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Summary 
In this article a two-parameter model is developed for the universe. The two parameters are the age of the 
universe and the value of Einstein’s Cosmological Constant. It is shown that these are sufficient to calculate the 
amounts of matter and dark energy in the universe, as well as the contributions of dark matter and baryonic 
matter in the matter part. All this, not only for present time, but also as a function of cosmological time. 
Moreover, the model allows establishing the numerical value for Milgrom’s acceleration parameter for present 
time. The developed theory gives an adequate explanation for the phenomena of the accelerated scaling of the 
universe and the anomaly of the stellar rotation curves in galaxies. The numerical results are in agreement with 
those of the Lamda-CDM model.   
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1. Introduction 
 

This article is meant as an extension to a previous study [1]. It is my aim to give some view 
on the cosmological space, in which I will apply the concepts that I have developed to give an 
explanation for the negative pressure executed by the spatial fluid that must be present in 
vacuum to justify a positive value of the Cosmological Constant Λ  in Einstein’s Field 
Equation. Such a value is required to remove the anomaly of particular cosmological 
phenomena, like the rotation curves of stars in galaxies and the accelerated expansion of the 
universe. In my previous article, it has straightforwardly been derived that in a gravitational 
system with a central mass M  in vacuum, the Cosmological Constant, while independent of 
space-time coordinates, amounts to 

 MGa 5/0=Λ ,                                                                                                                                      (1) 

where 0a ( ≈ 10-10 m/s2) is Milgrom’s acceleration constant [2,3,4] and G the gravitational 
constant. It is my aim to show that this relationship between Milgrom’s acceleration 
constant and the Cosmological Constant not only applies to galaxies, but holds for the 
universe as a whole as well, in spite of the obvious difficulty to identify a central mass. The 
study is prompted by the wish to find a means to assess the numerical value of Milgrom’s 
acceleration constant by theory, for which no clue could be found within the scope of 
galaxies.   

Satisfying Einstein’s Field equation in vacuum under absence of a massive source under the 
condition of a positive Cosmological Constant Λ requires the presence of a background 
energy [5]. Under inclusion of the massive source, the background energy will of course still 
be there and shows up as polarized dipoles [1,6], which explains the M/1 dependency of the 
Cosmological Constant. It may seem that a gravitational dipole concept, in the sense of a 
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bond between a positive mass and a negative mass, violates physics, because a negative 
mass is not a viable concept. It showed up, however, in a model that explains the weak limit 
solution of Einstein’s equation with a positive Cosmological Constant. As is well known, such 
a solution forces viewing the vacuum as a fluidal space with a negative pressure 
(corresponding with a positive background mass density). A close inspection will reveal (see 
appendix in [1]) that this solution is nothing else but the result of a modulation of the 
background energy density, due to a disturbance caused by the insertion of a central mass 
M . This allows to conceive the disturbance as gravitational dipoles on the pedestal of the 
background energy density. What may seem as a negative mass in the gravitational dipole is 
a dip in the background energy. The dipoles constitute grains in the fluidal vacuum with a 
negative pressure that neutralizes the gravitational force between the poles. This makes the 
gravitational dipole a valid concept.  
 
The vacuum fluid is an ideal one. This implies that its stress-energy tensor contains diagonal 
elements only and that in space-time ( ),,,i( zyxct with (+,+,+,+) metric they all have the 
same value. The pressure vp is  due to the background energy of the fluidal space, expressed 
by, 
 

Λ−=−=
G
ccpv π

ρ
8

4
2 ,                                                                                                                        (2) 

 
where c is the light velocity in vacuum and where ρ is the fluidal mass density. It must be 
present for giving a solution of Einstein’s Field Equation with ≠Λ  0 for the vacuum without 
any baryonic sources. Assuming the correctness of (1), the fluidal pressure would rise to 
infinity under the absence of baryonic source. Baryonic sources “eat” from the fluid, thereby 
gaining mass and reducing the energy level of the fluid. This model is applicable to 
cosmological objects with a massive kernel, like galaxies. Interestingly, though, it can be 
evolved to a model that fits to the cosmos where mass is distributed. For reasons to be 
explained later, a semantic difference is made between something denoted as cosmos and 
something else denoted as universe. 
 
 

2. Cosmological model 
 
Let us model the cosmos as a sphere with distributed matter and some radius L . This 
distributed matter is a mixture of fluidal matter DM  as meant by (2) and baryonic matter 

BM  as meant by (1). Effectively, the latter is the total of encapsulated mass.  Hence, from 
(1) and (2), 
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 Let DMΔ the difference between the fluidal matter in a sphere LL Δ+  and the fluidal 
matter in a sphere L . It follows readily that 
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Because of the influence of the baryonic mass on the energy level of the fluidal mass, it is 
fair to state that, 

DB MM β= ,                                                                                                                                           (5) 

where β  is a dimensionless quantity. Hence, by integrating (4), 

3102
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4
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022 Lc
G
acMD β

= .                                                                                                                     (6) 

The total gravitational massive energy 2cMG (fluidal plus baryonic), therefore, is 

35
)1(

3
6

2
0222 Lc
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acMcMcM BDG β

β+=+= .                                                                             (7) 

Hence, the massive energy density 2cGρ in the sphere with radius L  is given by 
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This unification of baryonic mass and fluidal mass allows us to compare this massive energy 
with the one as obtained in the present cosmological model, known as the Lamda-CDM 
model (CDM ≡Cold Dark Mass, Lamda ≡  Einstein’s Cosmological Constant), [7]  

The CDM-Lamda model has been evolved from the Einstein-de Sitter model that has been 
the preferred one for the universe up to the 1980s. It has been refined to the present one to 
cope with certain cosmological phenomena, like for instance the discovery of the 
accelerating universe in 1998, [8,9].  

 

3. The Lamda-CDM model  
 
The model evolves from the solution of Einstein’s Field Equation under the constraint of a 
particular metric.   
 

μνμνμν
π T
c
GgG 4

8=Λ+      with  μνμνμν RgRG
2
1−= ,                                                                   (9) 

 
where μνT is the stress-energy tensor, which describes the energy and the momenta of the 
source(s) and where μνR and R  are respectively the so-called Ricci tensor and the Ricci 
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scalar, which can be calculated if the metric tensor components μνg are known [10,11,12]. 
The adopted metric, known as the Friedmann-Lemairtre-Robertson-Walker (FLRW) metric 
[13], is 
 

)ddsin
1
d)((dd 22222

2

2
22

0
2 ϑϕϑ rr

kr
rtaqs ++

−
+= ,                                                                    (10) 

 
where ctq i0 =  is the normalized time coordinate ( 1i −= ), and where k  is a measure for 
the curving of space-time. The scale factor )(ta expresses the time-dependence of the size of 
the universe. The ratio  
  

)(tH
a
a =
 ,                                                                                                                                             (11) 

 
is known as the Hubble factor. It is the main observable of the universe, because its 
numerical value can be established from red shift observations on cosmological objects (

taa d/d≡ ).  
 
By moving the term μνgΛ to the right side of (9), it can be conceived as an additional 
contribution to the energy density, 
 

;)()( Λ+→ ρρρ tt   ;
κ

ρ Λ=Λ   2
8
c
Gπκ = .                                                                                     (12a) 

 
2)()( ctptp Λ−→ ρ .                                                                                                                        (12b) 

   
The solution of (9) under constraint of the metric (10) are the two Friedmann equations [14], 
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Under the constraint =k  0 (flat universe), and taking into consideration (12a,b), the first 
Friedmann equation evolves as, 
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The second Friedmann equation reads as, 
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Differentiating the mass density tρ in (14a) gives,  
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Because the background massive density Λρ is time-independent ( Λ is independent of 
space-time coordinates), (15) is satisfied if,  
 

3
0d

d13
d
d −Ω=→−= αρρρ H

t
a

at m     and   ΛΛ Ω= 0Hρ ,                                                        (16a,b) 

 
where mΩ , ΛΩ and 0H are constants. The quantity 0H is the Hubble parameter aa / at 

1)( =ta . It is tempting to believe that mΩ  and ΛΩ  are, respectively,  the relative amount of 
baryonic mass tρρ /  and the relative amount of background mass tρρ /Λ at 1)( =ta . This, 
however, is not necessarily be true, because (without further constraints) the differential 
equation (14) is satisfied for any distribution between mΩ and ΛΩ  as long as =Ω+Ω Λm 1.  
 
Applying (16a,b) on the first Friedmann equation (14a), results into, 
 

Λ
− Ω+Ω== 3

0)( aH
a
aaH m
 .                                                                                                       (17) 

 
This equation represents the Lamda-CDM model in its most simple format (actually, more 
terms are heuristically added under the square root operator to model empirical evidence 
from certain cosmological phenomena). Eq. (17) can be analytically solved as [15], 
 

1
0

3/23/1 );2/3(sinh)()( −
Λ

Λ

=Ω
Ω
Ω

= Htttta HH
m .                                                                            (18) 

 
At present time Ptt = , the scale factor equals unity ( =a  1) and the Hubble parameter is the 
observable 0H . Equating present time Pt  with Hubble time Ht  is justified if )(ta would have 
shown a linear increase over time up to now, under a constant rate of say 0c , because in 
that case tcta 0)( =  and 0)( cta = . This is Hubble’s empirical law. Equating HP tt =  in (18) as 
an axiomatic assumption, indeed results in a behavior of the scale curve that, up to present 
time Htt ≤ , is pretty close to Hubble’s empirical law. Hence, from (17), 
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1)( =Hta ;  1)( 0 =Ω+Ω→= ΛmH HtaH .                                                                                   (19) 
 
Hence, from (19) and (18), 
 

=Ω→=Ω
Ω

Ω−
ΛΛ

Λ

Λ 1)2/3(sinh)1( 3/23/1  0.737; =Ωm  0.263.                                               (20) 

 
These values are only slightly different from those in the six-parameter Lamda-CDM model. 
The difference is due to the simple format (17). Figure 1 demonstrates the viability of the 
axiomatic assumption to equate present time with Hubble time. 
 

 
 
Fig.1: The scaling factor )(ta as a function of cosmological time. The lower curve represents Hubble’s law. 
The upper curve shows the curve of accelerated scaling due to Einstein’s Cosmological Constant. 
 
 

4. Harmonizing the view on the universe with the view on the cosmos 
 
Let us proceed by trying to harmonize the view on the cosmos as discussed in the second 
paragraph with the view on the universe as discussed in the third paragraph. This will be 
done by comparing the amount of massive energy in the universe that is presently 
observable with the massive energy that would be observable on the basis of the 
cosmological model. Note that we wish only taking care of observability, thereby ignoring 
possible massive energy in non-observable ranges.  
 
The present massive density )1( =atρ , known as critical mass cρ in the Lamda-CDM model 
observed within the Hubble horizon HH ctL =  , can be established from (13a) as, 
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Its massive energy is equivalent with the massive energy as defined by (7). Hence,  
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Let us eliminate 0H  and HL from (22) by introducing a quantity La with the dimensionality 
of acceleration (m/s2), 
 

H
L L

ca
2

= ,                                                                                                                                              (23)       

 
Hence, from HH ctL =  and (19), 
 

c
aH L=0 .                                                                                                                                             (24) 

 
It has to be emphasized that La is not a free variable, but a known quantity that can be 
calculated from (23) as ≈La 7x10-10 m/s2. Expression (22) evolves as, 
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This expression establishes a relationship between the present ratio of baryonic matter over 
fluidal matter and Milgrom’s acceleration constant. Taking Milgrom’s acceleration constant 
for present time and the age of the universe as independent parameters, allows to establish 
the ratio of the values for baryonic matter and dark matter, which  in the Lamda-CDM model 
are considered as primary parameters. From =Ht  13.8 Gyear, we have == )/(2

HL ctca 6.9 
m/s2. For =0a 1.07 m/s2 we get from (25) the result =β 0.185, which is the ratio baryonic 
matter/dark matter in the Lamda-CDM model. The correspondence of the calculated value 
for Milgrom’s acceleration parameter in present time with evidence of observations gives a 
strong support for the viability of the theory developed in this article. 
 
 

5. Dark matter and dark energy 
 
The issue to be resolved still is the problem how to relate the theoretically established 
quantities mΩ and ΛΩ for matter and dark energy, which have their origin in Einstein’s 
Cosmological Constant as well, with baryonic matter and dark matter. While under 
expansion of the universe the matter density decreases proportionally with the size of the 
universe, the baryonic part of still continues “eating” from the dark matter part. The density 
of the dark energy, however, remains invariant under expansion, possibly after an initial loss 
of matter. That means that the matter part is made up by baryonic matter and dark matter 
in a ratio that scales under expansion of the universe. The scaling behaviour can be 
established from the following considerations. For the massive energy of the universe, we 
have from (21), 
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From (26) and (1), the Cosmological Constant Λ for the universe (which is different from the 
Λ of galaxies) can be established as 
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(Note that, because of the time-independency of Λ and the scaling of HL Lc /2=α , 
Milgroms acceleration constant scales with HL ) 
 
Hence, from (27) and (25), 
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where the constant 0k can be established from the known value of =β 0.185 at present time 

Htt = . Figure 2 shows the ratios β  and β−1  as a function of cosmological time. Because the 
baryonic content “eats” from the fluidal mass content, the baryonic part cannot exceed the 
dark matter part. Therefore ≤β 1, such as shown in the graph.  
 

 
 
Fig.2. The upper curve shows the relative amount of dark matter as a function of cosmological time. The 
lower curve shows the relative amount of baryonic matter. 
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6. Conclusion 
 
Putting everything together, we arrive at a very simple model for the universe, which 
nevertheless explains phenomena as dark matter, dark energy, the anomaly of the stellar 
rotation curves in the galaxies and the accelerated  expansion of the universe. It gives an 
explanation as well for the empirical laws of Hubble and Milgrom. Next to Newton’s 
gravitational constant G , only two other parameters are needed. These are the age of the 
universe Ht and Einstein’s Cosmological Constant Λ for the universe. Everything else follows 
from Einstein’s Field Equation in conjunction with the FRLW-metric. Let me summarize the 
basic equations and their implications. 
 
The time behaviour of the scaling factor of the universe is a solution of Einstein’s Field 
Equation under the FRLW-metric, 
 

1
0

3/23/1 );2/3(sinh)()( −
Λ

Λ

=Ω
Ω
Ω

= Htttta HH
m .                                                                           (30) 

As a consequence of =)( Hta 1, the relative values for matter density and dark energy are 
established as, 
 

=Ωm 0.263  and =ΩΛ  0.737.                                                                                                         (31) 
 
The relationship between the Cosmological Constant of the universe and Milgrom’s 
acceleration parameter is established as, 
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L
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= ; HctL = .                                                                                                      (32) 

 
Accepting the life time of the universe =Ht  13.8 Gyear and =Λ  7.29 x 10-54 m-2  as primary 
independent quantities, we get =0a  1.07 m/s2.  
 
The relationship between Milgrom’s acceleration parameter and the ratio β  of baryonic 
matter over dark matter is established as, 
 

.
)1(16x64

15x81
20 Laa

β
β

+
=                                                                                                                     (33) 

 
The resulting value for the present value of this ratio amounts to =β 0.185. The evolution 
over time is shown in figure 2. Because the baryonic matter cannot exceed the initial amount 
of dark matter, the ratio β  has the upper limit =β 1.  
 
All this has been derived straightforwardly by this two-parameter theory. The calculated 
quantities correspond nicely with those of the six-parameter Lamda-CDM model, which is 
largely empirical. The benefit of including more parameters is the modelling of cosmological 
effects beyond the scope of the simple model. The benefit of the simple model is its strength 
to show the relationship between dark energy and dark matter as well as the relationship 
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between Milgrom’s empirical MOND theory [2] and the Lamda-CDM model. Moreover, the 
two parameter theory strengthens the prediction made before that at large cosmological 
distance gravity turns on and-off into antigravity with some spatial periodicity [1].   
 
 

7. Discussion 
 
The previous paragraph contains the conclusions of this work. Harder than formulae is not 
possible. And a better proof than the match with known empirical evidence cannot be given. 
This leaves the problem of interpretation. This will be open for discussion and opinions 
might diverge. In the picture of the author, which he wants to give free for a better one, the 
universe seems appearing as a bubble in the cosmos. The cosmos is a sea of fluidal energy. 
Otherwise Einstein’s Cosmological Constant would be zero (an empty universe does not 
allow a viable solution of Einstein’s Field equation for ≠Λ  0). The universe is created from 
the subtraction of a matter bubble from this sea. The ratio of the fluidal energy and the 
matter energy is found from Einstein’s Field Equation and the axiom that the universe is a 
flat one. The matter subtraction is the event that marks the birth of the universe. The matter 
bubble might be a “quid pro quo” for spontaneously created ubiquitus ones.  
 
The matter bubble consists of dark matter, which is gradually converted into baryonic 
matter, in a rate that is determined by the value of Einstein’s Cosmological Constant for the 
universe, which is natural constant next to the Gravitational Constant. The conversion rate is 
related with the expansion rate of the universe, which is accelerated because of the non 
zero-value of the Cosmological Constant, hence because of the energetic fluid in the cosmos. 
 
As shown in the previous study [1], in which the relationship between Milgrom’s 
acceleration constant and the Cosmological Constant has been derived, the sea of fluidal 
energy contains grains with a gravitational dipole. The negative pole is a dip in the sea of 
energy. That means that the grains are ripples in the sea and that the gravitational dipole 
has a pedestal. In a galaxy, the grains influence the gravitational force, because the field 
from the central baryonic mass polarizes their gravitational dipole moment, thereby creating 
the gravitational equivalent of a displacement charge that adds to the baryonic 
one. Effectively, it means that matter from outside is pushed in within the cosmological 
horizon. This “displaced” matter is the dark matter.  
 
This dark matter model is less clear for the universe, where baryonic matter has a uniform 
distribution, thereby causing an overall random distribution of the gravitational dipole 
moments of the grains. Nevertheless, the universe is an assembly of galaxies as well, which 
all show the mechanism of attracting mass from beyond their cosmological horizons. It 
might well be that all their contributions sum up to the dark matter of our universe. The 
developed theory predicts the conversion of dark matter into baryonic matter. However, in 
spite of an adequate description of the process, as a consequence of Einstein’s Cosmological 
Constant, it does not reveal the very physical structure of the conversion. This conversion 
seems to be a an irreversible process, akin to osmosis, in which, for some reason, stable 
baryonic structures are created from the entropic behaviour of the dark matter kernels. 
Further research is required to gain more insight in this. 
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