

Article

Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

Markus Millinger^{1*} , Kathleen Meisel², Maik Budzinski¹ and Daniela Thrän^{1,2}

¹ Dep. of Bioenergy, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany

² Dep. of Bioenergy Systems, Deutsches Biomasseforschungszentrum - DBFZ, Torgauer Straße 116, 04347 Leipzig, Germany

* Correspondence: markus.millinger@ufz.de; Tel.: +49 341 2434 595

Abstract: Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG) emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper analysis and modelling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany is carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet based ethanol for the short to medium term least-cost option and Substitute Natural Gas (SNG) for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid in policy.

Keywords: biofuels; greenhouse gas; ghg; abatement cost; modelling; competition

1. Introduction

Biofuels are one way to reduce the GHG emissions of transport, which in Germany stands for 21% of total societal emissions [1]. Germany has, as the currently only EU country, set a goal of reducing the greenhouse gas (GHG) emissions of land transport through biofuels or other renewable options, instead of an energetic biofuel goal which was previously in place, in common with the other countries.

Currently, both biomass residues as well as dedicated crops are used for biofuels production in Germany. Rape seed based biodiesel (RME) and starch crop based bioethanol, both conventional biofuels, are the most common pathways [2]. However, these have a low overall yield and thus limited potential compared to other available options, which also makes them not competitive in the long run on an energetic basis [3]. The cost-competitiveness on a GHG abatement basis is also in focus [e.g. 4], thus making the GHG abatement cost developments of biofuels highly relevant.

The GHG abatement cost of different biofuels is highly variable between options, time-points and regions. A long-term cost-effective greenhouse gas abatement through the deployment of biofuels requires a thorough analysis on both the highly uncertain future potential costs [3,5] as well as on the uncertain biofuel pathway emissions [6–8], both of which depend on numerous factors, with land use as one combining factor. Particularly for biofuels from dedicated crops, the GHG abatement on a land use basis is an important indicator [7] and the discussion around land use has lead Germany to set a limit for conventional biofuels [9], albeit on an energetic basis.

Although both life-cycle emissions [6,7,10,11] as well as costs [3,5,12–15] of different biofuels have been well covered in literature, a combined detailed assessment of GHG abatement cost relations to date has not. For instance, Tomaschek *et al.* [16] performed such a study on the case of South Africa for conventional biofuels and Schmidt *et al.* [17] performed a comparison of different energetic usages of woody biomass in Austria, both for one single year. However, to our knowledge studies assessing

36 relative GHG abatement costs and competitiveness developments over time for both conventional and
37 advanced biofuels have not been published to date.

38 In this paper, these aspects are combined into an investigation on potential relative GHG abatement
39 cost developments and uncertainties of biofuels from dedicated crops in a German context. The following
40 research questions are assessed:

41 • How may the greenhouse gas abatement of crop based biofuels develop in a German context, and
42 are there differences between energetic and land use functional units?
43 • How may the relative greenhouse gas abatement costs of German crop based biofuels develop in
44 the future?
45 • How would the biofuel deployment develop if GHG abatement costs are the sole deciding factor,
46 and how sensitive are the results to parameter variations?

47 2. Materials and methods

48 2.1. Modelling

49 In order to model the competition between different technology options, a simulation model has
50 previously been developed. BENSIM (BioENergy SImulation Model) is a myopic recursive dynamic
51 bottom-up least-cost simulation model with endogenous technological learning, seeking the least-cost
52 mix of biofuel production options on a yearly basis for fulfilling a set demand. Through the recursive
53 elements of learning effects and previously built capacities, path dependencies can be captured by the
54 model.

55 The existing biofuel plant infrastructure in the region in focus (here Germany) is the basis at
56 the initial time point of the modelling. For each year of the simulation, BENSIM first removes the
57 plants that have reached the end of their life-time (assumed at 25 years). A minimum market price
58 (p_{sys}) is then calculated, defined by the marginal cost (MC) of the most expensive option in the merit
59 order¹ which is put into production to meet the given biofuel demand. If there are options which have
60 total costs (TC = levelised capital cost + MC) lower than the p_{sys} , capacity investments take place,
61 beginning with the option with the lowest TC. This continues until the market price adjusts on a
62 level below the TC of still available options and the system reaches a (partial) equilibrium. After the
63 investment phase, biofuel production takes place following the merit order based on marginal costs of
64 production, until the given biofuel target is fulfilled. It is assumed that the biofuel demand can adapt in
65 order to accommodate a cost-optimal deployment, and that it is not restricted by quota. BENSIM has
66 been more thoroughly described in Millinger *et al.* [5]. For the feedstock costs, BENSIM was expanded
67 with a methodology for estimating the costs of energy crops, through adding the per hectare profit of a
68 benchmark crop (wheat) to the per hectare production cost of the energy crop [3].

69 The model is here transformed to have relative GHG abatement cost (instead of an energetic cost
70 used previously) as the deciding factor, with a GHG abatement goal (instead an energetic goal) to be
71 reached through substituting fossil fuels by the deployment of biofuels. The costs of the options on an
72 energetic basis [€ GJ^{-1}] are calculated according to [5], with the feedstock costs calculated according
73 to [3]. The costs are an output of the modelling, as learning effects affect the investment costs of
74 the options if they expand due to their relative competitiveness. Feedstock costs are exogenous, with
75 scenario differences.

76 In order to come up with the relative GHG abatement costs, some additional calculations are
77 required. Firstly, the GHG emissions of each biofuel pathway need to be calculated and secondly, the
78 total costs per GHG abatement unit need to be derived.

¹ All options with existing capacities are sorted by ascending marginal cost, with the capacities brought into use in that order until the given demand is met.

79 Equation 1 shows the total GHG emissions $\varepsilon_{tot,j}^{(t)}$ [kgCO_{2eq} GJ_{fuel}⁻¹] of option j at time-point (t)
 80 as a sum of all emissions in the different stages of the process: F , feedstock cultivation; T_1 , transport
 81 of the biomass to the conversion facility; P_1 , first process step (with allocation factor α_1); P_2 , second
 82 process step (α_2); transport of the fuel to the fuelling station T_2 . The input data is all related to the
 83 feedstock input [t_{FM}], except for the final fuel transport, whereby a conversion to GJ_{fuel} is performed
 84 through division by feedstock energy content e_j [GJ t_{FM}⁻¹] multiplied by fuel conversion efficiency η_j .
 85 The inputs for the feedstock cultivation are on a hectare basis, thus a division by yield Y_j [t_{FM} ha⁻¹] is
 86 necessary. The emissions of all process steps preceding the end of P_1 are allocated to the fuel according
 87 to α_1 , whereas those preceding the end of P_2 are additionally allocated according to α_2 .

88 For each input to any process, for all inputs k belonging to the respective process steps, the input
 89 amount $\dot{m}_{k,j}^{(t)}$ is multiplied by its emission factor $\varepsilon_k^{(t)}$. Byproducts which are not considered in the
 90 allocation, but through a credit, are denoted *cr*.

$$\begin{aligned} \varepsilon_{tot,j}^{(t)} = & \frac{\alpha_1 \alpha_2}{e_j \eta_j} \left(\frac{1}{Y_j^{(t)}} \sum_{k \in F} \dot{m}_{k,j}^{(t)} \varepsilon_k^{(t)} + \sum_{k \in T_1} \dot{m}_{k,j}^{(t)} \varepsilon_k^{(t)} + \sum_{k \in P_1} \dot{m}_{k,j}^{(t)} \varepsilon_k^{(t)} - \dot{m}_{cr,j}^{(t)} \varepsilon_{cr}^{(t)} \right) \\ & + \frac{\alpha_2}{e_j \eta_j} \left(\sum_{k \in P_2} \dot{m}_{k,j}^{(t)} \varepsilon_k^{(t)} - \dot{m}_{cr,j}^{(t)} \varepsilon_{cr}^{(t)} \right) + \sum_{k \in T_2} \dot{m}_{k,j}^{(t)} \varepsilon_k^{(t)} \end{aligned} \quad (1)$$

91 The total costs $TC_{j,e}^{(t)}$ are divided by the avoided fossil GHG emissions minus the biofuel pathway
 92 GHG emissions $\varepsilon_{tot,j}^{(t)}$, in order to come up with the relative² GHG abatement cost $TC_{j,\Delta\varepsilon}^{(t)}$ [€ kgCO_{2eq}⁻¹]
 93 for time point (t) of option j (Equation 2).


$$TC_{j,\Delta\varepsilon}^{(t)} = TC_{j,e}^{(t)} \left(\varepsilon_{ref} - \varepsilon_{tot,k}^{(t)} \right)^{-1} \quad (2)$$

94 2.2. Data and assumptions

95 The biofuels options included are the same as in Millinger *et al.* [5], where the techno-economic data are
 96 described in detail, with the addition of starch based (wheat) bioethanol, data for which is described in
 97 Ponitka *et al.* [18, p.40f]. The feedstock data are elaborated in Millinger and Thrän [3].

98 The GHG emissions are calculated on a well-to-tank (WTT) basis (see Figure 1). Thus, end-use
 99 efficiencies are not included, as these developments are dependent on numerous vehicle market factors
 100 which are outside of the scope of this paper to assess. It can be noted that specific emissions of average
 101 diesel and gasoline driven passenger cars have almost converged in the past decade [19, p.34].

² i.e. without the avoided cost of the substituted fossil fuel

Figure 1. System boundaries of the Well-To-Tank (WTT) assessment from feedstock cultivation to tank for each pathway, shown by the dashed line S. The resulting abatement is compared on the basis of different functional units, such as GHG abatement per energy unit, cost per GHG abatement and GHG abatement per land area used. F=feedstock cultivation; T= transport; P₁= process one; P₂= process two; E= end use; \dot{m}_k = process inputs; \dot{m}_{by} = process by-products; α = allocation factor. The end use as well as potential indirect land use effects are not included. The biofuel combustion is assumed to be carbon neutral, as the carbon absorbed during plant growth is emitted, thus closing the cycle.

102 For the GHG-emissions of the pathways, detailed references for rape-seed based biodiesel (RME)
 103 [20], sugar beet based bioethanol [21] and silage maize based biomethane [22] were used as a basis.
 104 For biofuels based on short-rotation coppice (SRC), data from KTBL [23] and Neeft and Ludwiczek
 105 [24] were used for poplar, which was used to represent SRCs. For all options, the medium yields were
 106 assumed, as in Millinger and Thrän [3].

107 In the literature, a byproduct credit is included for liquid CO₂, which is output from the BeetEtOH
 108 process. Although this is based on a real plant (from where it is used for beverage carbonation), it
 109 can be argued that a large scale substitution of liquid fossil CO₂ is not feasible due to small scale uses
 110 of CO₂ (a large share of which is in the fossil industry) and a potentially large future oversupply [25],
 111 p.81ff]. Therefore, since the scope of this paper is on a systems level and not on the individual plant
 112 level, this credit is removed.

113 Switching from natural gas to wood chips for heating provides a significant contribution for heat
 114 intensive processes (the biomethane process was already in the literature assumed to be heated through
 115 wood chips). However, the wood chips cannot be assumed to be residual biomass, as the total German
 116 heat demand alone by far surpasses the wood residue potential³. Instead, poplar is assumed to be the
 117 biomass for the heat source (with an efficiency of $\eta_{th}=80\%$), with price developments from Millinger
 118 and Thrän [3] consistent with the other biomass types and GHG emissions presented here.

119 For RME, an additional emission source is the methanol input, which can be assumed to be of
 120 renewable origin, with BeetEtOH as an approximation for the costs, emissions and land requirement.

121 The other main options to reduce the pathway GHG emissions are to swap from fossil diesel
 122 to biodiesel (or another biofuel) input for farming and transport, swapping to a fertiliser with less
 123 production emissions, as well as reducing the power emissions. All three options are assumed to rely
 124 largely on system improvements and not to be within the scope of producers' individual decision, and
 125 thus for all three an improvement over time is assumed.

126 For the N₂O emissions, the BioGrace I [28] and II [24] tools were used for the conventional and
 127 advanced options, respectively. The variation of field N₂O emissions is both crop specific as well as
 128 spatially dependent, and is highly variable. Thus, this factor must be included in a sensitivity analysis.

129 Land use change emissions as well as infrastructural emissions for conversion plants were excluded.

³ The residual wood potential has been estimated to ca. 800 PJ [26]. Total current German heat demand amounts to ca 5000 PJ [27, p.C9]

130 The absolute GHG abatement cost is dependent on the cost development of the substituted fossil
131 fuel. In this paper modelling, focus lies on the relative GHG abatement costs and competitiveness, i.e.
132 ignoring the fossil fuel cost. The same fossil fuel reference is used for all biofuels [83.8 kgCO_{2eq} GJ⁻¹
133 29]. While the emissions of this reference are relatively foreseeable, the cost developments are not: as a
134 decoupling of agricultural products and fossil fuels is conceivable under a large global transition away
135 from fossil fuels, developing consistent scenarios merging these two potentially independent variables is
136 bound with perverse uncertainties. It is therefore in this paper abstained from assessing the absolute
137 GHG abatement costs, as the results are likely misleading in the long term.

Table 1. Summarised important metrics for the biofuel options included. Some small contributions to the emissions come from other minor sources, which can be found in the respective detailed sources. The heat and power input data has been adapted from [5] for BioCH₄ [22], BeetEtOH [21] and RME [20], in order to fit with the detailed GHG calculation and allocation steps. For BeetEtOH (P1 dried beet pulp; P2 vinasse), StarchEtOH (Distillers Grains with Solubles, DDGS) and RME (P1 rape seed meal; P2 glycerol) co-products are produced, for which the emissions up until that point are allocated according to below. Emissions factors (EF): diesel 3.14 kgCO₂ l⁻¹, sinking linearly to 20% of that value in 2050; N fertiliser 5.88 kgCO₂ kgN⁻¹, sinking linearly to 20% in 2050; N₂O 298 kgCO₂ kgN₂O⁻¹; power mix 0.47 kgCO_{2eq} kWh⁻¹ in the beginning, sinking according to [30, p.120]; heat 0.067 kgCO₂ MJ_{NG}⁻¹ or wood chips calculated internally with $\eta = 0.8$. For the transport of the biomass, 24 t_{FM} are transported, with 80 km loaded and 20 km empty, with fuel a consumption of 0.41 and 0.24 l km⁻¹, respectively. For the transport of the fuel, 50 t are transported, with 150 km loaded and 50 km empty and the same fuel consumption. For the gaseous fuels, 4.625 kWh_{el} GJ⁻¹ and 1.6 MJ_{th} GJ⁻¹ are assumed to be required for the injection into the gas grid. The transport assumptions were all used from Majer *et al.* [20], Meisel *et al.* [21], Oehmichen *et al.* [22]

Fuel		BioCH ₄	BeetEtOH	StarchEtOH	RME	BioSNG	LignoEtOH	FT
Feedstock		Maize silage	Sugar beet	Wheat	Rape seed	Poplar	Poplar	Poplar
Yield medium	GJ _{feed} ha ⁻¹	268-327	254	115	84	143-214	143-214	143-214
Yield low	GJ _{feed} ha ⁻¹	208-268	176-215					
N fertilizer	kgN (ha-a) ⁻¹	63.2	119.7	109.3	137.4			
Diesel equivalent	l (ha-a) ⁻¹	96	175.9	106	82.6	2.1	2.1	2.1
N ₂ O field emis avg	kgN ₂ O (ha-a) ⁻¹	4.66	4.59	2.92	4.19	1.28	1.28	1.28
N ₂ O field emis low	kgN ₂ O (ha-a) ⁻¹	1.06	1.11	0.71	1.0	0.28	0.28	0.28
N ₂ O field emis high	kgN ₂ O (ha-a) ⁻¹	23.37	20.78	13.27	19.45	6.72	6.72	6.72
Alloc. factor P1	[frac]		0.94	0.595	0.65			
Alloc. factor P2	[frac]		0.7		0.96			
Conv. eff. tot	η	0.56 -0.70	0.6-0.66	0.48-0.53	0.59-0.62	0.58-0.73	0.36-0.44	0.35-0.45
2 nd feedstock	kg GJ ⁻¹				3.3 (MeOH)			
Net heat input	kWh GJ ⁻¹	65	134	123	22	0	0	0
Net power input	kWh GJ ⁻¹	14	10	17	1.6	31	35	35

138 *2.3. Scenarios*

139 For all scenarios, the GHG abatement target for crop-based biofuels is set at 4 MtCO_{2eq} for the
 140 beginning⁴, or 2.5% of the current 160 MtCO_{2eq} total German transport emissions [31], increasing
 141 linearly by a factor of five to 20 MtCO_{2eq} in 2050 (or about 12.5% of current fuel demand). The mostly
 142 relevant GHG inputs (fertiliser, process heat) are assumed to be optimised already in the base case, as
 143 compared to literature.

144 All scenarios include all biofuels, both liquid and gaseous. Cases including only liquid fuels are
 145 assessed in the sensitivity analysis, in order to assess the competitiveness if gaseous fuels are not a
 146 large-scale solution. A 4% a⁻¹ reference feedstock price increase is assumed as a basis, in line with
 147 developments in the past decade [3].

148 The power mix contributes significantly to the GHG emissions of biofuels. Within the goals of the
 149 German energy transition, different pathways can be taken in order to achieve the set GHG reductions
 150 and renewables targets. A near linear development [30, p.123] can be contrasted to one where coal power
 151 is quickly decommissioned [30, p.120], leading to earlier reductions despite the end point goal being the
 152 same. The effect of this is assessed, with a moderate power mix in scenario a, and a progressive power
 153 mix in scenarios b-c.

154 Silage maize and sugar beet have a high humus requirement, which in the long run may be
 155 detrimental to the land fertility if not curbed, through reducing yields and a combination with other
 156 crops which have a net negative humus requirement [23, p.272ff.]. With the medium yields assumed,
 157 this can to some extent be assured, but it is still interesting to assess the effect on the competitiveness
 158 if low yield spans are assumed for these two crops (see Table 1). Lower yields are assumed in scenario c.

159 Table 2 summarises the main scenarios.

Table 2. Scenario summary. The base case (a) includes both liquid and gaseous fuels and assumes a moderate power mix development according to [30, p.123], a wheat price increase of 4% a⁻¹, GHG optimised process heat and medium yields for all crops. Scenario variations compared to base case are listed.

Description	
a	Base - all fuels, moderate power mix
b	Progressive power mix development [30, p.120]
c	Prog. power mix, low yields for sugar beet and maize

160 *2.4. Sensitivity analysis*

161 The sensitivity analysis is in this paper performed through Monte Carlo simulation, which is a way
 162 of mapping out the solution space depending on variance in input variables without calculating all
 163 possible combinations. The method used here is elaborated in Millinger and Thrän [3].

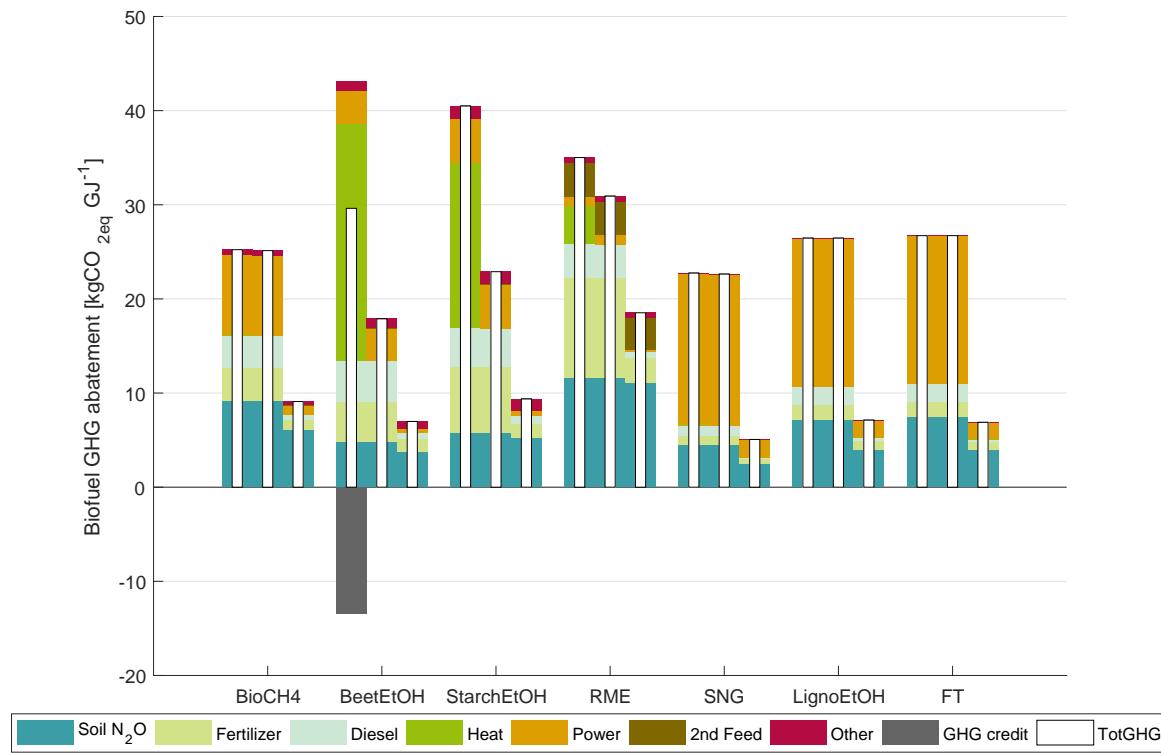
164 Table 3 summarises the parameters which are varied in the sensitivity analysis. The first nine
 165 parameters are the same as in Millinger and Thrän [3], and are motivated there. Additionally, some
 166 parameters relevant for the GHG emissions are necessary. The soil N₂O emissions [8] are varied between
 167 the low and high values (Table 1), with a uniform probability distribution. All parameters in Table 3
 168 are varied simultaneously, in a random fashion.

169 As the power mix and feedstock cost increases as well as the inclusion of gaseous biofuels have a
 170 significant impact on the competitiveness, the results are shown over these three dimensions, independent
 171 of the main scenarios in Section 2.3: moderate and progressive power mix developments; reference
 172 feedstock price increases of 3% and 4% a⁻¹; including all fuels or only liquid fuels. Four main sensitivity

⁴ Corresponding to the average for crop-based biofuels used in Germany 2014-2016 [2], with assumed GHG abatement values for the crop shares of 63% for EtOH and 55% for RME, compared to a reference of 83.8 kgCO_{2eq} GJ⁻¹.

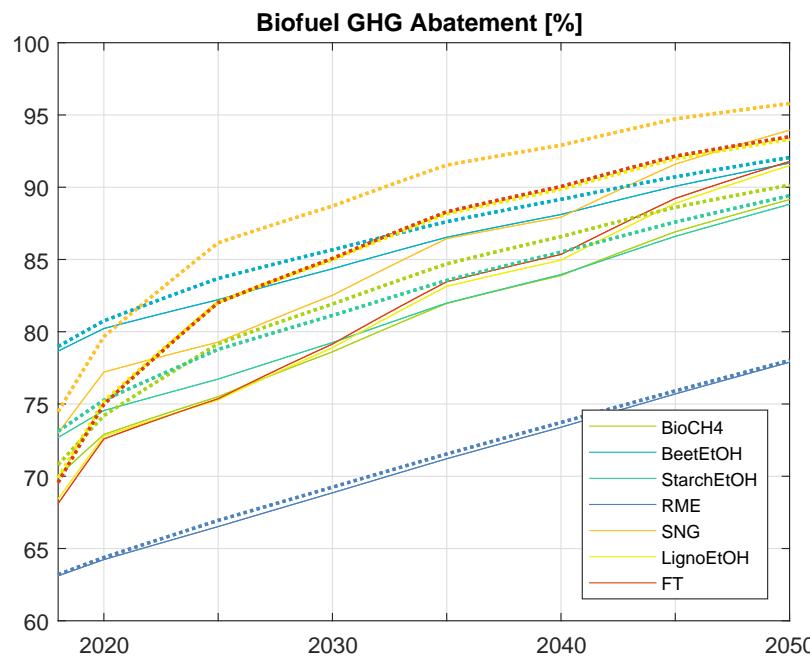
¹⁷³ cases result, for which the developments of key options are shown, with and without gaseous fuels
¹⁷⁴ included.

Table 3. Parameters varied in the Monte Carlo sensitivity analysis. All parameters have a uniform distribution over the span. The distributions which vary between the technology specific minimum and maximum values start at a random point along the span and increase linearly to a value randomly between the starting point and the maximum value. The technology-specific values are individually randomised for each technology option. The yields are varied within the medium ranges for all crops.


Parameter	Unit	Span
Initial investment cost	M€ MW _{cap} ⁻¹	±25%
Exogenous learning	years	3-10
Discount rate	%	5-10
Conversion efficiency	η	min-max
Yield	t _{FM} ha ⁻¹	min-max
Establishment cost (perennials)	€ ha ⁻¹	±25%
Investment distribution limit	%	10-20
Path dependency factor	%	15-25
Capacity ramp	%	100-200%
Soil N ₂ O emissions	%	low-high

¹⁷⁵ 3. Results

¹⁷⁶ The results are shown first for the biofuel GHG emissions, then for the relative GHG abatement costs,
¹⁷⁷ followed by the scenario modelling and finally sensitivity analysis.


¹⁷⁸ 3.1. Biofuel GHG emissions

¹⁷⁹ The resulting GHG emissions are shown in Figure 2. For each biofuel option, the far left bar is the
¹⁸⁰ standard literature case (for reference; not used in the scenarios). The second bar shows the present
¹⁸¹ pathway emissions in the base case when correcting for practises that can be sustained on a larger
¹⁸² scale and assuming biomass from dedicated crops for the heat and secondary feedstocks. The third bar
¹⁸³ shows the pathway emissions in the last year of the base scenario (a), where the power mix is nearly
¹⁸⁴ fully renewable, and renewable fuels and fertiliser are used as inputs.

Figure 2. GHG emissions for the biofuel options, broken down to their sources [$\text{kgCO}_{2\text{eq}} \text{ GJ}^{-1}$]. The leftmost bar for each option is the reference literature case; the middle bar shows the results for the start year of the base case, with renewable heat input; the rightmost bar shows the results for the last year of the base case, where the power mix is cleaner, yields and conversions efficiencies improved, and renewable fuel and fertiliser inputs assumed.

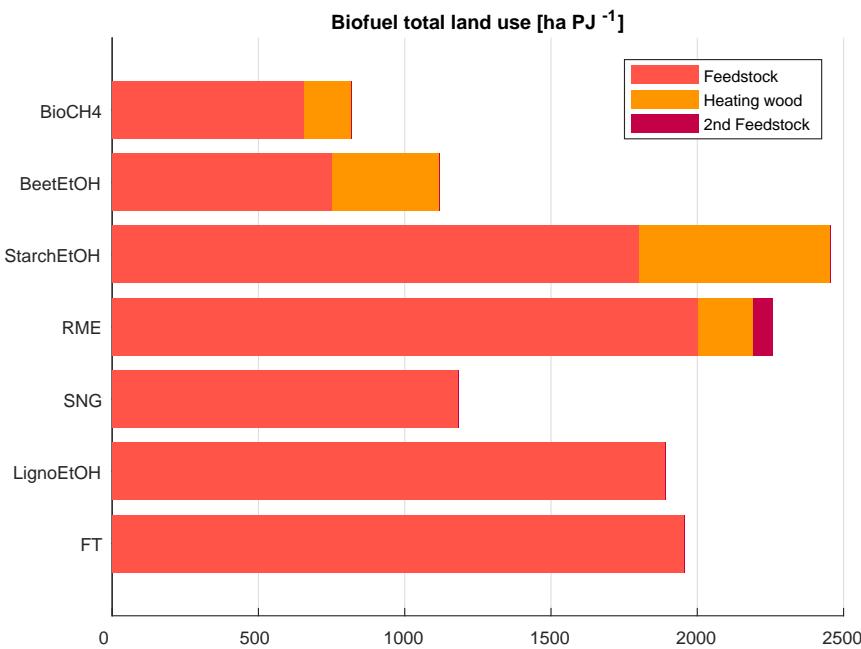
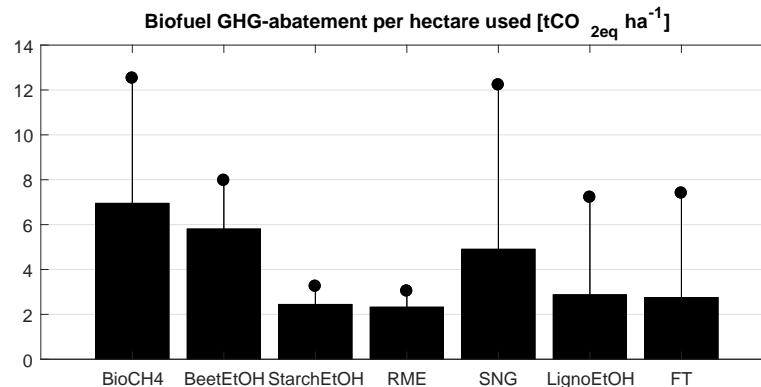

185 In the beginning, thus BeetEtOH is the better performing option in terms of GHG abatement
 186 per energy unit, with SNG second and StarchEtOH third best. Currently dominant RME is in fact
 187 the worst option. Through the system improvements, the advanced options gradually improve and
 188 overtake BeetEtOH (Figures 2 & 3). Assuming a fast power mix emission improvement through coal
 189 decommission as in scenarios (b) and (c), SNG is fast the best option, whereas at moderate power mix
 190 developments this takes considerably longer. Of the advanced options, SNG performs clearly better due
 191 to higher conversion efficiencies and lower power demand, whereas LignoEtOH and FT-diesel perform
 192 similarly to each other. It should however be noted that the options, with the exception of RME,
 193 achieve between 67-79% GHG abatement in the beginning, and again excepting RME, between 88-96%
 194 GHG abatement in the end. Thus, the differences are relatively small, leaving ample room for cost
 195 developments to change the priority order when comparing relative GHG abatement costs.

Figure 3. Biofuel GHG abatement development, compared on an energetic basis with the fossil reference. The solid lines show the development at a moderate power mix development, whereas the dotted lines show the development at a more progressive power mix development.


196 It can be noted that the "other" factors are relatively marginal in comparison to the other sources
 197 (Figure 2). Thus, simplified calculations excluding the other inputs where data are not available (such
 198 as for the advanced options) provide a sufficient estimate for the total GHG emissions.

199 As a consequence of switching from natural gas to wood chips from dedicated crops for the heat
 200 input, the land required for the options increases corresponding to the heat requirement (Figure 4).
 201 For BeetEtOH, the land requirement increases by 49% while at the same time increasing the GHG
 202 abatement by 22%; for StarchEtOH the land required increases by 36% with a 41% GHG abatement
 203 increase; for BioCH₄ land use increases by 24% (the reference already assumed renewable heat). For
 204 RME, the land use increases by 9% through a renewable heat input, with an additional 3% through the
 205 methanol input, while increasing GHG abatement by 8%.

Figure 4. Biofuel land requirement by source in the first year of the base case.

206 The GHG abatement per hectare is shown for the base case in Figure 5. RME and StarchEtOH can
 207 abate 2-3 tCO_{2eq} ha⁻¹, whereas BioCH₄ and BeetEtOH are the present day best, with 6-7 tCO_{2eq} ha⁻¹.
 208 With a clean power mix and renewable input fertiliser and fuel, in addition to yield and conversion
 209 efficiency improvements, BioCH₄ and SNG can potentially achieve over 12 tCO_{2eq} ha⁻¹. BeetEtOH
 210 can achieve a maximal 8 tCO_{2eq} ha⁻¹, somewhat more than the liquid advanced biofuel options.

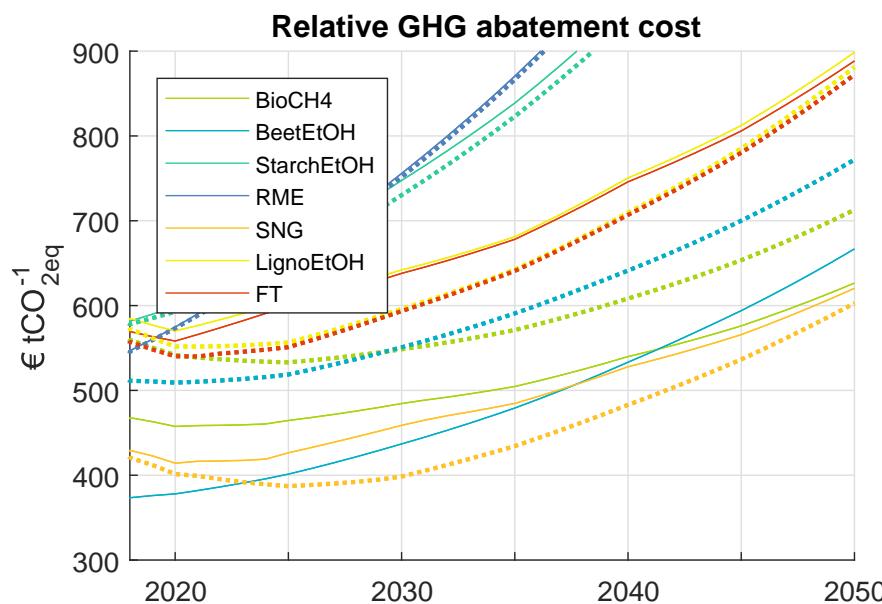


Figure 5. Biofuel GHG abatement per hectare in the base case with medium yields for all crops. The bar
 shows the initial GHG abatement, whereas the whisker extends to the GHG abatement in the last year.

211 Notably, the merit order of the fuels differs when compared on a hectare basis and an energetic
 212 basis. Whereas BioCH₄ is the best both for the beginning of the simulation in the base scenario in
 213 terms of GHG abatement per hectare as well as in the long run (Figure 5), it is only fourth best in
 214 terms of GHG abatement on an energetic basis for the beginning (Figure 3) - even after StarchEtOH -
 215 and it is only fifth best in the long run.

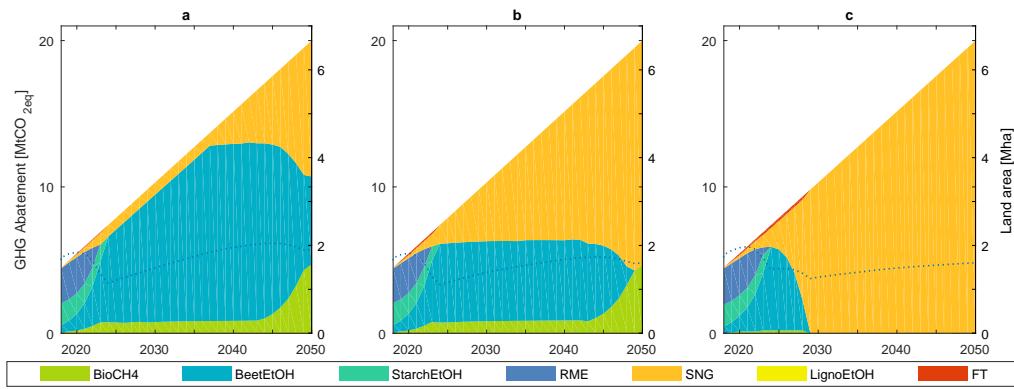
216 *3.2. Biofuel relative GHG abatement cost*

217 From the competition modelling, relative GHG abatement cost developments emerge, which are
 218 highly different between scenarios. In Figure 6, the extreme span of possible outcomes in the scenarios
 219 is sketched between scenarios (a) and (c), with a more progressive power mix development and lower
 220 sugar beet and silage maize yields in the latter case.

Figure 6. Biofuel relative GHG abatement cost developments [$\text{€ tCO}_{2\text{eq}}^{-1}$] in scenarios (a, solid lines) and (c, dotted lines). Some developments are outside of the plot: the cost of RME increases to ca. $1350 \text{ € tCO}_{2\text{eq}}^{-1}$ and the cost of StarchEtOH increases to ca. $1230 \text{ € tCO}_{2\text{eq}}^{-1}$ in both cases.

221 In scenario (a), BeetEtOH is the least cost option until 2037, when it is overtaken by SNG due
 222 to the combined effects of input emission improvements, conversion efficiency and yield increases and
 223 technological learning. SNG remains the least-cost option, slowly diverging with, but never surpassed
 224 by BioCH₄. Due to the annual 4% reference feedstock price increase, the minimum selling prices of all
 225 options generally increase. The exception to this are all advanced fuels in the first few years, when
 226 mainly the power mix emission reductions lead to slight overall relative GHG abatement cost reductions.

227 The least cost option over time increases from ca 370 to 620€ $\text{tCO}_{2\text{eq}}^{-1}$. The two liquid advanced
 228 biofuel options start from ca. 570€ and increase towards 900€, while the currently dominant biofuels
 229 RME and StarchEtOH increase from around 550 and 580 € to over 1300 and 1200 € $\text{tCO}_{2\text{eq}}^{-1}$, respectively.
 230 The advanced liquid fuels remain at an around 50% higher cost than the least-cost fuel, whereas for
 231 RME and StarchEtOH, the difference increases substantially over time.

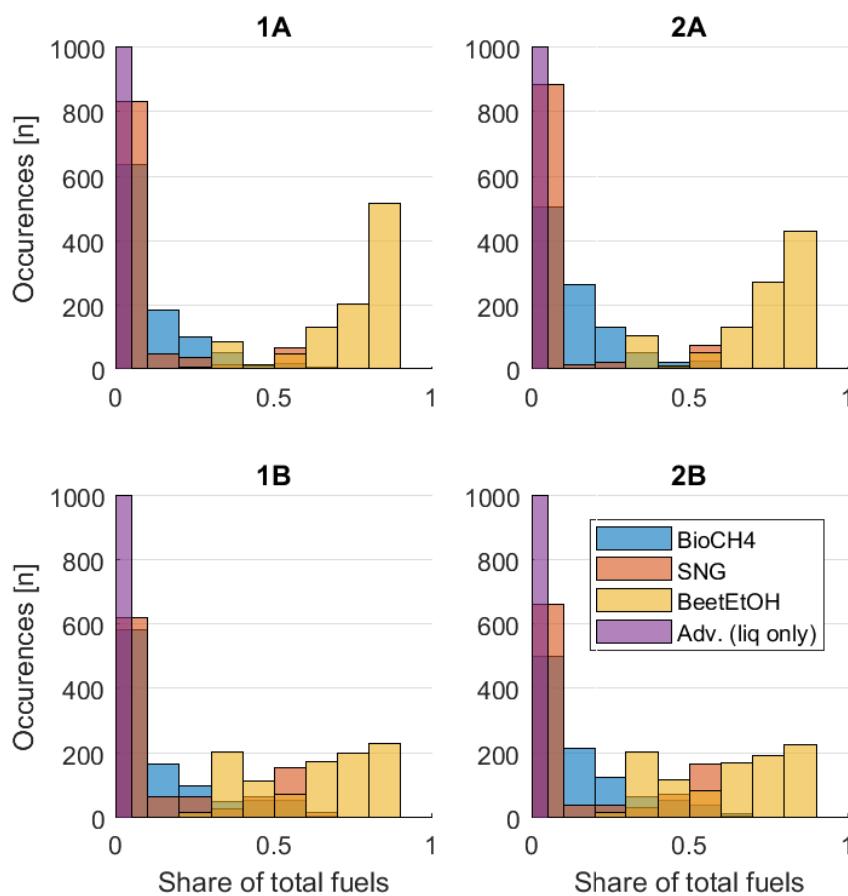

232 In scenario (c), significant differences compared to (a) can be seen. Primarily, SNG starts off as
 233 the least cost option, or compared to with medium sugar beet yields, quickly surpasses BeetEtOH. Due
 234 to a combination of more rapid input GHG emission decreases and technological learning, minimum
 235 selling prices remain around 400 € $\text{tCO}_{2\text{eq}}^{-1}$ until 2030, with a subsequent increase to 600 € $\text{tCO}_{2\text{eq}}^{-1}$
 236 towards the end.

237 The two liquid advanced biofuel options increase towards 870€, while RME and StarchEtOH
 238 develop similarly to in scenario (a). The advanced liquid fuels also in this case remain at an around 50%
 239 higher cost than the least-cost fuel, while the difference increases over time for RME and StarchEtOH.
 240 For the advanced liquid fuels, it can be observed (Figure 6) that they remain at higher cost than
 241 BeetEtOH even in scenario (c).

242 Notably, between diesel fuels, FT-diesel is quickly competitive with RME in any case, and thus
 243 sub-quota for diesel and petrol would favour advanced options, albeit at a higher cost than without
 244 sub-quota.

245 *3.3. Scenario modelling*

246 From the GHG abatement cost competition, the resulting production developments can be seen
 247 in Figure 7. In all cases, both StarchEtOH and RME fall out of the market rather quickly. Instead
 248 BeetEtOH, as well as in the scenarios where all fuels are included SNG and BioCH₄, gain market shares
 249 in differing proportions between the scenarios. The advanced liquid options do not achieve significant
 250 market shares in any scenario.

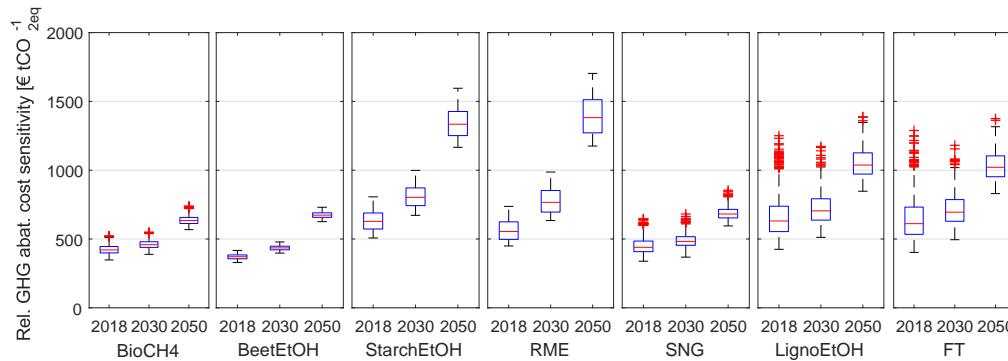

251 **Figure 7.** Biofuel competitiveness based on relative GHG abatement cost in the scenarios. The areas show
 252 the total performed GHG abatement through each option (left axis), whereas the dotted line shows the total
 253 arable land required (right axis). The base scenario (a) includes both liquid and gaseous fuels and assumes a
 254 moderate power mix development according to [30, p.123], a wheat price increase of 4% a⁻¹, GHG optimised
 255 process heat and medium yields for all crops. In scenario (b), the power mix is more progressive and in
 scenario (c), additionally the sugar beet and silage maize yields are assumed within the low range in Table 1.

251 In the base case (a), BeetEtOH dominates in the medium term, with SNG and BioCH₄ both
 252 gaining market shares, respectively from ca. 2035 and 2040 onwards. At a more progressive power mix
 253 (b), SNG starts gaining market shares more rapidly, while BioCH₄ remains almost the same as in the
 254 base case. Gaseous fuels dominate fully towards the end. If additionally low yields for silage maize and
 255 sugar beet are assumed (c), SNG fully dominates the market within a decade.

256 The resulting required total arable land (including for heating purposes and secondary feedstocks)
 257 differs marginally between the scenarios, with an almost constant ca. 2 Mha used once RME and
 258 StarchEtOH are displaced (Figure 7). Thus, yield and conversion efficiency improvements compensate
 259 for the GHG abatement target increase.

260 *3.4. Sensitivity analysis*

261 From the sensitivity analysis, the resulting occurrences at different total market shares are shown
 262 for four cases (Figure 8), where the reference feedstock costs increase by 3% ("1") and 4% ("2") a⁻¹,
 263 while the power mix is either moderate (A) or progressive (B). At moderate power developments,
 264 BeetEtOH dominates, with BioCH₄ more often emerging at slightly higher cumulative market shares
 265 at higher feedstock cost increases. SNG remains at below 10% total market share in around 80% of the
 266 cases, with a slightly higher occurrence of market shares of over 10%. For SNG, there is a jump in
 267 the amount of occurrences at over 50% cumulative market shares, indicating that under favourable
 268 conditions, a threshold is surpassed early, leading to learning effects and increasing returns.


Figure 8. Sensitivity of biofuel production shares, at annual 3% (1) and 4% (2) wheat price increases, with moderate (A) and more progressive (B) power mix developments. 2A and 2B correspond to the sensitivities within scenarios (a) and (b). The number of occurrences among the 1000 runs at total cumulative biofuel shares (on an energetic basis) of between 0-10%, 10-20% etc. are shown in the histogram. The shares are of the total cumulative biofuel deployment over the whole time span. The colour tone of the bars in the histogram is summed where they overlap. In each sub-plot, the emergence of BioCH₄, SNG and BeetEtOH for runs with all fuels included is shown, as well as is the emergence of advanced liquid fuels (LignoEtOH and FT-diesel summed together) for runs with only liquid fuels. Thus, each sub-plot shows two separate sets of sensitivity runs with 1000 runs each, totalling 4000 runs for all subplots.

At more progressive power mix developments, BeetEtOH still dominates in most cases, but the occurrences between 30-90% market share are more uniformly distributed. BioCH₄ behaves similarly to in the case of a moderate power mix development, while the effect on the competitiveness of SNG is substantial, with substantially more occurrences between 10-60% cumulative market shares.

In very few of the cases do the gaseous fuels arrive at cumulative market shares of above 60%, and BeetEtOH achieves cumulative market shares of above 30% in almost all cases.

For the advanced liquid biofuels, the share remains at below 5% in all of the observed cases, despite the fact that only liquid fuels were included.

The biofuel cost sensitivity is shown in Figure 9. In contrast to on an energetic basis [3], the sensitivity of the relative GHG abatement cost of RME is high, due mainly to the uncertain soil emissions. The relative GHG abatement costs of the advanced liquid biofuels are also highly uncertain, with more than a factor of three difference for the low and high end even at the beginning. In contrast, SNG shows clearly less uncertainty, despite stemming from the same feedstock. BeetEtOH, followed by BioCH₄ show the lowest spans, across time-points.

Figure 9. Sensitivity of total cost of the GHG abatement of biofuels in 2018, 2030 and 2050 in sensitivity case 1B (corresponding to the base scenario (a)), at a constant annual 4% wheat price increase and the other variables randomly varied according to Section 2.4. The red lines show the median, the bottom and top edges of the blue box show the 25th and 75th percentiles, respectively, the whiskers extend to a maximum of 1.5 times the length of the box and outside of this interval outliers are plotted with a red cross.

283 4. Discussion

284 In this paper, feedstock cost developments of biofuels have been combined with GHG abatement
 285 developments in order to estimate future spans of relative GHG abatement costs for the different
 286 options, and their competitiveness. From the point of view of a cost-optimal GHG abatement through
 287 the deployment of biofuels, the current practise emerged as increasingly divergent to the best options.

288 Whereas advanced biofuels were found to be competitive only at low feedstock price increases
 289 when comparing the fuels on an energetic basis [3], especially SNG was found to be competitive even at
 290 higher feedstock price increases on a GHG abatement basis. Furthermore, the power mix development
 291 is in fact more important for the competitiveness of advanced biofuels than are feedstock cost increase
 292 differences. This is due to the fact that the power mix emissions have a substantially different impact
 293 on the various biofuel options, as the power input requirements differ. Differing soil emissions result
 294 in additionally divergent GHG abatement and especially GHG abatement and thus relative GHG
 295 abatement cost uncertainty.

296 Liquid advanced biofuels were competitive only when gaseous fuels were not included, and even
 297 then only at very favourable conditions. In the sensitivity analysis, all relevant factors except lower
 298 sugar beet yields were varied, resulting in an almost complete absence of advanced liquid biofuels.
 299 Thus, the competitiveness of advanced liquid biofuels requires low sugar beet yields to be enforced, in
 300 addition to other favourable circumstances working together, as well as gaseous fuels being excluded.

301 The biofuel amounts required towards the end of the time span correspond to about 13% of
 302 current fuel demand (or in the case of large expansion of e.g. electric vehicles, a correspondingly higher
 303 market share). A continuation of the present quota would require marginally more, due to the slightly
 304 lower GHG abatement of advanced FT-diesel, but at an at least 50% higher cost compared to without
 305 sub-quota for diesel and gasoline fuels. The resulting least-cost practises would imply mixing BeetEtOH
 306 into petrol at higher shares than today, requiring some modifications to the vehicles [32, p.21], and for
 307 gaseous fuels, the current demand needs to increase manifold in order to accommodate the least-cost
 308 developments. If this is not possible, BeetEtOH is a possible long-term second-best option, albeit with
 309 significantly lower GHG abatement potential per unit of arable land compared to the gaseous options.

310 A slight trade-off was found between optimising the GHG emissions from the input heat and the
 311 resulting additional land required for the lignocellulosic crops used for this purpose, which in the case
 312 of BeetEtOH amounted to 49%, while increasing the GHG abatement by 22%. Thus, this additional
 313 land is motivated, but the benefits may be somewhat reduced through emissions related to land use.

314 Indirect Land use change (iLUC) emissions have been highlighted as a problem with crop cultivation.
 315 If applied for the attribution to the GHG abatement of the biofuel options, these emissions are a function

316 of yield, as well as are to some extent direct soil emissions⁵. Thus, both are arguments for increasing
317 the hectare GHG abatement of biofuels, through swapping from the presently used low-yielding crops
318 to higher yielding options. The highest yielding options included here are BioCH₄ and SNG, both
319 gaseous fuels. The former is based on silage maize, which (similarly to sugar beet) consumes soil
320 humus [23, p.272ff.] and in the worst case has relatively high soil N₂O emissions. Soil erosion and N₂O
321 emission need to be monitored and curbed in order to ensure sustainable biofuel practises. A more
322 holistic approach including all relevant environmental factors is necessary in order to avoid sub-optimal
323 practises, and the risk of high soil emissions needs to be taken into account and assessed.

324 GHG abatement cost in terms of € tCO_{2eq}⁻¹ does not give the full picture, as the GHG abatement
325 in energetic terms deviates from that in terms of required arable land, which sets a hard limit for
326 biofuels from dedicated crops. For BioCH₄, the difference between the GHG abatement on an energetic
327 basis compared to on a land use basis is particularly large (cf. Figures 3 and 5). The GHG abatement
328 cost difference between BioCH₄ and BeetEtOH as well as SNG was also found to be large (Figure 6)
329 compared to the GHG abatement per land used.

330 The total possible GHG abatement is limited by available arable land and residual biomass, and
331 thus for an overall optimal GHG abatement, total yields need to be taken into account. A GHG
332 abatement cost also ignores other relevant environmental metrics [see e.g. 34], such as biodiversity, soil
333 erosion, pesticide use, freshwater use and land use change. In such a comparison, it would be beneficial
334 to compare biofuel options according to land area, as some biofuels may perform worse in some metrics
335 but through higher yields would free land which can be for instance conserved [cf. 35], thus potentially
336 rendering the overall impact better.

337 Thus, in terms of several both direct and indirect environmental aspects, as well as in terms
338 of economic [3] and social aspects (e.g. food competition), a switch to higher yielding fuels would
339 be beneficial, especially if at the same time other relevant environmental effects are monitored and
340 curbed. In order to achieve such a shift, presently used biofuels need to be exchanged with either
341 bioethanol or gaseous fuels if the least-cost target and highest GHG abatement are to be achieved, or
342 if this is proven to be infeasible, replacing RME with FT-diesel would be necessary in terms of both
343 GHG abatement cost as well as absolute GHG abatement. For the advanced options, especially liquid
344 ones, both unpredictable feedstock costs and highly uncertain investment costs may inhibit such a
345 development [3]. However, in terms of GHG abatement, the benefits are more clear than in energetic
346 terms.

347 As noted in Millinger and Thrän [3], perennials currently have a higher market price than those
348 resulting with the method used, which can be at least partly explained by small markets as well as farmer
349 risk considerations. Until the market demand for perennial lignocellulosic biomass is stable enough for
350 the investment risk to be reduced, higher prices should be expected, thus potentially postponing the
351 deployment of biofuels based on such crops.

352 The use of so called degraded or marginal lands has been suggested in order to avoid land use
353 change emissions and food competition [36]. Although yields would be strongly affected compared to
354 currently used arable land [37], the competitiveness compared to non-perennials is obvious, as the latter
355 would likely not be cultivated on such lands.

356 5. Conclusions

357 In this paper, a thorough assessment of long term relative GHG abatement cost developments of biofuel
358 options in Germany has been carried out. The better performing of the included biofuel options in
359 terms of GHG abatement cost was sugar beet based ethanol for the short to medium term, and SNG
360 for the medium to long term.

5 the latter is also related to agricultural practises, which can be substantially improved [33]

361 The currently most common biofuels were found to have over 40% higher relative GHG abatement
362 costs than the least cost option for the beginning, and increasing substantially over time, due to higher
363 relative feedstock cost increases.

364 Liquid advanced biofuel options were only found to be competitive at a combination of favourable
365 circumstances, and were in normal circumstances about 50% more expensive than the least-cost option
366 throughout the whole time span.

367 The competitiveness of advanced biofuels was found to be more sensitive to the emissions
368 development of the power mix than on feedstock costs, as this factor is more differentiated between the
369 high-performing fuels.

370 Through switching from currently most common biofuels RME and StarchEtOH to BioCH₄ and
371 SNG, the GHG abatement per land area can potentially be increased by a factor of five. For the
372 present day, a switch to BioCH₄ and BeetEtOH with renewable heat sources trebles the spatial GHG
373 abatement, despite the fact that the heat source requires substantial amounts of land.

374 A discrepancy between GHG abatement in relation to energetic output compared to land output
375 was found, having important consequences especially for the competitiveness of BioCH₄. BioCH₄
376 was mostly not GHG abatement cost competitive and did not achieve high market shares in any
377 scenario, while on a land use basis it was the best already in the beginning as well as in the long term.
378 Although the land use was reflected to some extent in the cost competitiveness, larger differences and a
379 substantially switched merit order resulted when comparing them on an area basis.

380 Due to the large spread of possible pathway emissions as well as cost developments, measures to
381 quantify and curb emissions in each section of the pathway are called for in order to reduce uncertainties,
382 starting from the specific field used, through the conversion as well as in the end use.

383 Finally, there are strong arguments, both social, economic and environmental, for including
384 the required arable land for biofuels into policy and functional units, instead of merely energy or
385 GHG abatement [cf. 9]. Such a differentiation between crop-based biofuels can potentially lead to a
386 substantially higher GHG abatement from the same arable land area, through incentives to switch to
387 higher yielding gaseous options.

388 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1: title, Table
389 S1: title, Video S1: title.

390 **Acknowledgments:** This work was funded by the Helmholtz Association of German Research Centers and
391 supported by Helmholtz Impulse and Networking Fund through Helmholtz Interdisciplinary Graduate School
392 for Environmental Research (HIGRADE).

393 **Author Contributions:** Millinger had the idea with contributions from Meisel, Millinger developed the model
394 and performed the modelling; Millinger, Meisel and Budzinski analyzed the data and results; Millinger wrote
395 the paper with contributions from Meisel, Budzinski and Thrän.

396 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
397 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and
398 in the decision to publish the results.

399 Abbreviations

400 The following abbreviations are used in this manuscript:

401

BENSIM	Bioenergy simulation model
BeetEtOH	Sugar beet based bioethanol
BioCH ₄	Silage maize based biomethane
DM	Dry matter
EF	Emission factor
FM	Fresh matter
FT	Woody biomass (poplar) based Fischer-Tropsch-diesel
GHG	Greenhouse gas
iLUC	Indirect land use change
402 LignoEtOH	Woody biomass (poplar) based bioethanol
LUC	Land use change
MC	Marginal cost
NG	Natural gas
RME	Rape seed methylester - biodiesel
SNG	Substitute natural gas
SRC	Short rotation coppice
StarchEtOH	Starch crop based bioethanol
TC	Total cost
WTT	Well to tank

403 References

- 404 1. EEA. European Environment Agency Greenhouse Gas Data Viewer: www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer, 2017.
- 405 2. BLE. *Hintergrunddaten zum Evaluations- und Erfahrungsbericht 2016*; Bundesanstalt für Landwirtschaft und Ernährung: Bonn, 2017.
- 406 3. Millinger, M.; Thrän, D. Biomass price developments inhibit biofuel investments and research in Germany: the crucial future role of high yields. *Journal of Cleaner Production* **2016**.
- 407 4. Fraunhofer ISI.; Consentec.; IFEU. Langfristszenarien für die Transformation des Energiesystems in Deutschland: Modul 1: Hintergrund, Szenarioarchitektur und übergeordnete Rahmenparameter: Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie, 2017.
- 408 5. Millinger, M.; Ponitka, J.; Arendt, O.; Thrän, D. Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany. *Energy Policy* **2017**, *2017*, 394–402.
- 409 6. Menten, F.; Chèze, B.; Patouillard, L.; Bougart, F. A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis. *Renewable and Sustainable Energy Reviews* **2013**, *26*, 108–134.
- 410 7. Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. *Bioresource Technology* **2011**, *102*, 437–451.
- 411 8. Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W. N₂O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. *Atmospheric Chemistry and Physics* **2008**, *8*, 389–395.
- 412 9. BImSchV. Achtunddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen): 38. BImSchV. *Bundesgesetzblatt Teil 1 In press*.
- 413 10. Yan, X.; Inderwildi, O.R.; King, D.A. Biofuels and synthetic fuels in the US and China: A review of Well-to-Wheel energy use and greenhouse gas emissions with the impact of land-use change. *Energy & Environmental Science* **2010**, *3*, 190.
- 414 11. Malça, J.; Freire, F. Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues. *Renewable and Sustainable Energy Reviews* **2011**, *15*, 338–351.
- 415 12. Festel, G.; Würmseher, M.; Rammer, C.; Boles, E.; Bellof, M. Modelling production cost scenarios for biofuels and fossil fuels in Europe. *Journal of Cleaner Production* **2014**, *66*, 242–253.
- 416 13. Haarlemmer, G.; Boissonnet, G.; Imbach, J.; Setier, P.A.; Peduzzi, E. Second generation BtL type biofuels – a production cost analysis. *Energy & Environmental Science* **2012**, *5*, 8445.

435 14. Haarlemmer, G.; Boissonnet, G.; Peduzzi, E.; Setier, P.A. Investment and production costs of synthetic
436 fuels – A literature survey. *Energy* **2014**, *66*, 667–676.

437 15. Browne, J.; Nizami, A.S.; Thamsiriroj, T.; Murphy, J.D. Assessing the cost of biofuel production with
438 increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland.
439 *Renewable and Sustainable Energy Reviews* **2011**, *15*, 4537–4547.

440 16. Tomaschek, J.; Özdemir, E.D.; Fahl, U.; Eltrop, L. Greenhouse gas emissions and abatement costs of
441 biofuel production in South Africa. *GCB Bioenergy* **2012**, *4*, 799–810.

442 17. Schmidt, J.; Leduc, S.; Dotzauer, E.; Kindermann, G.; Schmid, E. Cost-effective CO₂ emission reduction
443 through heat, power and biofuel production from woody biomass: A spatially explicit comparison of
444 conversion technologies. *Applied Energy* **2010**, *87*, 2128–2141.

445 18. Ponitka, J.; Arendt, O.; Lenz, V.; Daniel-Gromke, J.; Stinner, W.; Ortwein, A.; Zeymer, M.; Gröngröft,
446 A.; Müller-Langer, F.; Klemm, M.; Braun, J.; Zeug, W.; Thrän, D.; O'Keeffe, S.; Millinger, M. *Focus
447 on: Bioenergy-Technologies: Conversion pathways - towards biomass energy use in the 21st century*, 2
448 ed.; DBFZ: Leipzig, 2016.

449 19. ICCT. *European vehicle market statistics: Pocketbook 2016/2017*; International Council on Clean
450 Transportation Europe, 2016.

451 20. Majer, S.; Gröngröft, A.; Drache, C.; Braune, M.; Meisel, K.; Müller-Langer, F.; Naumann, K.;
452 Oehmichen, K. *Technical principles and methodology for calculating GHG balances of biodiesel: Guidance
453 document: Version 1.0*; DBFZ: Leipzig, 2016.

454 21. Meisel, K.; Braune, M.; Gröngröft, A.; Majer, S.; Müller-Langer, F.; Naumann, K.; Oehmichen, K.
455 *Technical principles and methodology for calculating GHG balances of Bioethanol: Guidance Document:
456 Version 1.0*; DBFZ: Leipzig, 2016.

457 22. Oehmichen, K.; Naumann, K.; Postel, J.; Drache, C.; Braune, M.; Gröngröft, A.; Majer, S.; Meisel, K.;
458 Müller-Langer, F. *Technical principles and methodology for calculating GHG balances of Biomethane:
459 Guidance document: Version 1.0*; DBFZ: Leipzig, 2016.

460 23. KTBL. *Energiepflanzen: Daten für die Planung des Energiepflanzenanbaus: KTBL Datensammlung*, 2
461 ed.; KTBL: Darmstadt, 2012.

462 24. Neeft, J.; Ludwiczek, N. BioGrace II - harmonized greenhouse gas calculations for electricity, heating
463 and cooling from biomass: www.biograce.net, 2015.

464 25. Parsons Brinckerhoff. *Accelerating the uptake of CCS: Industrial use of captured carbon dioxide*; Global
465 CCS Institute, 2011.

466 26. Brosowski, A.; Thrän, D.; Mantau, U.; Mahro, B.; Erdmann, G.; Adler, P.; Stinner, W.; Reinhold, G.;
467 Hering, T.; Blanke, C. A review of biomass potential and current utilisation – Status quo for 93 biogenic
468 wastes and residues in Germany. *Biomass and Bioenergy* **2016**, *95*, 257–272.

469 27. BMWi. *Energiedaten: Gesamtausgabe: Stand: Oktober 2017*; Bundesministerium für Wirtschaft und
470 Energie, 2017.

471 28. Neeft, J.; te Buch, S.; Gerlagh, T.; Gagnepain, B.; Bacovsky, D.; Ludwiczek, N.; Lavelle, P.; Thonier,
472 G.; Lechon, Y.; Lago, C.; Herrera, I.; Georgakopoulos, K.; Komioti, N.; Fehrenbach, H.; Hennecke,
473 A.; Parikka, M.; Kinning, L.; Wollin, P. BioGrace -harmonized calculations of biofuel greenhouse gas
474 abatement: Publishable final report for grant agreement IEE/09/736: www.biograce.net, 2012.

475 29. EU. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the
476 promotion of the use of energy from renewable sources and amending and subsequently repealing
477 Directives 2001/77/EC and 2003/30/EC, 2009.

478 30. WWF. *Zukunft Stromsystem: Kohleausstieg 2035 - vom Ziel her denken*; World Wildlife Foundation:
479 Berlin, 2017.

480 31. BMUB. Klimaschutzplan 2050 – Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung:
481 www.bmub.bund.de, 2016.

482 32. IPCC. Climate Change 2014: Mitigation of Climate Change: Chapter 8 - Transport. In *Climate Change
483 2014: Mitigation of Climate Change*; IPCC., Ed.; IPCC: Cambridge University Press, Cambridge, United
484 Kingdom and New York, NY, USA, 2014.

485 33. Skennall, S.A.; Berndes, G.; Woods, J. Integration of bioenergy systems into UK agriculture–New
486 options for management of nitrogen flows. *Biomass and Bioenergy* **2013**, *54*, 219–226.

487 34. Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F. Stuart.; Lambin, E.F.; Lenton, T.M.;
488 Scheffer, M.; Folke, C.; Schellnhuber, H.J.; Nykvist, B.; de Wit, Cynthia A.; Hughes, T.; van der Leeuw,
489 Sander.; Rodhe, H.; Sorlin, S.; Snyder, P.K.; Costanza, R.; Svedin, U.; Falkenmark, M.; Karlberg, L.;
490 Corell, R.W.; Fabry, V.J.; Hansen, J.; Walker, B.; Liverman, D.; Richardson, K.; Crutzen, P.; Foley, J.A.
491 A safe operating space for humanity. *Nature* **2009**, *461*, 472–475.

492 35. Vadenbo, C.; Tonini, D.; Astrup, T.F. Environmental Multiobjective Optimization of the Use of Biomass
493 Resources for Energy. *Environmental Science & Technology* **2017**.

494 36. Tilman, D.; Hill, J.; Lehman, C. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland
495 Biomass. *Science* **2006**, *314*, 1598–1600.

496 37. Searle, S.Y.; Malins, C.J. Will energy crop yields meet expectations? *Biomass and Bioenergy* **2014**,
497 *65*, 3–12.