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Abstract

The Sine-Gordon expansion method is implemented to construct exact so-
lutions some conformable time fractional equations in Regularized Long
Wave(RLW)-class. Compatible wave transform reduces the governing equa-
tion to classical ordinary differential equation. The homogeneous balance
procedure gives the order of the predicted polynomial-type solution that is
inspired from well-known Sine-Gordon equation. The substitution of this
solution follows the previous step. Equating the coefficients of the powers
of predicted solution leads a system of algebraic equations. The solution
of resultant system for coefficients gives the necessary relations among the
parameters and the coefficients to be able construct the solutions. Some
solutions are simulated for some particular choices of parameters.
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1 Introduction

Even though some nonlinear partial differential equations are integrable, it may
be not easy to integrate them. Instead, a predicted solution with parameters
are assumed to be a solution of governing equations and the relations among the
parameters are investigated. The logic is simply based on the similarity with
exponential-type solutions to the ordinary differential equations with constant co-
efficients. These predicted solutions are of various forms covering exponential,
hyperbolic, trigonometric or rational functions, and more. Parallel to the recent
developments in computer algebra in the last four decades, a tendency has been
observed to determine exact solutions to nonlinear PDEs by following the proce-
dure that starts with a predicted solution. Recently, this tendency has focused on
exact solutions to fractional nonlinear partial differential equations. Many of tech-
niques implemented to nonlinear PDEs to find exact solutions have been adapted
for fractional nonlinear PDES [1–10]. We also derive exact solutions to some
conformable fractional equations in RLW-class modeling various wave phenomena
both in nature or technology implementations. Different from previous studies, we
adapt Sine-Gordon expansion approach to determine exact solutions to governing
equations in fractional RLW-class.
The first equation considered in this study is the RLW equation

Dα
t u+ pux + quux + rDα

t uxx = 0, t ≥ 0 (1)

where p, q and r real coefficients, Dα
t conformable fractional differential operator

and u = u(x, t). The integer ordered form of the RLW equation describes formation
and development of undular bore by a long wave in shallow water [11]. The same
study investigates the transition and interaction between still water and a uniform
flow. The origins and similarities to the KdV Equation of the RLW equation are
discussed in general terms [12]. Moreover, Benjamin et al. developed an exact
theory to the RLW equation and existence of classical solutions were proved. The
Lagrangian density for the RLW equation was defined in [13]. Significant concept
covering peak positions, amplitude and widths of two solitary waves were studied
by trial function approach in the same paper.
The second equation to discuss exact solutions here is the modified RLW (mRLW)
equation of the form

Dα
t u+ pux + qu2ux + rDα

t uxx = 0, t ≥ 0 (2)

where Dα
t conformable fractional differential operator. This equation seemed in

Gardners’ study [14]. B-spline finite elements based approximate solutions defining
motion of solitary waves were investigated in that study. In the following decades,
various numerical and exact solutions to different problems constructed on the
mRLW equation are solved using diverse techniques [15–20].
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The last equation to derive the exact solutions is the symmetric RLW (sRLW)
equation

D2α
tt u+ puxx + quDα

t ux + quxD
α
t u+ rD2α

tt uxx = 0, t ≥ 0 (3)

where u = u(x, t), p, q and r real parameters, D2α
tt is the fractional differential

operator of order 2α in conformable sense. This equation is an interesting model
to describe ion-acoustic and space charge waves with weak non linearity [21].
Before starting the solution procedure, we should give some significant properties
of conformable fractional derivative. Thus, the next section focuses on conformable
fractional derivative definition and some important properties. We explain the so-
lution procedure in the third section. The following sections cover implementations
of the proposed procedure to some conformable fractional PDEs in RLW-class.

2 Conformable Fractional Derivative

The conformable derivative of order α with respect to the independent variable t
is defined as

Dα
t (y(t)) = lim

τ→0

y(t+ τt1−α)− y(t)

τ
, t > 0, α ∈ (0, 1]. (4)

for a function y = y(t) : [0,∞)→ R [22]. This newly defined fractional derivative
is capable of satisfying some well known required properties.

Theorem 1 Assume that the order of the derivative α ∈ (0, 1], and suppose that
u = u(t) and y = y(t) are α-differentiable for all positive t. Then,

• Dα
t (c1u+ c2y) = c1D

α
t (u) + c2D

α
t (y)

• Dα
t (tk) = ktk−α, ∀k ∈ R

• Dα
t (λ) = 0, for all constant function u(t) = λ

• Dα
t (uy) = uDα

t (y) + yDα
t (u)

• Dα
t (u

y
) =

yDα
t (u)− uDα

t (y)

y2

• Dα
t (u)(t) = t1−α du

dt

for ∀c1, c2 ∈ R [23, 24].

Conformable fractional differential operator satisfies some critical fundamental
properties like the chain rule, Taylor series expansion and Laplace transform [25].
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Theorem 2 Let u = u(t) be an α-conformable differentiable function and assume
that y is differentiable and defined in the range of u. Then,

Dα
t (u ◦ y)(t) = t1−αy′(t)u′(y(t)) (5)

3 Sine-Gordon Expansion Method

The classical wave transform u(x, t) = U(ξ) with ξ = a(x − νtα/α) reduces the
Sine-Gordon equation in one dimension of the form

∂2u

∂x2
−D2α

t u = m2 sinu, m is constant (6)

to the ODE
d2U

dξ2
=

m2

a2(1− ν2)
sinU (7)

where ν represents velocity of the traveling wave defined in the transform [26].
Some simplifications lead(

d(U/2)

dξ

)2

=
m2

a2(1− ν2)
sin2 U/2 + C (8)

where C is constant of integration. C is assumed zero for simplicity. Let w(ξ) =
U(ξ)/2 and b2 = m2/(a2(1− ν2)). Then, (8) is converted to

d(w)

dξ
= b sinw (9)

Set b = 1 in (9). Then, (9) yields two significant relations

sinw(ξ) =
2deξ

d2e2ξ + 1

∣∣∣∣
d=1

= sech ξ (10)

or

cosw(ξ) =
d2e2ξ − 1

d2e2ξ + 1

∣∣∣∣
d=1

= tanh ξ (11)

where d is nonzero integral constant. The fractional PDE of the form

P (u,Dα
t u, ux, D

2α
tt u, uxx, . . .) = 0 (12)

can be reduced to an ODE

P̃ (U,U ′, U ′′, . . .) = 0 (13)
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by using a compatible wave transform u(x, t) = U(ξ) where the transform variable
ξ is defined as a(x− νtα/α). Then, the predicted solution to (13) of the form

U(ξ) = A0 +
s∑
i=1

tanhi−1(ξ) (Bi sech ξ + Ai tanh ξ) (14)

can be written as

U(w) = A0 +
s∑
i=1

cosi−1(w) (Bi sinw + Ai cosw) (15)

owing to (10) - (11). The procedure starts by determining index limit s by the
assistance of homogenous balance of the terms in (13). Following the substitution
of the predicted solution (15) into (13) the coefficients of powers of sinw cosw are
assumed as zero. Next, the resultant algebraic system is tried to be solved for the
coefficients A0, A1, B1, . . . , a, ν. Then, the solutions are constructed, if exists, by
using (10) - (11) and ξ

4 Solutions to the conformable time fractional

RLW equation

The traveling wave transform u(x, t) → U(ξ), ξ = a(x − νtα/α) reduces the time
fractional RLW equation to

(−aν + ap)U + 1/2 qaU2 − rν a3U
′′

= C (16)

where C is constant of integration, and
′′

denotes differentiation wrt ξ. Here, we
assume that C = 0 to reduce the complexity of the solutions. The balance between
U2 and U

′′
gives s = 2. Thus, the predicted solution takes the form

U(w) = A0 +B1 sinw + A1 cosw +B2 cosw sinw + A2 cos2w (17)
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Substituting this solution into (16) yields(
−a3ν rB2 + aqA2B2

)
sin (w (ξ)) (cos (w (ξ)))3

+ (cos (w (ξ)))3 aqA1A2 +
(
apA2 − aν A2 + 1/2 aqA1

2 + aqA0A2

)
(cos (w (ξ)))2

+
(
−a3ν rB1 + aqA1B2 + aqA2B1

)
sin (w (ξ)) (cos (w (ξ)))2

+
(
1/2 aqB2

2 + 4 a3ν rA2 − 1/2 aqA2
2
)

(sin (w (ξ)))2 (cos (w (ξ)))2

+ 5 (sin (w (ξ)))3 cos (w (ξ)) a3ν rB2

+
(
2 a3ν rA1 + aqB1B2

)
(sin (w (ξ)))2 cos (w (ξ))

+ (aqA0B2 + aqA1B1 − aν B2 + apB2) sin (w (ξ)) cos (w (ξ))

+ (aqA0A1 − aν A1 + apA1) cos (w (ξ))

+ 1/2 aqA2
2 + 1/2 aqA0

2 − aν A0 + apA0 + (aqA0B1 − aν B1 + apB1) sin (w (ξ))

+ (sin (w (ξ)))3 a3ν rB1 − 2 (sin (w (ξ)))4 a3ν rA2

+
(
1/2 aqB1

2 − 1/2 aqA2
2
)

(sin (w (ξ)))2 = 0
(18)

Using some trigonometric identities and simplifications we find the following alge-
braic system of equations:

1/2 a
(
−4 a2ν rA2 − qA2

2 + qB1
2
)

+ 1/2 aqA2
2 + 1/2 aqA0

2 − aν A0 + apA0 = 0

a3ν rB1 + aqA0B1 − aν B1 + apB1 = 0

−aν A2 + apA2 + 1/2 aqA1
2

+aqA0A2 + 6 a3ν rA2 + 1/2 aqB2
2 − 1/2 aqA2

2 − 1/2 a
(
−4 a2ν rA2 − qA2

2 + qB1
2
)

= 0

−6 a3ν rA2 − 1/2 aqB2
2 + 1/2 aqA2

2 = 0

−2 a3ν rA1 + aqA1A2 − aqB1B2 = 0

2 a3ν rA1 + aqA0A1 + aqB1B2 − aν A1 + apA1 = 0

−6 a3ν rB2 + aqA2B2 = 0

−2 a3ν rB1 + aqA1B2 + aqA2B1 = 0

5 a3ν rB2 + aqA0B2 + aqA1B1 − aν B2 + apB2 = 0
(19)

Solution of this system for a, ν, A0, A1, A2, B1 and B2 gives various solution sets
with a 6= 0 and ν 6= 0.
Set 1:

ν =
p

ra2 + 1
, A0 = −

6pa2r

(ra2 + 1)q
,A1 = 0, A2 =

6pa2r

(ra2 + 1)q
,B1 = 0, B2 =

6ra2pi

(ra2 + 1)q
, i =

√
−1 (20)

Set 2:

ν =
p

ra2 + 1
, A0 = −

6pa2r

(ra2 + 1)q
,A1 = 0, A2 =

6pa2r

(ra2 + 1)q
,B1 = 0, B2 =

−6ra2pi

(ra2 + 1)q
, i =

√
−1 (21)
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Set 3:

ν = −
p

ra2 − 1
, A0 =

4pa2r

(ra2 − 1)q
,A1 = 0, A2 = −

6pa2r

(ra2 − 1)q
,B1 = 0, B2 =

6ra2pi

(ra2 − 1)q
, i =

√
−1 (22)

Set 4:

ν = −
p

ra2 − 1
, A0 =

4pa2r

(ra2 − 1)q
,A1 = 0, A2 = −

6pa2r

(ra2 − 1)q
,B1 = 0, B2 =

−6ra2pi

(ra2 − 1)q
, i =

√
−1 (23)

Set 5:

ν =
p

4ra2 + 1
, A0 = −

(8ra2 − 1)p

4ra2 + 1
+ p

q
,A1 = 0, A2 =

12pa2r

(4ra2 + 1)q
,B1 = 0, B2 = 0

(24)

Set 6:

ν = −
p

4ra2 − 1
, A0 = −

−
(8ra2 − 1)p

4ra2 − 1
+ p

q
,A1 = 0, A2 = −

12pa2r

(4ra2 − 1)q
,B1 = 0, B2 = 0

(25)

Using these solution sets of algebraic equations, we construct the solutions to (1)
as

u1(x, t) = −
6a2rν

q
+

6a2rν

q
i tanh

(
a(x− ν

tα

α
)

)
sech

(
a(x− ν

tα

α
)

)
+

6a2rν

q
tanh2

(
a(x− ν

tα

α
)

)
u2(x, t) = −

6a2rν

q
+

6a2rν

q
i tanh

(
a(x− ν

tα

α
)

)
sech

(
a(x− ν

tα

α
)

)
−

6a2rν

q
tanh2

(
a(x− ν

tα

α
)

)

for ν = p/(ra2 + 1),

u3(x, t) = −
4a2rν

q
+

6a2rν

q
i tanh

(
a(x− ν

tα

α
)

)
sech

(
a(x− ν

tα

α
)

)
−

6a2rν

q
tanh2

(
a(x− ν

tα

α
)

)
u4(x, t) = −

4a2rν

q
+

6a2rν

q
i tanh

(
a(x− ν

tα

α
)

)
sech

(
a(x− ν

tα

α
)

)
+

6a2rν

q
tanh2

(
a(x− ν

tα

α
)

)

for ν = −p/(ra2 − 1),

u5(x, t) =
(8ra2 − 1)ν + p

q
+

12a2rν

q
tanh2

(
a(x− ν

tα

α
)

)
for ν = p/(4ra2 + 1).

u6(x, t) = −
(8ra2 − 1)ν + p

q
+

12a2rν

q
tanh2

(
a(x− ν

tα

α
)

)

for ν = −p/(4ra2 + 1).
A particular form of u5(x, t) is depicted for various values of α ∈ {0.25, 0.5, 0.75, 1}
in a finite domain in Fig 1(a) - 1(d). It is observed that the propagation of the
initial pulse propagates along the x−axis as time proceeds by preserving its shape
and amplitude in all cases. α affects only propagation velocity. The propagation
is faster in small times but later it gets slower when α is less than 1. α = 1 choice
gives a constant propagation velocity to the pulse, Fig 1(d).

7

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2017                   doi:10.20944/preprints201712.0183.v1

http://dx.doi.org/10.20944/preprints201712.0183.v1


(a) α = 0.25 (b) α = 0.50

(c) α = 0.75 (d) α = 1

Figure 1: The solution u5(x, t) for {a = 1/4, q = −1, r = 1, p = 10}

5 Solutions to the conformable time fractional

mRLW equation

The traveling wave transform u(x, t)→ U(ξ), ξ = a(x−νtα/α) reduces the mRLW
equation (2) to

(−aν + ap)U +
qa

3
U3 − rνa3U

′′
= C (26)

where C is constant of integration. The balance between U3 and U
′′

leads s = 1.
Thus, the predicted solution takes the form

U(w) = A0 + A1 cosw +B1 sinw (27)

Substituting the predicted solution (27) into (26) gives
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1/3 (cos (w (ξ)))3 aqA1
3

+
(
−a3ν rB1 + aqA1

2B1

)
sin (w (ξ)) (cos (w (ξ)))2

+ (cos (w (ξ)))2 aqA0A1
2 +

(
2 a3ν rA1 + aqA1B1

2
)

(sin (w (ξ)))2 cos (w (ξ))

+ 2 sin (w (ξ)) cos (w (ξ)) aqA0A1B1 +
(
aqA0

2A1 − aν A1 + apA1

)
cos (w (ξ))

− C − aν A0 + apA0 + 1/3 aqA0
3 +

(
a3ν rB1 + 1/3 aqB1

3
)

(sin (w (ξ)))3

+ (sin (w (ξ)))2 aqA0B1
2

+
(
aqA0

2B1 − aν B1 + apB1

)
sin (w (ξ)) = 0

(28)
Following implementation of some trigonometric identities and some simplifica-
tions, we equate the coefficients of powers of sin , cos and multiplications of them
to zero to give the algebraic system of equations

aqA0B1
2 − C − aν A0 + apA0 + 1/3 aqA0

3 = 0

aqA0
2B1 − aν B1 + apB1 + a3ν rB1 + 1/3 aqB1

3 = 0

aqA0A1
2 − aqA0B1

2 = 0

−2 a3ν rB1 + aqA1
2B1 − 1/3 aqB1

3 = 0

−2 a3ν rA1 − aqA1B1
2 + 1/3 aqA1

3 = 0

2 aqA0A1B1 = 0

2 a3ν rA1 + aqA0
2A1 + aqA1B1

2 − aν A1 + apA1 = 0

(29)
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The solution of this system for ν, A0, A1, B1 and C forces C to be zero. Thus,
the solutions of this system can be summarized as

ν = − −2pq

qra2 − 2q
, A0 = 0,A1 =

√
3rν

2q
a, B1 =

√
−3rν

2q
a

ν = − −2pq

qra2 − 2q
, A0 = 0,A1 =

√
3rν

2q
a, B1 = −

√
−3rν

2q
a

ν = − −2pq

qra2 − 2q
, A0 = 0,A1 = −

√
3rν

2q
a, B1 =

√
−3rν

2q
a

ν = − −2pq

qra2 − 2q
, A0 = 0,A1 = −

√
3rν

2q
a, B1 = −

√
−3rν

2q
a

ν =
p

ra2 + 1
, A0 = 0,A1 = 0, B1 =

√
6rν

q
a

ν =
p

ra2 + 1
, A0 = 0,A1 = 0, B1 = −

√
6rν

q
a

ν = − p

2ra2 − 1
, A0 = 0,A1 =

√
−6rν

q
a, B1 = 0

ν = − p

2ra2 − 1
, A0 = 0,A1 = −

√
−6rν

q
a, B1 = 0

(30)
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for arbitrary a. When a is considered as non arbitrary, we have some more solutions
such that

a =

√
1

r
, ν = 2p,A0 = 0, A1 =

√
3p

q
,B1 =

√
−3p

q

a = −
√

1

r
, ν = 2p,A0 = 0, A1 =

√
3p

q
,B1 =

√
−3p

q

a =

√
1

r
, ν = 2p,A0 = 0, A1 = −

√
3p

q
,B1 =

√
−3p

q

a = −
√

1

r
, ν = 2p,A0 = 0, A1 = −

√
3p

q
,B1 =

√
−3p

q

a =

√
1

r
, ν = 2p,A0 = 0, A1 =

√
3p

q
,B1 = −

√
−3p

q

a = −
√

1

r
, ν = 2p,A0 = 0, A1 =

√
3p

q
,B1 = −

√
−3p

q

a =

√
1

r
, ν = 2p,A0 = 0, A1 = −

√
3p

q
,B1 = −

√
−3p

q

a = −
√

1

r
, ν = 2p,A0 = 0, A1 = −

√
3p

q
,B1 = −

√
−3p

q

(31)
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Thus, the solutions to mRLW equation (2) are represented by

u7(x, t) =

√
3rν

2q
a tanh

(
a(x− ν t

α

α
)

)
+

√
−3rν

2q
a sech

(
a(x− ν t

α

α
)

)
, ν = − −2pq

qra2 − 2q

u8(x, t) =

√
3rν

2q
a tanh

(
a(x− ν t

α

α
)

)
−
√
−3rν

2q
a sech

(
a(x− ν t

α

α
)

)
, ν = − −2pq

qra2 − 2q

u9(x, t) = −
√

3rν

2q
a tanh

(
a(x− ν t

α

α
)

)
+

√
−3rν

2q
a sech

(
a(x− ν t

α

α
)

)
, ν = − −2pq

qra2 − 2q

u10(x, t) = −
√

3rν

2q
a tanh

(
a(x− ν t

α

α
)

)
−
√
−3rν

2q
a sech

(
a(x− ν t

α

α
)

)
, ν = − −2pq

qra2 − 2q

u11(x, t) =

√
6rν

q
a sech

(
a(x− ν t

α

α
)

)
, ν =

p

ra2 + 1

u12(x, t) = −
√

6rν

q
a sech

(
a(x− ν t

α

α
)

)
, ν =

p

ra2 + 1

u13(x, t) =

√
−6rν

q
a tanh

(
a(x− ν t

α

α
)

)
, ν = − −p

2ra2 − 1

u14(x, t) = −
√
−6rν

q
a tanh

(
a(x− ν t

α

α
)

)
, ν = − −p

2ra2 − 1
(32)
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when ν is dependent on a. Whenever ν and a are independent upon each other,
the solution are represented by

u15(x, t) =

√
3p

q
tanh

(
a(x− ν t

α

α
)

)
+

√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a =

√
1

r

u16(x, t) =

√
3p

q
tanh

(
a(x− ν t

α

α
)

)
+

√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a = −

√
1

r

u17(x, t) = −
√

3p

q
tanh

(
a(x− ν t

α

α
)

)
+

√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a =

√
1

r

u18(x, t) = −
√

3p

q
tanh

(
a(x− ν t

α

α
)

)
+

√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a = −

√
1

r

u19(x, t) =

√
3p

q
tanh

(
a(x− ν t

α

α
)

)
−
√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a =

√
1

r

u20(x, t) =

√
3p

q
tanh

(
a(x− ν t

α

α
)

)
−
√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a = −

√
1

r

u21(x, t) = −
√

3p

q
tanh

(
a(x− ν t

α

α
)

)
−
√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a =

√
1

r

u22(x, t) = −
√

3p

q
tanh

(
a(x− ν t

α

α
)

)
−
√
−3p

q
sech

(
a(x− ν t

α

α
)

)
, ν = 2p, a = −

√
1

r
(33)

The solution u11(x, t) is simulated for various values of α in Fig 2(a) - 2(d) by using
the parameter set {a = 1, q = −1, r = 1/3, p = 10}. The solution propagates along
x−axis as time proceeds with preserved shape and amplitude. The propagation is
not linear when α is less than 1, Fig 2(a)-2(c) as we observe a linear propagation
with constant speed with α = 1, Fig 2(d).
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(a) α = 0.25 (b) α = 0.50

(c) α = 0.75 (d) α = 1

Figure 2: The solution u11(x, t) for {a = 1, q = −1, r = 1/3, p = 10}

6 Solutions to the conformable time fractional

sRLW equation

The traveling wave transform u(x, t)→ U(ξ), ξ = a(x− νtα/α) reduces the sRLW
equation (2) to (

a2ν2 + a2p
)
U

′
+ rν2a4U

′′′ − qνa2UU
′
= C (34)

The balance between U
′′′

and UU
′

gives s = 2. Thus, we seek a solution of the
form

U(w) = A0 + A1 cosw +B1 sinw +B2 cosw sinw + A2 cos2w (35)
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Substitution of this solution into (34) gives

a4ν2rB2 sin (w (ξ)) (cos (w (ξ)))4

+
(
−8 a4ν2rA2 + 2 a2ν qA2

2 − a2ν qB2
2
)

(sin (w (ξ)))2 (cos (w (ξ)))3

+
(
a4ν2rB1 − a2ν qA1B2 − a2ν qA2B1

)
sin (w (ξ)) (cos (w (ξ)))3

+
(
−18 a4ν2rB2 + 4 a2ν qA2B2

)
(sin (w (ξ)))3 (cos (w (ξ)))2

+
(
−4 a4ν2rA1 + 3 a2ν qA1A2 − 2 a2ν qB1B2

)
(sin (w (ξ)))2 (cos (w (ξ)))2

+
(
−a2ν qA0B2 − a2ν qA1B1 + a2ν2B2 + a2pB2

)
sin (w (ξ)) (cos (w (ξ)))2

+
(
16 a4ν2rA2 + a2ν qB2

2
)

(sin (w (ξ)))4 cos (w (ξ))

+
(
−5 a4ν2rB1 + 2 a2ν qA1B2 + 2 a2ν qA2B1

)
(sin (w (ξ)))3 cos (w (ξ))

+
(
2 a2ν qA0A2 + a2ν qA1

2 − a2ν qB1
2 − 2 a2ν2A2 − 2 a2pA2

)
(sin (w (ξ)))2 cos (w (ξ))

+
(
−a2ν qA0B1 + a2ν2B1 + a2pB1

)
sin (w (ξ)) cos (w (ξ)) + 5 (sin (w (ξ)))5 a4ν2rB2

+
(
2 a4ν2rA1 + a2ν qB1B2

)
(sin (w (ξ)))4

+
(
a2ν qA0B2 + a2ν qA1B1 + a2ν qA2B2 − a2ν2B2 − a2pB2

)
(sin (w (ξ)))3

+
(
a2ν qA0A1 − a2ν2A1 − a2pA1

)
(sin (w (ξ)))2

− a2ν qA2B2 sin (w (ξ))− C = 0
(36)

Substitution of some trigonometric identities and some simplifications leads the
following system of algebraic equations from the equating the coefficients of powers
of cos, sin functions and their multiplications:
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−3 a2ν
(
2 a2ν rA1 − qA1A2 + qB1B2

)
+ 8 a4ν2rA1 + a2ν qA0A1 − 3 a2ν qA1A2

+4 a2ν qB1B2 − a2ν2A1 − a2pA1 − C = 0

5 a4ν2rB2 + a2ν qA0B2 + a2ν qA1B1 − a2ν2B2 − a2pB2 = 0

24 a4ν2rB2 − 4 a2ν qA2B2 = 0

6 a4ν2rB1 − 3 a2ν qA1B2 − 3 a2ν qA2B1 = 0

−28 a4ν2rB2 − 2 a2ν qA0B2 − 2 a2ν qA1B1

+3 a2ν qA2B2 + 2 a2ν2B2 + 2 a2pB2 = 0

−5 a4ν2rB1 − a2ν qA0B1 + 2 a2ν qA1B2

+2 a2ν qA2B1 + a2ν2B1 + a2pB1 = 0

a2
(
24 a2ν2rA2 − 2 ν qA2

2 + 2 ν qB2
2
)

= 0

6 a4ν2rA1 − 3 a2ν qA1A2 + 3 a2ν qB1B2 = 0

a2
(
−16 a2ν2rA2 − 2 ν qA0A2 − ν qA1

2 + ν qB1
2 − ν qB2

2 + 2 ν2A2 + 2 pA2

)
−a2

(
24 a2ν2rA2 − 2 ν qA2

2 + 2 ν qB2
2
)

= 0

−14 a4ν2rA1 − a2ν qA0A1 + 6 a2ν qA1A2 − 7 a2ν qB1B2

+a2ν2A1 + a2pA1 + 3 a2ν
(
2 a2ν rA1 − qA1A2 + qB1B2

)
= 0

−a2
(
−16 a2ν2rA2 − 2 ν qA0A2 − ν qA1

2 + ν qB1
2 − ν qB2

2 + 2 ν2A2 + 2 pA2

)
= 0

(37)
Solution of this system gives

A0 = −5a2ν2r − ν2 − p
νq

, A1 = 0,A2 =
12a2νr

q
, B1 = 0, B2 = 0

A0 = −5a2ν2r − ν2 − p
νq

, A1 = 0,A2 =
6a2νr

q
, B1 = 0, B2 =

6a2rνi

q

A0 = −5a2ν2r − ν2 − p
νq

, A1 = 0,A2 =
6a2νr

q
, B1 = 0, B2 = −6a2rνi

q

(38)

for arbitrarily chosen ν, a and C = 0. One should note that the solution of this
system is determinable whenever C = 0. Thus, the solutions to (3) are constructed
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as

u23(x, t) = −5a2ν2r − ν2 − p
νq

+
6a2rν

q
i tanh

(
a(x− ν t

α

α
)

)
sech

(
a(x− ν t

α

α
)

)
+

6a2rν

q
tanh2

(
a(x− ν t

α

α
)

)
u24(x, t) = −5a2ν2r − ν2 − p

νq
+

6a2rν

q
i tanh

(
a(x− ν t

α

α
)

)
sech

(
a(x− ν t

α

α
)

)
− 6a2rν

q
tanh2

(
a(x− ν t

α

α
)

)
u25(x, t) = −8a2ν2r − ν2 − p

νq
+

12a2νr

q
tanh2

(
a(x− ν t

α

α
)

)
(39)

The solution u25(x, t) is depicted in Fig 3(a)-3(d) for various α values in some
finite domain of independent variables. The initial pulse propagates along the
space axis without changing its shape and amplitude in all cases. α affects only
propagation velocity due to being multiplier of time variable. Even though the
pulse propagates non linearly for smaller α values, the propagation is linear when
α is 1.
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(a) α = 0.25 (b) α = 0.50

(c) α = 0.75 (d) α = 1

Figure 3: The solution u25(x, t) for {a = 1, q = 1, r = −1/3, p = 1, ν = 5}

7 Conclusion

In the paper, exact solutions of some conformable fractional equations in the RLW-
class are investigated by using Sine-Gordon expansion approach. Using compatible
wave transform, the equations are reduced to some ODEs. Then, the predicted
solutions are substituted into the resultant ODE. Equating the coefficients of co-
sine and sine functions and their multiplications to zero leads to some algebraic
system of equation. Solving this system gives the relations among the parameters.
In conclusion, some real and complex solutions that are combinations of powers
of hyperbolic tangent and hyperbolic secant functions are determined explicitly.
Graphical representations of some real valued solutions are depicted in some finite
domains to comprehend the effects of α.
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