T:

dpp _ Ldeg  p de
dt — Tdt o2Tdt )

108 With the usual assumptions of Thermodynamics of Irreversible Processes concerning the
15 dependence of the entropy flux ® = g/ T on the heat flux q and of the entropy supply ¢ = r/T
106 ON the energy supply r, we start out with the balance equation of entropy

d
a:gd—'z+v-<b—go. (26)
197 Taking the balance equation of the internal energy of a medium with an internal angular
1s  momentum @ - s
de ds
QE——V'l]+t.VU+1’+QE~®-S (27)
100 into account (stress tensor: t, material velocity: v, moment of inertia: ©, spin density: s), and

200 presupposing a material of vanishing couple stress and couple force

ds
Qg = € t, (28)

201 we obtain for the entropy production

- dn, lde, \  da 1
0_Q<da_Tdu>’ a T (_TZ)VT+
" ]2 %,—/

fi h fa
+l +1trace(t) \% v—i—l?‘ﬁ—k
T\" "3 N RS-~
f3 i
I3 Ja

L antisym antisym

+ ey, ((VZJ) —€: (6~s)> . (29)
T
N

J5 f5
202 Linear constitutive relations between the fluxes J; ... J5 and the forces f; ... f5 are considered. It

203 is assumed that the anisotropy of the liquid crystal is given explicitly by the dependence of internal
20¢ energy and entropy on the alignment tensor, but otherwise material coefficients are scalars. Then
20s the Curie principle applies, and there is no coupling between fluxes and forces of different tensorial
20 order, and no coupling between symmetric and antisymmetric tensors. With these assumptions, the
200 flux-force-relations read
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da 0 Tfa —
— = —Lpyz —=— +L
7 ugp 4o s Vo, (30)
1
qg = —ﬁLnVT, (31)
1 1
— | p+ = trace(t) = L3V -, (32)
T 3
m—/ d — 1
t = —Lgo TJZ +Ly Vo, (33)
1 antisym antisym
—gontisym ] ((w) p (e.s)), (34)
T
208 by introducing the anisotropic part of the free energy density
fao=€a—T1,. (35)
200 Equation (30) is the evolution equation of the internal variable, the alignment tensor. It is of the

20 form of a pure relaxation equation without a flux term. In the following, the expression in the bracket
a2 € — TH, = f, is abbreviated as the alignment-tensor-dependent part of the free energy density f,.
22 The constitutive equation (31) is the classical Fourier equation with heat conductivity x = Ly, /T?.
213 From (32) follows for vanishing flow field, p = —% trace(t). The remaining two equations are the
=a  constitutive relations for the symmetric traceless part of the stress tensor t, and for the antisymmetric
25 part of the stress tensor "™ In order to exploit further equations (30) and (33), expressions for
26 the alignment tensor dependence of #, and €, are needed. We will make constitutive assumptions
z7  involving terms up to fourth and second order, respectively:

Na(a) = —%Aoa ra+ %B trace (a-a-a) —

1
—ECl (a:a)®>—Cytrace(a-a-a-a), (36)

1
€(a) = —5eaza (37)
218 The coefficients Ag, B, C1, C2, and € are material dependent parameters which are assumed to be

219 constant, and, especially independent of temperature. Here the Cayleigh-Hamilton theorem could be

_

220 used to transform the expression a - a - a - a, because this is not an independent invariant. However,
2z the above form is the most practical one. The derivations are carried out:

difa

da = —Apa+Ba-a—Cia:aa—Cya-a-a, (38)

d

% - _ea (39)
222 Using these ansatzes, from (30) the relaxation equation

da 1df, —
E = —L11Q T% +L14 Vo=

= L0 (I—A(T)a—kBu-a—Cla : aa—C2u~a~a‘) + L1y Vo (40)

223 follows, with
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1
A(T) =Ap— Te (41)
224 For the symmetric traceless part of the stress tensor, we obtain the constitutive equation:
t = —Lypo —=— +LyuT =
s - +HLluT Vo
= LynTo (I—A(T)a +Ba-a—Cia:aa—Cra-a- a) + LgyT Vo . (42)
225 4.1.4. Evolution equation of the alignment tensor without flow field
226 For vanishing velocity field
v=0—-Vo=0 (43)
227 the relaxation equation for the alignment tensor simplifies to:
da 1 dfa
_ — _L —_ = =
dt NOT da
= L0 ‘—A(T)a—l—Ba-a—Clu:uu—szu-a‘ . (44)
228 The right hand side of this equation is proportional to the derivative of a potential, the free energy

220 density f;. In other words, for vanishing velocity field, the time derivative of the alignment tensor is
20 governed by a potential. For a non-vanishing velocity gradient, such a derivation from a potential is
231 possible only in very special flow geometries but not in general.

22 4.2. The Mesoscopic Theory

233 4.2.1. General remarks

234 The mesosocpic theory introduces the microscopic director n as a mesoscopic variable, that means,
2ss the MDF f(m, x, t) (16) becomes the orientation distribution function (ODF) f(x, t,n) which describes the
236 orientational distribution of the molecules in the considered volume element of the nematic liquid
237 crystal exactly as points on the 2-dimensional unit sphere S2. The drawback is that one have to know
=3¢ this distribution function which is not directly measurable. Consequently, approximation methods are
230 necessary for exploiting the advantages of the mesoscopic procedure against the macroscopic one. The
2e0 ODF has a special property: the head-tail-symmetry

fxtn) = f(x,t, —n) = (). (45)

241 which takes into account that each microscopic director generates two points on the S?, one
22 on the "northern hemisphere" and the other is the opposite pole on the "southern hemisphere".
2e3  This head-tail-symmetry forbids the interpretation that the macroscopic director describes the mean
2as  Orientation of the microscopic directors in a particle of the liquid crystal

/52 nf(x,t,n)d’n = 0. (46)

245 Consequently, the question arises "what is the macroscopic director in the framework of the
246 Mesoscopic theory ?"
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Different degrees of orientational order

Phase ODF a(2)
isotropic 0
i
(s
anisotropic, Nad #0
no symmetry
-
| Bahs. —
anisotropic, b 4 S dd
rotation d: symmetry
symmetry axis
(o —
anisotropic, N S dd
rotation 8~ 0.9: high
symmetry order
D
= | g |
Totally ordered | N/ | §=1: dd

Figure 1. The orientation distribution function (ODF) in the uniaxial and biaxial liquid crystalline
phases. In the isotropic phase, all orientations are equally probable, whereas in the liquid crystalline
phases, the ODF is anisotropic.

227 4.2.2. The orientation distribution function

248 Thermotropic liquid crystals consist of rigid non-spherical molecules which are rotation symmetric.
20 The axis of this molecular rotation symmetry determines the microscopic director n. The molecules
=0 themseves can be rod-like or disc-like. In all liquid crystalline phases, there exists an orientational
261 order of the microscopic directors which is described by the ODF which has often uniaxial symmetry.
252 The ODF allows the identification of the different phases. In the isotropic phase, all molecule
23 orientations are equally probable, and the orientation distribution function is isotropic, ie., a
2ss  homogeneous function on the unit sphere S?. The other extreme is the totally ordered phase, where
265 all molecule orientations are identical. The corresponding distribution function has a non-zero value
=6 only for this single common orientation, i.e., it is delta-shaped. Due to thermal motion, this totally
sz ordered phase does not occur at non-zero temperature. There is a partial ordering of orientations, and
=ss  the corresponding distribution functions show some concentration around a preferred orientation.
20 There are two possibilities: that the ODF is rotation symmetric around an axis e, or that there is no such
260 rotation symmetry. In the first case, the phase is called uniaxial; in the second case, it is called biaxial®.
261 In most cases, nematic liquid crystalline phases are observed to be uniaxial as sketched in Figure 1.
262 If we denote the angle between the uniaxial symmetry axis e and a microscopic director n by ©,
203 the ODF depends only on cos © because of this uniaxial symmetry

f(x,t,n) = g(x,t,cosO). (47)

264 The uniaxial symmetry of the ODF causes a special form of the alignment tensor which is discussed
26s in sect.4.2.3.

266 4.2.3. The mesoscopic root of the alignment tensor family

267 According to (22), the alignment tensor is symmetric, traceless and of second order. Using the ODF
26s and the microscopic director # as a mesoscopic variable, we introduce the family of the macroscopic
200 fields of order parameters defined by different moments of the ODF

9 The terms "uniaxial" and "biaxial" are related to the ODF and not to the molecules.
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a(x,t) = 52f(-) ' d*n, (48)
a®(x,t) = /2 f(-) 'nnnn' d*n, (49)
S
k L 1
a®(x,t) = Szf(-)\n_...n d*n, etc. (50)
k times
270 These tensors are macroscopic fields of successive order. The even order tensors are non-zero,
2 due to the head-tail symmetry of the orientation distribution function (45).
272 Starting out with the uniaxial ODF (47), the alignment tensors of second and higher order become
273 [34]
Aunax(x,1) = S(x,t) e(x, t)e(x,t), e-e=1, (51)
alllet) = SOt e(xt)...... e(x,1) . (52)
k times
274 A comparison with (22) allows the following interpretation which answers the question posed at

25 the end of sect.4.2.1: the macroscopic director d is defined by the uniaxial symmetry axis e of the ODF.

d(x,t) = e(x,t). (53)

276 Beyond that, the following statement is true: If the macroscopic director is a basic field as in the
27z well-known Ericksen-Leslie-theory, all microscopic directors are totally aligned along the symmetry
27e  axis of the ODF or perpendicular to it [31].

270 The eigenvalue problems of the alignment tensor of uniaxial ODF are according to (51) and (53)
1 2
Aunax - d = s(d - §d) = 354, (54)
1
Aunax - A+ = —sgd{ d-.d=o. (55)
280 The Maier-Saupe parameter becomes a scalar field which can be interpreted mesoscopically:

281 1. Isotropy (Ordinary liquid phase)

202 Each direction is eigenvalue of a,,,,x belonging to the same eigenvalue. According to (54) and
283 (55), we obtain

2 1
284 2. Total alignment (Ericksen-Leslie-theory)
285 If dyof is the direction of total alignment, the ODF is according to (45)

1
tot\*) — § — Btot tot) ),
fror() = 5 (801 = dior) + 6(n + diar)) (57)

286 resulting in
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ot = 1 S(n—dir +6(n+dipt) ) (nn — 15 d*n =
¢ $22 3
1
= (dtotdtot - 55) — Stot =1, (58)
287 according to (51) and (53). Also the scalar order parameters become S t(é(t) =1

2ee  Consequently, we obtain: the ordinary liquid phase is characterized by S = 0 and a;5, = 0, the case
20 S = 1 corresponds to the totally ordered phase, where all molecule orientations with respect to the
200 Mmacroscopic director dy, are equal. This is the case for the well-known Ericksen-Leslie-theory where
201 all molecules have exactly the same orientation and all scalar order parameters S(X) are equal to one.
202 The value S = —1/2 is the other extreme value (—1/2 < S < 1) which corresponds according to
203 (55) to a totally ordered planar phase, where all molecule axes n lie in the plane perpendicular to the
20s Mmacroscopic director d. In experiments, partially ordered phases with 0 < S < 1 are observed.

205 The fields of order parameters a(¥) (x,t) describe macroscopically the mesoscopic state of the
206 System introduced by the mesoscopic variable n and its distribution function. Consequently, these fields
207 are the link between the mesoscopic background description of the liquid crystal and its description
208 by additional macroscopic fields as internal variables. In the isotropic phase, all alignment tensors
200 are zero, whereas in the liquid crystalline phases, at least some alignment tensors are non-zero. In
30 equilibrium, they are determined by the equilibrium variables mass density and temperature. The
;o1 most important one is the alignment tensor of second order (k = 2) which is easily measured via
;02 optical properties of the liquid crystalline phase.

s 4.2.4. Evolution equation of the alignment tensor

308 From the mesoscopic point of view, the equation of motion of the alignment tensor is derived
s0s from balance equations of the mesoscopic fields. The orientation distribution function is defined as the
s0s mass fraction:

x,t,n)

fx,tn) = 2L

—_, (59)
plx 1)
307 The macroscopic mass density p(x, t) satisfies the continuity equation, assuming additionally
;s incompressibility. The mesoscopic mass density satisfies, the following balance equation [28,46]
d
5:90) + Vi {e()o()} + Vi - {e()u(-)} =0, (60)
300 with the mesoscopic material velocity v(-) and the orientation change velocity u(-) which are
a0 defined by
(x,t,n) — <x+v(-)At, t+At,n—|—u(-)At>. (61)
311 The orientation distribution function satisfies a balance equation because of the definition (59), of

a2 the mesoscopic mass balance (60) and of the incompressibility condition. A straight forward calculation
s13 results in [47]

of (x,n,t)

ot
314 The differential equation (62) of the ODF allows the derivation of a system of differential equations
as  for the alignment tensors of successive order, after inserting an expression for the orientation change
sie velocity u(-). In these equations, the alignment tensors of all orders may be coupled, depending on
a1z the expression for u(-). In general, a closure relation is needed in order to deal with only a limited

+o(x,nt) - Vilx,nt)+V, (u(x,nt)f(x,nt)=0 . (62)
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ae number of moments (see [54]). A closure relation expresses the higher order alignment tensors a®) (x,t)
a0 (k=4,6,...)in terms of the second order one. Together with such a closure relation, these equations
20 are the differential equations for the internal variable alignment tensor of second order a(x, t).

sz 4.3. Combination of mesoscopic and macroscopic description

322 A unique reconstruction of the orientation distribution function (59) defined on the higher
s23  dimensional mesoscopic space from a macroscopic internal variable is not possible. Only a distribution
;24 function in a restricted class of functions can be determined in such a way, that the averages calculated
:2s  with it, give the correct value of the internal variables, which are assumed to be known. The class of
226 distribution functions is chosen in such a way, that it maximizes the statistical entropy. This idea of
sz entropy maximization goes back to Jaynes [48,49], and is applied widely in information theory. In
s2s  the kinetic theory of gases, this principle is applied in order to calculate higher order moments of the
;20 velocity distribution [50-53]. In the context of the mesoscopic theory, it has been applied in [54].

330 Starting out with the ODF maximizing the statistical entropy [54]:
o~ Ax,):nn’ o~ Ax,):nn .
fx,t,n) = — = , ATE=A, AS=0 (63)
[ e~ A0 A 2, Z
331 by use of a symmetric tensor A whose time derivative A is traceless, we obtain for the alignment

332 tensor (48)

A(x.t):'nn’ 1 9

o — e 2 _ _ 7A: W 2 —
a(x,t) = o M d°n 7 Jo "9A° den
19 A » 190Z olnZz
= —== it = —— - = — . 4
ZoA Je© "TTZoA T oA )
333 This implicit relation between the alignment tensor and the parameter A cannot be solved for A.
:2a  Instead, we will use the entropy density for the identification of A.
335 The part of the entropy density 7, in (23) which depends only on the alignment tensor is
336 introduced on the microscopic level using the Shannon entropy of the ODF [54]
Na(x,t) = K/s2 f(x,t,n)In f(x,t,n)d*n. (65)
337 Inserting the orientation distribution function (63), this results in
1 —
Enu(x,t) = /52 —A(x,t) :'nn’ f(x,t,n)d*>n —InZ = —-A:a—1InZ. (66)
338 Takmg
7= a ( e_A(x't):Wd2n> N G N il I W (67)
dt \ Js2 52
330 into account, we obtain according to (64),
. . * dlnZ
(InZ) =— A:a=A: A (68)
340 The LHS of (68) is a total differential. Consequently according to (68);, In Z depends only on A.

s Because In Z is a scalar under changing the observer (frame independence), its dependence on A is via
sz its scalar invariants [55,56]. Here we choose a simple case
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InZ = g(A - 1(trA)(s) : (A - 1(trA)(s) = g(A TA— 1(trA)z) (69)
3 3 3 ’
g . g .
343 Taking (63)3 4 into account, we obtain from (69); and (68),
. M 2 . M M
(Inz)* = g(z A: A = 5 (trA) (trA) ) =2¢A:A=—A:a. (71)
344 Because of (63)4, we can identify from (71),
1 . 1 1
2g(A - g(trA)(s) toa o A= gt S (ErA)d. (72)
345 Taking (72); and (69), into consideration, we obtain
— 1 1 —_ 11— 1 —y _ 1
—A:nn = (ga—g(trA)J) Jnn = 2gu.nn 3(trA)(trnn) = 2gu.nn, (73)
InZ = g( — ia + 1(trA)5> : (— ia + 1(trA)(S) — g(trA)z = ia ta (74)
2¢ 3 ' 2¢ 3 3 4¢
346 Taking (73) into account, the ODF (63) becomes
f(x,t,n) = lexp (ia(x t) :'nn’ ) z :/ exp (ia(x t) :'nn )dzn (75)
7 v Z 28 7 7 Sz 2g 7 7
347 and the alignment tensor (64) results in
a(x, t) = l/ nn’ exp (ia(x t) :'nn’ )dZn. (76)
7 7 5 2g 7
348 The entropy density (66) becomes by use of (72); and (74);
1 1 1 1 1
Kﬂa(a)_ <§af§(trA)5) .afga.a—ga.a. (77)
349 By the choice (69); —~which was induced by frame independence- we obtained (77),, the quadratic

ss0  dependence of the entropy density on the alignment tensor. This simple expression is often a too rough
51 approximation: the quadratic term has to be extended by terms of higher order which must also be
sz scalar invariants according to observer independence.

sss 5. Further Applications of Mesoscopic Theory

354 The mesoscopic concept has been applied to various kind of materials with an internal structure,
sss like solids damaged by micro-cracks [57-64], dipolar media [65], mixtres [66,67], granular materials
36 [68], magnetorheological fluids [69] and fiber reinforced concrete [70,71]. Three different applications
ss7 - will be sketched in the following.

e 0.1. Solids, damaged by micro-cracks

359 An important mechanism of material damage in solids is the growth of micro-cracks under the
se0 action of an external load. These microcracks can be modelled as penny-shaped, i.e. flat and rotation
1 symmetric. Then each single crack is characterized by its diameter and orientation of the surface
2 normal [58,59,61]. In case of microscopically small cracks there is a large number of cracks in the
ses  volume element with a distribution of crack sizes and crack orientations. The crack length may take
see  values between a minimal length [, of the smallest preexisting cracks and a maximal length /), which
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s is limited by the linear dimension of the continuum element. The orientation of the unit vector n is
ses  given by an element of the unit sphere S2. Therefore in the example of microcracks the manifold M of
sz the mesoscopic variables is given by [1, ] x S%.

ses  5.1.1. Definition of the crack distribution function

369 Due to its definition as probability density the crack distribution function (CDF) is the number
a0 fraction

f(l,n,x,t)= Ng\ll’(;":; t), (78)

s71 in volume elements for which the number density N(x,t) is non-zero. Here N(x,t) is the
sz macroscopic number density of cracks of any length and orientation. If N(x,f) = 0, we define
sz additionally that in this case f(I,n,x,t) = 0. As there is no creation of cracks in our model, the
s7a  distribution function will be zero for all times in these volume elements. In all other volume elements
375 with a non-zero crack number it is normalized

1
/ " / f(m, ) Pdnd] = 1. (79)
Im /S
a7 5.1.2. Balance of crack number
377 In our model the cracks move together with the material element. Consequently, their flux is the

szs  convective flux, having a part in position space, a part in orientation space and a part in the length
s7e  interval. There is no production and no supply of the crack number. Therefore we have for the crack
;00 Number density N:

d 10 /5;

SN+ Vo ANC)o(x, D} + Vo NG )} + 555 (PiNG)) = o. (80)
381 We obtain a balance of the CDF (78) by inserting N(-) into (80):

9 b2 t) + Ve - (0(x, ) f (L, 3, 8)) +

ot
+Viu - (u(x, t)f(l,n,xt)) + 112% (lzif(l, n,x,t)) =
= _fzg(:t’; 2 (E)at +o(x, 1) .vx> N(x, 1) =
_ _fzfrl(: % ) dN C(lf o, (81)
362 This balance equation of the CDF corresponds to that of the ODF (62) in liquid crystal theory.
ses 5.1.3. Definition of a damage parameter
384 The damage parameter is introduced as a macroscopic quantity growing with progressive damage

ses  in such a way that it should be possible to relate the change of material properties to the growth of the
s damage parameter. We define the damage parameter as the fraction of cracks, which have reached a
se7  certain length L. The idea is that cracks of this and larger sizes considerably decrease the strength of
see the material, and therefore their fraction is a measure of the damage. This idea is related to the slender
0 bar model of Krajcinovic [72], where the damage parameter is introduced as the number of ‘broken
s90  bars’ in the sample .

D(x,t) = /L ~ /S f(mx, )dnil (82)
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301 In this definition of the damage parameter the possibility of cracks of any length (I — o) is
32 included. This is consistent with different laws of crack growth, where the crack does not stop growing.

sz 5.1.4. Differential equation for the damage parameter

394 Differentiating the definition of the damage parameter (82) with respect to time, we get the
35 following differential equation for it:

dD(x,t) 2 qm /IM / 5
e A 2 .
= Pf@manL+ [ f @ Dtidnal (83)
396 The differential equation of the damage parameter depends on the crack distribution function,

37 and consequently on the initial crack distribution. Additionally, the time rate of the damage parameter
a8 (83) depends on the differential equation of the crack length.

s9s  5.1.5. Closing the differential equation of the crack distribution function

400 Some model on the growth velocity of a single crack is needed in order to make a closed differential
201 equation for the length and orientation distribution function according to (81). We suppose that for a
a2 given load not all cracks start growing, but only cracks exceeding a certain critical length [, which is
a3 given by the Griffith-criterion. As in many examples of a crack length change dynamics, the cracks
20s do not stop growing, but extend infinitely. In all these cases the maximal crack length has to be set
as to Iy = co. However, when the cracks become macroscopic their growth dynamics becomes more
as complicated (showing for instance branching) than our example dynamics here.

a7 5.1.6. Onset of growth: Griffith-criterion

a08 The criterion for cracks to start growing adopted in the example is the energy criterion introduced
a0 originally by Griffith [73]. According to that, there is a criticality condition for the crack growth to
mo  start, and for cracks larger than a critical length there is a velocity of crack growth I. From energetic
a1 considerations Griffith [73] derived a critical length of cracks so that cracks exceeding this length start
a1z to grow. This critical length is given by:

K
lC = 0_7;/21/ (84)
a13 where K is a material constant, and ¢y, is the stress applied perpendicular to the crack surface. It

a4 is assumed that a stress component within the crack plane does not cause crack growth. For cracks
a5 smaller than the critical length /., the energy necessary to create the crack surface exceeds the energy
a1 gain due to release of stresses.

a7 5.1.7. Rice-Griffith dynamics

a1s An example of crack dynamics, taking into account the criticality condition of Griffith is derived
a0 from a generalization of the Griffith energy criterion on thermodynamic grounds, by introducing a
a20  Gibbs potential which includes the stress normal to the crack surface and the crack length as variables.
a2 The resulting crack evolution law has the form

[=—a+Bo?l for 1>1 (85)
[=0 for I<I, (86)
422 with material coefficients « and B. In case of a constant time rate of the applied stress, o = v,t, it

s23  results in:
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Figure 2. Time evolution for the crack length distribution function for stepwise initial condition.

[ = —a+Bo2lt> for 1>1. , (87)
[=0 for I<I . (88)
424 Uy is the time derivative of the applied stress normal to the crack surface. The dependence of this

a2s  normal stress on the crack orientation results in the following orientation dependence of the dynamics:

[ = —a+Bo2lt*(e;-n)* for 1>1 (89)
=0 for 1<1, (90)
a26 where v, is the change velocity of the stress applied in the z-direction. After averaging over all

a2r  orientations this orientation dependence results in a dependence on the fourth moment [, nnnnf d’n
a2 of the crack distribution function. This dynamics also includes a criticality condition for starting the
a0 crack growing.

430 With this model for the length change velocity, we end up with the following differential equation
a1 for the crack distribution function:

df(lr;t/xr t) _ —%%(lz (_,x +‘300(n)21t2> ) for 1>1, 1)
df(l,n,x,t)

7 =0 for I<I. (92)

432 Solutions of this differential equation for different initial conditions have been discussed in [61].
a3 An example taken from [61] is depicted in fig.2.

a3a 5.2. Dipolar media

a3s Let us denote the orientation of a single dipole by a unit vector n. The orientation of the dipole can
ase take any value on the unit sphere S2. According to the concept of the mesoscopic theory, we introduce
a7 mesoscopic fields, defined on the mesoscopic space R2 x R; x S2. The last argument in the domain of
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as  the fields is the orientation of the dipole n. This mesoscopic space is the same as for liquid crystals,
a0 and consequently, the mesoscopic balance equations look the same for a dipolar medium as for liquid
a0 crystals. The difference between these two materials shows up in the constitutive theory. An important
«a1 difference is that the head-tail-symmetry (45) of liquid crystals does not exist for dipoles because the
a2 dipole and its reverse are distinguishable.

a3 5.2.1. Orientation distribution function and alignment tensors

a4a Macroscopically, the dipole moments show up as a magnetization only if their orientations are
a5 not distributed isotropically, but they are oriented more or less parallel. This orientational order can
ws  be described by using the orientation distribution function (ODF) of liquid crystal theory which is
a7 sketched in sect.4.2.4. Thus the definition of the ODF (59) and its balance equation (62) are also valid
as  for dipolar media, except that of the head-tail-symmetry (45). Also the alighment tensor family (48) to
a0 (50) mentioned in sect.4.2.3 is identical for (nematic) liquid crystals and dipolar media. In contrast to
a0 the vanishing first order alignment tensor (46) of liquid crystal theory, it is here proportional to the
451 Macroscopic magnetization.

452 It is convenient to introduce also alignment tensors A%) which are not traceless:
AW (x, t ::/ ). ndn. 93
(00)i= [, flembu. .ndn @)
k

a3 5.2.2. Exploitation of the spin balance equation

asa The domain of the mesoscopic constitutive mappings —the state space Z— is chosen to be:
Z =0, T,B,B,a(l),a(z),n}. (94)
as5 Here T is the temperature and B the magnetic induction. The state space includes macroscopic and

«se  Mesoscopic variables. The macroscopic variables are temperature, mass density, magnetic induction,
as7  its time derivative, and the first and second order alignment tensors. These alignment tensors in the
ass  state space account for the fact that the dipoles tend to align parallel, i.e., the surrounding dipoles exert
«s0  an aligning “mean field”.

a60 In a simpler model, it would be sufficient to include only the first order alignment tensor which
a1 expresses the tendency of the dipoles to align parallel. The second order alignment tensor accounts for
sz the influence of a quadrupolar ordering. We will discuss the case without the second order alignment
4«63 tensor as a special case later. The mass density ¢ in the state space is the macroscopic one because the
ass dependence on the orientation n is written out explicitly.

465 An exploitation of the balance of spin together with a constitutive function for the stress tensor
s results in the orientation change velocity

u=(—nn)- (ﬁlB + BoB + ByaV) + za? . n) . (95)

a67 The coefficients f; are functions of the macroscopic mass density ¢(x,t) and the temperature
468 T(x, t).

w0 5.2.3. Equation of motion of the magnetization

470 The first moment of equation (62) reads:

3
ﬁ/Szfnaﬂnw-v/szfnazzwr/szn.vn(fu)dZn:0. (%)
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an1 On the other hand, the variable n is proportional to the microscopic magnetization (magnetization
472 per unit mass), i.e., it is the orientation of the microscopic dipole moment: m = an with « = const.. The
473 first moment of the orientation distribution function is proportional to the average of the microscopic
«7za  magnetization, i.e., the macroscopic magnetization:

M(x,t) = xo(x, 1) /S frd®n = wg(x,t)alV). 97)

a75 The first two terms in equation (96) are derivatives of the first order alignment tensor. The third
a7 term is integrated by parts using Gauss’ theorem on the unit sphere. The resulting equation reads:

dal) da®®
Vall) = - / V()2
o5 +v-Va i o fu-Vy(n)dn. (98)
a7 Then, inserting the equation for the orientation change velocity equation (95) and taking into

ars account V,(n) =P =06 —nnand n- V,(...) = 0 (because V, is the covariant derivative on the unit
a7zs  sphere), we obtain:

da'V 5 4 poal) + pea®
= /52 (B1B + 2B + paalV) + psa® -n —
—Binn-B — Bynn - B — Bynn - a(1)> fd®n, (99)
a80 using the fact that P is a projector (P - P = P).
as1 The first moment of the dipole distribution function is proportional to the magnetization (see

a2 equation (97)). In the resulting equation there enters also the second orientational moment A@) of the
se3  dipole distribution function:

A® = /Szf(-)nndzn. (100)
ass For an incompressible material, we end up with
1 dM . 1
no dt FiB+ P2 +ﬁ41xQM
—p1A? .B— A% . B — ﬁ403€)A(2) .M. (101)
ass A closure relation is needed, expressing the higher order moments in terms of the second order

ass one. Such a closure relation can be derived from the principle of maximum entropy [54], or it has to be
sz postulated as a constitutive equation. The simplest assumption is that the orientations of the dipoles
s are statistically independent (which is an approximation only). Then the closure relation is a very
a0 simple one:

A = /52 f(x,n,t)nnd*n = /Szf(x, n,t)nd*n /52 f(x,n, t)ynd*n =
=aWa), (102)
dM .
o= B1aoB + BoaoB + M —

1 1 R 1
- I * - — N B - ~ A A * . 1
.Bl QMM B 'BZIXQMM ‘34 ZQZMM M ( 03)
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490 If the value of the magnetization is sufficiently small, we can neglect quadratic and higher order
a1 terms of the magnetization. In this linear limit, (103) simplifies to:
aM .
T B1aoB + BooB + BsM. (104)
402 This expression is of the form of the well-known Debye equation for dielectric relaxation

a3 phenomena, here in an analogous form for magnetic relaxation. This fact can be used to identify the
a0a  coefficients Bq, B2, and B4.

aos  5.3. Suspensions of flexible fibers

w6 5.3.1. Deformation of a fiber

a07 The fibers are assumed to be straight, if not loaded. Then one can choose a coordinate s along
a0s  this fiber orientation and an orthogonal tensor U (s) describing the distortion of the fiber. The angular
400 distortion tensor defined by

au

T

=Uu - — 105
p=u"- (105)
500 takes into account the local deformation of the flexible fibers. s is the local coordinate along the

so1  fiber, and x is the position of the continuum element. s is only introduced in order to describe the local
so2 fiber deformation. The tensor ¢ is obviously skew-symmetric because U is orthogonal,

503 We introduce the angular distortion vector (the vector invariant of the angular distortion tensor)
s04 aS

Fxi—g. (106)
505 Only in this case we will denote the vector by the symbol ™ in order to distinguish it from the
sos  tensor .
507 Let n denote the unit vector tangential to the undeformed fiber. The scalar product of ¢ and n

sos results in the twist:

t=¢@-n, (107)

509 and the component of ¢ perpendicular to n is the bend:
b=§¢—n(n-y). (108)
510 The element of internal structure in our example is the orientation and deformation of the fiber.

su The orientation of an undeformed fiber is described by a unit vector n, where turning around the fiber
si2 by 7 does not change the orientation and therefore n — —n is a symmetry transformation. The vector
ss N is an element of the unit sphere S?. The deformation of the fiber is given by the vector @ introduced
s1a  previously.

sis 5.3.2. Orientational order parameter and deformation variable

s16 The aim is to introduce macroscopic quantities from this mesoscopic background which describe
si7  the distribution of fiber orientations and the average distortion of fibers:
sie  Orientational order parameters:

Ak = /2 3f(¢',n,x,t)n...nd3q)d2n, (109)
S+ JR ~—
k
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510 deformation order parameters:
o :/ (@m0 §...3dpdn. (110)
52 JR3 e
k
520 mixed orientation-deformation parameters:
men __ = = = 13 32
a$ —/52 Rsf(q),n,x,t)n;\./._g(p...ggd pdn. (111)
m n
s21 These order parameters are tensors of successive order. They are macroscopic fields depending

s22 on position and time. With respect to fiber orientations we have the symmetry transformation n — —n.
s2s Therefore all odd order orientational order parameters vanish, and the first non-zero order parameter,
s2a apart from the isotropic part A’ = 1 is the second order one: A = A2.

s2s  5.3.3. Mesoscopic and macroscopic stress tensor

526 In the case that all fibers have the same translational velocity, the macroscopic stress tensor is the
s27  integral over all mesoscopic ones:

t = /Sz /R3 B )P gd?h. (112)

528 The mesoscopic stress tensor is a constitutive quantity, defined on a suitable set of variables. This
s20  set of variables may include mesoscopic quantities as well as macroscopic ones. A reasonable choice
ss0  for this set of variables is:

Z=1p,T,n,, W,V X v} (113)
531 Using this set of variables and a representation theorem up to linear order in the velocity gradient

ss2  and the deformation variable §, we obtain the following expression for the mesoscopic stress tensor:

f= % (alnn +aond + azPn +agn(V x v) +a5(V X v)n + ag Vo +

+aynn- Vo +agn- Vo n+agn- Vo -nnn) . (114)
533 The material coefficients &1 to ag may all depend on the (macroscopic) mass density p and
s« temperature T.
535 We assume, that the material velocity v does not depend on fiber orientation or fiber deformation.

s  In this case, the stress tensor is obtained by averaging over the mesoscopic variables according to
» equation (112):

5.

w

t:/SZ/RS%(Dclnn+062n§_0'+063g_ﬁn+(x4n(vxy)+“5(vXv)n+

L——

4+ag Vv 4aynn- W +agn- ﬁ n+ agn- W -nnn) d3god2n =

= A+ 062<1’l(p> + Dé3<§011> + ag W +

tayA- Vo +ag Vo -A+ag Vo:A@, (115)
538 The average of a4n(V X v) vanishes, because [, fnd’n = 0 due to the symmetry n <> —n,

s3o analogously for the term with as. The averages (n¢) and (¢n) are non-zero, because they are even
ss0 functions of n:
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p(—n) = —¢(n), (116)
sa1 and therefore
—ng(—n) = ng(n). (117)
sa2 The stress tensor (115) clearly may have an antisymmetric part ¢
, 1 . . 1 — .
# = 2 (a2 — a3) (nf) = (§m)) + 5 (a7 — s) (4 Vo —d-4). (118)
543 which indicates that the spin balance equation of the material in consideration does not vanish
sas identically.
sas 6. Discussion
546 Constitutive equations of complex materials require a domain which is extended in comparison

sez  with that of hydrodynamics. These additional variables are macroscopic fields defined on space-time,
sas  Often internal variables —"'measurable, but not contollable"-. There are two cases: these additional
se0 variables are basic fields, that means, they are entities of their own, or there exists a microscopic
sso  background which allows to derive these additional variables. These two possibilities are discussed
ss1  using the (macroscopic) director and the alignment tensor of nematic liquid crystals.

552 The microscopic background can be quantum-theoretical, statistical or mesoscopic which is chosen
sss here. Mesoscopic means, the domain of space-time is extended by so-called mesoscopic variables
sse  to each of them a mesoscopic distribution function (MDF) belongs describing the distribution of the
sss  mesoscopic variable in a volume element around the space-time event.

556 The mesoscopic tools of nematic liquid crystal theory are the microscopic director describing the
ss7  alignment of each molecule in the considered volume element and the corresponding orientation
sse  distribution function (ODF) describing their alignment distribution.

559 The Ericksen-Leslie theory [7,8] introduces the macroscopic director as a basic field. This means,
seo mesoscopically investigated, locally total or planar alignment of all molecules [31]. If the ODF is
ser Uniaxial, the alignment tensor has the Maier-Saupe form (22). The Hess theory [42] introduces the
se2 alignment tensor as a basic field inducing that the ODF may be arbitrary.

563 The advantage of the mesoscopic description is not only to interpret the macroscopic quantities,
sea but also to reflect the phase transition liquid-nematic. The shape of the mesoscopic balance quations is
ses  well known from mixture theory, including the evolution equation of the MDEF.
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