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Abstract: Network Embedding (NE) is an important method to learn the representations of network8

via a low-dimensional space. Conventional NE models focus on capturing the structure information9

and semantic information of vertices while neglecting such information for edges. In this work, we10

propose a novel NE model named BimoNet to capture both the structure and semantic information11

of edges. BimoNet is composed of two parts, i.e., the bi-mode embedding part and the deep neural12

network part. For bi-mode embedding part, the first mode named add-mode is used to express the13

entity-shared features of edges and the second mode named subtract-mode is employed to represent14

the entity-specific features of edges. These features actually reflect the semantic information. For15

deep neural network part, we firstly regard the edges in a network as nodes, and the vertices as links,16

which will not change the overall structure of the whole network. Then we take the nodes’ adjacent17

matrix as the input of the deep neural network as it can obtain similar representations for nodes18

with similar structure. Afterwards, by jointly optimizing the objective function of these two parts,19

BimoNet could preserve both the semantic and structure information of edges. In experiments,20

we evaluate BimoNet on three real-world datasets and task of relation extraction, and BimoNet is21

demonstrated to outperform state-of-the-art baseline models consistently and significantly.22

Keywords: Network Embedding; Neural Network; Relation Extraction23

0. Introduction24

Nowadays, social and information networks are ubiquitous and contain rich and complex data25

that record the types and dynamics of human interactions. So how to mine the information in26

networks is of high research and application value. Recently, network embedding (NE), i.e., network27

representation learning (NRL), has been proposed to represent the networks so as to realize network28

analysis, such as link prediction [1], clustering [2] and information retrieval [3]. NE aims to encode29

the information and features of each vertex into a low-dimensional space, i.e., learn real-valued30

vector representations for each vertex, so as to reconstruct the network in the learned embedding31

space. Compared with conventional symbol-based representations, NE could alleviate the issues of32

computation and sparsity, thus manage and represent large-scale networks efficiently and effectively.33

However, most existing NE models only focus on modeling on vertices, for example, classical NE34

model DeepWalk [4] utilizes random walk to capture the structure of the whole network and CANE [5]35

aims to leverage the semantic information of vertices. As for the edge, an important component of36

network, it is usually simplified as a binary or continuous value in those models. Obviously such37

simplification will waste the rich information an edge contains. It is intuitive that in real-word38

networks, edges also contain rich and variant meanings as they encode the interactions between39

vertices, and their structure is also influential to the whole network. For example, many social media40

users are connected because of a common interest, then such interest could be a major component of41

the network both semantically and structurally. Therefore, in this work, we propose a new NE model42

named BimoNet to make full use of both semantic and structure information of edges.43

For semantic information, inspired by recent work TransNet [6] which borrows the concept44

of relation extraction in Knowledge Graph (KG), we also utilize the triplets in KG to capture45

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2017                   doi:10.20944/preprints201712.0156.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201712.0156.v1
http://creativecommons.org/licenses/by/4.0/


2 of 12

the features of relations. A fact (knowledge) in a knowledge graph is represented by a triplet46

(head_entity, relation, tail_entity), denoted as (h, r, t). We design a bi-mode embedding model to47

represent relations. The first mode is named as add-mode, where the relations are expressed by48

the shared features of entities, i.e., r ≈ h + t. It is intuitive that a relation is an abstraction of49

the entity pairs having such a relation. Take the relation Presidentof as an example, it should be50

the abstraction of all entity pairs like (Trump, America), (Putin, Russia) and (Xi Jinping, China). So51

if we consolidate by summation and average all the features of the entity pairs, the features after52

consolidation could be used to express the features of relation Presidentof (rather than relations like53

CEOof ). In general, for a triplet, the features of relation r is similar to the shared features of entity54

pair (h, t). The second mode is named as subtract-mode, where the relations are represented as a55

channel to offset the divergence and preserve the prominent individual features of head and tail56

entities, i.e., r ≈ h− t. Such entity-specific features are not taken into consideration by add-mode but57

inherently possessed by entities. The motivation to integrate both modes of embedding is to model58

commonalities while allowing individual specificity. Although shared entity features by add-mode59

describe the intrinsic relationship between two entities, only using this could cause false positive60

entity pairs like (Trump, Russia), as they may have similar shared features. Therefore, we need61

to further distinguish the entity-specific features through subtract-mode embedding. To conclude,62

we use a bi-mode embedding to mine both the entity-shared features and entity-specific features of63

relations, that is, the sematic information of relations.64

To represent structural information, for easy understanding, we might as well regard relations65

as nodes and vertices as links, which will not change the overall structure of the network. Given66

a network, we can obtain a node’s adjacency matrix, where the entry of the matrix is bigger than67

zero if and only if there exists a link between nodes. So the adjacency matrix can represent the68

neighborhood structure information of each node, thus by consolidating all the nodes’ adjacency69

matrix, we could capture the global structure of the network. Afterwards, we introduce a deep neural70

network autoencoder [7] and take the adjacency matrix as the input. Deep autoencoder can preserve71

the similarities between samples, thus making the nodes having similar neighborhood structure have72

similar latent representations.73

We conduct the experiments on three real-life network datasets which are constructed by74

TransNet. Experiment results show that BimoNet outperforms classical state-of-the-art NE models75

significantly and consistently. It demonstrates our proposed model BimoNet’s power and efficiency76

on modeling relationships between vertices and edges, thus representing the whole network77

effectively.78

The major contribution of the paper can be summarized into three ingredients:79

• We propose a novel network embedding model BimoNet, which describes relations’s semantic80

information by bi-mode embeddings, and incorporates a deep neural network mocdel to81

capture relations’ structural information;82

• We are the first to fully mine both the semantic and structural information of edges in a network,83

which provides a new angle to represent the network; and84

• The new model is evaluated and compared with existing models on real-life benchmark datasets85

and tasks, and experiment results on relation extraction verify that BimoNet outperforms86

state-of-the-art alternatives consistently and significantly.87

The rest of the paper is structured as follows. We introduce the related work in Section 1, and88

then justify the intuitions of our method with its theoretical analysis in Section 2. Next, we conduct89

the experimental studies on network relation extraction in Section 3. Finally, we conclude our findings90

in Section 4.91

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2017                   doi:10.20944/preprints201712.0156.v1

http://dx.doi.org/10.20944/preprints201712.0156.v1


3 of 12

h
Edge with 

Vertices

≈ + ≈ -

h t

Bi-mode 

Embeddings

r h tr

Encoder 

Decoder

Hidden Layers

Deep 

Autoencoeder

...

t

Integrated 

Embeddings

Figure 1. Model framework of BimoNet.

1. Related Work92

1.1. Relation Extraction in Knowledge Graph93

Knowledge graphs (KG) are typical large-scale multi-relational structures, which comprise a94

large amount of fact triplets, denoted as (h, r, t). Existing large-scale KGs such as Freebase [8],95

Wordnet [9] and YAGO [10] are all suffering from incompleteness. So relation extraction is a crucial96

task in KG embedding work, with the goal of extracting relational facts between entities so as to97

complement the existing KGs. It usually performs as relation prediction, which is to predict whether98

a relation is suitable for a corrupted triplet (h, ∗, t). The classical KG embedding model TransE [11]99

interprets relations as translating operations between head and tail entities in the representation100

space, i.e., h + r ≈ t. We could find that TransE is actually a variant of the subtract-mode embedding,101

which suggests that our bi-mode embedding is compatible to TransE and further verifies our model’s102

ability on handling relationships between vertices and edges.103

1.2. Deep Neural Network104

Representation learning has long been an essential problem of machine learning and many105

works aim at learning representations for samples. Recently, deep neural network models have been106

proved that they have powerful representation abilities, which can generate effective representations107

for various types of data. For example, in image analysis field, [12] proposes a seven-layer108

convolutional neural network (CNN) to generate image representations for classification. [13]109

proposes a multimodal deep model to learn image-text unified representations to achieve110

cross-modality retrieval task.111

However, less works have been done to learn network representation. [14] adopts Restricted112

Boltzmann Machines to do collaborating filtering. In [15], a heterogenous deep model is proposed113

to do heterogenous data embedding. NE embedding model TransNet [6] and SDNE [16] both114

use autoencoder to capture the label information of edges and structural information of vertices,115

respectively. Our model BimoNet is different from those models. BimoNet aims to leverage the116

structural information of edges which is a new angle to utilize an autoencoder model.117
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1.3. Network Embedding118

Our work solves the problem of network embedding which aims to represent the networks119

through a low-dimensional space. Some earlier works like Local linear Embedding(LLE) [17] and120

IsoMAP [18] first construct the affinity graph based on the features vectors and obtain the network121

embedding by solving the leading eigenvectors as the network representations. More recently,122

DeepWalk [4] performs random walks over networks and introduces SkipGram [19], an efficient123

word2vec methods to learn the network embedding. LINE [20] optimizes the joint and conditional124

probabilities of edges in large-scale networks to learn vertex representations. Node2vec [21] proposes125

a biased random walks strategy to more efficiently explore the network structure. However, these126

models only encode the structure information into vertex embeddings. Futhermore, some works127

consider to incorporate heterogenous information into network representation. Text-associated128

DeepWalk (TADW) [22] uses text information to improve matrix factorization based DeepWalk.129

Max-margin DeepWalk (MMDW) [23] utilizes labeling information of vertices to learn discriminative130

network representations. Group-enhanced network embedding (GENE) [24] integrates existing group131

information into NE. Context-enhanced network embedding (CENE) [25] regards text content as a132

special kind of vertices, thus leveraging both structural and textual information on learning network133

embedding. Besides, SiNE [26] learns vertex representations in signed networks, in which each edge134

is either positive or negative. Nevertheless, it is worth noting that all the models above over-simplify135

the edges and are not able to perfectly represent a network.136

To the best of our knowledge, few works consider both the rich semantic information and137

structure information of edges, and extract and predict relations on edges in a detailed way. Therefore,138

we propose a novel model BimoNet to fill up such research empty.139

2. Proposed Model140

In this section, we propose a novel network embedding model BimoNet to integrate both the141

semantic information and structure information of edges to learn the representation of networks.142

A sketch of the model framework is presented in Fig. 1. From Fig. 1, we could see that BimoNet143

is composed of two major components, i.e., the bi-mode embedding and deep autoencoder. In the144

following sections, we will first introduce the mechanism of bi-mode embedding in detail. After that,145

we will introduce how a deep antoencoder works to capture the structure information of edges. At146

last, we will present the integration of these two components to obtain the overall objective function147

of BimoNet.148

2.1. Bi-Mode Embedding149

Inspired by knowledge representation which could extract relation features efficiently, we150

borrow some concepts like triplets in KG to help realize the bi-mode embedding. We first introduce151

the common notations here. A triplet is denoted as (h, r, t), where h denotes a head entity, r denotes a152

relation, t denotes a tail entity, where head entities and tail entities are actually vertices in a network,153

and relations are actually edges. The bold letter h, r, t represent the embeddings of (h, r, t). To154

discriminate the add-model and subtract-mode, we denote their embeddings as ha, ra, ta and hs,155

rs, ts, respectively. The entity and relations take values in Rn, where n is the dimension of entity156

and relation embeddings spaces. Next, we will introduce the detailed mechanism of add-mode and157

subtract-mode.158

Add-Mode Embedding: The basic idea of add-mode embedding is that a relation is the159

abstraction of all the features of entity pairs. That is, some most common features will burst and160

individual features will correspondingly fade by consolidating all the features of entity pairs.161

For each triplet (h, r, t), a head entity h and a tail entity t constitute an entity pair together,162

denoted as (h, t). Given an entity pair (h, t), there could be plenty of relations fits the pair; on the163

other hand, one relation could also match a large number of entity pairs. Therefore, if we incorporate164
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all the shared features of these entity pairs, this could be used to represent the unique features owned165

by relation r, which is unlikely represented by other entity pairs without having relation r. That is,166

r ≈ h + t, mathematically.167

Motivated by the above theory, we propose an add-mode embedding model, which
demonstrates that all the shared features of head entities and tail entities should be close to the
features of relation r. In other words, when a triplet (h, r, t) exists, it is expected that

ra = ha + ta. (1)

From this, ra should be the closest relation of ha + ta, otherwise ha + ta should be far away from ra.
Moreover, under an energy based framework, the energy of a triplet is equal to the distance between
ha + ta and ra, which could be measured by either L1 or L2 norms. So the objective function can be
represented as follows:

fr(h, t) = ‖ha + ta − ra‖2
L1/L2

. (2)

Subtract-Mode Embedding: Add-mode embedding can express the entity-shared features of168

relations, but neglects the entity-specific features. Recall the example that Trump is the president169

of America, and Putin is the president of Russia. Add-mode embedding could easily capture the170

representation features between Trump (resp. Putin) and America (resp. Russia). Nevertheless, if171

we intentionally pair Trump with Russia, add-mode embedding may falsely figure that the corrupted172

entity pair as correct, as the shared features between Trump and Russia may be fairly close to the173

features of relation Presidentof. We attribute this to that add-mode embedding only focus on shared174

features while underestimates the significance of individual features of entities.175

To cover the shortage of add-mode embedding, we further adopt the subtract-mode embedding
so as to capture the entity-specific features. For a triplet (h, r, t), the embedding hs of relation r
describes the discrepancies between h and t by calculating the differences between their embeddings.
That is, rs ≈ hs − ts, mathematically. In this case, it is expected that rs + ts is close to hs, meanwhile
far away from other entities. Similarly, the objective function can be represented as follows:

fr(h, t) = ‖hs − ts − rs‖2
L1/L2

. (3)

Consequently, we can obtain the overall objective function of bi-mode embedding via integrating
the two complementary methods together:

fr(h, t) = ‖ha + ta − ra‖2
L1/L2

+ ‖hs − ts − rs‖2
L1/L2

. (4)

To learn such embeddings, for each triplet (h, r, t) and its corrupted sample (h′, r′, t′), we
minimize the following margin-based ranking loss function over the training set,

Lbimode = max( f (h, r, t) + γ− f (h′, r′, t′), 0), (5)

where γ > 0 is a margin hyperparameter and the loss function above encourages the discrimination176

between positive triplets and corrupted triplets. (h′, r′, t′) is a negative sample which is obtained by177

randomly replacing the original head or tail entity (resp. relation) with another disconnected entity178

(resp. relation).179

2.2. Deep Autoencoder180

Here we introduce the detailed mechanism of a deep autoencoder to illustrate its ability on181

capturing the structure information of edges. Firstly, for easy understanding, we propose a bold182

conception that we regard edges as nodes and vertices as links to build a new network. However,183

such changes will not influence the overall structure of the original network so we see this conception184

quite acceptable.185
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Given a modified network G = (N, L), where N denotes the nodes which are actually edges186

and L denotes the links which are actually vertices, we can obtain its adjacency matrix S of nodes.187

S contains m instances denoted as s1, s2, ..., sm. For each instance si = {si,j}m
j=1, si,j > 0 if and only188

if node ni and node nj have a connected link. Hence, si expresses the neighborhood structure of the189

node ni and S encodes the neighborhood structure of each node, thus obtaining the global structure190

of the network. Next,we introduce how we incorporate the adjacency matrix S into the traditional191

deep autoencoder [7].192

Deep antoencoder comprises two parts, i.e., the encoder part and the decoder part. The
encoder consists of multiple non-linear functions mapping the input data to the representation
space. The decoder also consists of multiple non-linear functions that map the representations from
representation space to reconstruction space. Given the input xi, the hidden representations for each
layer are presented as follows:

y(1)i = σ(W(1)xi + b(1)),

y(k)i = σ(W(k)y(k−1)
i + b(k)), k = 2, · · · , K.

(6)

After obtaining y(K−1)
i , we can correspondingly obtain the output x̂i by reversing the calculation

process of encoder. The autoencoder aims to minimize the reconstruction error of the output and the
input. The loss function is shown as follows:

L =
m

∑
i=1
‖x̂i − xi‖2

2. (7)

[7] proved that although minimizing the reconstruction loss does not explicitly preserve the193

similarity between samples, its reconstruction criterion can smoothly capture the data manifolds, thus194

preserving the similarity between samples. Therefore, consider our case that we use the adjacency195

matrix S as the input to the autoencoder, i.e., xi = si, since si encode the neighborhood structure of196

node ni, the reconstruction calculation will make the nodes that have similar neighborhood structure197

have similar representations as well.198

However, we cannot directly apply this reconstruction function to our problem due to the
sparsity of the input matrix. That is, the number of zero elements in S is much larger than that of
non-zero elements, which means that the autoencoder tends to reconstruct the zero elements instead
of non-zero ones. This is not what we expect. Hence we impose more penalty to the reconstruction
error of the non-zero element than that of zero elements. The modified objective function is shown as
follows:

Lae =
m

∑
i=1
‖(x̂i − xi)� bi‖2

2

= ‖(X̂− X)� B‖2
2,

(8)

where � denotes the Hadamard dot, bi = {bi,j}m
j=1. If si,j = 0, bi,j = 0, otherwise bi,j = β > 1. Now199

through utilizing the modified deep autoencoder with the input adjacency matrix S, the nodes that200

have similar structures will be mapped closely in the representation space, which are guaranteed by201

the reconstruction criterion. Namely, a deep autoencoder could capture the structure information of202

the network by the reconstructing process on nodes, in our case, edges.203

2.3. The Integrated Model204

Here we integrate the bi-mode embedding and the deep autoencoder representation into a
unified network embedding model named BimoNet, which preserves the ability to model both
semantic and structure information. To maintain the consistency of two objective functions, we take
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the norm in bi-mode embedding as L2 norm. Consequently, we obtain the overall objective function
as follows:

Lall = Lbimode + αLae + ηLreg, (9)

where α and η are hyperparameters which control the weights of autoencoder objective function
and regulation function respectively. Additionally, we take the regularizer Lreg which could prevent
overfitting as L2 norm, shown as follows:

Lreg =
K

∑
i=1

(‖W(i)‖2
2 + ‖b(i)‖2

2), (10)

We further adopt dropout [27] to generate the edge representations, so as to prevent overfitting. In205

the end, we also employ Adam algorithm [28] to minimize the overall the objective function.206

3. Experiments and Analysis207

We empirically evaluate our model and related baseline models through conducting the208

experiment relation extraction on three real-world datasets. Relation extraction usually performs209

as relation prediction, which is to predict whether a relation fits a specific entity pair. We introduce210

the data sets in the first place, then introduce other baseline algorithms, along with the evaluation211

metrics and parameter settings of all models, and finally analyze the experiment results.212

3.1. Datasets213

We choose the datasets from ArnetMiner1 [29] which are constructed by TransNet [6], so as214

to compare our model with this recent state-of-the-art model along with the conventional models.215

ArnetMiner is an online academic website which provides search and mining service for researcher216

social networks. It releases a large scale co-author network2, which consists of 1, 712, 433 authors,217

2, 092, 356 papers and 4, 258, 615 collaboration relations. In this network, authors collaborate with218

different people on different research fields, and the co-authored papers can reflect the relations with219

them in detail. Therefore, TransNet constructed the co-authored network with edges representing220

their shared research topics. Notice that, as the edges in this co-author network are undirected, the221

constructed datasets replace each edge with two directed edges having opposite dirctions.222

To better study the characteristics of different model, the datasets are constructed with three223

different scales, i.e., Arnet-S (small), Arnet-M (medium), and Arnet-L (large). Table 1 illustrates the224

detailed statistics of these three datasets.225

Table 1. Dataset Statistics

Datasets Arnet-S Arnet-M Arnet-L
Vertices 187, 939 268, 037 945, 589
Edges 1, 619, 278 2, 747, 386 5, 056, 050
Train 1, 579, 278 2, 147, 386 3, 856, 050
Test 20, 000 300, 000 600, 000

Valid 20, 000 300, 000 600, 000

3.2. Baseline Algorithms226

We introduce the following network embedding models as baselines.227

1 https://cn.aminer.org/
2 https://cn.aminer.org/arnetminernetwork
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DeepWalk [4] employs random walks to generate random walk sequences over networks. With228

these sequences, it adopts SkipGram [19], an efficient word representation model, to learn vertices229

embeddings.230

LINE [20] defines objective functions to preserve the first-order or second-order proximity231

separately. After optimizing the objective functions, it concatenates these representations in large232

scale networks.233

node2vec [21] proposes a biased random walk algorithm based on DeepWalk to explore the234

neighborhood structure more efficiently.235

TransNet [6] borrows the concept of translation mechanism from the conventional knowledge236

embedding method TransE [11] to capture the semantic information of edges. Afterwards, it employs237

a deep neural network to further mine the label information of edges, which is still an aspect of the238

semantic information.239

In addition, we also compare our model with TransE as our training triplets are actually identical240

to that in a knowledge graph. Hence our datasets could be directly employed to train TransE and241

adopt the similarity based predicting method as presented in [11].242

3.3. Experiment Setup243

Relation exteaction is to predict the missing relations in a positive triplet (h, r, t). In this task, we244

randomly replace the missing relations by the existing relations in knowledge graph, and rank these245

relations in descending order via the objective function. Instead of finding one best relation, this task246

stores the rank of the correct relation. After doing this, we have two evaluation metrics based on the247

rank we get for the correct relation. One is the MeanRank which is the mean of predicted ranks of all248

relations. The other one is the proportion of all correct relations ranked in top k, denoted as hits@k.249

We choose hits@1, hits@5 and hits@10 in this metric. Obviously, a lower MeanRank and a higher hits@k250

represent a better performance for a specific model. When dealing with the corrupted triplets, we251

should notice that though replacing the relations, a triplet may also exist in a knowledge graph as252

positive, so it is reasonable to remove those corrupted triplets from the negative triplets set. We call253

the original evaluation setting as ’Raw’, and the setting filtering the corrupted triplets that appear in254

either training, validation or test set before ranking, as ’Filter’ [11].255

Table 2. Relation Extraction Results on Armet-S

Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank
DeepWalk 12.35 34.56 48.59 20.55 16.98 38.57 50.97 20.02

LINE 10.23 30.26 42.98 26.78 13.67 32.34 43.77 25.24
node2vec 11.67 36.45 49.39 21.47 17.83 38.27 50.13 20.48
TransNet 43.56 82.87 90.18 5.53 73.43 86.34 90.62 4.45
TransE 39.69 77.27 87.82 5.74 56.74 81.83 90.24 4.62

BimoNet 47.94 87.73 93.25 4.60 78.67 90.05 95.56 3.94

Table 3. Relation Extraction Results on Armet-M

Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank
DeepWalk 6.53 18.79 26.37 86.45 9.83 21.57 29.92 81.14

LINE 5.16 16.25 22.57 97.04 7.24 17.36 23.57 95.39
node2vec 6.64 19.93 27.18 84.73 9.47 21.46 29.52 80.68
TransNet 24.52 63.47 73.21 28.84 54.58 71.24 74.92 25.76
TransE 17.25 47.64 60.49 29.15 29.72 53.48 62.97 27.28

BimoNet 28.11 67.36 77.49 24.35 60.07 77.54 82.63 21.26

We select the dimension n of the entities and relations embeddings among {50, 100, 150, 200, 300},256

the regularization parameter λ among {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0}, the initial learning rate257

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2017                   doi:10.20944/preprints201712.0156.v1

http://dx.doi.org/10.20944/preprints201712.0156.v1


9 of 12

Table 4. Relation Extraction Results on Armet-L

Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank
DeepWalk 5.27 14.56 21.49 105.36 7.05 15.79 22.37 104.62

LINE 3.68 11.25 17.63 117.04 5.42 12.78 18.92 116.37
node2vec 5.35 14.74 21.68 105.27 6.94 15.93 22.81 103.86
TransNet 25.57 63.24 72.38 32.33 51.48 70.05 76.78 29.81
TransE 13.27 39.89 53.28 33.50 21.26 44.91 57.24 33.43

BimoNet 30.13 69.37 78.51 27.96 58.64 76.71 80.39 25.47

Table 5. Relation Comparisons on Armet-S

Tags Top 5 relations Bottom 5 relations
Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank

TransNet 73.62 86.22 90.81 4.26 74.54 86.51 90.57 4.12
BimoNet 78.93 90.03 95.42 3.64 79.27 90.35 95.58 3.57

of Adam µ among {0.05, 0.02, 0.01, 0.001, 0.0003}, the hyperparameter α which controls the weight of258

autoencoder loss among {5, 1, 0.5, 0.05, 0.005} and the hyperparameter β which balances the weight259

of non-zero elements in autoencoder among {10, 20, 30, 60, 80 ,100}. Besides, we set the margin γ as260

1. In order to balance the expressiveness and complexity of the deep autoencoder model, we set the261

hidden layers as 2 for all datasets. For Armet-S, the best configuration obtained by the valid set is:262

n = 100, λ = 0.003, µ = 0.01, α = 0.5, and β = 30. For Armet-M, the best configuration is: n = 150,263

λ = 0.001, µ = 0.001, α = 0.5, and β = 60. For Armet-L, the best configuration is: n = 200, λ = 0.001,264

µ = 0.001, α = 0.5, and β = 80.265

3.4. Experiment Results and Analysis266

Experiment results on the three datasets are presented in Table 2, Table 3 and Table 4. In these267

tables, the left four metrices are raw results, and the right four are filtered ones. From these tables,268

we can observe that BimoNet outperforms other baseline models significantly and consistently on269

all datasets in both Filter and Raw settings. To be more specific, BimoNet even outperforms the best270

baseline, i.e., TransNet, by about 10% to 20% absolutely. It illustrates the robustness and effectiveness271

of BimoNet on modeling and predicting relations between vertices.272

All traditional network embedding model perform poorly on relation extraction task under273

various situations, which is attributed to the neglect on semantic and structure information of274

edges when learning the network representations. As for TransE, TransNet and BimoNet, they275

all incorporate the semantic information of edges into the learned representations, thus obtaining276

the relatively decent results. This demonstrates that the semantic information of edges plays277

an essential part in network embedding, and further proves our bi-mode embedding model’s278

ability on capturing such information. Nonetheless, comparing BimoNet, TransE and TransNet still279

have poor performances, due to its limitation of only focusing on the semantic information while280

underestimating the structure information of edges. Similarly, this indicates the importance of281

structure information as well as the rationality of the deep autocoder on exploring such information.282

To conclude, BimoNet leverages both the semantic information and structure information of edges so283

as to learn the network representations as completely as possible.284

In addition, BimoNet performs stably on different scales of networks. Specifically, on filtered285

hit@10, its performance only has a small decrease from 90% to 80%, despite that datasets become286

much larger. However, other NE models suffer from a significant drop as the network grow larger.287

This demonstrates the stability and flexibility of BimoNet, which could be applied to model the large288

scale real-life networks efficiently.289
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Figure 2. Parameter Sensitivity

3.5. Relation Comparison290

To further investigate the power of BimoNet on representing relations between vertices, we291

compare BimoNet with TransNet under high frequency relations and low frequency relations. We292

experiment the top-5 relations and bottom-5 relations on Armet-S, and the filtered hits@k and293

MeanRank results are presented in Table 5.294

From this, we observe that BimoNet outperforms TransNet consistently on both types of295

relations. We attribute this to that relations having the similar frequency tend to have similar296

structures. In other words, relation frequency reflects its structure, to some extent. Therefore, through297

the usage of the deep autoencoder which could explore the structure information of edges, BimoNet298

improves its prediction on relations regardless of their frequency.299

3.6. Parameter Sensitivity300

We investigate the parameter sensitivity in this section. To be specific, we evaluate two crucial301

hyperparameters, i.e., α and β which is crucial to experiment results, and experiment on Armet-S.302

In order to find a good balanced point between bi-mode embedding and deep autocoder, we303

show how the value α affects the performance in Figure 2(a). The parameter α balances the weight of304

auto-encoder loss and bi-mode embedding loss. We choose the filtered hits@10 metric for comparison.305

From Figure 2(a), we observe that the performance of BimoNet improves rapidly at the beginning,306

and then become stable. Although α varies a lot, all of BimoNet’s performances exceed that of307

TransE around 20 iterations. This demonstrates that BimoNet is insensitive to α, so it can be easily308

implemented and well trained in practice.309

As for β, it balances the reconstruction weight of the none-zero elements in autoencoder. The310

larger the β, the model will be prone to reconstruct the non-zero elements. The filtered hits@1 results311

on validation set under different values of β are presented in Figure 2(b). From this, we observe that312

the performance becomes stable as iteration grows. When β = 5, the autoencoder puts too much313

weight on zero elements, thus performing rather poorly. Similarly, BimoNet is also not so sensitive to314

β, which further illustrates its feasibility to real-work networks.315

4. Conclusions316

In this paper, we introduce a model BimoNet that embeds a network into low-dimensional vector317

space. BimoNet mainly have two parts, i.e., the bi-mode embedding part and the deep neural network318

part. For bi-mode embedding part, we use the add-mode to explore the entity-shared features of319

edges and the subtract-mode to represent the entity-specific features of edges. For deep neural320

network, we regard the edges in a network as nodes and the vertices as links in the first place. Then321

we take the nodes’ adjacent matrix as the input of the deep neural network and it can obtain similar322

representations for nodes having similar structure. After that, by jointly optimizing the objective323
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function of these two parts, BimoNet could capture both the semantic and structure information324

of edges. Experiment results on relation extraction verify BimoNet’s ability on modeling the edges325

between vertices as it outperforms baseline models significantly and consistently.326

As future work, we plan to further explore at least the following two directions:327

• We intend to integrate the semantic and structure information of edges with that of vertices,328

so as to further mine the network information and obtain an even more powerful network329

embedding model; and330

• Existing network embedding model do not consider the new vertices and edges while networks331

in real world are becoming larger and larger, so it is crucial to find a way to represent these new332

vertices and edges.333
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