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1. Introduction

Throughout this paper, we make use of the following standart notations: N := f1; 2; 3; � � � g and N0 =
N [ f0g. Also, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the
set of complex numbers.
We now begin with the fundamental properties of q-calculus. Let q be chosen as a �xed real number

between 0 and 1. The q-analogue of any number n is given by

[n]q =
1� qn
1� q .

The expression

[n]q! = [n]q[n� 1]q � � � [2]q[1]q
means the q-factorial of n, and also let n; k 2 N0, for k � n�

n

k

�
q

=
[n]q!

[k]q![n� k]q!

is called q-binomial coe¢ cient. Note that [0]q! := 1. The q-derivative of f(x) is de�ned by

Dqf(x) =
dqf(x)

dqx
=
f(x)� f(qx)
(1� q)x (0 < q < 1) . (1.1)

If q ! 1�, it becomes

lim
q!1�

Dqf(x) =
df(x)

dx
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representing familiar derivative of a function f , with respect to x. The Jackson de�nite q-integral of a
function f is also de�ned by Z a

0

f(x)dqx = a(1� q)
1X
j=0

f(qja)qj .

The q-exponential functions are given by

eq (t) =
1X
n=0

tn

[n]q!
and Eq (t) =

1X
n=0

q(
n
2)tn

[n]q!
(t 2 C with jtj < 1)

with the following equality
eq�1 (t) = Eq (t) :

These fundamental properties of q-calculus listed above are taken from the book [3].
By using an exponential function eq(x), Kupershmidt [10] de�ned the following q-Bernoulli polynomials

1X
n=0

Bn;q(x)
tn

[n]q!
=

t

eq(t)� 1
eq(xt).

In the case x = 0, Bn;q(0) = Bn;q means the n-th q-Bernoulli number.
Very recently, Kurt [8] de�ned Apostol type q-Bernoulli polynomials of order � by making use of the

following generating function:
1X
n=0

B(�)n;q (x; y; �)
tn

[n]q!
=

�
t

�eq(t)� 1

��
eq(xt)Eq (yt) (1.2)

where � 2 C and � 2 N0. In this paper, we will study on the following polynomial B(1)n;q(x; �) := Bn;q(x; �)
which is given by special cases � = 1 and y = 0 in (1.2):

1X
n=0

Bn;q(x; �)
tn

[n]q!
=

t

�eq(t)� 1
eq(xt): (1.3)

When q ! 1 in (1.3), it reduces to Apostol-Bernoulli polynomials, see [2,11].
We now review brie�y the concept of q-umbral calculus. For the properties of q-umbral calculus, we refer

the reader to see the references [1-4; 7; 13; 14].
Let C be a �eld of characteristic zero, and let F be the set of all formal power series in the variable t over

C with

F =
(
f j f(t) =

1X
k=0

ak
tk

[k]q!
; (ak 2 C)

)
.

Let P be the algebra of polynomials in the single variable x over the �eld complex numbers and let P�
be the vector space of all linear functionals on P. In the q-Umbral calculus, hLjp(x)i means the action of a
linear functional L on the polynomial p(x). This operator has a linear property on P� given by

hL+M jp(x)i = hLjp(x)i+ hM jp(x)i
and

hcLjp(x)i = chLjp(x)i
for any constant c in C.
The formal power series

f(t) =
1X
k=0

ak
tk

[k]q!
(1.4)

de�nes a linear functional on P by setting

hf(t)jxni = an (n � 0) : (1.5)
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Taking f(t) = tk in Eq. (1.4) and Eq. (1.5) gives

htkjxni = [n]q!�n;k; (n; k � 0) (1.6)

where

�n;k =

(
1, if n = k

0, if n 6= k
:

Actually, any linear functional L in P� has the form (1.4). That is, since

fL(t) =
1X
k=0

hLjxki t
k

[k]q!
,

we have
hfL(t)jxni = hLjxni,

and so as linear functionals L = fL(t). Moreover, the map L ! fL(t) is a vector space isomorphism from
P� onto F . Henceforth, F will denote both the algebra of formal power series in t and the vector space of
all linear functionals on P, and so an element f(t) of F will be thought of as both a formal power series and
a linear functional. From (1.5), we have

heq(yt)jxni = yn

and so
heq(yt)jp(x)i = p(y) (p(x) 2 P).

The order o(f(t)) of a power series f(t) is the smallest integer k for which the coe¢ cient of tk does not
vanish. If o(f(t)) = 0, then f(t) is called an invertible series. A series f(t) for which o(f(t)) = 1 will be
called a delta series (c.f. [1-4; 7; 13; 14]).

If f1(t); :::; fm(t) are in F , then

hf1(t):::fm(t)jxni =
X

i1+i2+:::+im=n

�
n

i1;:::; im

�
q

hf1(t)jxi1i:::hfm(t)jximi,

where �
n

i1; � � � ; ir

�
q

=
[n]q!

[i1]q! � � � [ir]q!
.

We use the notation tk for the k-th q-derivative operator on P as follows:

tkxn =

(
[n]q !

[n�k]q !x
n�k, k � n

0, k > n
.

If f(t) and g(t) are in F , then
hf(t)g(t)jp(x)i = hf(t)jg(t)p(x)i = hg(t)jf(t)p(x)i

for all polynomials p(x). Notice that for all f(t) in F , and for all polynomials p(x)

f(t) =
1X
k=0

hf(t)jxki t
k

[k]q!
and p(x) =

1X
k=0

htkjp(x)i x
k

[k]q!
. (1.7)

Using (1.7), we obtain

p(k)(x) = Dk
q p(x) =

1X
l=k

htljp(x)i
[l]q!

xl�k
kQ
s=1
[l � s+ 1]q

providing
p(k)(0) = htkjp(x)i and h1jp(k)(x)i = p(k)(0). (1.8)

Thus, from (1.8), we note that
tkp(x) = p(k)(x) = Dk

q p(x).
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Let f(t) 2 F be a delta series and let g(t) 2 F be an invertible series. Then there exists a unique sequence
sn(x) of polynomials satisfying the following property

hg(t)f(t)kjsn(x)i = [n]q!�n;k (n; k � 0) (1.9)

which is called an orthogonality condition for any q-she¤er sequence, cf. [1-4; 7; 13; 14].
The sequence sn(x) is called the q-She¤er sequence for the pair of (g(t); f(t)), or this sn(x) is q-She¤er

for (g(t); f(t)), which is denoted by sn(x) � (g(t); f(t)).
Let sn(x) be q-She¤er for (g(t); f(t)). Then for any h(t) in F , and for any polynomial p(x), we have

h(t) =
1X
k=0

hh(t)jsk(x)i
[k]q!

g(t)f(t)k, p(x) =
1X
k=0

hg(t)f(t)kjp(x)i
[k]q!

sk(x) (1.10)

and the sequence sn(x) is q-She¤er for (g(t); f(t)) if and only if

1

g( �f(t))
eq(xf(t)) =

1X
n=0

sn(x)
tn

[n]q!
(1.11)

for all x in C, where f (f(t)) = f
�
f (t)

�
= t.

An important property for the q-She¤er sequence sn(x) having (g(t); t) is the q-Appell sequence. It is also
called q-Appell for g(t) with the following consequence

sn(x) =
1

g(t)
xn , tsn(x) = [n]qsn�1(x). (1.12)

Further important property for q-She¤er sequence sn(x) is as follows

sn(x) is q-Appell for g (t),
1

g(t)
eq(xt) =

1X
k=0

sn(x)
tn

[n]q!
(x 2 C) .

For having information about the properties of q-umbral theory, see [1-4; 7; 13; 14] and cited references
therein.
Recently several authors have studied q-Bernoulli polynomials, q-Euler polynomials and various general-

izations of these polynomials [1-15]. In the next section, we investigate modi�ed Apostol type q-Bernoulli
numbers and polynomials, and we apply these numbers and polynomials to q-umbral theory which is the
systematic study of q-umbral algebra. Actually, we are motivated to write this paper from Kim�s systematic
works on q-umbral theory [4-7].

2. Modi�ed Apostol type q-Bernoulli numbers and polynomials

Recall from (1.3) that
1X
n=0

Bn;q(x; �)
tn

[n]q!
=

t

�eq(t)� 1
eq(xt) (� 6= 1) : (2.1)

Taking t ! 0 on the above gives B0;q(x; �) = 0. This shows that the generating function of these
polynomials is not invertible. Therefore, we need to modify slightly Eq. (2.1) as follows

F �q (x; t) =
1X
n=0

B�n;q(x; �)
tn

[n]q!
=

1

�eq(t)� 1
eq(xt)

representing
Bn+1;q(x; �)

[n+ 1]q
= B�n;q(x; �). (2.2)

Here we called B�n;q(x; �) modi�ed Apostol type q-Bernoulli polynomials. Now

lim
t!0

F �q (x; t) = B
�
0;q(x; �) =

1

�� 1 6= 0 (� 6= 1) .
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Applications of q-Umbral Calculus to Modi�ed Apostol Type q-Bernoulli Polynomials 5

This modi�cation yields to being invertible for generating function of modi�ed Apostol type q-Bernoulli
polynomials. As a traditional for some special polynomials to be a number, in the case when x = 0,
B�n;q(0; �) = B�n;q (�) is called the modi�ed Apostol type n-th q-Bernoulli number. Now we list some
properties of modi�ed Apostol type q-Bernoulli polynomials as follows.
From (2.2), we obtain

B�n;q(x; �) =
nX
k=0

�
n

k

�
q

B�k;q (�)x
n�k =

nX
k=0

�
n

k

�
q

B�n�k;q (�)x
k. (2.3)

By (2.2), the modi�ed Apostol type q-Bernoulli numbers can be found by means of the following recurrence
relation:

B�0;q (x; �) =
1

�� 1 and �B�n;q(1; �)�B�n;q (�) = �0;n. (2.4)

A few numbers are listed below:

B�0;q (�) =
1

�� 1 ; B
�
1;q (�) =

��
(�� 1)2 ; B

�
2;q (�) =

�(1 + �q)

(�� 1)3 ;

B�3;q (�) =
��(1 + 2�q + 2�q2 + �2q3)

(�� 1)4 :

From (1.11) and (1.12), we have

B�n;q(x; �) � (�eq(t)� 1; t) (2.5)

and

tB�n;q(x; �) = [n]qB
�
n�1;q(x; �) = Bn;q(x; �). (2.6)

It follows from (2.6) that B�n;q(x; �) is q-Appell for �eq(t)� 1.
We now have the following theorem.

Theorem 1. Let p(x) 2 P. We have�
�eq (t)� 1

t
j p(x)

�
= �

Z 1

0

p(u)dqu.

Proof. From Eq. (2.5) and Eq. (2.6), we write

B�n;q(x; �) =
1

�eq(t)� 1
xn (n � 0).

By (1.1) and (1.6), we obtain the following calculations�
�eq (t)� 1

t
j xn

�
=

1

[n+ 1]q

�
�eq (t)� 1

t
j txn+1

�
(2.7)

=
1

[n+ 1]q
h�eq (t)� 1jxn+1i

=
�

[n+ 1]q
= �

Z 1

0

xndqx.

Thus, from (2.7), we arrive at�
�eq (t)� 1

t
j p(x)

�
= �

Z 1

0

p(u)dqu (p(x) 2 P)

which is desired result. �
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Example 1. If we take p(x) = B�n;q(x; �) in Theorem 1, on the one hand, we derive

�

Z 1

0

B�n;q(x; �)dqx =

�
�eq (t)� 1

t
j B�n;q(x; �)

�
=

*
1 j �eq (t)� 1

t

tB�n+1;q(x; �)

[n+ 1]q

+

=
1

[n+ 1]q
ht0jxn+1i = [n]q!�n+1;0.

On the other hand,

�[n+ 1]q

Z 1

0

B�n;q(x; �)dqx = �[n+ 1]q

Z 1

0

nX
k=0

�
n

k

�
q

B�n�k;q (�)x
kdqx

= �[n+ 1]q

nX
k=0

�
n

k

�
q

B�n�k;q (�)

Z 1

0

xkdqx

= �
nX
k=0

�
n+ 1

k + 1

�
q

B�n�k;q (�) .

Thus we have the following interesting property for modi�ed Apostol type q-Bernoulli numbers derived from
Theorem 1 for n � 0 :

nX
k=0

�
n+ 1

k + 1

�
q

B�n�k;q (�) = 0

which can be also generated by Eq.(2.3) and Eq.(2.4).

The following is an immediate result emerging from (1.10) and (2.5) that

p(x) =
1X
k=0

[n+ 1]q
[k]q!

�
�eq (t)� 1

t
tk j p(x)

�
B�k;q(x; �)

=

1X
k=0

[n+ 1]q
[k]q!

�
�eq (t)� 1

t
j tkp(x)

�
B�k;q(x; �)

= �
1X
k=0

[n+ 1]q
[k]q!

B�k;q(x; �)

Z 1

0

tkp(x)dqx.

By choosing suitable polynomials p (x), one can derive some interesting results. So we omit to give
examples, and so we now take care of a fundamental property in q-umbral theory which is stated below by
Theorem 2.

Theorem 2. Let n be nonnegative integer. Then we have�
eq (t)� 1

t
j B�n;q(x; �)

�
=

Z 1

0

B�n;q (u; �) dqu.

Proof. From (2.3), we �rst obtainZ x+y

x

B�n;q(u; �)dqu =
nX
k=0

�
n

k

�
q

B�n�k;q (�)
1

[k + 1]q

n
(x+ y)

k+1 � xk+1
o

(2.8)

=
1

[n+ 1]q

nX
k=0

�
n+ 1

k + 1

�
q

B�n�k;q (�)
n
(x+ y)

k+1 � xk+1
o

=
1

[n+ 1]q

�
B�n+1;q (x+ y; �)�B�n+1;q (x; �)

�
.
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Thus, by applying (2.8), we get�
eq (t)� 1

t
j B�n;q(x; �)

�
=

1

[n+ 1]q

�
eq (t)� 1

t
j tB�n+1;q(x; �)

�
(2.9)

=
1

[n+ 1]q

�
B�n+1;q (1; �)�B�n+1;q (�)

	
=

Z 1

0

B�n;q (u; �) dqu.

Comparing Eq. (2.8) with Eq. (2.9), we complete the proof of this theorem. �
The following theorem is useful to derive any polynomial as a linear combination of modi�ed Apostol type

q-Bernoulli polynomials.

Theorem 3. For q(x) 2 Pn, let

q(x) =

nX
k=0

bk;qB
�
k;q(x; �).

Then

bk;q =
1

[k]q!

n
�q(k) (1)� q(k) (0)

o
.

Proof. It follows from (1.9) that

(�eq(t)� 1) tkjB�n;q(x; �)

�
= [n]q!�n;k (n; k � 0). (2.10)

We now consider the following sets of polynomials of degree less than or equal to n:

Pn = fq(x) 2 C[x]jdeg q(x) � ng.
For q(x) 2 Pn, we further consider that

q(x) =
nX
k=0

bk;qB
�
k;q(x; �). (2.11)

Combining (2.10) with (2.11), it becomes

(�eq(t)� 1) tkjq (x)

�
=

nX
l=0

bl;q


(�eq(t)� 1) tk j B�l;q (x; �)

�
(2.12)

=
nX
l=0

bl;q [l]q!�l;k = [k]q!bk;q.

Thus, from (2.12), we have

bk;q =
1

[k]q!



(�eq(t)� 1) tkjq (x)

�
=

1

[k]q!

n
�q(k) (1)� q(k) (0)

o
,

where q(k)(x) = Dk
q q(x). Thus the proof is completed. �

When we choose q (x) = En;q (x), we have the following corollary which is given by its proof.

Corollary 1. Let n � 2. Then

En;q (x) = (�q � 1)B�n;q (x; �) + [n]q
�
�+ 1

2

�
B�n�1;q (x; �)

� (�+ 1)
n�2X
k=0

�
n

k

�
q

En�k;qB
�
k;q (x; �) .
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Proof. Recall that the q-Euler polynomials En;q(x) are de�ned by
1X
n=0

En;q(x)
tn

[n]q!
=

[2]q
eq(t) + 1

eq(xt) (c:f: [12; 15])

which in turn yields to

En;q(x) �
 
eq(t) + 1

[2]q
; t

!
(n � 0)

and
tEn;q(x) = [n]qEn�1;q(x).

Set
q(x) = En;q(x) 2 Pn.

Then it becomes

En;q(x) =
nX
k=0

bk;qB
�
k;q(x; �). (2.13)

Let us now evaluate the coe¢ cients bk;q as follows

bk;q =
1

[k]q!



(�eq (t)� 1) tk j En;q (x)

�
=

[n]q [n� 1]q � � � [n� k + 1]q
[k]q!

h�eq (t)� 1 j En�k;q (x)i

=

�
n

k

�
q

h�eq (t)� 1 j En�k;q (x)i

=

�
n

k

�
q

(�En�k;q (1)� En�k;q) ,

where En;q := En;q(0) are called q-Euler numbers satisfying the following property

En;q(1) + En;q = [2]q �0;n (2.14)

with the conditions E0;q = 1 and E1;q = � 1
2 : By (2.13) and (2.14), we have

En;q (x) = bn;qB
�
n;q (x; �) + bn�1;qB

�
n�1;q (x; �) +

n�2X
k=0

bk;qB
�
k;q (x; �)

= (�q � 1)B�n;q (x; �) + [n]q
�
�+ 1

2

�
B�n�1;q (x; �)

� (�+ 1)
n�2X
k=0

�
n

k

�
q

En�k;qB
�
k;q (x; �) .

�
Recall from (1.2) that Apostol type q-Bernoulli polynomials of order r are given by the following generating

function, for y = 0 (see [8]):
1X
n=0

B(r)n;q (x; �)
tn

[n]q!
=

�
t

�eq(t)� 1

�r
eq(xt),

where t 2 C and r 2 N0. If t approaches to 0 on the above, it yields to B(�)0;q (x; �) = 0, which means that

the generating function of B(�)n;q (x; �) is not invertible. So, we need to modify slightly Eq. (2.1), as follows

eF (r)q (x; t) =
1X
n=0

eB(r)n;q (x; �) tn

[n]q!
=

�
1

�eq (t)� 1

�r
eq(xt). (2.15)
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The polynomials eB(r)n;q (x; �) may be called as modi�ed Apostol type q-Bernoulli polynomials of higher order.
Notice that

lim
t!0

eF (r)q (x; t) = eB(r)n;q (x; �) = � 1

�� 1

�r
6= 0 (� 6= 1) ,

which implies an invertible for generating function of modi�ed Apostol type q-Bernoulli polynomials of
higher order. In the case x = 0, eB(r)n;q (0; �) := eB(r)n;q (�) may be called the modi�ed Apostol type q-Bernoulli
numbers.
Let

gr(t; �) = (�eq(t)� 1)r .
It is clear that gr(t; �) is an invertible series. It follows from (2.15) that eB(r)n;q (x; �) is q-Appell for (�eq(t)� 1)r.
So, by (1.12), we have eB(r)n;q (x; �) = 1

gr(t; �)
xn,

and
t eB(r)n;q (x; �) = [n]q eB(r)n�1;q(x; �).

Thus, we have eB(r)n;q (x; �) � ((�eq(t)� 1)r; t) .
By (1.5) and (2.15), we get�

1r

(�eq(t)� 1)r
eq(yt)jxn

�
= eB(r)n;q(y; �) = nX

l=0

�
n

l

�
q

eB(r)n�l;q (�) yl. (2.16)

Here we �nd that��
1

�eq (t)� 1

�r
j xn

�
=

�
1

�eq (t)� 1
� � � � � 1

�eq (t)� 1
j xn

�
(2.17)

=
X

i1+���+ir=n

�
n

i1; � � � ; ir

�
q

B�i1;q (�) � � �B
�
ir;q (�) .

By using (2.16), we have ��
1

�eq(t)� 1

�r
jxn
�
= eB(r)n;q (�) . (2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 4. Let n be nonnegative integer. Then we have

eB(r)n;q (�) = X
i1+���+ir=n

�
n

i1; � � � ; ir

�
q

rY
j=1

B�ij ;q (�) .

Set
q(x) = eB(r)n;q(x; �) 2 Pn.

Then, by Theorem 3, we write eB(r)n;q(x; �) = nX
k=0

bk;qB
�
k;q(x; �), (2.19)

where the coe¢ cient bk;q is given by

bk;q =
1

[k]q!



(�eq (t)� 1) tk j q (x)

�
(2.20)

=

�
n

k

�
q

D
(�eq (t)� 1) j eB(r)n�k;q(x; �)E

=

�
n

k

�
q

�
� eB(r)n�k;q (1; �)� eB(r)n�k;q (�)� .
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From the Eq. (2.15), we have

1X
n=0

�
� eB(r)n;q (1; �)� eB(r)n;q (�)� tn

[n]q!
=

�
1

�eq (t)� 1

�r
(�eq (t)� 1)

=

�
1

�eq (t)� 1

�r�1
=

1X
n=0

eB(r�1)n;q (�)
tn

[n]q!
.

By comparing the coe¢ cients tn

[n]q !
in the above equation, we get

� eB(r)n;q(1; �)� eB(r)n;q (�) = eB(r�1)n;q (�) . (2.21)

From the Eqs. (2.19), (2.20) and (2.21), we get the following theorem.

Theorem 5. Let n 2 N0 and r 2 N0. Then

eB(r)n;q(x; �) = nX
k=0

�
n

k

�
q

eB(r�1)n�k;q(�)B
�
k;q(x; �).

Let us assume that

q(x) =
nX
k=0

brk;q eB(r)k;q(x; �) 2 Pn. (2.22)

We use a similar method in order to �nd the coe¢ cient brk;q as same as Theorem 3. So we omit the details
and give the following equality:

brk;q =
1

[k]q!

rX
l=0

�
r

l

�
q

�l(�1)r�l
X
m�0

X
i1+���+il=m

�
m

i1; � � � ; il

�
q

1

[m]q!
q(m+k)(0).

By (2.22) and coe¢ cient brk;q, we state the following theorem.

Theorem 6. For n 2 N0, let

q(x) =

nX
k=0

brk;q
eB(r)k;q(x; �) 2 Pn.

Then

brk;q =
1

[k]q!



(�eq (t)� 1) tk j q (x)

�
=

1

[k]q!

X
m�0

rX
l=0

�
r

l

�
q

�l(�1)r�l
X

i1+���+il=m

�
m

i1; � � � ; il

�
q

1

[m]q!
q(m+k)(0),

where q(k)(x) = Dk
q q(x).

Let us consider q(x) = B�n;q(x; �) 2 Pn. Then, by Theorem 6, we have

B�n;q(x; �) =
nX
k=0

brk;q
eB(r)k;q(x; �). (2.23)

From Theorem 6 and (2.23), we acquire the following theorem.
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Theorem 7. For n; r 2 N0, the following equality holds true:

B�n;q(x; �) =
nX
k=0

 
n�kX
m=0

rX
l=0

X
i1+���+il=m

(�1)r�l�l
�
r

l

�
q

�
m

i1; � � � ; il

�
q

�
�
m+ k

m

�
q

�
n

m+ k

�
q

B�n�m�k;q(�)

! eB(r)k;q(x; �):
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