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Summary 
In this article it is shown how Milgrom’s acceleration constant is related with the m ,  and B  values of 

the matter distribution within observable universe as defined in the Standard Model of Cosmology, established 
by the Planck Collaboration Group. The result is a two-parameter model for the observable universe. The two 
parameters are the age of the universe and Milgrom’s acceleration constant. It is shown that these are 
sufficient to calculate the amounts of matter and dark energy in the universe, as well as the contributions of 
dark matter and baryonic matter in the matter part.. The numerical results are in agreement with those of the 
Lamda-CDM model.   
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Introduction 

It is well known that, as long as the Cosmological Constant   is supposed to be zero, the Newtonian 
potential field  can be derived as the weak field limit of Einstein’s Field Equation. Although a non-
zero value of  is a major roadblock to derive an expression for a modified Newtonian potential, it 
can be done under particular constraints for the spatial validity range.  A previous study [1] shows 
that, under these conditions, the resulting potential   of cosmological systems with a central 
pointlike mass M  is the solution of the field equation, 
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which in an alternative format can be written as, 
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where 2 is the Laplacian operator and G and c , as usual are, respectively, the gravitational 
constant and the light velocity in vacuum. The constraints mentioned apply to the extreme low end 
of the spatial range as well as to the extreme far end of it. The first constraint is not different from 
the weak field limitation that has to be imposed to derive Poisson’s equation in the case of   0. 
The second constraint is required to allow the derivation of   from a single metric component in 
Einstein’s metric tensor. As shown in [1], these conditions are met in solar systems as well as in 
galaxy systems.  

The striking feature of (1,2) is the  sign associated with 2 . If it were a  sign, the equation would 
be similar to Debije’s  equation for the potential of an electric pointlike charge in an electromagnetic 
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plasma [2]. As is well known, the solution of such equation is a shielded Coulomb field, i.e., an 
electric field with an exponential decay. In the gravitational equivalent (with the  sign) the near 
field is enhanced (“antiscreened”), because masses are attracting, while electric charges with the 
same polarity are repelling. The way to solve the equation, though, is similar. The solution of this 
equation shows that, in the relevant spatial range, the gravitational acceleration g closely 

approximates Milgrom’s heuristic expression [3], 

0agg N ,                                                                                                                                                        (3) 

where Ng is the common Newtonian gravitation and where 0a is Milgrom’s acceleration constant. 

The study [1] has shown that, for spherical cosmological systems with a central pointlike central mass 
M , this acceleration is related with the Cosmological Constant in those systems, such that 
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It is my aim to show that this relationship between Milgrom’s acceleration constant and the 
Cosmological constant not only holds for galaxies, but also holds for the observable universe within 
the event horizon, in spite of the obvious difficulty to identify a central mass. The study is prompted 
by the wish to find a means to assess the numerical value of Milgrom’s acceleration constant by 
theory, for which no clue could be found within the scope of galaxies. Doing so, it is useful to 
emphasize that, unlike Newton’s gravitational constant G , Einstein’s Cosmological Constant   is 
not an invariable, but depends on the amount of baryonic mass M in the system under 
consideration. Baryonic mass is just a single component of gravitational matter. The gravitational 
matter density 2c shows up in the vacuum solution of Einstein’s Field Equation as the background 
energy of a vacuum fluid in thermal dynamical equilibrium. The vacuum fluid is an ideal one. This 
implies that its stress-energy tensor contains diagonal elements only and that in space-time 

),,,i( zyxct with (+,+,+,+) metric they all have the same value. The pressure vp is due to the 
background energy of the fluidal space, expressed by [4,5,6,7], 
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where  is the fluidal mass density. It must be present for giving a solution of Einstein’s Field 

Equation with   0 for the vacuum without any baryonic sources. Assuming the correctness of (4), 
the fluidal pressure would rise to infinity under the absence of baryonic source. Baryonic sources 
“eat” from the fluid, thereby gaining mass and reducing the energy level of the fluid. This model is 
applicable to cosmological objects with a massive kernel, like galaxies. Interestingly, though, it can be 
evolved to a model that fits to the cosmos where matter is distributed. The gravitational matter 
density is composed by various components. In accordance with the nomenclature in the Lamda-
CDM model (CDM = Cold Dark Matter, Lamda =  ) [8], we have, 

gravitational matter  = (true) matter + dark energy matter  
(true) matter              = baryonic matter + dark matter. 
 
Normalizing all densities on the gravitational matter density gives, 
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  )(1 DBm ,                                                                                                                (6) 
 
where DBm   ,,, , respectively are the relative matter density, the relative dark energy 
matter density, the relative baryonic matter density and the relative dark matter density. These 
symbols are the ones used in the Lamda-CDM. It will be shown in this article, that the interpretation 
of the Cosmology Constant concept as expressed by (4), developed from a straight evolution from 
Einstein’s Field Equation [9], nicely fits to the Lamda-CDM model that evolves from the Friedmann-
Lemairtre-Robertson-Walker (FLRW) metric [10,11]. One of the results is the assessment of a 
numerical value of Milgrom’s acceleration constant by theory. Other benefits are a better 
understanding of the nature of dark matter and dark energy and a simple rudimentary two-
parameter model for cosmology.  
 
Cosmological model 
 
Let us model the visible universe as a sphere within the event horizon L . It contains distributed 
gravitational energy. This distributed energy is a gradually developed mixture of the energy from 
fluidal matter as meant by (5) and the energy from baryonic matter BM  as meant by (4). Hence, 
from (4) and (5), 
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Let GM the difference between the gravitational matter in a sphere LL   and the gravitational 

matter in a sphere L . It follows readily that 
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After writing the baryonic matter as a dimensionless fraction B  of the gravitational matter as, 

GBB MM  ,                                                                                                                                                    (9) 

eq. (8) can be integrated as 
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The gravitational energy 2cM G therefore, is 
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Hence, the gravitational mass density G in the sphere with radius L  is given by 
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This relationship between baryonic energy and gravitational energy allows us to compare the 
gravitational energy with the one from the Lamda-CDM model. In that model, the gravitational mass 

density is known as the critical mass density c . The CDM-Lamda model has been evolved from the 

Einstein-de Sitter model that has been the preferred one for the universe up to the 1980s. It has 
been refined to the present one to cope with certain cosmological phenomena, like for instance the 
discovery of the accelerating universe in 1998, [12,13,14]. For further evaluation of (12) to arrive at a 
numerical value of Milgrom’s acceleration 0a , it will be useful to consider a recapitulation the 

Lamda-CDM model as presented in the next section.  

 

The Lamda-CDM model 

The model evolves from the solution of Einstein’s Field Equation under the constraint of a particular 
metric.   
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where T is the stress-energy tensor, which describes the energy and the momenta of the source(s) 

and where R and R  are respectively the so-called Ricci tensor and the Ricci scalar, which can be 

calculated if the metric tensor components g are known [15,16]. The adopted metric, known as 

the FLRW metric [11], is 
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where ctq i0   
is the normalized time coordinate ( 1i  ), and where k  is a measure for the 

curving of space-time. The scale factor )(ta  expresses the time-dependence of the size of the 
universe. The ratio  
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is known as the Hubble factor. It is the main observable of the universe, because its numerical value 
can be established from red shift observations on cosmological objects ( taa d/d ).  
 
By moving the term g to the right side of (13), it can be conceived as an additional contribution 

to the energy density, 
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2)()( ctptp   .                                                                                                                                    (16b) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 November 2018                   doi:10.20944/preprints201712.0077.v3

http://dx.doi.org/10.20944/preprints201712.0077.v3


Note: the difference in sign between the  terms in (16a) and (16b) is due to the choice of the 
metric as ( ),,,i( zyxct with (+,+,+,+). 
   
The solution of (13) under constraint of the metric (14) are the two Friedmann equations [10], 
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Under the constraint k  0 (flat universe), and taking into consideration (16a,b), the first Friedmann 
equation evolves as, 
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The second Friedmann equation reads as, 
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Differentiating the mass density t in (18a) gives,  
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Because  is time-independent ( is independent of space-time coordinates), (19) is satisfied if,  
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where m ,  and 0H are constants. Although satisfying the equation would need two arbitrary 
constants only, a third one is added to impose the additional constraint 
 

1 m .                                                                                                                                                   (21)   
 
Applying (20a,b) on the first Friedmann equation (18a), results into, 
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The quantity 0H can now be interpreted as the Hubble parameter aa / at 1)( ta .  
 

 
 
Fig.1: The scaling factor )(ta as a function of cosmological time. The lower curve represents Hubble’s law. 
The upper curve shows the curve of accelerated scaling due to Einstein’s Cosmological Constant. 
 
 
Eq. (22) represents the Lamda-CDM model in its most simple format (actually, more terms are 
heuristically added under the square root operator to model empirical evidence from certain 
cosmological phenomena). It can analytically be solved as [17], 
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At present time Ptt  , the scale factor equals unity ( a  1) and the Hubble parameter is the 

observable 0H . Equating present time Pt  with Hubble time 1
0
 HtH  is justified if )(ta would have 

shown a linear increase over time up to now, under a constant rate of say 0c , because in that case 

tcta 0)(   and 0)( cta  . This is Hubble’s empirical law. Equating HP tt   in (23) as an axiomatic 

assumption, indeed results in a behavior of the scale curve that, up to present time Htt  , is pretty 
close to Hubble’s empirical law. As imposed, from (23), 
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Hence, from (23) and (24), 
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These values are only slightly different from those in the six-parameter Lamda-CDM model (where 

m  0.259). The difference is due to the simplicity of the format (22). Figure 1 demonstrates the 
viability of the axiomatic assumption to equate present time with Hubble time. Apparently, from 
comparing (24) with (18a) and (20a,b), it appears that the total gravitational matter is built up by a 
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matter part  as a consequence of the presence of the Cosmological constant and a matter part 

m from the residual fluidal background energy.    
 
It may seem that, in retrospect, the scaling in the past has been dominated by m and that it showed 

an almost linear increase of the scaling factor )(ta with cosmological time, while the future scaling 

may seem being dominated by  , thereby no longer showing a linear increase. However, an 
observer in the far past would have drawn the very same conclusion and an observer in the far future 
will do as well, because there is no reason why he/she should not adopt the same view on Einstein’s 
Equation, the metric and Hubble’s empirical law. Moreover, curiously, the simple fact of adopting a 
Cosmological Constant of any arbitrary magnitude will lead to the same distribution between 
(relative amount of dark energy) and m (relative amount of matter). This phenomenon can be 
explained by taking into consideration that the major impact on the model is due to the adoption of 
background energy from a fluidal space with a perfect symmetric stress-energy tensor and a tiny 
Cosmological Constant not affecting the symmetry of the FLRW-metric. These adoptions are the 
same for any cosmological observer, either in the present, either in the past, either in the far future. 
 
The total gravitational mass )1( at , known as critical mass c in the Lamda-CDM model 

observed within the Hubble horizon HH ctL   , can be established from (18a) as, 
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The assumption that Hubble time is equal to present time allows to equate the Hubble horizon with 
the event horizon of the visible horizon. Hence,                    
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From (25) and (26), we have 
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At this point, we are able to compare the gravitational mass density (27) as developed in the Lamda-
CDM model with the gravitational mass density (12) as developed in the cosmological model of the 
second paragraph. They should be the same.  The comparison will be made in the next paragraph.  
 
 
Comparing the Cosmological Model with the Lamda-CDM model 
 
Equating (12) with (27) gives,     
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 Elementary algebraic evaluation shows, 
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The quantity La has the dimension of acceleration. From HctL   and Ht = 13.8 Gyear (Hubble 

time), we have La 6.9 x 10-10 ms-2. The fraction B is known from the established empirical values 
in the Lamda-CDM model. In the preceding paragraph we have seen that the distribution between 

m and  is determined by theory. This is not the case as yet for the fraction B . Although the 

theory developed in this article shows an intimate relationship between 0a and B , it is unable to 
reveal the quantitative distribution between those quantities. For determining the value of Milgrom’s 
acceleration parameter 0a , the best that can be done is accepting the empirical value of B as 
established in the Standard Model of Cosmology from the Planck Collaboration Group, which says 
that [8], 
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Inserting this value into (29) eventually gives, 
 

0a 1.256 x 10-10 m/s2.                                                                                                                                    (31) 
 
 
Conclusion 
 
It has been shown how the numerical value of Milgrom’s acceleration constant is related with the 

with the m ,  and B  values of the matter distribution within observable universe as defined in 

the Standard Model of Cosmology as established by the Planck Collaboration Group. More in 
particular, it has been shown that 
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where Ht  is the Hubble timescale, which is commonly established as Ht  13.8 Gyear. Furthermore, 

it has been shown that, by adopting the Hubble timescale and Milgrom’s acceleration constant as 

primary parameters, the matter distribution of the observable universe over dark energy )(  , 

matter )( m , baryonic matter )( B  and dark matter )( Bm  is fully determined as a 

theoretical consequence from combining the view from the FRLW-metric based Lamda-CDM model 
with the view on the anti-screening effect from the Cosmological Constant [1]. The result is a simple 
two-parameter model for the observable universe, which captures the major cosmological 
parameters.                                                                                                                                         
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