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Abstract- This article aims to identify the generating function of modified Apostol type g-Bernoulli poly-
nomials. With the aid of this generating function, some properties of modified Apostol type g-Bernoulli
polynomials are given. It is shown that aforementioned polynomials are ¢g-Appell. Hence, we make use
of these polynomials to have applications on g-Umbral calculus. From those applications, we derive some
theorems in order to get Apostol type modified g-Bernoulli polynomials as a linear combination of some
known polynomials which we stated in the paper.
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1. Introduction

Throughout this paper, we make use of the following standart notations: N := {1,2,3,---} and Ny =
NU{0}. Also, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the
set of complex numbers.

We now begin with the fundamental properties of g-calculus. Let ¢ be chosen as a fixed real number
between 0 and 1. The g-analogue of any number n is given by

1 _ n
[n]q = d .

1—g¢q

The expression
[n]g! = [n]g[n — 1]q -~ [2]¢[1]g

means the g-factorial of n, and also let n,k € Ny, for £ <n

(), = m

is called g-binomial coefficient. Note that [0] ! := 1. The g-derivative of f(z) is defined by
4 f()  f(@) - flaw)

D,f(x) Ay = 0=z (0<g<1). (1.1)
If ¢ — 17, it becomes
. _ df(z)
qlir?f Dyf(x) = dx
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representing familiar derivative of a function f, with respect to x. The Jackson definite g-integral of a
function f is also defined by

/0 @)y = a(1 - )Y f(da).

j=0
The g-exponential functions are given by
eq(t):ZW and E, (t) = ] (t € C with [¢| < 1)
n=0 q’ n=0 q

with the following equality
eq-1 (1) = Eq (t).
These fundamental properties of g-calculus listed above are taken from the book [3].
By using an exponential function e, (z), Kupershmidt [10] defined the following g-Bernoulli polynomials

- tn t
;Bn,q(x) [n]q| = eq(t) _ 1eq(mt)

In the case = 0, B,, 4(0) = B,, , means the n-th ¢g-Bernoulli number.
Very recently, Kurt [8] defined Apostol type ¢-Bernoulli polynomials of order o by making use of the
following generating function:

00 N n ¢ @
S B N = (o) B (1.2

where A € C and a € Ny. In this paper, we will study on the following polynomial Br(Ll,()](z, A) := By 4(z, A)
which is given by special cases « = 1 and y = 0 in (1.2):

Z:%Bn,q(x, A [;]nq! - (tt) —eqlat) (13)

When ¢ — 1 in (1.3), it reduces to Apostol-Bernoulli polynomials, see [2,11].
We now review briefly the concept of g-umbral calculus. For the properties of g-umbral calculus, we refer
the reader to see the references [1-4,7, 13, 14].
Let C be a field of characteristic zero, and let F be the set of all formal power series in the variable ¢ over
C with

oo k
F = {f | f(?) :Zak#, (ak EC)}'
k=0 a

Let P be the algebra of polynomials in the single variable x over the field complex numbers and let P*
be the vector space of all linear functionals on P. In the ¢-Umbral calculus, (L|p(z)) means the action of a
linear functional L on the polynomial p(z). This operator has a linear property on P* given by

(L + Mlp(z)) = (L|p(z)) + (M|p(z))
and
(cLlp(x)) = c(L|p(x))

for any constant ¢ in C.

The formal power series
o0

k
£(t) = Za’“ﬁq! (1.4)

k=0
defines a linear functional on P by setting

(fM))z") =an (n=0). (1.5)
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Taking f(t) = t* in Eq. (1.4) and Eq. (1.5) gives

(t*|2") = [n]g!0nk, (n,k >0) (1.6)
where

1, ifn=%k

511 k= . .
’ 0, ifn#k

Actually, any linear functional L in P* has the form (1.4). That is, since
Fult) = (L) gy
k=0 q’

we have

(fr@)]z") = (L]z"),
and so as linear functionals L = f7(t). Moreover, the map L — f1(¢) is a vector space isomorphism from
P* onto F. Henceforth, F will denote both the algebra of formal power series in ¢ and the vector space of
all linear functionals on P, and so an element f(¢) of F will be thought of as both a formal power series and
a linear functional. From (1.5), we have

(eq(yt)|z") = y"
and so
(eq(yt)lp(x)) =p(y) (p(z) € P).
The order o(f(t)) of a power series f(t) is the smallest integer k¥ for which the coefficient of t* does not
vanish. If o(f(t)) = 0, then f(¢) is called an invertible series. A series f(¢) for which o(f(¢)) = 1 will be
called a delta series (c.f. [1-4,7,13,14]).

If f1(¢), ..., fm(t) are in F, then

SiOfu®la™ = 3 ( " ) L) fn (D]a),

L . 21, .00y 2
t1+i2+...Fim=n Lyeees tm

We use the notation t* for the k-th g-derivative operator on P as follows:

n)q! n—
tkilin — [n[—]k:]q!‘,]C ka k<n .
0, k>n

where

If f(t) and g(t) are in F, then
(F)g@)lp(x)) = (FDlg(®)p(2)) = (g()f()p(x))

for all polynomials p(z). Notice that for all f(¢) in F, and for all polynomials p(x)

10 = SOk A and  p(a) = S () (1.7)
= [K]q! = [K]q!
Using (1.7), we obtain
*) () = DFp(z) — .- <tl|p($)>msz £ g
(@) = Dipte) =3 S e s 41
providing
pM(0) = (t*|p(z)) and  (1[p")(2)) = p*)(0). (1.8)

Thus, from (1.8), we note that
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Let f(t) € F be a delta series and let g(t) € F be an invertible series. Then there exists a unique sequence
sn(2) of polynomials satisfying the following property

(GO F@®)F[sn(x)) = [0)g!dns  (n,k>0) (1.9)
which is called an orthogonality condition for any g-sheffer sequence, cf. [1-4,7, 13, 14].
The sequence s, (z) is called the g-Sheffer sequence for the pair of (g(t), f(¢)), or this s, (z) is g-Sheffer

for (g(t), f(t)), which is denoted by s, (z) ~ (g(t), f(t)).
Let s,(x) be ¢g-Sheffer for (g(t), f(t)). Then for any h(t) in F, and for any polynomial p(x), we have

= sk(z = lp(x
h(t) _ Z <h(t[)k|;} k'( )>g(t)f(t)k, p(iﬂ) _ Z <g(t)f[(kt]) '|p( )>Sk(.’b) (110)
k=0 N k=0 T
and the sequence s, () is g-Sheffer for (g(¢), f(¢)) if and only if

1 _ 0 tn
e @F0) = sul) (111)
g(f() " ;_;0 [n]q!
for all z in C, where f (f(t)) = f (f(¢)) =t
An important property for the g-Sheffer sequence s, (z) having (g(t),t) is the ¢g-Appell sequence. It is also
called g-Appell for ¢g(¢) with the following consequence

sp(x) = Lar;” & tsy(x) = [n]gsn_1(z). (1.12)

g(t)

Further important property for ¢g-Sheffer sequence s, (z) is as follows
t’ﬂ

[n]q!

o0
sn(z) is ¢-Appell for g (t) < ﬁeq (xt) = Z sn(z) (x€C).
k=0

For having information about the properties of g-umbral theory, see [1-4,7,13,14] and cited references
therein.

Recently several authors have studied g-Bernoulli polynomials, g-Euler polynomials and various general-
izations of these polynomials [1-15]. In the next section, we investigate modified Apostol type ¢g-Bernoulli
numbers and polynomials, and we apply these numbers and polynomials to g-umbral theory which is the
systematic study of g-umbral algebra. Actually, we are motivated to write this paper from Kim’s systematic
works on g-umbral theory [4-7].

2. Modified Apostol type ¢g-Bernoulli numbers and polynomials
Recall from (1.3) that

> Bl T e G, (2.1)

Taking ¢ — 0 on the above gives By 4(x,A\) = 0. This shows that the generating function of these
polynomials is not invertible. Therefore, we need to modify slightly Eq. (2.1) as follows

i 00) = 32 By = 5oy ale)

representing
Bn-‘rl q(ﬂf, /\)
—r 2 = B* A). 2.2
Ll - B (2.2
Here we called B, ,(z,A) modified Apostol type g-Bernoulli polynomials. Now

tlLI%Fq (l’,t):BO,q(ﬂj,)\):m#O ()\#1)
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This modification yields to being invertible for generating function of modified Apostol type ¢-Bernoulli
polynomials. As a traditional for some special polynomials to be a number, in the case when z = 0,
By, (0,A) = B; ,(A) is called the modified Apostol type n-th g¢-Bernoulli number. Now we list some
properties of modified Apostol type g-Bernoulli polynomials as follows.

From (2.2), we obtain

Do) =3 (3) a0t =3 () B, 00 .3)

k=0 k=0

By (2.2), the modified Apostol type g-Bernoulli numbers can be found by means of the following recurrence

relation:
1
B;,q (33, )\) = ﬁ and )\B:L’q(l, A) — B’:;q ()\) = 60,71. (24)
A few numbers are listed below:
BO,q ()‘) - ) — 13 Bl,q (A) - ()\_ 1)23 BQ,q ()‘) - ()\_ 1)3 )
. =AML+ 20 + 2062 + NP¢P)
BS,q N\ = Do) .
From (1.11) and (1.12), we have
By o(@,A) ~ (Aeg(t) — 1,1) (2.5)
and
By o(z,A) = [n]qBy_1 (2, A) = B g(z, A). (2.6)

It follows from (2.6) that B, ,(x,\) is g-Appell for e, (t) — 1.
We now have the following theorem.

Theorem 1. Let p(z) € P. We have

<Aeq<§>—1 |p(x>> A /01p<u>dqu.

Proof. From Eq. (2.5) and Eq. (2.6), we write
1
B A)=———2a" > 0).
aE N = et (20
By (1.1) and (1.6), we obtain the following calculations

o1y L e ) 27

t [n+1], t

= OO - 1)

Thus, from (2.7), we arrive at

<W)‘1 p(a:)> — X /O Ddu (@) € P)

t

which is desired result. O
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Example 1. If we take p(z) = B, (z,A) in Theorem 1, on the one hand, we derive
1
* Ae (t) -1 *
A B = (P02 )

- ] eg () —1 tB;+17q(:c, A)
| t [n+1],

1
= Gl = Bldbarie.
q

On the other hand,

1 1 n
Aln+1], /0 B (e gz = An+ 1], /0 Z(Z) * e (V)
k=0 q

_ A[n+1]qzn:<z>q g ()\)/lekdqa:

k=0

" /n+1
= A B A).
kz_:()(k+1>q nfk,q( )

Thus we have the following interesting property for modified Apostol type q-Bernoulli numbers derived from

Theorem 1 forn >0 :
" n+ 1) .
Z n—k,q ()‘) =0

which can be also generated by Eq.(2.3) and Eq.(2.4).

The following is an immediate result emerging from (1. 10) and (2.5) that

o) - kz_o[n[,;;;w >

= )\Z quq /\)/O thp(x)d,m.

By choosing suitable polynomials p(x), one can derive some interesting results. So we omit to give
examples, and so we now take care of a fundamental property in g-umbral theory which is stated below by
Theorem 2.

Theorem 2. Let n be nonnegative integer. Then we have

(<412 )= [t

Proof. From (2.3), we first obtain

T4y n n . 1 L
/m B, (4, N)dgu = kz:% ( k)an_k,q ) [kj”q (@t o) (2.8)
- T, & (n 1) dba {49 -t
(Bl @ty M)~ B ().

_|_

n+ 1]

q
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Thus, by applying (2.8), we get
(=1 . 1 et
< ; | B (x,A)) = e, ; | tB) 1 4(7, ) (2.9)

1 *
[TL + 1 {Bn+1,q 1 >‘) - Bn—i—l,q ()‘)}

= /OB:;’q(u)\du

Comparing Eq. (2.8) with Eq. (2.9), we complete the proof of this theorem. |

The following theorem is useful to derive any polynomial as a linear combination of modified Apostol type
g-Bernoulli polynomials.

Theorem 3. For q(z) € P, let

2) =Y brgBig(z, ).
k=0
Then

o = gy {20 (0 = d O}

g
Proof. It follows from (1.9) that
((Aeg(t) — 1) tk\B (z,A) = [n]g!0nr  (n,k>0). (2.10)
We now consider the following sets of polynomlals of degree less than or equal to n:
Pn = {q(z) € Clz]| degq(z) < n}.

For ¢q(z) € Py, we further consider that

= brgBj (2, N). (2.11)
k=0
Combining (2.10) with (2.11), it becomes
{((Neg(t) — 1) tF|g(z)) = Zblq< Xeg(t) — 1) t* | B, (z,\)) (2.12)

= Zbl o [0 = (K], beq-
Thus, from (2.12), we have
1 1
b = gy (Oeal®) = 10 (0) = gy 2 (1) = a® 0,

where ¢*)(z) = ng(a:). Thus the proof is completed. O
When we choose ¢ (x) = E,, 4 (z), we have the following corollary which is given by its proof.

Corollary 1. Letn > 2. Then

Bugle) = Oa= DB, @0 + b, (F5) B )
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Proof. Recall that the g-Euler polynomials E,, ,(z) are defined by

- t 2]
E, = K t JSo[12,1
;) @) = o p1c@ (e f-12.15)
which in turn yields to
eq(t) +1
Fna(z) ~ <Qt> (n>0)
2],
and
tEn q(x) = [n]gEn—1,4(2).
Set
q(z) = Ep4(z) € Py,
Then it becomes N
Epng(@) = brgBi (. \). (2.13)
k=0
Let us now evaluate the coeflicients by, , as follows
1
kg = [ ((Neg (t) = 1) t* | En,q (z))
[ ]q'

nl n—1] ---In—k+1
_ []q[ ] [ + ]q (Neg (t) = 1| Bp_pq ()

(:) g () = 1| Bp_pg ()
(3,

where E, , := E, 4(0) are called ¢g-Euler numbers satisfying the following property

)\En k,q - Enfkr,q) 3

Eng(1) + Eng = [2],00n (2.14)
with the conditions Ey, =1 and E; 4 = —5. By (2.13) and (2.14), we have
n—2
Eng(@) = bugBy g (2, A) +bn1,4B,_1 4 (2, A) + Z bi,qBre,q (T, A)
k=0
= 0= DB, N+, (25) B )
n—2 n
0+ DY (1) Buvabit, (@),
k=0 q
]

Recall from (1.2) that Apostol type g-Bernoulli polynomials of order r are given by the following generating
function, for y = 0 (see [8]):

3 (") (x & = ¢ Te T
2 B @) o (=t et

where t € C and r € Ny. If ¢ approaches to 0 on the above, it yields to B((fq)(w, A) = 0, which means that
the generating function of By(ffq) (z, A\) is not invertible. So, we need to modify slightly Eq. (2.1), as follows

= 3 B (g & = ! Te T
T;O'Bn,q( 7)‘) [n]q| (Aeq (t)—l) q( t) (215)
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The polynomials Eff}l (z, A) may be called as modified Apostol type g-Bernoulli polynomials of higher order.

Notice that ,
fiy F{Y (00) = By 00 = (527) #0 (2D,
which implies an invertible for generating function of modified Apostol type ¢-Bernoulli polynomials of
higher order. In the case z = 0, B{) (0,A) := B} (\) may be called the modified Apostol type g-Bernoulli
numbers.
Let

9" (t:A) = (Aeg(t) = 1)".
It is clear that g” (¢, A) is an invertible series. It follows from (2.15) that Eff,)z (x, \) is g-Appell for (Ae,(t) — 1)".
So, by (1.12), we have

Bnr,t)z (IE,)\) = z",

and B -
th:r)z (z,A) = [n]qB(—l (T ).
Thus, we have ~
By (@A) ~ (Aeq(t) = 1)7,1).
By (1.5) and (2.15), we get

<(>«fq(t1)r—1)req(yt)|xn> =Bl = y <7Z> B, (V. (2.16)
Here we find that r e
<<)\eq(1)—1) |xn> - <>\eq(1)_1x'“><Aeq(1)_llw”> (2.17)

I
N
~
=
3
\‘NA
s
N———
[}
Sy
Sk
Q
’;
S~—
pd
o
2
—
>
N—

By using (2.16), we have

<(A%(tl)1> |x"> =B, (). (2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 4. Let n be nonnegative integer. Then we have

B(r) _ n T e
Bn,q ()‘)_ ‘ Z <i1,"' ’Z‘T> HBij’q()‘)'
i1t tip=n 45=1
Set B
g(x) = B{)(x,\) € P
Then, by Theorem 3, we write

B (@, A) = b B (. )), (2.19)
k=0
where the coefficient by 4 is given by
1
br,g W ((Aeq (1) = 1) t" | ¢ (2)) (2.20)
q

n

)\eq ~1)| B, q(x,)\)>

/N N
E

n kA a
k) (B g (1) = B, ).
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From the Eq. (2.15), we have

> (BHON-BGO) 5 = (5ogoy) G-

" —1
- (wo >
2 BU-Y( ] 3

By comparing the coefficients ﬁ:, in the above equation, we get

ABYL(1A) = BY) (N = BU7Y (M) (2.21)

4
From the Egs. (2.19), (2.20) and (2.21), we get the following theorem.
Theorem 5. Let n € Ny and r € Ng. Then
r 1 *
BY Z( ) BUS N (N By (@, ).
k=0 q

Let us assume that

3

g(z) = bp By, \) € P, (2.22)
k=

o

We use a similar method in order to find the coefficient b};y o &S same as Theorem 3. So we omit the details
and give the following equality:

1 < (r m 1
[ — ( ) Al(=1)r ( . ) ——q"M(0).
q [k;]q' ; l q mZZ:OM-‘r-;z:m T, 41 q[m]q!
By (2.22) and coefficient b}, , we state the following theorem.

Theorem 6. Forn € Ny, let

Zb BN @) €

Then
b = g (e =D @)
_ L T r 1/ qyr—1 m 1 (m+k)
[K]q! mZO; (l>q)\ -y i1+‘;L:m <Zl’ ’Zl)q [m]q'q o)

where ¢F) (x) = D;fq(ac),

Let us consider g(z) = B,  (z,A) € P,,. Then, by Theorem 6, we have

Zb B (@), (2.23)

From Theorem 6 and (2.23), we acquire the following theorem.
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Theorem 7. For n,r € Ny, the following equality holds true:

n—k r

B, n=X (XY ¥ <1)”Al<7zﬂ>q(z’1,~r-n~,iz)q
X

k=0 \m=0 [=0 i1+---+i;=m

m-+k n . ~(r
< m ) (m + k‘) anmfk,q()‘) Bl(g,;(xv >‘)
q q
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