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Abstract. A microstructure-based model is developed to study the effective anisotropic
properties (magnetic, dielectric or thermal) of two phase particle-filled composites. The
Green’s function technique and the effective field method are used to derive theoretically the
homogenized (averaged) properties for a representative volume element containing isolated
inclusion and an infinite, chain-structured particles. Those results are compared with the FE
approximations conducted for the assumed representative volume element. In addition, as a
special case, the Maxwell-Garnett model is retrieved when particle interactions are not taken
into consideration. We shall also give some information on the optimal design of the effective
anisotropic properties taking into account the shape of magnetic particles.

1. Introduction

Temperature, magnetic and electric fields in composite materials are of interest in
many engineering applications. In order to use them effectively in modern constructions it is
necessary to predict the effective homogenized properties. Theoretically, for particle filled,
two phase composites, their homogenized, effective physical properties may be derived in the
similar manner in the linear case. The methods for searching for effective magnetic
permeabilities, dielectric permittivities or thermal conductivities are analogous and they may
be calculated using the same approach. Although, the similarity of those three fields have
been noticed a long time ago the models for the prediction of the effective composite
properties are build separately for each class of problems and in addition with the use of
various simplified hypothesis (assumptions).

It is worth to point out that the analysis of an incompressible viscous fluid flow
through a porous medium can be described by the analogous equations as the mentioned
above for the two phase composites. On the macroscopic scale, flow through the porous
material is governed by Darcy’s law having the permeability tensor Ku, so that the analogous
methods to the discussed herein may be also successfully applied to the fluid flow problems.

There are different homogenization approaches and they can be divided into three
classes, i.e.: direct, indirect and variational methods. Direct methods are based on volume
average of field quantities and they can be performed by a numerical procedure, usually FEM
or BEM. Indirect homogenization follows the idea of the equivalent inclusion method based
on Eshelby’s eigenstrain solution. In this area different variants of solutions are developed
and they may be divided into: the self-consistent schemes, the Mori-Tanaka method and the
differential method. The variational approach can give upper and lower bounds of the
effective properties. Monographs describing in details different homogenization methods have
been written by Mura [1], Nemat-Nasser and Hori [2], Qin and Yang [3]. The review
presented by Wang and Pan [4] first examines the issues, difficulties and challenges in
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prediction of material behaviors by summarizing and critiquing the existing major analytical
approaches dealing with material property modeling.

The model of Maxwell and Garnett [5,6] was one of the first to describe the effective
permittivity of composites containing randomly dispersed spherical particles. Hashin and
Shtrikman [7] used a variational approach to determine the upper and lower bounds of the
effective magnetic permeability of multiphase materials. To investigate the effect of the
interaction between particles, Fu et al. [8] presented an analytic approach to derive the explicit
effective permittivity in a series form for composites containing spherical particles. For
periodically distributed composites, McPhedran and McKenzie [9] and McKenzie et al. [10]
extended a method devised by Rayleigh [11] to calculate the conductivity of simple cubic,
body-centered cubic, and face-centered cubic lattices of composites containing conducting
spheres. Doyle [12] and Lam [13] presented their models for composites with cubic lattices of
particles. White [14] introduced a T-matrix solution based on a unit cell for general
periodically distributed composites. Chen et al. [15] obtained the electric field distribution
numerically in a Legendre series for one chain embedded in an infinite medium. Yin and Sun
[16] derived effective magnetic properties for a chain-like structure considering a single
column of particles embedded in an infinite medium. Sareni et al. [17,18] applied the
boundary integral method to solve effective permittivity for random and periodic composites.
A broad review of the above mentioned approaches and methods with the particular
discussion of the results is given in the monograph Kanaun and Levin [19]. In addition to
experimental and theoretical approaches, computer simulations have been adopted more and
more frequently to study the effective properties of composites. Effective dielectric constants
of two-phase composite dielectrics have been estimated numerically by Wu et al. [20].
Krakovsky and Myroshnychenko [21] used the finite element method to compute the effective
permittivity for two-dimensional random composites. Numerical approach to the evaluation of
the effective properties for MR fluids is demonstrated in Ref [22], however the analysis and
results deal only with the prediction of magnetic permeability in one direction only. Although
materials with directional features are common, most previous work has focused on the
isotropic cases, except some studies attempted to bring this property-direction dependence
into general formulation. For instance for MR fluids some magnetic properties, such as the
saturation magnetization and the crystalline anisotropy, are intrinsic and depend mainly on the
chemical composition and the crystalline symmetry of the material. On the other hand,
extrinsic properties, such as remanence, coercivity and permeability, depend largely on the
structure of the material Yin and Sun [16] or on the shape of reinforced particles [23].
Through analytical predictions and numerical modeling, certain optimization approaches and
design schemes for novel materials could be resulted for engineering applications, and in turn
the new observations and experiences from the practice would accelerate the development of
new theories and methodologies.

Smart materials, by definition, have some properties which can be altered or tuned
using an external field. Examples include materials that exhibit ferroelectricity,
pyroelectricity, piezoelectricity, a shape memory effect, electrostriction, magnetostriction.
electrochromism, photomagnetism and photochromism. Most of these materials tend to be
used in their solid state, i.e. in a polycrystalline or a single crystal form as bulk materials or
thin films deposited on appropriate substrates. In general they form a special class of two-
phase composite materials. When an external field is applied, the particles become polarised
and are thereby arranged into chains or clusters. The chains can further aggregate into
columns, when the composite material exhibits a solid-like mechanical behaviour. Therefore,
the effective properties of smart materials vary in time, starting from a random state of
particles being in a viscous fluid and finishing in a composite solid being a chain-like
structure.


http://dx.doi.org/10.20944/preprints201712.0171.v1
http://dx.doi.org/10.3390/ma11020234

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2017 d0i:10.20944/preprints201712.0171.v1

In order to demonstrate the theoretical limitations this study firstly aims to present the
possibility of theoretical predictions of effective properties for smart materials in the 3D
approach. The presented theoretical approach is based on the use of the effective field
method. Having in mind the possible applications of two phase composites as smart materials
two separate problems are discussed in details, i.e. the case of isolated inclusions and chain-
like structures. Then, the numerical method of homogenization is proposed and the results are
compared with theoretical ones. The suggested scheme of numerical homogenization is
applied to optimize the effective properties varying the shape of inclusions. As it is reported
in the literature the behaviour of aggregated particles has a great influence on the appropriate
modeling of the smart material deformation as it is strained and especially in view of its yield
stress value. For such a class of composites the present analysis is an introduction to the
global FE modeling of rheological deformations.

2. The Effective Field Method

First of all, let us note that in engineering practice particles embedded in a matrix are
usually coated by an additional material (an interface) between constituents (Fig. 1) in order
to enhance various properties of composites, i.e. thermal, magnetic or dielectric. Surfactants
are added to alleviate the settling problem. Thus, a particulate composite is made of three
different phases. Such a class of problems is analysed for instance by Kaminski [24]. Since it
is very difficult to estimate physical properties of an interface our analysis is limited to the
considerations of two phase material demonstrated in Fig. 1b.

0)
I
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o
e h )
a) particles with interfaces b) two phase composites

Fig. 1. Fields in a homogeneous medium with inclusions

Now, consider a homogeneous medium with properties described by a tensor C&B.

The medium contains the region QW (inhomogeneity) with another property tensor C,;. The

intensity E(x) and the flux D(x) of the field in the medium are described by the following
system of differential equations:

VoD, (x)=-q(x), D, (x)=C 4 (X)E4(x), rot,,E,(x)=0 (1)

where q(x) is a scalar density of the field sources. The third equation is satisfied automatically
if the field E«(x) is the gradient of a scalar function ¢(x) called as the potential of the field:
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E, (x)=V,0(x) 2)

The physical meaning of the potential ¢(x) depends on the problem under considerations. It
means the temperature field for heat transfer problems, the potential of the electric (magnetic)
field for the electrostatics (magnetostatics, rsp.) fields.

The tensor C,; represents the local properties of the inclusion — Fig.1b and is defined as the

sum:
Caﬁ x)= Cg:ﬁ + C:zﬂ (x) (3)

Thus, if we consider a homogeneous medium with the property tensor C° containing a set of
inclusions with the property tensor C, the system of differential equations (1), (2) may be
reduced to integral equations for the fields E(x) inside the inclusions, i.e.:

E,(®)+ |K,5(x-x)Cp, (x)E,(x)V(X)dx'=E, (x) (4)

1
Q)

where V(x’) is characteristic function for the kth inclusion that is equal to one if the variable
x’ belongs to the region Q% »occupied by the kth inclusion and to zero if x” does not belong to
the domain QE,{) (see Fig. 1). Here Eo is the external field in the medium without the

inclusion (C'(x)=0) by the action of the same sources of the field. The kernel K(x) is
determined in the classical manner:

K(x)=-V,V, G(x) (5)

where G(x) is the Green function for the infinite homogeneous medium with the property
tensor C°. The Green function satisfies the equation:

V,C%V, G(x)=-3(x) (6)

o~ af

The equivalence between the relations (4) and (1)-(3) can be proved under two additional
assumptions:

- with the use of the potential ¢(x) the solution of eqn (1) can be decomposed as
follows: ¢@(x)=¢°’(x)+¢'(x) , where ¢°(x) is the potential in the medium without
the inclusion, and ¢'(x) is the perturbation of the potential due to the presence of the

inclusion that tends to zero when |x| —> oo,

- the potential ¢°(x) satisfies the relation analogous to eqn (1), i.e.: V_C).V P P’ (x) =

a~of
-q(X).
The solution of this equation for an arbitrary anisotropic medium takes the following form:

1 0 0 0 0y-1
G(x)= 4nr(x),r(x):\/detC x,Blyx 5, B' =(C") (7)
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The simplest version of the effective field method is based on the hypothesis that the local
external field E;.(x) that acts on each inclusion is the same for all inclusions, i.e. the field

E , (x) inside each inclusion can be presented in the following way:
E, (x)= A%y (x)E}(x) (8)

where the tensor A, (x) is determined from the solution of the problem for isolated

inclusion in the medium with the property tensor C° by the action of the field E;(X) and for

ellipsoidal inclusions takes the following form:
1
AFZz/i (x)= (5043 + Agaclxw ) )
where

a,a,a do

s [ ,n=1.273
2, l(af, +o)f@ rofal o)l +o)

0 _ AO0.1 1 0.2 2 0.3 3 0 _
A =Aje,e, A e+ Aje,c5 A =
(10)

a1, a2, a3 are the semiaxes of an ellipsoid, and e, are the unit vectors of the ellipsoid principal

axes, the orientation of which is given by the normal m.  For a spheroid inclusion with the
semiaxes ai=a>=a, a3 the tensor A’ takes the following form:

1 1 a
Ay =ATOy+ Asmmy, 0,,=3,—mmy, AY=—1, (1), A7=—(1-26,(v)) y=—=>1,

0 Co a;

fo(y)= =g b arctg(wz—l) (11)

The effective local exciting field E;(x) acting on the k-th inclusion is the sum of the external
field Eoﬂ(x) applied to the medium and the field induced by others surrounding inclusions.
The field E ;(x) inside the isolated k-th inclusion being in the background matrix and caused
by the action of the field E}(x)is defined by eqn (4) where E%(x) is replaced by E(x). The

field induced in the region Q} ») of the k-th inclusion by all surrounding inclusions can be also
represented with the use of eqn (4) in the following form:

E" (x)= EZ (x)- J.Kaﬁ (x - x')Clﬁﬂ (x')AF;M (x)V(x; x')E’: (x")dx' (12)

a

1
Q @

V(x;x)= ) Vi(x') whenxe Q' (13)

i#zk
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Averaging the equation (12), assuming that the field Ei (x) is fixed in the problem. i.e.:

(E (x))=E" (14)

a

and identifying the conditional mean <Ea (x)|x> with the effective field Ea we obtain finally

the following relation:

1
Qi

E® :EZ -pJ.Kaﬂ(X-x')Pﬁﬂ‘I’(x -x")E" dx" where Py, = < IC (X)A%, > (15)

The symbol <> denotes the averaging, and the function W is defined as follows:

x) <V(x, X')|x>
W(xx) Vo)

p is the volume concentration of inclusions and it is equal to (V(x)). The symbol (-|x)de

(feOV(x))

where <f(x) | x> = <V(x)>

(16)

notes the averaging over the realizations of the random set of inclusions by the condition
x € V. The solution of equation (15) can be expressed in the following way:

E' =B’ (5, +PKyPY, )  KY, = [Kp0x-x)P(x -x)dx (17)
Q)
Multiplying Eqn (4) by the property tensor C° and using the definition (1b) of the flux

tensor D(x) (for the inclusion and the medium) after a set of transformation of the result it is
possible to derive the average of the flux tensor, i.e.:

<D lco +P, (8&,} +ijﬂP/(l)ﬁ)- JE (18)

On the other hand, using Eqs (1b), (3) the tensor of the effective (homogenized) properties of
the composite may be defined as follows:

(D (%)) = Cr(E 5 (x)), Coy =(C s (x)) (19)

Combining eqgs (18), (19) and (14) one can find that the tensor of the effective properties of
two-phase composite is represented by the relation:

Cip =<caﬁ(x)>:[c° +pPY, (5,5 +pK ¥ P )" ] (20)

Taking into account eqs (12), (15) and assuming that the tensor C;ﬂ is independent on the x

variable the above relation takes the following form:
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C*aﬂ = <Ca/i’ (X)> = [Cgﬁ +pclaﬂ{8/1/3 + (Aiy +ij,1 )Cizﬁ}_l] (21)

If the ratio 7 has the same order as the inclusion aspect ratio K\fﬂ =—A’,and the above
equation is further reduced. Thus, as it may be easily observed the two-phase composite has
isotropic, transversely-isotropic or anisotropic properties and they are directly dependent on
the form of the operator Agﬂ - under the assumption that both the matrix and the inclusion

have isotropic properties.

2.1. Isolated inclusions

Let the matrix material be isotropic (C(;',j =¢,0,5 ) and the isotropic inclusions be ellipsoids

with the same sizes randomly oriented in space. Neglecting the pair interaction between
inclusions the analysis is reduced to the consideration of a single inclusion embedded in an
infinite medium. Thus, the effective properties of the two-phase composite can be easily
computed from the relation (21) with the use of the definition (11). For instance, in the case of

spherical inclusions (so-called spherical symmetry) the operator Azﬂ takes the following

form:

1
Al =—3§ 22
Au 3C0 Au ( )
the homogenized isotropic properties (21) coincide with the well-known Maxwell-Garnett
formula [5,6].

2.2 Chain of inclusions

Using the above methodology the effective properties of two-phase composites may be also
found for materials with regular lattices of identical inclusions. In this case the function
W¥(x,x') in eqn (16) depends on the difference x-x’. From that definition one can find that:

W(x)= <V(X',X'+X)|X'> _ <V(X',X'+X)Y(X')> 3
(V&) (V&)

For the i-th inclusion being in the regular lattice the integral:

(1-.5|x/a]")(1 +|x/a|/ 4), |x/a| < 2
0, |x/a|>2

IVi X"V, (X'+X)dx':§nala2a3J(a), J(a)={ (24)

Is the volume of the intersection of two identical ellipsoids with the center separated by the
vector x. Using the above definition the numerator in eqn (23) can be written as follows:

(V' x+x)V(x")) =p>_J(x -m) (25)

where m is the vector of the lattice composed by the centers of inclusions. Thus, the function
Y(x) can be expressed as follows:
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Y (x)= lZ'J(x -m) (26)
p m

where the prime over the sum symbol denotes the exclusion of the term with m=0. Inserting
the above results into the relation (17) one can find that:

K¥ = IK (x-XPx-x)dx'=-A"+ Z'p.v.J. K(x){lJ(x -m)- l}dx (27)
m p

and the symbols p.v. mean that the integral is understood in the sense of the Cauchy principal
value. Finally, with the use of eqs (21) and (27) one can evaluate the effective properties of
the composite with a regular lattice.

infinity ) «

A‘lity

d

Fig.2 Chain of spherical inclusions

It is worth to emphasize that the above definition of the effective mechanical
properties does not take into account the physical interaction between particles but the
geometrical form of assumed elementary cells only. The analytical results of integration in
eqn (27) can be obtained for specific forms of regular lattices only. For instance such a
formula can be derived for an infinite chain of spherical particles where the representative
volume cell has the form of a cuboid having infinite length in two directions — Fig. 2. In this
case the effective properties can be expressed in the following form:

Ci=lc +pc fi+(-p) A +py'c T i=12
Cy= [CO +pC' {1 +(1-p)C'A° +pr’C! }_1] (28)
n' = 2/)3511/m3 0 =-2n",p, = r,/h
m=1

assuming the isotropic properties of the matrix and inclusions, and the operator A° is
described by eqn (22).

3. Numerical Homogenization Strategy

All known analytical methods are valid under certain limitations and particular
geometries or classes of structures. For metamaterials comprising conducting and possibly
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resonant elements, and for which the periodicity is not necessarily negligible relative to the
free-space wavelength, analytical homogenization techniques are unreliable or not applicable.
Our intent here is to justify a numerically based homogenization scheme based on eqn. (1), in
which the local fields computed for one unit cell of a periodic structure are averaged to yield a
set of macroscopic fields. Once having computed the macroscopic fields, we can then
determine the constitutive relationships between the macroscopic fields, arriving at the
effective electromagnetic parameters. We will see that there will be virtually no restrictions
on the contents of the unit cell, nor will the unit cell necessarily need to be small in
comparison with the wavelength. They have proven useful in many situations, e.g. low
volume fraction of homogeneous spherical or ellipsoidal inclusions in a homogeneous host
material, but they fail if the volume fraction is too high or if the inclusions are not spheres or
ellipsoids. Then, a more accurate homogenization procedure has to be used, which includes
all contributions of the interaction between the reinforcing particles.

Magnetic substance

Original Periodical structure Unit cell

Figure 3. Definition of a unit cell

For two-phase composites a typical homogenization situation is depicted in Fig. 3. It
shows a 2D model of the composite material, which includes matrix with inclusions. In the
homogenization method, the structure of the two-phase composite materials is assumed to be
periodic, and the unit cell, which is the minimum volume to represent the overall statistics, is
defined. Here, it is assumed that one particle inclusion is located in the center of the cell. The
unit cell is regarded as a homogeneous substance with the effective properties. The effective
property is defined on the basis of energy balance in the unit cell (Fig.3): it is assumed that the
original cell and the homogenized cell include equivalent energy when both unit cells are
immersed in equivalent external field.

N

|
i

Y—

o

X

i L]

Figure 4 The geometry of the representative unit cell and of the boundary conditions — 2D
problem.

In an actual estimation, the solution of the Laplace equation obtained with the use of
eqs (1), (2) is computed by FEM. In this analysis, the potential ¢ is unknown, and assuming
the applied field is unidirectional at least in the cell, the boundary conditions are set as:
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@ =0at thebottom x =0, ¢=F x at the top x =b/2 (29)

The identical boundary conditions are formulated at each parallel boundaries of the cell
shown in Fig.4 for 2D case. Let us note that the above type of boundary conditions satisfies
periodicity of boundary conditions for arbitrary type of regular lattices as well as for the chain
of inclusions and for a single inclusion.

Similarly as previously for the effective field method, the FE analysis is based on the
averaging method that is carried out for the representative volume element (RVE) having the
volume denoted by the symbol Qrve. Thus, it is obvious that the results, understood in the
sense of the average property tensor, are directly dependant on the dimensions and form of the
RVE. It is worth to point out that even for the 2D two phase periodic composites the RVE
may be of an arbitrary form, not necessarily rectangular as it shown in Fig. 3. Since in our
numerical analysis we intend to give an information about variations of the property tensor
components with respect to the volume fraction p we define it in the following way (see
Fig.4):

o’ 2’
p= a for 2D and p = —; 2 for 3D (30)
2brpil+gf/rp5 3b rp(1+gf/rp)

where it is assumed that the RVE has a square cross section in the y direction. Thus, for the
prescribed volume fraction p the RVE is completely defined by the set of two parameters
(geometrical ratios), i.e.: gf/rp and b/rp for both 2D and 3D cases. Let us note that for the
constant volume fraction p and the constant interparticle distance gr the geometrical
dimensions of the representative cell (i.e. b and h) are uniquely determined

For the selected RVE (Fig.4) and the selected boundary conditions in the form (29)
(the unidirectional external field) the average intensity and flux of the field are defined by:

<Ea>:gEm ,<Da>:iDm (31)

where TN denotes the total number of nodes in the FE mesh. Using the above relations it is
possible to compute four components of the average intensity and flux of the field for two
types of boundary conditions demonstrated in Fig.4 (the 2D problem) or nine for the 3D
analysis. We do not know in advance how many nonzero components in the property matrix

Claﬁ occur. Therefore, for the linear problem all components of the property matrix

C;,j (nine for the 3D problem) can be derived directly from eqs (1),(2) where the appropriate

components of the vectors E and D are replaced by their average values evaluated in the local
cell (RVE).

For the non-linear problem (understood in the sense of the non-linear relation (1)) the
components of the property matrix are computed by the comparison of the magnetic energy of
the homogenized and of the original (Fig. 4) unit cell combined with the Newton-Raphson
method. The energy is represented as follows:

U= | [EdDdQ (32)

QRVE D

d0i:10.20944/preprints201712.0171.v1
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However, it is necessary to know in advance the D-E characteristic curve for the inclusions.
Commonly, the inclusion is modeled as isotropic material but for the unit cell the local
property matrix can possess anisotropic properties as it is shown for example in section 2.

0 92526

185051 277577 370102
46263 138788 231314 323840 416365

92526 185051 277577 370102
46263 138788 231314 323840 416365

a) distribution of the magnetic scalar potential ¢

L

-414653 ~322538 ~230423 ~138308 -46193
-214977 “3zz790 -230603 ~138416 -46225 -368595 -276480 -184365 -52250 -135.342
-368883 -276696 -184509 -szazz -135.342

b) distribution of the magnetic field intensity

]
L170E-03 167996 .335822 503647 671473
084083 .251909 419734 .58756 .755386
.170E-03 16433 32969 49445 . 65921

08255 24731 .41207 57683 74153

c) distribution of the magnetic flux density
Figure 5. The local distributions of magnetic fields for the boundary conditions (29) —
spheroids ax/ay =2, p=0.3, rp /h = 0.485, po=1,1y=2000.

Figure 5 represents the example the FE analysis conducted for two-phase
ferromagnetic composites made of phases having magnetic properties — the magnetostatic
problem. The plots demonstrate the distribution of the magnetic flux density, the magnetic
field and the potential ¢ as the external magnetic field is applied at the y direction — the
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boundary conditions (3c). As it may be seen the variations of the potential inside the local cell
(Fig. 5a) result in non-homogeneous distributions of magnetic fields in all directions. The
average values are evaluated by adding the values of each finite elements in the elementary
cell.

For two-phase composites the effective property tensor has analogous properties to
e.g. the tension modulus in elasticity: if the behavior is identical in three perpendicular
directions, then it is isotropic. This conclusion points out a limitation of the use of constant
second order tensors for the description of behavior. Indeed, for e.g. magnetism many
experimental observations reveal that cubic single crystals are not magnetically isotropic (see
for instance [25] for iron and nickel or [26] for Terfenol-D). In fact in the experiments the
chains of particles do not have to be aligned in the direction of the external field, namely Ey.
We have some more compact aggregates. The microscopic analysis on the structure of the
two-phase composites revealed that there were aggregates forming rather than chains of
spheres that can be approximated by ellipsoids, stripes or cylinders. Therefore, it is interesting
to verify the correctness of the introduced FE model in the cases when the external field is
rotated with respect to coordinates defining RVE in order to consider the relationship
between the orientation of inclusions and to explore symmetries in the constitutive relations
(1) and their relevance to the homogenized composite medium. In the case of a generalized
anisotropic structure for which principal axis of external fields and the unit cell do not
coincide the property tensor should satisfy the classical transformation rules of the second
rank tensors. To interpret and investigate those effects let us analyze the form of the property
(permeability) matrix for the 3D ring structure shown in Fig. 6. The geometry of unit cells is
defined in the cylindrical coordinate system but the external field is directed along the line
joining the centre of the central spherical inclusion and the centre of the ring curvature.

Figure 6 The system of 5 ferromagnetic particles — the external field is applied at the x, y or z
direction.

The assumed form of the system of the unit cells reflects the situation as the external field is
not always parallel to the cell edges . It may occur for instance for clusters of inclusion.
Figure 7 shows the assumed boundary conditions and the values of the permeability matrix
terms (the magnetostatic problem). The terms pop (0#B) are not equal to zero what means that
it may be for instance the origin of clusters and of the inclusion aggregation at the beginning
of magnetization. On the other hand, it may be easily verified that the terms of the property
matrix satisfy the classical transformation rule:

cos@ sinfd O
(€)™ =M(C)M", where M =| —sin6 cosé 0 (3)
0 0 1

and 0 denotes the angle of rotation which is equal to 14.11°,
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the central cell

2.18155 0 4.04284-107"
{,U}eff =14.42751-10"° 4.64986 4.83967-107"
3.63850-107" 0 4.75623

i the intermediate cell

1232835 0.58379 2.19868-107"
{u} . =10.58380 4.50307 8.14158-107"
0 0 4.75623

the outermost cell

2.73351 1.02822 7.87749-107"
{u} . =11.03033 4.09986 7.54181-107"
0 0 4.75623

Hz

Figure 7 Boundary conditions and the local (transformed off-axis) values of the permeability
matrix.

4. Numerical results

The homogenization method is applied to various 2D and 3D test problems in order to
evaluate the distributions of the terms of the property matrix and to compare theoretical
predictions with numerical ones that take into account the finite dimensions of the unit cell. In
the test problems, a sample two-phase composite material composed of an isotropic matrix
and inclusions having the following material properties: c,=1 and c=2000. The analysis is
conducted for 2D and 3D unit cells to test the capability and limitations of the proposed
model. Similarly as previously the numerical model corresponds to the analysis of
magnetorheological fluids.

4.1 2D Problems

Let us consider a single circular particle surrounded by a nonmagnetic carrier fluid —
the planar problem Fig.4. This is a typical homogenization problem analyzed for the MR
fluids — see e.g. Simon et al. [27] for magnetorheological fluids. However, on the contrary to
the cited work we compute the four (the planar problem) permeability matrix coefficients.
The off-axis terms are equal to zero, and two others are plotted in Fig. 8 for various volume
fractions.

d0i:10.20944/preprints201712.0171.v1
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Effective magnetic permeability C

Figure 8 Variations of the effective permeability at two perpendicular directions with particle
radius.

As it may be seen the effective permeability czz decreases as the interparticle distance
increases and it is the highest for the highest volume fraction p=0.3. The decrease of the
effective permeability cxx is associated with the increase of the effective permeability cz. Let
us note that for the constant volume fraction p the variations of the ratio rp/h (or ge/rp) results
in the change of the ratio b/rp — see eqn (30). Using the single unit cell (Fig.4) one can observe
that for the external magnetic field having the non-zero component Hy only, the chains of
ferromagnetic particles are completely isolated since there is no interaction at the x direction.
In fact, the experiments demonstrate evidently that they form clusters of different shapes -

see Bossis et al. [28].
e ——_————,———

Effective magnetic permeability C

0 0.1 0.2 0.3 0.4 0.5
Volume fraction p

Figure 9 Variations of the effective permeability at two perpendicular directions with volume
fractions
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3.2 3D Problems

Effective magnetic permeability ¢

c,, [FEM] I
Cyx [FEM]
Maxwell-Garnett
" | 6—0—0 ¢, Eq.[27]

L] 6-6- cuEq.[2]

| e, =2000,¢,=1,p=03

(3

0.25

Figure 10 Variations of the permeability coefficients with interparticle vertical distance rp/h

Effective magnetic permeability ¢

(transversely-isotropic body)

|

¢, [FEM] :
Cyx [FEM] -
Maxwell - Garnett :
—6— ¢, Eq. 28] !
]
|
|

&= =0 ¢\ Eq. [28]

[

[

[

il il il

I ! I ! I
0.2 0.3 0.4

Volume fraction p

Figure 11 Variations of the permeability coefficients with volume fraction p (transversely-

isotropic body)

Now, 3D Laplace equation (2) have been solved for 3D unit cell using FE package.
The results for the variations of the property tensor components are demonstrated in Figs 10
and 11 taking into account the assumption (30) what leads directly to the transversely
isotropic properties of composites (i.e. cxx=Cyy). The plots are drawn both for spherical
(a=ax=ay=az) and spheroid (a=ax=ay#a:) inclusions. For spherical inclusions the distributions
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of the homogenized properties for the 3D case are similar to those for the 2D case (see Figs 8
and 9). However, assuming the identical geometric ratios of the RVE, for the 3D case the
averaged values in the x direction are higher than those evaluated for the planar case, whereas
the values in the z direction are almost identical. The shape of inclusions has a significant
influence on the averaged values. For the increasing y parameter the effective property cz.
decreases, and cxx increases since the x axis corresponds to the longer axis of spheroids. Figs
10 and 11 show that the proposed model provides an transversely isotropic effective
permeability, whereas the Maxwell-Garnett model gives an isotropic one. The Maxwell—-
Garnett model always yields the same estimates for any rp/h because it is insensitive to
microstructure. Thus the Maxwell-Garnett model cannot be used for these composites
because, even when the overall volume fraction is very small, the distance between particles
of the same chain is small so that particle interactions cannot be disregarded. For the low
volume fractions the Maxwell-Garnett gives a very good estimations in the x directions only —
Fig.11. For spherical inclusions, as it may be observed in Figs 10 and 11, the effective field
model gives much better approximations of the effective values evaluated with the use of the
FE model than the Maxwell-Garnett model. However, the effectiveness of the effective field
model decreases for the high particle interactions (rp/h<0.1) and for the high volume fractions
(p>0.25). It is obvious that theoretical estimations, i.e. with the use of the Maxwell-Garnett
model and the effective field model have limited applications in the comparison with the FE
model since the first corresponds to the random (quasi-isotropic) structure of reinforced
particles, and the second to the chain-like structure, i.e. in two directions the dimensions of
the RVE tend to infinity.

5. Optimal Design

In theoretical and numerical analysis it is commonly assumed that the reinforcement
particle has an ideal spherical form. However, as it is demonstrated in Figs 10 and 11 the
shape of the particle can affect significantly the effective material properties. Therefore,
development of optimized multifunctional composite materials becomes of great interest from
technological and theoretical viewpoints to all engineering fields. This section designs such
materials computationally using the method of parametric optimization. In particular, two-
dimensional periodic two phase composite materials are optimized for the optimal effective
properties. To analyse the effects of different shapes for simplicity it is assumed that the
particle is modelled as a superellipse (Fig.4) having the following form:

DGR

where a and b denote the superellipse semi-axis, and n is a parameter greater than 1. Having
the constant volume fraction in the RVE and varying the n value one can observe the change
of the terms in the effective property matrix.

For higher values of the n parameter (n>10) the shape resembles a rectangular and in
this case both components of the effective permeabilities, i.e. cyy and cxx reach their optimal
values — see Figs 12 and 13. However, the optimal values of the effective properties are
strongly dependent on the values of the geometrical ratios rp/h and the volume fractions p. Let
us note that maximal value of the term cyy is much higher than those plotted previously in the
section 4, and the values of cyy are much lower. Therefore, it seems to be reasonable to
conclude that the optimal rectangular form of the particles can prevent the aggregation of
them in ellipsoids or cylinders instead of linear chains and in this sense the theoretical
effective field model may be applicable in the estimations of the effective properties. It is
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worth to mention also that the obtained optimal designs resembles completely those obtained
by Guest and Prevost [29] for fluid transportation problem (the Darcy law). They concluded
that the Schwartz P minimal surface is believed to be the maximum permeability structure in
the 3D case. However, the authors of the cited paper assumed in advance the isotropic
properties of the permeability matrix.
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Figure 12 Variations of the effective properties with the particle shape — the constant volume
fraction p
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Figure 13 Variations of the effective properties with the particle shape — the constant
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6. Concluding Remarks

Properties of a heterogeneous medium (two phase composites) made of inclusions
distributed in a locally periodic way in a matrix have been derived and studied. A uniform test
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external field is applied on the boundary of the composite, and then the averaged fields of the
particles and matrix are derived by the Green’s function technique and then compared with
FE results based on the numerical homogenization technique. An anisotropic effective
property tensor is further provided. The effective property tensor of the composite medium is
symmetric, positive definite, generally anisotropic, and depend on the microstructure both for
2D and 3D cases. The proposed method can be successfully applied to the analysis of the non-
linear problems, taking into account the non-linearity of the characteristic curves (e.g. B-H).
From these models it is found that the averaged property tensor components are strongly
dependent on the dimensionless interparticle distance and the volume fraction.

This paper proposes also a shape optimization methodology for designing
multifunctional two phase composite material optimized for tensor property components. For
the 2D problems the optimal shape resembles rectangular with rounded edges. It is verified in
this study that optimal design based on the finite element analysis is a valid method for the
output improvement of constructions.

It is important to emphasize that the underlying methodology of homogenization and
optimization is quite general and can be applied to the design of composite materials.
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