

1 Article

2 **Experimental study on the cycle performance**
3 **characteristics of the CO₂ heat pump system under the**
4 **cooling condition**

5

6 **Hee Jeong Kang¹, Zhen Huan Wang¹, Jun Son¹, Sun-Joon Byun² and Young-Chul Kwon^{3,*}**

7 ¹ Graduate student, Department of Mechanical Engineering, Sunmoon University, 70 sunmoon-ro 221 beon-
8 gil, Tangjeong-myeon, Asan-si, Chungcheongnam-do 31460, Republic of Korea; hkang@sunmoon.ac.kr(H.-
9 J.K.), huan_2014@nate.com(Z.-H.W.), johnyck0218@gmail.com(J.S.)

10 ² SFR NSSSS System Design Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989
11 beon-gil, Yuseong-gu, Daejeon 34057, Republic of Korea; bjky21@korea.ac.kr (S.-J.B.)

12 ³ Graduate student, Department of Mechanical Engineering, Sunmoon University, 70 sunmoon-ro 221 beon-
13 gil, Tangjeong-myeon, Asan-si, Chungcheongnam-do 31460, Republic of Korea; yckweon1@sunmoon.ac.kr
14 (Y.-C.K.)

15 * Correspondence: yckweon1@sunmoon.ac.kr; Tel.: +82-41-530-2396

16 **Abstract:** Developing high performance HVAC system using natural refrigerants including carbon dioxide
17 (CO₂) has been important in respect of environmental preservation and associated technologies. Thus studies
18 to optimize the HVAC (heating ventilation air conditioner) system using natural refrigerants through clarifying
19 the cycle performance characteristics are necessary. The CO₂ heat pump system using air and water sources
20 was consisted to examine its performance characteristics, and by varying conditions of several factors that
21 affect or characterize the system performance like the amount of refrigerant charge, EEV (electronic expansion
22 valve) opening, and internal heat exchanger under cooling mode. The performance characteristics of CO₂ heat
23 pump system were tested by using an air enthalpy calorimeter. In the case of the CO₂ heat pump system
24 without internal heat exchanger, the opening of #3 EEV and #4 EEV was 60% and refrigerant charge amount
25 was 5,600g. However, in the case of that with internal heat exchanger, the best performance was obtained when
26 the opening of #2 EEV is 20%. From the present studies, it was observed that the performance variation and
27 operational characteristics of the CO₂ heat pump system were affected by design factors like refrigerant charge
28 amount, EEV opening, and internal heat exchanger and thereby, the configuration on an optimal operation
29 conditions of the system was enabled.

30 **Keywords:** Capacity, Cooling and heating, CO₂, Cycle performance, EEV, Heat pump, Internal heat
31 exchanger

32

33 **1. Introduction**

34 CFC and HCFC refrigerants, which are used as refrigerant for the heating and cooling system, are
35 already regulated for production and use due to ozone depletion problem. The optimal design of the
36 heat pump system using natural refrigerant is important for this solution, and it is necessary to
37 understand the cycle characteristics of the heat pump and the performance change of the internal heat
38 exchanger. Natural refrigerants are mostly innoxious and uninfluential to ozone layer destruction or
39 global warming. And these materials are chemically stable and are mixed with mineral oil easily
40 exhibiting their excellent thermodynamic properties. Studies on the application of HVAC system
41 employed natural refrigerants have been actively conducted in developed countries; and among
42 them, studies examining technologies to apply carbon dioxide refrigerant (R-744, CO₂) to heat pumps
43 for motor vehicles or for hot water supplying system are representative ones.

44 Ways to improve the performance of HVAC system using CO₂ have been explored by studies
45 broadly carried out since it was reported by Lorentzen and Pettersen [1] for the first time. In Japan,

46 CO₂ refrigerant has been applied to domestic hot water supplying system. However, the performance
47 of HVAC system or hot water supplying system employed CO₂ refrigerant are greatly vulnerable to
48 types and conditions of varied heat sources to be evaporated or to be condensed. Thus such systems
49 employed CO₂ refrigerant generally show comparatively poor cyclic performance comparing to
50 systems using conventional refrigerant (R-22) due to the great performance variation characteristics
51 induced by varied types or conditions of heat sources. Therefore, studies exploring ways to improve
52 the cyclic efficiency of systems employed CO₂ as refrigerant have been carried out broadly since
53 1990's. The development of high performance HVAC system employed natural refrigerants is
54 especially important in respect of environmental and technological aspects and accordingly, the
55 optimization studies intended for the development of systems employing natural refrigerant like CO₂
56 and investigation of cycle performance characteristics thereof are needed.

57 Lorentzen and Pettersen [2] have compared the performance of HVAC system employed CO₂
58 with that of conventional system using R-12 and identified the competing performance of the system
59 employed natural refrigerant of CO₂ and, Gentner [3] also demonstrated the competing performance
60 of HVAC system of CO₂ to that of the HVAC system employed conventional R-134a and, they all
61 have reported the systems adopted the refrigerant of CO₂ as an alternative environmentally friendly
62 HVAC systems that could replace conventional HVAC systems. Experimental studies conducted by
63 Yin et al. [4] and McEnaney et al. [5] have compared the conventional HVAC system with another
64 system employed CO₂ as a refrigerant and have also exhibited the high capacity and COP of HVAC
65 systems of CO₂ in an environment of low temperature despite the low level of heat transfer and COP
66 of the HVAC system of CO₂ situated in an environment of high ambient temperature. Nekså et al. [6]
67 have applied the refrigerant of CO₂ to hot water supplying system of which maximum pressure in
68 high pressure area reached 11MPa through experiment; and Hwang and Radermacher [7] conducted
69 a theoretical study that applied CO₂ to hot & chilled water supplying system as a refrigerant and
70 demonstrated the performance enhancement of about 10% of the system compared to conventional
71 system employed the R-22 refrigerant. Kauf [8] have identified the presence of discharge pressure
72 enabling the maximum performance coefficient in the system employed CO₂ as a refrigerant and
73 derived an experimental formula of optimized discharge pressure. Baek et al. [9] performed the study
74 simultaneously explored the cyclic performance variation corresponded to the varied compression
75 ratios of 1- and 2-stage compression in a two-stage compression intercooling cycle and the cyclic
76 performance enhancement through the employment of expander. Cho et al. [10, 11] and Lee [12] et
77 al. examined internal heat exchangers to improve the performance thereof and investigated
78 performance characteristics of the system in accordance with varied conditions of the operation of
79 respective systems. Chen [13] et al. have carried out an analytical study on cyclic pressure changes
80 and resulting performance of gas cooler employed an internal heat exchanger; and Boewe [14] have
81 suggested that an optimal operation of HVAC system of CO₂ can be enabled solely by the control of
82 opening of electronic expansion valves.

83 Thus, more comprehensive and systematic studies on cycle characteristics of CO₂ heat pump
84 system are required to develop the performance of HVAC system using CO₂. The study on the
85 optimal operation conditions of CO₂ heat pump system is necessary to develop a compact and high
86 performance HVAC system. In the present study, the performance characteristics in a cooling cycle
87 of CO₂ heat pump system that employed heat sources of air and water are investigated
88 experimentally. To investigate optimal operation conditions of CO₂ heat pump under a cooling
89 condition, a CO₂ cycle loop is constructed. And factors of refrigerant charge amount, EEV opening
90 and performance of CO₂ heat pump by internal heat exchanger are examined and measured through
91 an air enthalpy calorimeter. These results can be utilized in the design of a compact HVAC system
92 using a CO₂ refrigerant.

93 **2. Experimental equipment and method**94 **2.1. *CO₂* heat pump system**

95 The CO₂ heat pump system consisted of the inverter rotary compressor of 13.0 cc/rev BLDC type,
 96 the outdoor unit equipped with 3-columns fin tube heat exchanger, the indoor unit of cassette ducted
 97 type equipped with 1-column fin tube heat exchanger, the 4-way valve, and EEVs (electronic
 98 expansion valves) to evaluate the performance characteristics of the system.

99 To measure the temperature and pressure in the CO₂ cycle, the thermocouple of t-type and
 100 pressure gauge were installed; and to measure the power consumption of the whole system including
 101 the compressor, the digital power-meter was used. Measurements of pressure gauges and
 102 thermometers installed in each interval were obtained through the connected data acquisition
 103 system. To supply fluids of different conditions to the gas cooler and evaporator, the constant
 104 temperature water bath and the constant temperature - humidity chamber with 2 rooms were
 105 employed. Besides, the multi-nozzles enabled the measurement of air flow rate, dry bulb
 106 temperature, wet bulb temperature, and differential pressure was used to measure the air flow rate
 107 and enthalpy.

108 **2.2. Experimental method**

109 The CO₂ heat pump system employed in the performance test was the refrigerant-to- water
 110 system. Under the condition of cooling operation, the refrigerant charge amount, opening of EEV,
 111 and performance factors of internal heat exchanger were tested. For the acquisition of data to be used
 112 for the analysis and evaluation of system performance, the data corresponded to conditions of
 113 temperature variation range of $\pm 0.1^{\circ}\text{C}$, pressure variation range of $\pm 5\text{kPa}$, and flow rate variation
 114 range of $\pm 0.2\text{g/s}$ lasted for over 15 minutes were obtained through the data acquisition system. Table
 115 1 represents the conditions applied to the performance test.

116

117 Table 1. Test condition of air and water source heat pump

		Test condition	
Water source	Gas cooler	Temperature [°C]	25
		Flow rate [ℓ/min]	20
	Evaporator	Temperature [°C]	12
		Flow rate [ℓ/min]	17
Air source	Indoor	Dry bulb [°C]	27
		Wet bulb [°C]	19.5
	Outdoor	Dry bulb [°C]	35
		Wet bulb [°C]	24

118

119

120 The cooling capacity of CO₂ heat pump system can be obtained from the flow rate and difference
 121 in temperatures between inlet and outlet of air side of evaporator. The heat balance of the heat
 122 transfer rate measured from air side of and water side was remaining within $\pm 4\%$. The heat transfer
 123 rate for the cooling of indoor side is defined as in the following equation (1).

124

$$Q_{cr} = \frac{Q_{vr}(h_{a1}-h_{a2})}{v_n(1+x_n)} + Q_{t1} \quad (1)$$

125

126 Here, Q_{cr} , Q_{vr} , h_{a1} , h_{a2} , v_n , x_n , and Q_{t1} respectively denote the whole heat quantity
 127 determined for the cooling of indoor side (W), measurement of indoor side air flow rate of the system
 128 (m^3/s), intake enthalpy of indoor side (J/kg), discharge enthalpy of indoor side (J/kg), specific volume
 129 at the point of air flow rate measurement (m^3/kg), absolute humidity at the point of air flow rate
 130 measurement (kg/kg), and heat penetration (W) of the measurement device.

131 4 EEVs were employed to optimize the cooling cycle of CO_2 system, and the configuration of
 132 EEVs enables an independent control of each valve. EEVs of 1, 3, and 4 were designed for the function
 133 of optimization of cooling cycle; and EEV 2 was designed for the function to optimize the internal
 134 heat exchanger. Specifications applied to the CO_2 heat pump system are summarized in Table 2. The
 135 optimal point of efficiency of cooling system was explored through the test of cycle optimization
 136 carried out by varying the amount of refrigerant and opening of EEVs. Under the standard
 137 temperature condition for the cooling, the test started with the compressor frequency of 45Hz that
 138 yields the highest energy efficiency and the initial amount of 2,800g of refrigerant charge that varied
 139 by each increment of 200g for the test. The configuration of cycle optimization test is illustrated in
 140 Figure 1.

141

142 Table 2. Specifications of CO_2 heat pump system

Specifications		
Compressor	Type	2 Stage rotary
	Volume [cc]	13
Indoor heat exchanger	Fin type	Louver
	Fin pitch [mm]	1.5
	Row/Column number	2, 28
	Tube type	Micro groove
	Tube outer diameter	7
Outdoor heat exchanger	Fin type	Louver
	Fin pitch [mm]	1.5
	Row/Column number	3, 66
	Tube type	Micro
	Tube outer diameter	7
Internal heat exchanger	Type	Shell-tube
	Tube length [m]	4
	Water tube outer diameter [mm]	19.05
	CO_2 tube outer diameter [mm]	3.18

143

144

145

Figure 1. Schematic diagram of CO₂ refrigerant cycle146 **3. Results and Discussion**147 **3.1. Refrigerant charge amount and EEV**

148 The performance of heat pump system depends on the amount of refrigerant charged. To
 149 observe the changes in cooling capacity corresponded to varied amount of refrigerant charge, the
 150 amount of refrigerant charge was increased by 200g from the initial charge of 2,800g to 6,800g. Figure
 151 2 shows the changes of cooling capacity corresponded to the varied amount of refrigerant charge
 152 under the compressor frequency of 45Hz. The cooling capacity tended to increase along with the
 153 increase of the amount of refrigerant charge to the level of 5,000g~5,600g and thereafter, it tended to
 154 decrease gradually. This was owing to the decreased cooling capacity of heat pump caused by the
 155 reduction of superheating region at the extent beyond certain level of the amount of refrigerant
 156 charge, despite that the cooling capacity of heat pump increased owing to the heat transfer
 157 enhancement of the evaporator, when the amount of refrigerant charge increased. Since the
 158 temperature of refrigerant at the outlet of the expansion device(that is, at the inlet of evaporator) was
 159 increased by the increased opening of EEV, the temperature difference between refrigerant side and
 160 air side was reduced and then the cooling capacity of CO₂ heat pump system decreased. And the
 161 power consumption of compressor was increased along with the increase of refrigerant charge
 162 amount that caused the increase of mass flow rate of refrigerant flown into the compressor. The inlet
 163 and outlet pressure and temperature of compressor changed according to varied amount of
 164 refrigerant were measured and thereby the increase of inlet and outlet pressure of compressor was
 165 observed. The difference between measurements of inlet and outlet pressure of compressor was
 166 increasing along with the increased amount of refrigerant charge that brought about the increase of
 167 power consumption. At the level of 100% of the opening of EEVs 3 and 4, the outlet pressure of
 168 compressor marked the level of about 2.2 times of inlet pressure with the 6,800g of charged amount
 169 of refrigerant; and with the increase of the charged amount of refrigerant from 2,800g to 6,800g, both
 170 the measurements of inlet (35kg/cm² → 47kg/cm²) and outlet (77kg/cm² → 103kg/cm²) pressures
 171 of compressor were increased.

172

173
174

Figure 2. Variations of cooling capacity with refrigerant charge amount

175
176
177
178
179
180
181
182
183
184
185
186

Figure 3 shows the changes of COP according to varied amount of refrigerant charge at 45Hz of compressor frequency. As it was illustrated in Figure 2, the COP of heat pump increased gradually and peaked in the range of about 5,000g~5,600g of charged refrigerant amount and then tended to decrease by the increase of power consumption and changes in cooling capacity. This result means that the increase of refrigerant charge amount can increase the cooling capacity of heat pump to a certain extent but, it also increases the level of power consumption thus the optimal level of refrigerant charge amount should be identified for the cycle optimal operation. COP also increased together with the decreased opening of EEVs. This result suggests the COP of system can be dependent on the varied opening of EEVs and there can be certain levels of refrigerant charge amount and opening of electronic expansion valves for the optimal system operation. In this study, the optimal levels of refrigerant charge amount and openings of EEVs of 3 and 4 were obtained to be 5,600g and 60%.

187

188
189

Figure 3. Variations of COP with refrigerant charge amount

190 Figure 4 shows the temperature changes of outlet sides of compressor which were greater than
 191 those of inlet sides of compressor varied at each level of the opening of EEVs (opening : 100%, 80%,
 192 and 60%) and the amount of refrigerant charge. The temperature increase of inlet sides of compressor
 193 was about 16°C along with the increased amount of refrigerant charge, and contrarily, the outlet
 194 temperature decreased greatly by about 55°C.

195

196 Figure 4. Variations of temperature with refrigerant charge amount and opening of EEV

197

198 Figure 5. Variation of P-h diagram with refrigerant charge amount

199

200 Figure 5 shows the status of each part of the system plotted on the P-h diagram that represents
 201 changes of each part corresponded to each level of 2,800g, 4,200g, 5,600g, and 6,400g of refrigerant
 202 charge amount. In the case of refrigerant charge amount of 2,800g, the difference in enthalpy between
 203 outlet sides of compressor and gas cooler was small and thereby the decrease in cooling capacity was
 204 observed. On the contrary, the big increase in cooling capacity was identified with the increase of the
 205 charged amount of 4,200g of refrigerant despite the small difference in outlet pressure. However,
 206 when the amount of refrigerant charge increased above 5,600g, the degree of the increase of cooling
 207 capacity became smaller or almost constant. Also, the decrease of refrigerant quality at the inlet of
 208 evaporator was identified in accordance with the increase of refrigerant charge amount. In particular,

209 the refrigerant quality decreased greatly with the increase of refrigerant charge amount from 2,800g
 210 to 4,200g. As the CO₂ heat pump system has the characteristics of great change of refrigerant quality
 211 of inlet of evaporator depending on changes of pressure of gas cooler, the optimal cooling capacity
 212 of CO₂ system can be secured with the pressure of gas cooler increased beyond certain level.
 213

214 *3.2. Internal heat exchanger*

215 The heat exchanger applied to the heat pump system decreases the temperature of the inlet of
 216 EEVs by the heat exchange between high pressure refrigerant at the outlet of gas cooler and the
 217 refrigerant of low temperature at the outlet of evaporator. This reduces the refrigerant quality of the
 218 inlet of evaporator and thereby increases the cooling capacity of system. The power consumption of
 219 system also increases, but, as the outlet temperature of compressor is increased. In the present study,
 220 the opening of EEV 2 that influences the internal heat exchanger was varied to evaluate the
 221 performance of heat pump system employed the internal heat exchanger. By the results obtained
 222 from the previous experiment on refrigerant charge amount and EEV, the values of refrigerant charge
 223 amount and opening of EEV placed at evaporator side were determined to be 5,600g and 60%
 224 respectively.

225 Figures 6 and 7 show the power consumption and cooling capacity of the system varied in
 226 accordance with the increase of the opening of EEV 2 that influenced the internal heat exchanger. In
 227 the case of the increase of opening of EEV, the temperature of refrigerant at the outlet of gas cooler
 228 decreased by the heat exchange between refrigerants of the outlets of gas cooler and evaporator. This
 229 also caused the increase of cooling capacity by the decrease of inlet temperature of EEV. By the
 230 increased opening of EEV, however, the opening of EEV for the optimal COP exists because of the
 231 differential degree of increase in cooling capacity and power consumption. The opening of EEV for
 232 optimal COP was 20%, and then the increase in cooling capacity was about 4.4%. And the power
 233 consumption of system also increased by about 4.0% due to the increased temperature and pressure
 234 of compressor. Thus, the increase of COP was about 0.5%.

235 Figure 8 shows the pressure and temperatures of the inlet and outlet of internal heat exchanger
 236 varied in accordance with the changes in the opening of EEV 2. As showed in the figure, the pressure
 237 changes and temperatures of the inlet and outlet of internal heat exchanger decreased along with the
 238 increased opening of EEV. At the extent beyond the level of 30% of the opening of EEV, the constant
 239 temperature difference due to heat exchange was observed and the difference in pressure drop due
 240 to the internal heat exchanger was not observed.

242
 243

Figure 6. Variation of cooling capacity, power input with opening of EEV 2

244

245

Figure 7. Variation of COP with opening of EEV 2

246

247

Figure 8. Variation of temperature, pressure with opening of EEV 2

248

249

250

251

Figure 9. Variation of cool capacity, compressor work and COP according to internal heat exchanger in the cooling mode

252 Figure 9 shows the results of performance experiment of CO₂ heat pump system with internal
253 heat exchanger. The application of internal heat exchanger brought about the increase of cooling
254 capacity of about 4%. In the case of the heating system employed the internal heat exchanger, the
255 temperature at outlet side of gas cooler would be decreased by the heat exchange with the low-
256 pressure stage at outlet side of evaporator. And in the case of small opening of EEV, the outlet
257 pressure and temperature of compressor would be increasing and thereby the difference in
258 temperature of refrigerant of gas cooler also increases. By the reduced opening of EEV, but, the flow
259 rate of refrigerant would be decreasing.
260

261 5. Conclusions

262 In this study, the experiments to investigate cycle performance characteristics and the optimal
263 operation conditions of CO₂ heat pump system employed heat sources of air and water were carried
264 out under a cooling condition. The performance of heat pump system varied in accordance with
265 changes in the amount of refrigerant charge, opening of EEVs, and internal heat exchanger was
266 examined through the air enthalpy calorimeter. From the present experimental work, the following
267 conclusions are summarized as follows:

268 (1) The cooling capacity tended to increase along with the increase of the amount of refrigerant charge
269 and thereafter it tended to decrease gradually. In the range below 5,000g of the amount of
270 refrigerant charge, the increasing trends of cooling capacity were almost similar to each other
271 irrespective of the degree of opening of EEVs, however, in the range beyond the amount of 5,000g
272 of refrigerant charge, the cooling capacity was changing according to changes of the opening of
273 EEVs.

274 (2) The cooling capacity of heat pump system was decreasing with the increase of the opening of
275 EEVs. As the power consumption of compressor was increased by the increase of charged amount
276 of refrigerant, the COP performance curve appeared to be reducing greatly at the extent over
277 5,000g of the amount of refrigerant charge. From the experiment results, the optimal opening (of
278 60%) of EEV and the amount (of 5,600g) of refrigerant charge for the optimization of system
279 operation were identified.

280 (3) The temperature change of the outlet side of compressor by the change of amount of refrigerant
281 charge and opening of EEVs appeared about 3.5 times larger than that of the inlet side of
282 compressor. Besides, the opening of EEV 2 that influences the internal heat exchanger affects the
283 cooling capacity and power consumption of heat pump system. The cooling capacity of heat pump
284 system would be increasing in accordance with the increased opening of EEV. However, owing
285 to the differential increase of cooling capacity and power consumption, there will be an optimal
286 opening of EEV which should be reflected in the system design as an operational factor. The
287 present experiment results showed that opening of EEV identified the optimal COP was about
288 20% and then the cooling capacity was increased about 4.4%.
289

290 **Acknowledgments:** This work was supported by the Sun Moon University Research Grant of 2014.

291 References

- 292 1. Lorentzen, G. and Pettersen, J., A new efficient and environmentally benign system for car air-conditioning, Int. J. Refrigeration, **1992**, 16(1), 4-12.
- 293 2. Lorentzen, G., Revival of carbon dioxide as a refrigerant, Int. J. Refrigeration, **1994**, 17(5), 292-301.
- 294 3. Gentner, H., Passenger car air conditioning using carbon dioxide as refrigerant, In Proceedings of the IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway, **1994**, 303-313.
- 295 4. Yin, J., Bullard, C. and Hrnjak, P., Design strategies for R744 Gas coolers, Proceedings of the 4th IIR-Gustav
296 Lorentzen Conference on Natural Working Fluids at Purdue, **2000**, 315-322.

299 5. McEnaney, R., Park, Y. C., Yin, J. M. and Hrnjak, P. S., Performance of the prototype of a transcritical R744
300 mobile A/C system, SAE paper **1999-01-0872**.

301 6. Nekså, P., Rekstad, H., Zakeri, G. R. and Schiefloe, P. A., CO₂-heat pump water heater: characteristics,
302 system design and experimental results. *Int. J. Refrigeration*, **1998**, 21(3), 172-179.

303 7. Hwang, Y. and Radermacher, R., Experimental evaluation of CO₂ water heater, In *Natural Working*
304 *Fluids'98*, Proceedings of the IIR-Gustav Lorentzen Conference, **1998** June 2-5 Oslo, Norway. 321-328.

305 8. Kauf, F., Determination of the optimum high pressure for transcritical CO₂-refrigeration cycles. *Int. J.*
306 *Thermal Science*, **1999**, 38, 325-330.

307 9. Baek J, Groll E, Lawless P, Piston-cylinder work producing expansion device in a transcritical carbon
308 dioxide cycle. Part I: experimental investigation, *Int. Journal of Refrigeration*, **2005**, 28(2), 141-151.

309 10. Cho, H. H., Ryu, C. G. and Kim, Y. C., Experimental study on the cooling performance of a variable speed
310 CO₂cycle with internal heat exchanger and electronic expansion valve, *Korean Journal of Air-Conditioning*
311 and *Refrigeration Engineering*, **2005**, 17(3), 209-216.

312 11. Cho, H. H., Ryu, C. G., Lee, H. S. and Kim, Y. C., Experimental Study on the Variation of the Optimal
313 Charge with cycle option in the CO₂ Refrigeration, *Proceedings of the SAREK*, **2005**, 398-403.

314 12. Lee, E. C., Baek, C. H., Kang, H., Kim, Y. C., Cho, H. H. and Cho, S. W., Experimental Study on the
315 Performance of a CO₂ Heat Pump Water Heater, *Korean Journal of Air-Conditioning and Refrigeration*
316 *Engineering*, **2009**, 21(6), 367-372.

317 13. Chen, Y., Gu, J., The Optimum High Pressure for CO₂ Transcritical Refrigeration System with Internal Heat
318 Exchanger, *Int. Journal of Refrigeration*, **2005**, 28(8), 1238-1249.

319 14. Boewe, D. E., Bullard, C. W., Yin, J. M. and Hrnjak, P. S., Contribution of internal heat exchanger to
320 transcritical R-744 cycle performance" *HVAC&R Research*, **2001**, 7(2), 155-168.