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Abstract: Radar transmit signal design is a critical factor for the radar performance. In this paper, we1

investigate the problem of radar signal waveform design under the small signal power conditions2

for detecting a doubly spread target, whose impulse response can be modeled as a random process,3

in a colored noise environment. The doubly spread target spans multiple range bins (range-spread)4

and its impulse response is time-varying due to fluctuation (hence also Doppler-spread), such that5

the target impulse response is both time-selective and frequency-selective. Instead of adopting the6

conventional assumption that the target is wide-sense stationary uncorrelated scattering, we assume7

that the target impulse response is both wide-sense stationary in range and in time to account for the8

possible correlation between the impulse responses corresponding to close range intervals. The locally9

most powerful detector, which is asymptotically optimal for small signal cases, is then derived for10

detecting such targets. The signal waveform is optimized to maximizing the detection performance11

of the detector or equivalently maximizing the Kullback-Leibler divergence. Numerical simulations12

validate the effectiveness of the proposed waveform design for the small signal power conditions and13

performance of optimum waveform design are shown in comparison to the frequency modulated14

waveform.15

Keywords: radar; transmit signal waveform design; doubly spread; extended target; fluctuation;16

Kullback-Leibler divergence; locally most powerful detector; colored noise17

1. Introduction18

Radar transmit signal waveform design is an important problem and active research area as the19

transmit signal critically affects a radar system’s performance [1-18]. It is also categorized as a type of20

waveform diversity problem [9]. Many methods have been proposed for radar waveform optimization21

such as maximizing mutual information (MI), minimizing mean square error, relative entropy, and22

maximizing output-signal-to-noise ratio (SNR) [2]. For example, Bell advanced the waveform design23

by proposing maximizing MI between the target ensemble and received data [13]. Yang et al. applied24

the minimum mean square error metric and the MI metric to multiple-input multiple-output (MIMO)25

target recognition and classification in [14]. Romero et al. studied optimizing SNR and MI for detecting26

targets of different types in [15]. Tang et al. studied using KLD and MI for MIMO radar waveform27

design in [17]. Aubry et al. developed knowledge-aided transmit signal in signal-dependent clutter28

[16]. Demaio et al. considered designing waveform under similarity constraint to achieving good29

ambiguity properties in [18]. Among the existing literature, the targets are typically assumed as a point30

target or an extended target.31

In this paper, we study a more complicated case when the extended target is fluctuating, also32

called doubly spread target [3]. The doubly spread target can be moving or static. We consider33

designing optimal radar waveform for detecting such targets in colored noise. Limited work has been34

devoted to this type of target detection waveform design. There are several areas that this type of35
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target is encountered in such as when the details of the target are of interest, e.g., mapping radar,36

and when the target is rotating [3]. In [2], both the target and reverberation are modeled as doubly37

spread and expression of the signal-to-interference ratio is derived. It is worth pointing out that the38

mathematical model of a doubly spread target is similar to that of a doubly dispersive communications39

channel [3][4] given the similarities between radar and communications.40

A doubly spread target/channel can be understood as a linear and time-varying (LTV) system41

in that the reflected signal is a superposition of all reflected signal from different ranges and the42

target response at each range changes versus time. The time-varying characteristics of a radar target43

may be caused by its fluctuation [3]. The return from each range is assumed as a sample function44

of a stationary zero- mean complex Gaussian random process [3]. On the other hand, the returns45

from different intervals have been often assumed to be statistically independent [3]. Together, the46

target/channel is assumed to be of wide-sense stationary uncorrelated scattering (WSSUS) [3][4],47

which was introduced by Bello [5] and has been widely used ever since. The WSSUS assumption48

greatly simplifies the statistical characterization of LTV communications channel and radar targets.49

However, the “uncorrelated” assumption of returns from different intervals may be invalid in practice50

because target components that are close to each other often result from the same physical scatterer and51

will hence be correlated [4]. In addition, filters, antennas, and windowing operations at the transmit52

and/or receive side cause some extra time and frequency dispersion that results in correlations of53

the spreading function [4]. Therefore, the target response is assumed WSS in both time direction and54

range in this paper and the transmit signal is designed according to the power spectral density of the55

target. It is worth strenghtening that the results of this paper may not apply to the case when the target56

impulse response is modeled as a deterministic function instead of a random process.57

The paper is organized as follows. In Section 2, the reflected signal from a moving doubly58

spread target is derived for a pulsed transmit signal. Section 3 derives the power spectral density59

of the received data. And the detection performance is posed in the frequency domain. The locally60

most powerful detector and optimal waveform solution are derived in Section 4. To evaluate the61

effectiveness of the derived waveform, several numerical simulations are given in Section 5. Lastly,62

Section 6 draws the conclusions.63

2. Modeling of the Pulsed Transmit Signal and Received Data64

Throughout the paper, the transmit signal is denoted as s(t); the reflected signal corresponding to65

s(t) is denoted as r(t); additive noise is denoted as w(t);
√

θ denotes propagation attenuation; and the66

received data is denoted as x(t). The detection problem can be written as a hypothesis testing problem67

as68

H0 : x(t) = w(t); target absent

H1 : x(t) =
√

θr(t) + w(t); target present

where the reflected signal is

r(t) =
∫

s(t− τ)h(t, τ)dτ;

and h(t, τ) is the target impulse response (TIR), which describes the target’s response as a function of
time τ due to an impulse at time t− τ, and τ is the single-trip delay associated with the propagation
of the transmit signal to a target (also temporal range). Specifically, we consider to design a pulsed
transmit signal instead of a continuous-waveform signal since the goal is to detecting a moving target
[9]. The pulsed waveform transmit signal s(t) at the baseband is of the form:

s(t) =
K−1

∑
k=0

ak p(t− kTr) (1)
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Figure 1. An illustration of the pulses and corresponding reflected signal

where Tr is the pulse repetition interval (PRI) and p(t), the complex signature pulse of the waveform
with a duration Tp, ak’s are complex-valued coefficients, and K is the number of pulses in a coherent
integration interval. Let

pk(t) = ak p(t− kTr) (2)

then transmit signal can be writen as

s(t) =
K−1

∑
k=0

pk(t) (3)

The backscattered signal corresponding to pk(t) is denoted as rk(t), and therefore r(t) can be written as

r(t) =
K−1

∑
k=0

rk(t).

An illustration of the first two pulses p0(t), p1(t) and a general pk(t) and their corresponding reflected69

signal rk(t) is given in Figure 1. The relationship between the reflected signal r(t) and the transmit70

signal s(t) are based on the following set of assumptions.71

• A1: The pulse duration Tp is far smaller than PRI Tr; that is, Tp � Tr. The extended target72

moves in a linear direction and as such the temporal length Tg of the target is a constant over the73

coherent integration interval. The time duration of responses from all ranges to a transmitted74

pulse is smaller than the PRI, so that the returns from adjacent pulses do not overlap; that75

is,Tp + Tg ≤ Tr.76

• A2: The phase of the reflected signal for each transmitted pulse is assumed to be constant77

and changes on a pulse-to-pulse basis due to target movement. This is the ”stop-and-go’78

approximation [3]. The initial phase of rk(t) which is the signal return for the kth pulse is79

2πkFdTr, where Fd is the Doppler frequency. A range dependent component of the phase is80

added to each pulse return as shown next.81

• A3: The fluctuation causes the statistical characteristic of TIR h(t, τ) changes from pulse to pulse,82

so when the kth pulse illuminates the target, equivalently kTr ≤ t ≤ (k+ 1)Tr, h(t, τ) = h(tk, τ) =83

hk(τ) where tk = kTr +
R0
c with R0 denoting the distance of the nearest point of the target and84

the radar, c denoting the speed of light. So hk(τ) represents TIR when the kth pulse illuminating85

the target at time kTr +
R0
c . To account for Doppler effect, the TIR h(tk, τ) can be expressed as86

hk(τ) = ej2πFdtk hLP(tk, τ), so that hLP(tk, τ) is low pass in tk.87

With the above assumptions, it is shown in Appendix A that the refelcted signal rk(t) for k =

0, 1, . . . , K− 1 is

rk(t) = akej2πFdtk

∫ Tg

0
p(t− kTr − τ)hLP(tk, τ)dτ (4)
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when kTr +
2R0

c ≤ t ≤ kTr +
2R0

c + Tg + Tp and zero otherwise. Furthermore, we sample at t = i∆t,
where ∆t is determined by the bandwidth of each transmitted pulse p(t). Let the discrete time
representation of p(t) be denoted by p[m] and each pulse of duration Tp is represented by Np samples.
Similarly, each PRI has Nr samples. The extended target of length Tg is sampled into Ng samples.
The lowpass TIR hLP(tk, τ) is represented as hLP[k, l] in discrete time for k = 0, 1, · · · , K − 1 and
l = 0, 1, · · · , Ng − 1. The reflected signal for a given pulse has a length N = Np + Ng − 1. The received
signal for the kth pulse (See Appendix A for derivation)

rk[n] = akej2π fdk
Ng−1

∑
l=0

p[n− l]hLP[k, l] (5)

with fd = FdTr. Equivalently, we can write the reflected data as a matrix R with its (k, n) element being88

r[k, n] = rk[n]. In literature, k = 0, 1, · · · , K− 1 is also called slow time index and n = 0, 1, · · · , N − 189

is called fast time index. Similarly, the received data can be denoted as x[k, n] and the additive noise90

w[k, n]. Then we can write the detection problem in a discrete time form as follows:91

H0 : x[k, n] = w[k, n]

H1 : x[k, n] =
√

θr[k, n] + w[k, n] (6)

3. Detection Problem Formulation92

We focus on designing the signature pulse p[m] by letting a0 = a1 = · · · = aK−1 = 1. Then r[k, n]
reduces to

r[k, n] = ej2π fdk
Ng−1

∑
l=0

p[n− l]hLP[k, l].

Different from the WSSUS assumption, we assume that the discrete-time lowpass TIR hLP[k, l] is a93

2-D wide sense stationary (WSS) random process both in slow time and fast time and has a 2-D94

autocorrelation matrix Rhh[∆k, ∆l] with a corresponding 2-D power spectral density (PSD) denoted95

as Ph(η, φ). Let the autocorrelation matrix of r[k, n] denoted as Rrr[k, n, ∆k, ∆n], and it is proved in96

Appendix B that when a single signal pulse duration is far shorter than the extended target length97

(Np � Ng), we have98

Rrr[k, n, ∆k, ∆n] = ej2π fd∆k
Np−1

∑
m=0

Np−1

∑
m′=0

p[m]p∗[m′]Rhh[∆k, ∆n− (m−m′)] (7)

As shown, the autocorrelation Rrr[k, n, ∆k, ∆n] only depends upon ∆k and ∆n and therefore r[k, n] is99

also a 2-D WSS process both in slow time k and fast time n. Intuitively speaking, if a 2-D WSS process100

is filtered by a 1-D (one of the two dimensions) linear time invariant filter, the output is still a 2-D WSS101

process. The autocorrelation can hence be simply denoted as Rrr[∆k, ∆n] instead.102

Furthermore, the 2-D PSD Pr(η, φ) of the reflected signal r[k, n] is shown in Appendix B to be

Pr(η, φ) = Ph(η − fd, φ)|S(φ)|2 (8)

where |S(φ)|2 is the transmit signal energy spectral density (ESD) of a single pulse p[m]. It says that103

along the slow time k direction, equivalently η direction in frequency domain, the reflected signal104

PSD is a shift of target PSD by Doppler and along the fast time n direction, equivalently φ direction in105

frequency domain, the reflected signal PSD is a simple multiplication of the transmit signal ESD and106

target PSD in that direction.107
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The assumption that the additive noise for each reflected pulse are uncorrelated implies that108

w[k1, n] is uncorrelated from w[k2, m] if k1 6= k2 and that w[k, n] has a PSD Pw(φ) along the fast time109

direction, we can pose the detection problem in frequency domain as:110

H0 : Px(η, φ) = Pw(φ) for all η (9)

H1 : Px(η, φ) = θPr(η, φ) + Pw(φ)

= θPh(η − fd, φ)|S(φ)|2 + Pw(φ) (10)

where Px(η, φ) denotes the 2-D PSD of the received data. Note that Ph(η, φ) and Pw(φ) are assumed111

known and θ > 0 is unknown. And in this paper we assume that fd is also unknown. The waveform112

design problem is to design the pulse ESD |S(φ)|2.113

4. The Optimal Waveform Solution114

To design the waveform, we begin by deriving the Locally most powerful detector, which is an115

asymptotically optimal detection for small signal cases [19].116

Assume that the observed data X is of size K × N. The asymptotic expression for the117

Log-likelihood function of hypothesis H0 or H1 is given by the following with the appropriate118

expression for Px(η, φ) substituted from equations (9) or (10) respectively [12].119

ln p(X) = −KN
2

ln 2π − KN
2

∫∫ [
ln Px(η, φ) +

Ix(η, φ)

Px(η, φ)

]
dηdφ (11)

where Ix(η, φ) is the 2-D Periodogram which is the squared value of the 2-D Discrete Fourier Transform120

of X for frequency (η, φ) and when devided by KN, it can be viewed as the estimate of the received121

data’s 2-D PSD. Then with (10), we have underH1122

∂ ln p(X; θ)

∂θ
= −KN

2

∫∫ [Ph(η − fd, φ)|S(φ)|2
Px(η, φ)

− Ix(η, φ)Ph(η − fd, φ)|S(φ)|2
P2

x (η, φ)

]
dηdφ (12)

and the Fisher information matrix of θ can be found as [19]123

I(θ) =
KN

2

∫∫ (Ph(η − fd, φ)|S(φ)|2
Px(η, φ)

)2

dηdφ (13)

The Locally Most Powerful (LMP) test statistic is [19]124

TLMP =
∂ ln p(X;θ)

∂θ√
I(θ)

∣∣∣∣∣
θ=0

=
−KN

2

∫∫ [ Ph(η− fd ,φ)|S(φ)|2
Pw(φ)

− Ix(η,φ)Ph(η− fd ,φ)|S(φ)|2
P2

w(φ)

]
dηdφ√

KN
2

∫∫ ( Ph(η− fd ,φ)|S(φ)|2
Pw(φ)

)2
dηdφ

(14)

=

√
KN

2

∫∫ Ph(η− fd ,φ)|S(φ)|2
Pw(φ)

Ix(η,φ)−Pw(φ)
Pw(φ)

dηdφ√∫∫ ( Ph(η− fd ,φ)|S(φ)|2
Pw(φ)

)2
dηdφ

(15)
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As shown, (15) represents the LMP test statistic at a given Doppler shift and to implement the LMP125

detector, the information of Doppler fd is needed. To maximize the detection performance with respect126

to the transmitted signal, we need to only maximize the deflection coefficient, which is derived [19] as127

d2
LMP = θ2 I(θ0)|θ0=0

=
KNθ2

2

∫∫ (Ph(η − fd, φ)|S(φ)|2
Pw(φ)

)2

dηdφ, (16)

where θ0 is the true value of θ underH0, which is zero. Note that the deflection coefficient does not128

depend on Doppler fd. In [2], it has been shown that maximizing the Kullback-Libeler divergence129

(KLD) between the probability of density function of received data when target present and that of130

target absent is the correct metric to use for detecting random targets. A comparison of equation (16)131

and equation (A29) in Appendix C shows that the KLD D(p1||p0) ≈ 1
2 d2

LMP for doubly spread targets.132

Note that different from the waveform design for range-spread target [2], for the doubly spread target,133

we first need to integrate the target PSD (squared) along the slow time direction (representing the134

fluctuations) to produce a single value for a certain φl , which produces ∑K−1
k=0 P2

h (ηk − fd, φl).135

The waveform design problem is to maximize the KLD with the energy constraint ∑N−1
l=0 |S(φl)|2 =136

E , which can be expressed as follows.137

max|S(φl)|2 ∑N−1
l=0

∑K−1
k=0 P2

h (ηk− fd ,φl)

P2
w(φl)

|S(φl)|4

s.t. ∑N−1
l=0 |S(φl)|2 = E (17)

The objective function is a convex function on a convex set. The optimal solution is to put all energy138

into the frequency bin φl which makes the term, denoted as c(φl) =
∑K−1

k=0 P2
h (ηk− fd ,φl)

P2
w(φl)

= ∑K−1
k=0

[
Ph(ηk ,φl)

Pw(φl)

]2
139

the maximum among all l’s. Note that c(φl) does not depend on fd and hence the Doppler does not140

affect the optimal design solution. The reason is that Doppler causes the target PSD to be shifted along141

the η direction (representing fluctuation), which is the direction we integrate the target PSD over.142

In a special case when the target PSD is separable; that is the 2-D target PSD is separable in slow143

time (representing fluctuation characteristics) and in fast time (target impulse response at certain slow144

time) such that Ph(η, φ) = Ph1(η)Ph2(φ). Then, we have145

∑K−1
k=0 P2

h (ηk, φl)

P2
w(φl)

=
∑K−1

k=0 P2
h1
(ηk)P2

h2
(φl)

P2
w(φl)

=
P2

h2
(φl)

P2
w(φl)

K−1

∑
k=0

P2
h1
(ηk) (18)

and the optimal solution is to put all energy into the frequency bin φl where Ph2(φl)
Pw(φl)

is the maximum146

among all l’s, which is the same result for nonflucutation case (singly-spread) in [2].147

5. Simulations148

In this section, we set up several numerical simulations to evaluate the performance of the149

proposed waveform and compare it with the linear modulated frequency (LFM) waveform, which is150

widely used in practice due to its easiness in implementation. The detector employed is the derived151

LMP detector for both waveforms. The 2-D TIR is a 32× 32 two dimensional random process which152

means that there are K = 32 pulses sent and the extended target has a length Ng = 32. While the153

transmit signal signature pulse p[m] has a length Np = 8. Then N = Ng + Np − 1 = 39. The rest of154

the simulation setup details can be found in Appendix D. In the first simulation, we consider a case155

where the key term that decides the waveform design, c(φl) =
∑K−1

k=0 P2
h (ηk ,φl)

P2
w(φl)

, is such as shown in the156
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Figure 2. Simulation 1 setup and the waveform designs

top subfigure of Figure 2. And the signal energy is θE = 4.16. The LMP-based waveform is given in157

the middle subfigure of Figure 2 and the LFM waveform is given in the bottom subfigure of Figure 2.158

The detection performances of the two waveforms, represented in the receiver operating characteristics159

(ROC), are given in Figure 3. It shows that the LMP-based waveform substantially outperforms the160

LFM waveform.161

In simulation 2, we consider an extreme case when the term c(φl) is flat as shown in the top162

subfigure of Figure 4. Recall that the LMP-based waveform puts all the signal energy into the frequency163

bin where c(φl) is the maximum. For the LMP-based waveform it is equivalent to put the signal energy164

into any frequency bin since c(φl) is the same value for all frequency bin φl . For illustration, the165

frequency bin φl = 0.365 is chosen. The LMP-based waveform is shown in the middle subfigure166

of Figure 4. The LFM waveform (shown in the bottom subfigure of Figure 4) and the signal energy167

θE = 4.16 are kept the same as the previous simulations. Figure 5 shows the detection performance168

comparison between the two waveforms. The LMP-based waveform still outperforms the LFM169

waveform in this case; although the difference between the two waveforms’ performance is smaller170

compared to that of Simulation 1.171

6. Conclusions172

In this paper, we considered the optimal radar waveform design for detecting a moving173

doubly spread target, both range-spread and Doppler-spread (due to fluctuating), in a colored noise174

environment for the small signal power condition. The impulse response of the target is assumed to175

be a two-dimensional (slow time and fast time) wide-sense stationary random process. The optimal176

waveform is derived by maximizing the deflection coefficient of the locally most powerful detector or177

equivalently maximizing the Kullback-Leibler divergence. The optimal signal waveform is shown to be178

putting all the signal energy in the frequency bin where the ratio of the summed squared target power179

along slow time direction over the squared noise power is maximum. Its performance is compared to180

the conventional LFM waveform. The performances of both waveforms depend on the target PSD and181

noise PSD. Numerical simulations show that the LMP-based waveform generally outperform the LFM182

waveform in terms of detection performance. When the target PSD, relative to noise PSD, is highly183

selective in frequency, the LMP-based waveform generally can achieve a substantial performance184
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Figure 5. The performances of the two waveforms in simulation 2

improvement. However, these results may apply to the detection problem only and no account has185

been taken on other important considerations for a single radar such as range resolution.186
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Appendix A Derivation of reflected signal r(t) for pulsed transmit signal189

In this section, we derive the reflected signal r(t). First, we have

rk(t) =
∫

pk(t + kTr +
2R0

c
− τ)hk(τ)dτ (A1)

Shifting rk(t) by kTr +
2R0

c such as

rk(t + kTr +
2R0

c
) =

∫
pk(t− τ)hk(τ)dτ (A2)

where R0 denotes the distance of the nearest point of the target and the radar, and c is the speed of
light and hk(τ) is the target impulse response (TIR) for the kth pulse illuminating the target at time
kTr +

R0
c , We denote the illuminating time point tk = kTr +

R0
c for k = 0, 1, · · · , K− 1. Then, we have

hk(τ) = h(kTr +
R0

c
, τ) = h(tk, τ) (A3)

where the function h(tk, τ) represents the target impulse response at time tk and temporal range τ.190

This is the assumption A3 in Section II. Also the TIR length when the target is illuminated by the kth
191

pulse is assumed the same for all k’s and is denoted as Tg (assumption A1 in Section II).192

Then we have

rk(t + kTr +
2R0

c
) =

∫ Tg

0
pk(t− τ)h(tk, τ)dτ (A4)

where
0 ≤ t ≤ Tg + Tp
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If we let
t′ = t + kTr +

2R0

c
(A5)

then we have

rk(t′) =
∫ Tg

0
pk(t′ − kTr −

2R0

c
− τ)h(tk, τ)dτ (A6)

when kTr +
2R0

c ≤ t′ ≤ kTr +
2R0

c + Tg + Tp and rk(t′) = 0 otherwise. Furthermore, we have

r(t) =
K−1

∑
k=0

ak

∫ Tg

0
p(t− kTr −

2R0

c
− τ)h(tk, τ)dτ (A7)

where the range bin R0 is assumed fixed for all K pulses during coherent processing interval (CPI).193

To account for Doppler (assumption A3 in Section II) let

h(tk, τ) = ej2πFdtk hLP(tk, τ) (A8)

so that hLP(t, τ) is lowpass in t. Then we have

r(t) =
K−1

∑
k=0

akej2πFdtk

∫ Tg

0
p(t− kTr −

2R0

c
− τ)hLP(tk, τ)dτ (A9)

if we reference time to the beginning of return signal at t = 2R0
c we have

r(t) =

{
∑K−1

k=0 akej2πFdtk
∫ Tg

0 p(t− kTr − τ)hLP(tk, τ)dτ, 0 ≤ t ≤ (K− 1)Tr + Tg + Tp

0, otherwise

Next we consider the problem in discrete time by sampling at a time resolution ∆t, which is194

determined by the bandwidth of p(t).195

r[n] = r(n∆t) =
K−1

∑
k=0

akej2πFdtk

∫ Tg

0
p(n∆t− kTr − τ)hLP(tk, τ)dτ

=
K−1

∑
k=0

akej2πFd(kTr+
R0
c )
∫ Tg

0
p(n∆t− kTr − τ)hLP(tk, τ)dτ

But the phase factor ej2πFd
R0
c can be combined with hLP, that is we can let

h̄LP(tk, τ) = ej2πFd
R0
c hLP(tk, τ) (A10)

Also we have assumed that hLP(t, τ) is WSS in τ, so we can omit phase term that contains R0
c in

h̄LP(tk, τ) to yield

r[n] =
K−1

∑
k=0

akej2πFdkTr

∫ Tg

0
p(n∆t− kTr − τ)hLP(tk, τ)dτ

Assume that a pulse interval Tr = Nr∆t and τ = l∆t for 0 ≤ l ≤ Ng − 1, where Tg = Ng∆t we have

r[n] ≈
K−1

∑
k=0

akej2πk

fd︷︸︸︷
FdTr

Ng−1

∑
l=0

p(n∆t− kTr − l∆t)hLP(kTr, l∆t)∆t

Now let
p(n∆t− kTr − l∆t) = p[n− l − kNr] (A11)
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and
hLP[k, l] = hLP(kTr, l∆t)∆t (A12)

r[n] =
K−1

∑
k=0

akej2π fdk
Ng−1

∑
l=0

p[n− l − kNr]hLP[k, l]

for n = 0, 1, · · · , (K− 1)Nr + Np + Ng − 1. If we let n′ = n− kNr; that is, we reference the sequence to
the begining of each transmit pulse time, we have

rk[n′] = r[n′ + kNr] = akej2π fdk
Ng−1

∑
l=0

p[n′ − l]hLP[k, l]. (A13)

we have for the received pulse for the kth transmission

rk[n] = akej2π fdk
Ng−1

∑
l=0

p[n− l]hLP[k, l] (A14)

where196

k = 0, 1, · · · , K− 1 slow time

n = 0, 1, · · · , Np + Ng − 1 fast time

fd = FdTr Doppler effect

Appendix B The Autocorrelation Matrix and Power Spectral Density of Reflected Signal r(k, n)197

Appendix B.1 Derivation of the autocorrelation matrix Rrr(∆k, ∆n)198

From the definition of autocorrelation matrix, we have199

Rrr[k, n, ∆k, ∆n] = E(r[k + ∆k, n + ∆n]r∗[k, n])

= E

(
ej2π fd(k+∆k)

Ng−1

∑
l=0

p[n + ∆n− l]hLP[k + ∆k, l]e−j2π fdk
Ng−1

∑
l′=0

p∗[n− l′]h∗LP[k, l′]

)

= ej2π fd∆kE

(Ng−1

∑
l=0

Ng−1

∑
l′=0

p[n + ∆n− l]p∗[n− l′]hLP[k + ∆k, l]h∗LP[k, l′]

)

= ej2π fd∆k
Ng−1

∑
l=0

Ng−1

∑
l′=0

p[n + ∆n− l]p∗[n− l′]E
(
hLP[k + ∆k, l]h∗LP[k, l′]

)
= ej2π fd∆k

Ng−1

∑
l=0

Ng−1

∑
l′=0

p[n + ∆n− l]p∗[n− l′]Rhh[∆k, l − l′] (A15)

Recall that for one single pulse of the transmit signal, the transmit signal p[m] is only nonzero when200

0 ≤ m ≤ Np − 1 where Np is the length of a single pulse. Hence, a term in Rrr[k, n, ∆k, ∆n] is only201

nonzero if202

0 ≤ n + ∆n− l ≤ Np − 1

0 ≤ n− l′ ≤ Np − 1 (A16)
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That is, for given n and ∆n, l and l′ can only take values in the following scopes otherwise203

Rrr[k, n, ∆k, ∆n] will be zero204

0 ≤ n + ∆n + 1− Np ≤ l ≤ n + ∆n ≤ Ng − 1

0 ≤ n + 1− Np ≤ l′ ≤ n ≤ Ng − 1 (A17)

If assume that Np � Ng, that is, each transmit pulse length is small compared with the TIR length in205

temporal range number Ng, then the valid scope of Np − 1 ≤ n ≤ Ng − 1 is approximate to the whole206

scope 0 ≤ n ≤ Ng + Np − 1 we have207

Rrr[k, n, ∆k, ∆n] = ej2π fd∆k
n+∆n

∑
l=n+∆n+1−Np

n

∑
l′=n+1−Np

p[n + ∆n− l]p∗[n− l′]Rhh[∆k, l − l′] (A18)

Now let m = n + ∆n− l and m′ = n− l′ then we have208

0 ≤ m ≤ Np − 1

0 ≤ m′ ≤ Np − 1

l − l′ = ∆n− (m−m′) (A19)

and209

Rrr[k, n, ∆k, ∆n] = ej2π fd∆k
Np−1

∑
m=0

Np−1

∑
m′=0

p[m]p∗[m′]Rhh[∆k, ∆n− (m−m′)] (A20)

Appendix B.2 Derivation of PSD Pr(η, φ)210

Next the relationship between the reflected data PSD and target PSD is derived. First, we rewrite211

Rrr[∆k, ∆n] = ej2π fd∆k
∞

∑
m=−∞

∞

∑
m′=−∞

p[m]p∗[m′]Rhh[∆k, ∆n− (m−m′)] (A21)

where p[m] is nonzero only if m ∈ [0, Np − 1]. First, we replace the target impulse response212

autocorrelation with its PSD.213

Rrr[∆k, ∆n] = ej2π fd∆k
∞

∑
m=−∞

∞

∑
m′=−∞

p[m]p∗[m′]Rhh[∆k, ∆n− (m−m′)]

= ej2π fd∆k
∞

∑
m=−∞

∞

∑
m′=−∞

p[m]p∗[m′]
∫

η

∫
φ

Ph(η, φ)ej2πη∆kej2πφ(∆n−(m−m′))dφdη

= ej2π fd∆k
∫

η

∫
φ

∞

∑
m=−∞

∞

∑
m′=−∞

p[m]p∗[m′]Ph(η, φ)ej2πη∆kej2πφ(∆n−(m−m′))dφdη

= ej2π fd∆k
∫

η

∫
φ

∞

∑
m=−∞

∞

∑
m′=−∞

p[m]e−j2πφm p∗[m′]ej2πφm′Ph(η, φ)ej2πη∆kej2πφ∆ndφdη

= ej2π fd∆k
∫

η

∫
φ

∞

∑
m=−∞

p[m]e−j2πφm
∞

∑
m′=−∞

p∗[m′]ej2πφm′Ph(η, φ)ej2πη∆kej2πφ∆ndφdη

= ej2π fd∆k
∫

η

∫
φ
|S(φ)|2Ph(η, φ)ej2πη∆kej2πφ∆ndφdη

=
∫

η

∫
φ
|S(φ)|2Ph(η, φ)ej2π(η+ fd)∆kej2πφ∆ndφdη (A22)
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where S(φ) = |F{p[m]}|2 with F{·} denoting the Fourier transform is the signal energy spectrum of214

a single pulse. As seen if let η′ = η + fd then the above becomes215

Rrr[∆k, ∆n] =
∫

η

∫
φ
|S(φ)|2Ph(η, φ)ej2π(η+ fd)∆kej2πφ∆ndφdη

=
∫

η′

∫
φ
|S(φ)|2Ph(η

′ − fd, φ)ej2πη′∆kej2πφ∆ndφdη′ (A23)

Hence, we have that the 2-D PSD of the r[k, n] is216

Pr(η, φ) = |S(φ)|2Ph(η − fd, φ) (A24)

The same result can be obtained by taking 2-D Fourier transform of the above autocorrelation to217

produce the 2-D PSD of r[k, n] as follows.218

Pr(η, φ) = ∑
∆k

∑
∆n

Rrr[∆k, ∆n]e−j2πη∆k−j2πφ∆n

= ∑
∆k

∑
∆n

ej2π fd∆k
∫

f1

∫
f2

|P( f2)|2Ph( f1, f2)ej2π f1∆kej2π f2∆nd f2d f1 exp(−j2πη∆k− j2πφ∆n)

= ∑
∆k

∑
∆n

∫
f1

∫
f2

|P( f2)|2Ph( f1, f2)ej2π f1∆kej2π f2∆n exp(−j2π(η − fd)∆k− j2πφ∆n)d f2d f1

= Ph(η − fd, φ)|S(φ)|2 (A25)

Appendix C The relationship between Kullback Leibler divergence and deflection coefficient219

We next calculate the KLD as follows.220

ln p1(X)− ln p0(X) = −KN
2

[ ∫∫ [
ln P1(η, φ)− ln P0(η, φ) +

Ix(η, φ)

P1(η, φ)
− Ix(η, φ)

P0(η, φ)

]
dηdφ(A26)

where P1(η, φ) is Px(η, φ) underH1 and P0(η, φ) is Px(η, φ) underH0. Then the KLD D(p1(X)||p0(X)),221

also simplified as D(p1||p0) at times, can be found as222

D(p1||p0) =
∫

p1(X)[ln p1(X)− ln p0(X)]dX

= −KN
2

∫∫ [
ln P1(η, φ)− ln P0(η, φ) +

P1(η, φ)

P1(η, φ)
− P1(η, φ)

P0(η, φ)

]
dηdφ

= −KN
2

∫∫ [
ln

P1(η, φ)

P0(η, φ)
+ 1− P1(η, φ)

P0(η, φ)

]
dηdφ

= −KN
2

∫∫ [
ln

θPh(η − fd, φ)|S(φ)|2 + Pw(φ)

Pw(φ)
+ 1− θPh(η − fd, φ)|S(φ)|2 + Pw(φ)

Pw(φ)

]
dηdφ

=
KN

2

∫∫ [
θPh(η − fd, φ)|S(φ)|2

Pw(φ)
− ln

(
1 +

θPh(η − fd, φ)|S(φ)|2
Pw(φ)

)]
dηdφ

(A27)

In discrete-time expression, let ηk =
k
K for k = 0, 1, · · · , K− 1, ∆η = 1

K and φl =
l
N for l = 0, 1, · · · , N−223

1, ∆φ = 1
N then the KLD can be written as224

D(p1||p0) =
1
2

K−1

∑
k=0

N−1

∑
l=0

[
θPh(ηk − fd, φl)|S(φl)|2

Pw(φl)
− ln

(
1 +

θPh(ηk − fd, φl)|S(φl)|2
Pw(φl)

)]
(A28)

We consider the small signal case (θ is small). By employing the Taylor expansion ln(1 + x) ≈ x− 1
2 x2,225

D(p1||p0) for the small signal case is approximately226
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Figure A1. Simulation 1 target PSD Ph(η, φ)

D(p1||p0) ≈
1
4

K−1

∑
k=0

N−1

∑
l=0

(
θPh(ηk − fd, φl)|S(φl)|2

Pw(φl)

)2

=
θ2

4

K−1

∑
k=0

N−1

∑
l=0

(
Ph(ηk − fd, φl)

Pw(φl)
|S(φl)|2

)2

=
θ2

4

N−1

∑
l=0

∑K−1
k=0 P2

h (ηk − fd, φl)

P2
w(φl)

|S(φl)|4 (A29)

Appendix D Simulation Setup Details227

It is nontrivial to setup the simulations carried out in Section V. This appendix arguments several
details of generating the simulation data. To generate a two dimensional random TIR hLP(k, l), we
employed a 2-D autoregressive (AR) model. Note we let K = Ng = 32; that is, the number of the
transmitted pulses K are the same with the extended target length Ng. The 2-D AR parameter is with
order (2, 2) and the coefficient matrix is

A =

 1 0.2 −0.1
0.1 −0.05 0.075
−0.05 0.075 −0.025

 ,

with the excitation noise σ2
h = 0.01; Also with the parameters we have the target 2-D PSD Ph(η, φ) for228

−0.5 ≤ η ≤ 0.5 and −0.5 ≤ φ ≤ 0.5 as shown in Figure A1. Note that we assume the real-valued229

data, hence the 2-D dimensional PSD has the symmetry property Ph(η, φ) = Ph(−η,−φ). Also the230

colored noise is generated with 1-D AR process with the order being 2 and the coefficients being231

B = [1 − 0.3 0.5] and the excitation noise σ2
w = 1.232

With the PSD Ph(η, φ) and Pw(φ), we can caculate the term c(φl) = ∑K−1
k=0

[
Ph(ηk ,φl)

Pw(φl)

]2
and it is233

shown in the top subfigure of Figure 2. As seen, the LMP-based waveform is to put all energy into the234

bin φ = 0.205 where the term c(φl) achieves the maximum. Note that the transmit pulse length Np is235

chosen to be 8 which is much less than the target length Ng and the signal energy θE = 4.16.236
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