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Abstract. A microstructure-based model is developed to study the effective anisotropic 
properties (magnetic, dielectric or thermal) of two phase  particle-filled composites. The 
Green’s function technique and  the effective field method are used to derive theoretically the 
homogenized (averaged) properties for a representative volume element containing isolated 
inclusion and an infinite, chain-structured particles. Those results are compared with the FE 
approximations conducted for the assumed representative volume element. In addition, as a 
special case, the Maxwell–Garnett model is retrieved when particle interactions are not taken 
into consideration. We shall also give some information on the optimal design of the effective 
anisotropic properties taking into account the shape of magnetic particles. 
 
1. Introduction 

 
Temperature, magnetic and electric fields in composite materials are of interest in 

many engineering applications. In order to use them effectively in modern constructions it is 
necessary to predict the effective homogenized properties. Theoretically, for particle filled, 
two phase composites, their homogenized, effective physical properties may be derived in the 
similar manner in the linear case. The methods for searching for effective magnetic 
permeabilities, dielectric permittivities or thermal conductivities are analogous and they may 
be calculated using the same approach. Although, the similarity of those three fields have 
been noticed a long time ago the models for the prediction of the effective composite 
properties are build separately for each class of  problems and in addition with the use of 
various simplified hypothesis (assumptions).  

It is worth to point out that the analysis of an incompressible viscous fluid flow 
through a porous medium can be described by the analogous equations as the mentioned 
above for the two phase composites. On the macroscopic scale, flow through the porous 
material is governed by Darcy’s law having the permeability tensor KH, so that the analogous 
methods to the discussed herein may be also successfully applied to the fluid flow problems. 

There are different homogenization approaches and they can be divided into three 
classes, i.e.: direct, indirect and variational methods. Direct methods are based on volume 
average of field quantities and they can be performed by a numerical procedure, usually FEM 
or BEM. Indirect homogenization follows the idea of the equivalent inclusion method based 
on Eshelby’s eigenstrain solution. In this area different variants of solutions are developed 
and they may be divided into: the self-consistent schemes, the Mori-Tanaka method and the 
differential method. The variational approach can give upper and lower bounds of the 
effective properties. Monographs describing in details different homogenization methods have 
been written by Mura [1], Nemat-Nasser and Hori [2], Qin and Yang [3]. The review 
presented by Wang and Pan [4] first examines the issues, difficulties and challenges in 
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prediction of material behaviors by summarizing and critiquing the existing major analytical 
approaches dealing with material property modeling. 

The model of Maxwell and Garnett [5,6] was one of the first to describe the effective 
permittivity of composites containing randomly dispersed spherical particles. Hashin and 
Shtrikman [7] used a variational approach to determine the upper and lower bounds of the 
effective magnetic permeability of multiphase materials. To investigate the effect of the 
interaction between particles, Fu et al. [8] presented an analytic approach to derive the explicit 
effective permittivity in a series form for composites containing spherical particles. For 
periodically distributed composites, McPhedran and McKenzie [9] and McKenzie et al. [10] 
extended a method devised by Rayleigh [11] to calculate the conductivity of simple cubic, 
body-centered cubic, and face-centered cubic lattices of composites containing conducting 
spheres. Doyle [12] and Lam [13] presented their models for composites with cubic lattices of 
particles. White [14] introduced a T-matrix solution based on a unit cell for general 
periodically distributed composites. Chen et al. [15] obtained the electric field distribution 
numerically in a Legendre series for one chain embedded in an infinite medium. Yin and Sun 
[16] derived effective magnetic properties for a chain-like structure considering a single 
column of particles embedded in an infinite medium. Sareni et al. [17,18] applied the 
boundary integral method to solve effective permittivity for random and periodic composites. 
A broad review of the above mentioned approaches and methods with the particular 
discussion of the results is given in the monograph Kanaun and Levin [19]. In addition to 
experimental and theoretical approaches, computer simulations have been adopted more and 
more frequently to study the effective properties of composites. Effective dielectric constants 
of two-phase composite dielectrics have been estimated numerically by Wu et al. [20]. 
Krakovsky and Myroshnychenko [21] used the finite element method to compute the effective 
permittivity for two-dimensional random composites. Numerical approach to the evaluation of 
the effective properties for MR fluids is demonstrated in Ref [22], however the analysis and 
results deal only with the prediction of magnetic permeability in one direction only. Although 
materials with directional features are common, most previous work has focused on the 
isotropic cases, except some studies attempted to bring this property-direction dependence 
into general formulation. For instance for MR fluids some magnetic properties, such as the 
saturation magnetization and the crystalline anisotropy, are intrinsic and depend mainly on the 
chemical composition and the crystalline symmetry of the material. On the other hand, 
extrinsic properties, such as remanence, coercivity and permeability, depend largely on the 
structure of the material Yin and Sun [16] or on the shape of reinforced particles [23]. 
Through analytical predictions and numerical modeling, certain optimization approaches and 
design schemes for novel materials could be resulted for engineering applications, and in turn 
the new observations and experiences from the practice would accelerate the development of 
new theories and methodologies. 

Smart materials, by definition, have some properties which can be altered or tuned 
using an external field. Examples include materials that exhibit ferroelectricity, 
pyroelectricity, piezoelectricity, a shape memory effect, electrostriction, magnetostriction. 
electrochromism, photomagnetism and photochromism. Most of these materials tend to be 
used in their solid state, i.e. in a polycrystalline or a single crystal form as bulk materials or 
thin films deposited on appropriate substrates. In general they form a special class of two-
phase composite materials. When an external field is applied, the particles become polarised 
and are thereby arranged into chains or clusters. The chains can further aggregate into 
columns, when the composite material exhibits a solid-like mechanical behaviour. Therefore, 
the effective properties of smart materials vary in time, starting from a random state of 
particles being in a viscous fluid and finishing in a composite solid being a chain-like 
structure.  
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In order to demonstrate the theoretical limitations this study firstly aims to present the 
possibility of theoretical predictions of effective properties for smart materials in the 3D 
approach. The presented theoretical approach is based on the use of the effective field 
method. Having in mind the possible applications of two phase composites as smart materials 
two separate problems are discussed in details, i.e. the case of isolated inclusions and chain-
like structures. Then, the numerical method of homogenization is proposed and the results are 
compared with theoretical ones. The suggested scheme of numerical homogenization is 
applied to optimize the effective properties varying the shape of inclusions. As it is reported 
in the literature the behaviour of aggregated particles has a great influence on the appropriate 
modeling of the smart material deformation as it is strained and especially in view of its yield 
stress value. For such a class of composites the present analysis is an introduction to the 
global FE modeling of rheological deformations. 
 
 
 
2. The Effective Field Method 

 
First of all, let us note that in engineering practice particles embedded in a matrix are 

usually coated by an additional material (an interface) between constituents (Fig. 1) in order 
to enhance various properties of composites, i.e. thermal, magnetic or dielectric. Surfactants 
are added to alleviate the settling problem. Thus, a particulate composite is made of three 
different phases. Such a class of problems is analysed for instance by  Kamiński [24]. Since it 
is very difficult to estimate physical properties of an interface our analysis is limited to the 
considerations of two phase material demonstrated in Fig. 1b. 

 

 
 
a) particles with interfaces                                        b) two phase composites 
 
Fig. 1. Fields in a homogeneous medium with inclusions 
 
 
 Now, consider a homogeneous medium with properties described by a tensor 0Cαβ . 
The medium contains the region ( )1Ω  (inhomogeneity) with another property tensor αβC . The 
intensity E(x) and the flux D(x) of the field in the medium are described by the following 
system of differential equations: 
 

( ) ( ) 0  (x)Erot  (x),(x)EC  xD  q(x),-  xD ===∇ βαββαβααα          (1) 
 

where q(x) is a scalar density of the field sources. The third equation is satisfied automatically 
if the field Eα(x) is the gradient of a scalar function φ(x) called as the potential of the field: 
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( ) ( ) x  xE ϕ∇= αα         (2) 
 

The physical meaning of the potential φ(x) depends on the problem under considerations. It 
means the temperature field for heat transfer problems, the potential of the electric (magnetic) 
field for the electrostatics (magnetostatics, rsp.) fields.  
The tensor αβC  represents the local properties of the inclusion – Fig.1b and is defined as the 
sum: 

 
(x)C  C  (x)C 10

αβαβαβ +=           (3)  
 

Thus, if we consider a homogeneous medium with the property tensor C0 containing a set of 
inclusions with the property tensor C, the system of differential equations (1), (2) may be 
reduced to integral equations for the fields E(x) inside the inclusions, i.e.:  
 

( )
( )


Ω

=+
1

 xE )dx')V(x'(x')E(x')Cx'-(xK  (x)E 01

k

αμβμαβα     (4) 

 
where V(x’) is characteristic function for the kth inclusion that is equal to one if the variable 
x’ belongs to the region ( )

1
kΩ occupied by the kth inclusion and to zero if x’ does not belong to 

the domain  ( )
1
kΩ  (see Fig. 1).  Here E0 is the external field in the medium without the 

inclusion (C1(x)=0) by the action of the same sources of the field. The kernel K(x) is 
determined in the classical manner: 
 

G(x) -  K(x) βα∇∇=          (5) 
 

where G(x) is the Green function for the infinite homogeneous medium with the property 
tensor C0. The Green function satisfies the equation: 
 

δ(x) -  G(x) C0 =∇∇ βαβα           (6) 
 

The equivalence between the relations (4) and (1)-(3) can be proved under two additional 
assumptions: 

- with the use of the potential ( ) xϕ  the solution of eqn (1) can be decomposed as 
follows:  ( ) ( ) ( ) xxx 10 ϕϕϕ += , where ( )x0ϕ  is the potential in the medium without 
the inclusion, and ( )x1ϕ  is the perturbation of the potential due to the presence of the 
inclusion that tends to zero when ∞→x , 

- the potential  ( )x0ϕ  satisfies the relation analogous to eqn (1), i.e.:   (x) C 00 ϕβαβα ∇∇ = 
-q(x). 

The solution of this equation for an arbitrary anisotropic medium takes the following form: 
 

1-0000 )(C  B ,xBxCdet   r(x) ,
r(x)  π4
1  G(x) === βαβα        (7) 
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The simplest version of the effective field method is based on the hypothesis that the local 
external field x)(E∗

β  that acts on each inclusion is the same for all inclusions, i.e. the field 
x)(Eα inside each inclusion can be presented in the following way: 

 
( ) x)(Ex  (x)E E ∗Λ= βαβα       (8) 

 
where the tensor  ( )xE

αβΛ  is determined from the solution of the problem for isolated 
inclusion in the medium with the property tensor C0 by the action of the field  x)(E∗

β  and for 
ellipsoidal inclusions takes the following form: 
 

 ( ) ( ) 110E CA    x −+=Λ λβαλαβαβ δ      (9) 
 
where 
 

( ) ( )( )( ) 1,2,3n ,
σaσaσaσa

dσ
2c

aaaA ,eeAeeAeeAA
0

2
3

2
2

2
1

2
n0

3210
n

330
3

220
2

110
1

0 =
++++

=++= 
∞

βαβαβααβ  

(10) 
 

a1, a2, a3 are the semiaxes of an ellipsoid, and neα  are the unit vectors of the ellipsoid principal 
axes, the orientation of which is given by the normal m.  For a spheroid inclusion with the 
semiaxes a1=a2=a, a3 the tensor A0 takes the following form: 
 

( ) ( )( )  ,1  
a
a   γ,γ2f-1

c
1A ,γf

c
1A ,mm δθ ,mmA θAA

3
0

0

0
30

0

0
1

0
3

0
1

0 >===−=+= βααβαββααβαβ  

 

( ) ( ) ( )1γarctg 
1γ

γ  g ,
γ-12
g1γf 2

2

2

20 −
−

=−=                           (11) 

 
 
The effective local exciting field x)(E∗

β acting on the k-th inclusion is the sum of the external 
field  x)(E0

β applied to the medium and the field induced by others surrounding inclusions. 
The field x)(Eβ inside the isolated k-th inclusion being in the background matrix and caused 
by the action of the field x)(E∗

β is defined by eqn (4) where x)(E0
β is replaced by x)(E∗

β . The 
field induced in the region ( )

1
kΩ  of the k-th inclusion by all surrounding inclusions can be also 

represented with the use of eqn (4) in the following form:  
 

( ) ( ) ( )  )dx'(x')Ex'V(x;x)(x')Cx'-(xK - xE  xE 
1
(i)

E10 
Ω

∗∗ Λ=
λαα μλβμαβ   (12) 

 
( )    when x)(x'V   x'x;V 1

ki
i (k)

Ω∈= 
≠

         (13) 
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Averaging the equation (12), assuming that the field ( )xE0
α

 is fixed in the problem. i.e.:  
 

( ) 00 E xE
αα

=       (14) 
 
and identifying the conditional mean ( )xxE∗

α
with the effective field ∗

α
E  we obtain finally 

the following relation: 
 

( )
Ω

∗∗ Λ=Ψ=
1

)(

dxx(x)C
V
1P   wheredx')Ex'-(x)Px'-(xKp - E  E E1

i

000

i

μλβμβλμλαβ λαα
 (15) 

 
 
The symbol . denotes the averaging, and the function Ψ is defined as follows: 
 

( )
V(x)

f(x)V(x)
x|f(x)  where

V(x)
x)x'V(x,

x'x, ==Ψ      (16) 

 
p is the volume concentration of inclusions and it is equal to V(x) . The symbol x⋅ de 
notes the averaging over the realizations of the random set of inclusions by the condition 

Vx ∈ . The solution of equation (15) can be expressed in the following way: 
 

( )
( )

  )dx'x'-(x)x'-(xKK , PpKδE  E 
1

iΩ

-100  Ψ=+= ΨΨ∗
αβαλλβαλαβαα

  (17) 

 
Multiplying Eqn (4) by the property tensor C0 and using the definition (1b) of the flux 

tensor D(x) (for the inclusion and the medium) after a set of transformation of the result it is 
possible to derive the average of the flux tensor, i.e.: 
 

( ) ( )[ ] 0-1000 EPpKδPC xD
αα μβλμλβαλαβ

Ψ++=    (18) 
 
On the other hand, using Eqs (1b), (3) the tensor of the effective (homogenized) properties of 
the composite may be defined as follows: 
 

 ( )xC C ,)(EC(x)D αβαββαβα == ∗∗ x              (19) 
 

 
Combining eqs (18), (19) and (14) one can find that the tensor of the effective properties of 
two-phase composite is represented by the relation:  
 

( ) ( )[ ]-1000 PpKδpPCxC C μβλμλβαλαβαβαβ
Ψ∗ ++==    (20) 

 
Taking into account eqs (12), (15) and assuming that the tensor 1Cβμ is independent on the x 
variable the above relation takes the following form: 
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( ) ( ){ }[ ]11010 CpKAδpCCxC C −Ψ∗ +++== μβλμλμλβαβαβαβαβ    (21) 
 

If the ratio γ  has the same order as the inclusion aspect ratio 0AK λμλμ −=Ψ and the above 
equation is further reduced. Thus, as it may be easily observed the two-phase composite has 
isotropic, transversely-isotropic or anisotropic properties and they are directly dependent on 
the form of the operator 0Aλμ  - under the assumption that both the matrix and the inclusion 
have isotropic properties. 
 
2.1. Isolated inclusions 
 
Let the matrix material be isotropic (  cC 0

0
αβαβ δ= ) and the isotropic inclusions be ellipsoids 

with the same sizes randomly oriented in space. Neglecting the pair interaction between 
inclusions the analysis is reduced to the consideration of a single inclusion embedded in an 
infinite medium. Thus, the effective properties of the two-phase composite can be easily 
computed from the relation (21) with the use of the definition (11). For instance, in the case of 
spherical inclusions (so-called spherical symmetry) the operator 0Aλμ  takes the following 
form: 

λμλμ δ
3c
1 A

0

0 =           (22) 

 
the homogenized isotropic properties (21) coincide with the well-known Maxwell-Garnett 
formula [5,6].  
 
2.2 Chain of inclusions 
 
Using the above methodology the effective properties of two-phase composites may be also 
found for materials with regular lattices of identical inclusions. In this case the function 

( )x'x,Ψ  in eqn  (16) depends on the difference x-x’.  From that definition one can find that:  
 

 ( ) 2V(x)
)x)V(x'x',V(x'

V(x)
x'x)x',V(x'

x
+

=
+

=Ψ            (23) 

 
For the i-th inclusion being in the regular lattice the integral: 
 

( ) ( )




>
≤+−==+ 2x/a                                  ,0

2x/a ,)4/x/a1)(x/a5.1(aJ ,aJaaπa
3
4x)dx'(x'V)(x'V

2

321ii  (24) 

 
Is the volume of the intersection of two identical ellipsoids with the center separated by the 
vector x. Using the above definition the numerator in eqn (23) can be written as follows: 
 

=+
m

m)-J(xp)x)V(x'x',V(x'     (25) 

 
where m is the vector of the lattice composed by the centers of inclusions. Thus, the function 
Ψ(x) can be expressed as follows: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 December 2017                   doi:10.20944/preprints201712.0171.v1

Peer-reviewed version available at Materials 2018, 11, 234; doi:10.3390/ma11020234

http://dx.doi.org/10.20944/preprints201712.0171.v1
http://dx.doi.org/10.3390/ma11020234


 

=Ψ
m

m)-J(x'
p
1x)(      (26) 

 
where the prime over the sum symbol denotes the exclusion of the term with m=0.  Inserting 
the above results into the relation (17) one can find that:  
 

 






+=Ψ=Ψ dx1-m)-J(x
p
1K(x)..'A-  )dx'x'-(x)x'-(xKK 0

m
vp   (27) 

 
and the symbols p.v. mean that the integral is understood in the sense of the Cauchy principal 
value. Finally, with the use of eqs (21) and (27) one can evaluate the effective properties of 
the composite with a regular lattice.  

 
Fig.2 Chain of spherical inclusions 

 
It is worth to emphasize that the above definition of the effective mechanical 

properties does not take into account the physical interaction between particles but the 
geometrical form of assumed elementary cells only. The analytical results of integration in 
eqn (27) can be obtained for specific forms of  regular lattices only. For instance such a 
formula can be derived for an infinite chain of spherical particles where the representative 
volume cell has the form of a cuboid having infinite length in two directions – Fig. 2. In this 
case the effective properties can be expressed in the following form: 
 

( ){ }[ ] 1,2i  ,CpACp11pCCC 1110110
ii =+−++= −∗ η       

  
( ){ }[ ]1130110

33 CpACp11pCCC −∗ +−++= η        (28) 
 

/hr 2-  , 1/m2 p0
13

1m

33
0

1 === 
∞

=

ρηηρη ,  

 
assuming the isotropic properties of the matrix and inclusions, and the operator A0 is 
described by eqn (22).   
 
3. Numerical Homogenization Strategy 
 

All known analytical methods are valid under certain limitations and particular 
geometries or classes of structures. For metamaterials comprising conducting and possibly 
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resonant elements, and for which the periodicity is not necessarily negligible relative to the 
free-space wavelength, analytical homogenization techniques are unreliable or not applicable. 
Our intent here is to justify a numerically based homogenization scheme based on eqn. (1), in 
which the local fields computed for one unit cell of a periodic structure are averaged to yield a 
set of macroscopic fields. Once having computed the macroscopic fields, we can then 
determine the constitutive relationships between the macroscopic fields, arriving at the 
effective electromagnetic parameters. We will see that there will be virtually no restrictions 
on the contents of the unit cell, nor will the unit cell necessarily need to be small in 
comparison with the wavelength. They have proven useful in many situations, e.g. low 
volume fraction of homogeneous spherical or ellipsoidal inclusions in a homogeneous host 
material, but they fail if the volume fraction is too high or if the inclusions are not spheres or 
ellipsoids. Then, a more accurate homogenization procedure has to be used, which includes 
all contributions of the interaction between the reinforcing particles. 

Oil 

 
Figure 3. Definition of a unit cell 

 
For two-phase composites a typical homogenization situation is depicted in Fig. 3. It 

shows a 2D model of the composite material, which includes matrix with inclusions. In the 
homogenization method, the structure of the two-phase composite materials is assumed to be 
periodic, and the unit cell, which is the minimum volume to represent the overall statistics, is 
defined. Here, it is assumed that one particle inclusion is located in the center of the cell. The 
unit cell is regarded as a homogeneous substance with the effective properties. The effective 
property is defined on the basis of energy balance in the unit cell (Fig.3): it is assumed that the 
original cell and the homogenized cell include equivalent energy when both unit cells are 
immersed in equivalent external field. 

gf

b

h

z

X
y

 
Figure 4 The geometry of the representative unit cell and of the boundary conditions – 2D 

problem.      
 

In an actual estimation, the solution of the Laplace equation obtained with the use of 
eqs (1), (2) is computed by FEM. In this analysis, the potential ϕ is unknown, and assuming 
the applied field is unidirectional at least in the cell, the boundary conditions are set as: 
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    b/2 x topat the    0, xbottom at the 0 ==== xEyϕϕ   (29) 

 
The identical boundary conditions are formulated at each parallel boundaries of the cell 
shown in Fig.4 for 2D case. Let us note that the above type of boundary conditions satisfies 
periodicity of boundary conditions for arbitrary type of regular lattices as well as for the chain 
of inclusions and for a single inclusion. 

Similarly as previously for the effective field method, the FE analysis is based on the 
averaging method that is carried out for the representative volume element (RVE) having the 
volume denoted by the symbol ΩRVE. Thus, it is obvious that the results, understood in the 
sense of the average property tensor, are directly dependant on the dimensions and form of the 
RVE. It is worth to point out that even for the 2D two phase periodic composites the RVE 
may be of an arbitrary form, not necessarily rectangular as it shown in Fig. 3. Since in our 
numerical analysis we intend to give an information about variations of the property tensor 
components with respect to the volume fraction p we define it in the following way (see 
Fig.4): 
 

( ) ( ) 3Dfor  
r/g1r3b

r2
p and 2Dfor  

r/g12br
r

p
pfp

2

3
p

pfp

2
p

+
=

+
=

ππ
   (30) 

 
where it is assumed that the RVE has a square cross section in the y direction.  Thus, for the 
prescribed volume fraction p the RVE is completely defined by the set of two parameters 
(geometrical ratios), i.e.: gf/rp and b/rp for both 2D and 3D cases. Let us note that for the 
constant volume fraction p and the constant interparticle distance gf the geometrical 
dimensions of the representative cell (i.e. b and h) are uniquely determined 

For the selected RVE (Fig.4) and the selected boundary conditions in the form (29) 
(the unidirectional external field) the average intensity and flux of the field are defined by: 
 


==

==
TNTN

1m
m

1m
m DD , EE αααα         (31) 

 
where TN denotes the total number of nodes in the FE mesh. Using the above relations it is 
possible to compute four components of the average intensity and flux of the field for two 
types of boundary conditions demonstrated in Fig.4 (the 2D problem) or nine for the 3D 
analysis. We do not know in advance how many nonzero components in the property matrix  

 C1
αβ occur. Therefore, for the linear problem all components of the property matrix  

 C1
αβ (nine for the 3D problem) can be derived directly from eqs (1),(2) where the appropriate 

components of the vectors E and D are replaced by their average values evaluated in the local 
cell (RVE).  

For the non-linear problem (understood in the sense of the non-linear relation (1)) the 
components of the property matrix are computed by the comparison of the magnetic energy of 
the homogenized and of the original (Fig. 4) unit cell combined with the Newton-Raphson 
method. The energy is represented as follows: 
 

 
Ω

Ω=
RVE

U
D

DΕ d d        (32) 
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However, it is necessary to know in advance the D-E characteristic curve for the inclusions. 
Commonly, the inclusion is modeled as isotropic material but for the unit cell the local 
property matrix can possess anisotropic properties as it is shown for example in section 2.    

 

 
 

a) distribution of the magnetic scalar potential φ  

 
 

b) distribution of the magnetic field intensity  

 
 

c) distribution of the magnetic flux density 
Figure 5. The local distributions of magnetic fields for the boundary conditions (29) –  

spheroids  ax/ay = 2, p = 0.3, rp /h = 0.485, μ0=1,μp=2000. 
 

Figure 5 represents the example the FE analysis conducted for two-phase 
ferromagnetic composites made of phases having magnetic properties – the magnetostatic 
problem. The plots demonstrate the distribution of the magnetic flux density, the magnetic 
field and the potential φ as the external magnetic field is applied at the y direction – the 
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boundary conditions (3c). As it may be seen the variations of the potential inside the local cell 
(Fig. 5a) result in non-homogeneous distributions of magnetic fields in all directions. The 
average values are evaluated by adding the values of each finite elements in the elementary 
cell. 

For two-phase composites the effective property tensor has analogous properties to 
e.g. the tension modulus in elasticity: if the behavior is identical in three perpendicular 
directions, then it is isotropic. This conclusion points out a limitation of the use of constant 
second order tensors for the description of  behavior. Indeed, for e.g. magnetism many 
experimental observations reveal that cubic single crystals are not magnetically isotropic (see 
for instance [25] for iron and nickel or [26] for Terfenol-D). In fact in the experiments the 
chains of particles do not have to be aligned in the direction of the external field, namely Ey. 
We have some more compact aggregates. The microscopic analysis on the structure of the 
two-phase composites  revealed that there were aggregates forming rather than chains of 
spheres that can be approximated by ellipsoids, stripes or cylinders. Therefore, it is interesting 
to verify the correctness of the introduced FE model in the cases when the external field is 
rotated with respect to coordinates defining RVE  in order to consider the relationship 
between the orientation of inclusions and to explore symmetries in the constitutive relations 
(1) and their relevance to the homogenized composite medium. In the case of a generalized 
anisotropic structure for which principal axis of external fields and the unit cell do not 
coincide the property tensor should satisfy the classical transformation rules of the second 
rank tensors. To interpret and investigate those effects let us analyze  the form of the property 
(permeability) matrix  for the 3D ring structure shown in Fig. 6. The geometry of unit cells is 
defined in the cylindrical coordinate system but the external field is directed along the line 
joining the centre of the central spherical inclusion and the centre of the ring curvature.   
 

 
 
Figure 6 The system of 5 ferromagnetic particles – the external field is applied at the x, y or z 

direction. 
 

The assumed form of the system of the unit cells reflects the situation as the external field is 
not always parallel to the cell edges . It may occur for instance for clusters of inclusion. 
Figure 7 shows the assumed boundary conditions and the values of the permeability matrix 
terms (the magnetostatic problem). The terms μαβ (α≠β) are not equal to zero what means that 
it may be for instance the origin of clusters and of the inclusion aggregation at the beginning 
of magnetization. On the other hand, it may be easily verified that the terms of the property 
matrix satisfy the classical transformation rule: 
 

 where,MCMC T=Transf
















−=

100
0cossin
0sincos

θθ
θθ

M   (33) 

 
and θ denotes the angle of rotation which is equal to 14.110.  
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Figure 7 Boundary conditions and the local (transformed off-axis) values of the permeability 

matrix. 
 
 
 
4. Numerical results 
 

The homogenization method is applied to various 2D and 3D test problems in order to 
evaluate the distributions of the terms of the property matrix and to compare theoretical 
predictions with numerical ones that take into account the finite dimensions of the unit cell. In 
the test problems, a sample two-phase composite material composed of an isotropic matrix 
and inclusions having the following material properties: cp=1 and cf=2000. The analysis is 
conducted for 2D and 3D unit cells to test the capability and limitations of the proposed 
model. Similarly as previously the numerical model corresponds to the analysis of 
magnetorheological fluids.  
 
4.1 2D Problems 
 

Let us consider a single circular particle surrounded by a nonmagnetic carrier fluid – 
the planar problem Fig.4. This is a typical homogenization problem analyzed for the MR 
fluids – see e.g. Simon et al. [27] for magnetorheological fluids. However, on the contrary to 
the cited work we compute the four (the planar problem) permeability matrix coefficients. 
The off-axis terms are equal to zero, and two others are plotted in Fig. 8 for various volume 
fractions. 
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Figure 8 Variations of the effective permeability at two perpendicular directions with particle 
radius. 

 
As it may be seen the effective permeability czz decreases as the interparticle distance 
increases and it is the highest for the highest volume fraction p=0.3. The decrease of the 
effective permeability cxx is associated with the increase of the effective permeability czz. Let 
us note that for the constant volume fraction p the variations of the ratio rp/h (or gf/rp) results 
in the change of the ratio b/rp – see eqn (30). Using the single unit cell (Fig.4) one can observe 
that for the external magnetic field having the non-zero component Hy only, the chains of 
ferromagnetic particles are completely isolated since there is no interaction at the x direction. 
In fact, the experiments demonstrate evidently that they form clusters of different shapes  - 
see Bossis et al. [28].   
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Figure 9 Variations of the effective permeability at two perpendicular directions with volume 

fractions 
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3.2 3D Problems 
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Figure 10 Variations of the permeability coefficients with interparticle vertical distance rp/h 
(transversely-isotropic body) 
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Figure 11 Variations of the permeability coefficients with volume fraction p (transversely-
isotropic body) 

 
Now, 3D Laplace equation (2) have been solved for 3D unit cell using FE package. 

The results for the variations of the property tensor components are demonstrated in Figs 10 
and 11 taking into account the assumption (30) what leads directly to the transversely 
isotropic properties of composites (i.e. cxx=cyy). The plots are drawn both for spherical 
(a=ax=ay=az) and spheroid (a=ax=ay≠az) inclusions. For spherical inclusions the distributions 
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of the homogenized properties for the 3D case are similar to those for the 2D case (see Figs 8 
and 9). However, assuming the identical geometric ratios of the RVE, for the 3D case the 
averaged values in the x direction are higher than those evaluated for the planar case, whereas 
the values in the z direction are almost identical. The shape of inclusions has a significant 
influence on the averaged values. For the increasing γ parameter the effective property czz 
decreases, and cxx increases since the x axis corresponds to the longer axis of spheroids. Figs 
10 and 11 show that the proposed model provides an transversely isotropic effective 
permeability, whereas the Maxwell–Garnett model gives an isotropic one. The Maxwell–
Garnett model always yields the same estimates for any rp/h because it is insensitive to 
microstructure. Thus the Maxwell–Garnett model cannot be used for these composites 
because, even when the overall volume fraction is very small, the distance between particles 
of the same chain is small so that particle interactions cannot be disregarded.  For the low 
volume fractions the Maxwell-Garnett gives a very good estimations in the x directions only – 
Fig.11. For spherical inclusions, as it may be observed in Figs 10 and 11, the effective field 
model gives much better approximations of the effective values evaluated with the use of the 
FE model than the Maxwell-Garnett model. However, the effectiveness of the effective field 
model decreases for the high particle interactions (rp/h<0.1) and for the high volume fractions 
(p>0.25). It is obvious that theoretical estimations, i.e. with the use of the Maxwell-Garnett 
model and the effective field model have limited applications in the comparison with the FE 
model since the first corresponds to the random (quasi-isotropic) structure of reinforced 
particles, and the second to the chain-like structure, i.e. in two directions the dimensions of 
the RVE tend to infinity. 
 
5. Optimal Design 
 

In theoretical and numerical analysis it is commonly assumed that the reinforcement 
particle has an ideal spherical form. However, as it is demonstrated in Figs 10 and 11 the 
shape of the particle can affect significantly the effective material properties. Therefore, 
development of optimized multifunctional composite materials becomes of great interest from 
technological and theoretical viewpoints to all engineering fields. This section designs such 
materials computationally using the method of parametric optimization. In particular, two-
dimensional periodic two phase composite materials are optimized for the optimal effective 
properties. To analyse the effects of different shapes for simplicity it is assumed that the 
particle is modelled as a superellipse (Fig.4) having the following form: 
 

1=





+








nn

b
y

a
x         (34) 

 
where a and b denote the superellipse semi-axis, and n is a parameter greater than 1. Having 
the constant volume fraction in the RVE and varying the n value one can observe the change 
of the terms in the effective property matrix.  

For higher values of the n parameter (n>10) the shape resembles a rectangular and in 
this case both components of the effective permeabilities, i.e. cyy and cxx reach their optimal 
values – see Figs 12 and 13. However, the optimal values of the effective properties are 
strongly dependent on the values of the geometrical ratios rp/h and the volume fractions p. Let 
us note that maximal value of the term cyy is much higher than those plotted previously in the 
section 4, and the values of cyy are much lower. Therefore, it seems to be reasonable to 
conclude that the optimal rectangular form of the particles can prevent the aggregation of 
them in ellipsoids or cylinders instead of linear chains and in this sense the theoretical 
effective field model may be applicable in the estimations of the effective properties. It is 
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worth to mention also that the obtained optimal designs resembles completely those obtained 
by Guest and Prevost [29] for fluid transportation problem (the Darcy law). They concluded 
that the Schwartz P minimal surface is believed to be the maximum permeability structure in 
the 3D case. However, the authors of the cited paper assumed in advance the isotropic 
properties of the permeability matrix. 
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b) the y direction 
 

Figure 12 Variations of the effective properties with the particle shape – the constant volume 
fraction p 
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b) the y direction 
 

Figure 13 Variations of the effective properties with the particle shape – the constant 
interparticle distance rp/h 

 
 
6. Concluding Remarks  
 

Properties of a heterogeneous medium (two phase composites) made of inclusions 
distributed in a locally periodic way in a matrix have been derived and studied. A uniform test 
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external field is applied on the boundary of the composite, and then the averaged fields of the 
particles and matrix are derived by the Green’s function technique and then compared with 
FE results based on the numerical homogenization technique. An anisotropic effective 
property tensor is further provided.  The effective property tensor of the composite medium is 
symmetric, positive definite, generally anisotropic, and depend on the microstructure both for 
2D and 3D cases. The proposed method can be successfully applied to the analysis of the non-
linear problems, taking into account the non-linearity of the characteristic curves (e.g. B-H).  
From these models it is found that the averaged property tensor components are strongly 
dependent on the dimensionless interparticle distance and the volume fraction.  

This paper proposes also a shape optimization methodology for designing 
multifunctional two phase composite material optimized for tensor property components. For 
the 2D problems the optimal shape resembles rectangular with rounded edges. It is verified in 
this study that optimal design based on the finite element analysis is a valid method for the 
output improvement of constructions. 

It is important to emphasize that the underlying methodology of homogenization and 
optimization is quite general and can be applied to the design of composite materials. 
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