

1 Article

2 **Influence of Reservoir Stimulation on Marine Gas
3 Hydrate Conversion Efficiency in Different
4 Accumulation Conditions**5 **Lin Yang** ^{1,2,3,4}, **Chen Chen** ^{1,2,3,4,*}, **Rui Jia** ^{1,2,3,4,*}, **Youhong Sun** ^{1,2,3,4}, **Wei Guo** ^{1,2,3,4}, **Dongbin Pan** ^{1,2,3,4},
6 **Xitong Li** ^{1,2,3,4} and **Yong Chen** ^{1,2,3,4}7 ¹ Engineering College, Jilin University, Changchun 130026, China;
8 yanglin14@mails.jlu.edu.cn (Y.L.); chenchen@jlu.edu.cn (C.C.); jiarui@jlu.edu.cn (J.R.); syh@jlu.edu.cn (S.Y.);
9 guowei6981@jlu.edu.cn (G.W.); pandb16@mails.jlu.edu.cn (P.D.); lixt15@mails.jlu.edu.cn (L.X.);
10 chenyong15@mails.jlu.edu.cn (C.Y.)11 ² State Key Laboratory of Superhard Materials, Changchun 130012, China12 ³ Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Land and
13 Resources, Changchun 130026, China14 ⁴ National Geophysical Exploration Equipment Engineering Research Center, Jilin University, Changchun
15 130026, China16 * Correspondence: chenchen@jlu.edu.cn (C.C.); Tel.: +86-0431-88502678 (C.C.)
17 jiarui@jlu.edu.cn (J.R.); +86-0431-88502678 (J.R.)18 **Abstract:** Based on the geologic conditions of natural gas hydrate (NGH) accumulations in the
19 Shenhua area, northern slope of the South China Sea, this paper used a method of combining
20 reservoir stimulation technique (RST) with depressurization to investigate the conversion efficiency
21 of marine NGH reservoirs in different intrinsic permeability and initial NGH saturation conditions,
22 and analyze the influence of variably-stimulation effect on marine NGH conversion efficiency in
23 different accumulation conditions, provided a reference scheme for improving the NGH conversion
24 efficiency in the Shenhua area. In this work, we performed calculations for the variations in CH₄
25 production rate and cumulative volume of CH₄ in different initial NGH saturation, intrinsic
26 permeability and stimulation effect conditions, variance analysis and range analysis methods were
27 used to analyze the significance of these key factors and their interaction, and investigated the
28 sensitivity of stimulation effect on NGH conversion efficiency, respectively. The simulation results
29 showed that stimulation effect have a significant influence on NGH conversion efficiency, and the
30 influence of interaction between these three factors were not obvious. Possibly most important, we
31 clarified an optimum stimulation effect for higher NGH conversion efficiency under different
32 accumulation conditions, especially in low-permeability and high-saturation, which corresponding
33 stimulation effect were different.34 **Keywords:** natural gas hydrate; reservoir stimulation technique; variance analysis; conversion
35 efficiency; sensitivity analysis; numerical simulation36 **Nomenclature:**

TCF	Trillion cubic feet, 1 Tcf = 283.17 × 10 ⁹ m ³
<i>z</i>	position of HBL below ocean surface (m)
<i>Z_H</i>	HBL thickness (m)
<i>H₁</i>	Depth of HBL below seafloor (m)
<i>H₂</i>	Depth of seafloor (m)
<i>H_w</i>	Production well length (m)
<i>G</i>	Thermal gradient below seafloor (°C/m)
<i>P₀</i>	Initial pressure (at base of HBL) (MPa)
<i>ΔP</i>	Production pressure (MPa)
<i>P_{cap}</i>	Capillary pressure (MPa)

P_{01}	Atmosphere pressure	(Pa)
T_0	Initial temperature (at base of HBL)	(°C)
k_x, k_y, k_z	Intrinsic permeability	(md)
k_c	Permeability of fracturing cracks ($h_2 = 10$ mm)	(md)
k_{rA}	Aqueous relative permeability	(md)
k_{rG}	Gas relative permeability	(md)
K_{dry}	Dry thermal conductivity	(W/(kg·°C))
K_{wet}	Wet thermal conductivity	(W/(kg·°C))
K_Θ	Thermal conductivity	(W/(kg·°C))
Φ	Porosity	
ρ_R	Grain density	(kg/m ³)
S_H	Saturation of natural gas hydrate	
S_A	Saturation of aqueous	
r	Radius	(m)
X_S	Salinity	
λ	Van Genuchten exponent—Table 2	
h	Crack height	(mm)
L_f	Crack length	(m)
Δl	Crack spacing	(m)

38 **Subscripts and Superscripts:**

A	Aqueous phase
B	Base of HBL
cap	Capillary
G	Gas phase
HBL	Hydrate-bear layer
irA	Irreducible aqueous phase
irG	Irreducible gas
N	Permeability reduction exponent—Table 2
ng	Gas permeability reduction exponent—Table 2
OB	Overburden
UB	Underburden

39

40 **1. Introduction**

41 **1.1. Background**

42 Natural gas hydrates (NGH) are white and pale yellow, solid, ice-like cage type crystalline
 43 compounds [1], formed by small molecule gases such as light hydrocarbons, carbon dioxide and
 44 water under low temperature and high pressure conditions, and also known as "combustible ice" [2].
 45 About 90% of marine sediments are satisfied the favorable temperature and pressure conditions of
 46 NGH formation and stability [3]. NGH has a low environmental risk, in the standard state, each unit
 47 volume of methane hydrate decomposition, about 164 volumes of methane was produced [4]. Very
 48 clean natural gas can be produced from NGH deposits, especially from sandy turbidites, from which
 49 it is already known in the industry how to produce conventional hydrocarbons [5]. It is estimated
 50 that natural gas from NGH in sands are >40,000 Tcf [6,7]. NGH should be converted in situ to its
 51 constituent gas and water [8]. A number of conversion methods exist [9,10], but early production
 52 testing and modeling indicate that depressurization will be the ideal method to use [11,12].

53 NGH enrichment area of the Shenhua area is located in the northern slope of the South China Sea,
 54 between Xisha Trough and Dongsha Islands (Fig. 1) [13,14]. In NGH enrichment area, it is
 55 characterized by large thickness of sedimentary formations, rich contents of organic matter and high
 56 sedimentation, the thermogenic gas originated from deep formations and microbial and thermogenic
 57 gases originated from the shallow formations provided sufficient gas source to the formation of NGH
 58 [15,16]. In this area, the water depth is 1000–1700m [17]. The temperature of ocean floor, heat flow,


59 geothermal gradient and organic matter contents are 3.3–3.7 °C, 74.0–78.0 mW/m², 43–67.7 °C/km and
 60 0.46%–1.4%, respectively, which satisfied the favorable geological and thermodynamic conditions of
 61 NGH formation and stability [14,15,18,19].

62 *1.2. Hydrates in the Shenhua Area*

63 In 2007, NGH samples were successfully drilled from the SH2, SH3, and SH7 sites of GMGS-1
 64 research area in the Shenhua area, the northern South China Sea (Fig. 1) [14]. The drilling results
 65 showed that the top of the hydrate-bearing layers (HBL) are located at 115–229 m below the ocean
 66 floor [14,15]. In 2015, a total of 19 sites, 23 wells were drilled in GMGS-3 research area in the Shenhua
 67 area in the northern South China Sea (Fig. 1) [15,20,21]. The well logging data showed that all of these
 68 stations were found NGH, and NGH samples were collected in four of these wells. The hydrate layers
 69 are 13–70 m thick, and the NGH saturation are 13%–53%, and in local regions, NGH saturation up to
 70 75%. [15,20]. The exploration results of GMGS-1 and GMGS-3 showed that the NGH enrichment area
 71 in the Shenhua area hold large NGH reserves, however, NGH saturations and permeability of
 72 reservoirs are clear difference both in horizontal and vertical directions, and strong heterogeneity [20].
 73 Table 1 showed the characteristics of the NGH deposits with greater exploitation potential.

74 **Table 1.** The characteristics of the NGH deposits with greater exploitation potential.

Group	HBL thick / m	Range of S_{H0}	Average S_{H0}	k / md
SH2	43	0 – 48%	21%	10
SH7	18 – 34	20% - 44%	41%	75
W02	24	–	13.7%	–
W07	20	45% - 75%	50%	22 – 40
W11	>70	21% - 53%	40%	–
W17	45	–	19.4%	–
W19	68	17% - 64%	45.2%	5.5

75 **Fig. 1.** Location of the research area and drilling sites in the Shenhua area, northern slope of the
 76 South China Sea.
 77

78
 79
 80
 81

82 *1.3. Significance and Feasibility of Stimulation for Marine NGH Reservoir*

83 NGH are mainly stored in sandy and silty marine sediments. Clay and clastic limestone and
84 secondary permeability related to structure also host NGH in some areas of the South China Sea [18].
85 The NGH-enriched reservoirs in the Shenhua area, with a poor permeability, which hinder the transfer
86 of heat and pressure between the production wells and the reservoir, and reduces the conversion
87 efficiency of the continuous dissociation of NGH [14,22,23]. The problem of how to efficiently and
88 economically exploit natural gas hydrate in low-permeability marine sediment reservoirs is an
89 important issue. Being able to exploit NGH from marine sediments, especially in low-permeability
90 silt and clay sediments with a less producible capacity, will greatly enlarge the potential use of NGH
91 as a gas resource [23].

92 The reservoir stimulation technique (RST) is to stimulate the reservoir by fracturing [24]. RST is
93 aimed at fracturing more main cracks and multi-level secondary cracks, to form a fractured network
94 system. Realizing the communication between main cracks and natural cracks at the same time [25].
95 "Breaking up" the effective reservoir to increase the contact area between cracks wall and reservoir,
96 and reduce the seepage distance from effective reservoir to cracks, would be greatly improved the
97 permeability of reservoir [26,27]. RST has expanded to include low-permeability oil and gas shale, as
98 well as tight sand reservoirs [28]. Depressurization method and RST combine to exploit NGH, which
99 will increase the transmission rate of depressurization within NGH deposit and promote NGH
100 decomposition in fractured zones, in addition, being conducive to the discharge of methane [23,29-
101 31].

102 The formation of NGH in host sediment pore space results in a higher bulk modulus and
103 increased mechanical strength [4,6]. In an ideal case, a hydrate deposit was probably had a sufficient
104 brittle response to fracturing, our model would provide a base case with which actual testing can be
105 compared in order to assess the likelihood of artificial fracturing of inducing additional permeability
106 in semi-consolidated marine sediments, which, without NGH, would be expected to respond in a
107 more mechanically-ductile manner [23].

108 *1.4. Objetive*

109 The main objective of this study is to investigate the influence of RST on the conversion efficiency
110 of NGH under different accumulation conditions such as initial NGH saturation, intrinsic
111 permeability and variably-stimulation effect by depressurization method. Provided a reference
112 program for increasing NGH conversion efficiency of NGH accumulations from the Shenhua area, the
113 northern South China Sea, in different permeability and saturation conditions, especially in low-
114 permeability and high-saturation.

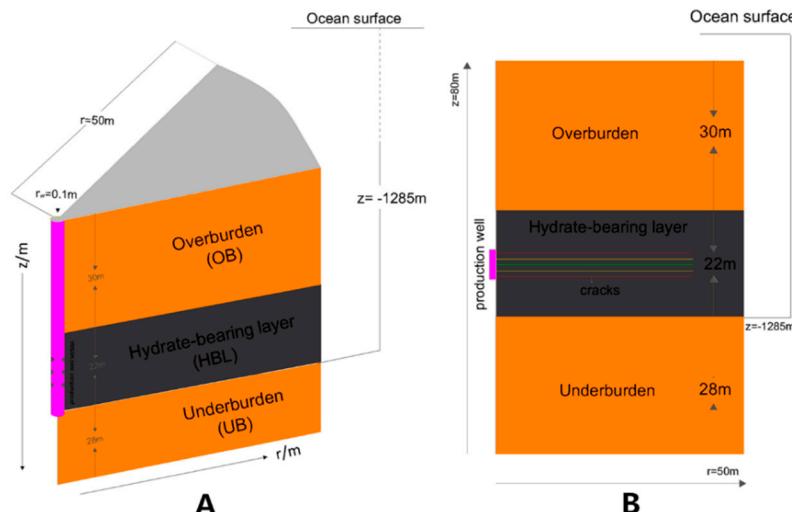
115 **2. Materials and Methods**116 *2.1. Numerical Model and Simulation Parameters*117 *2.1.1. Numerical Simulation Code*

118 The simulator model used in this work was TOUGH+HYDRATE v1.0, it is a numerical simulator
119 developed by Moridis from the Lawrence Berkeley National Laboratory (Berkeley, CA, USA), and
120 the first member of TOUGH+, and the successor to TOUGH2. The model can simulate the formation
121 and decomposition of natural gas hydrate, phase equilibrium, seepage, and heat and mass transfer
122 processes under complex conditions and non-isothermal conditions. In addition, the model can
123 simulate production from natural CH₄-hydrate deposits in the subsurface (i.e., in permafrost and

124 deep ocean sediments) as well as laboratory experiments of hydrate dissociation and formation in
 125 porous and fractured media, using the methods of depressurization, heating injection, and injection
 126 inhibition [32]. In recent years, TOUGH+HYDRATE v1.0 models have been widely used in NGH
 127 simulations. Li, et al. [14] used this model to evaluate NGH conversion potential by depressurization
 128 and thermal stimulation from the SH7 site. Su, et al. [22] used depressurization and thermal
 129 stimulation method to analyze NGH conversion efficiency from the SH2 site. Chen, et al. [23] used
 130 this model to investigate the effect of fracturing technology on the production efficiency of NGH by
 131 depressurization from the SH7 site.

132 2.1.2. System Parameters and Initialization of the Model

133 The geologic system used in this study was according to the drilling results of GMGS-1 and
 134 GMGS-3 in the Shenhua area, the northern South China Sea. The hydrate samples from this area were
 135 dominated by methane hydrate, in some areas, were almost pure methane hydrate (99.2%) [14].
 136 Therefore, only methane hydrate was simulated. The system parameters, part of initial conditions
 137 and mathematical models of the simulation were shown in Table 2. The main parameters in the
 138 simulation were derived from the previous literature on NGH reservoirs in this area [14,20,23].


139 **Table 2.** Production trial properties and mathematical models.

Parameter	Value	Parameter	Value
Initial pressure P_0 (at base of HBL)	13.83 Mpa	Composite thermal conductivity model [32,33]	$K_\theta = K_{dry} + (\sqrt{S_A} + \sqrt{S_H}) (K_{wet} - K_{dry}) + \alpha S_I K_I$
Initial temperature T_0 (at base of HBL)	14.15 °C	Capillary pressure model [34]	$P_{cap} = -P_{01} [(S^*)^{-1/\lambda} - 1]^{1-\lambda}$ $S^* = (S_A - S_{irA}) / (S_{mxA} - S_{irA})$
Depth of seafloor	1108 m	S_{irA}	0.29
Thermal gradient	0.0433 °C/m	λ	0.45
HBL thickness Z_H	22 m	P_{01}	10^5 Pa
Production well length H_w	6 m	Relative permeability model [32]	$K_{rA} = (S^*)^n$ $K_{rG} = (S_G^*)^{n_G}$
Depth of HBL H_1	155–177 m	n_G	EPM #2 model
Gas composition	100% CH ₄	N	3.572
Porosity Φ	0.38	n_G	3.572
Grain density ρ_R	2600 kg/m ³	S_{irA}	0.30
Water salinity (mass fraction) X_S	0.0305	S_{irG}	0.05
Dry thermal conductivity K_{dry}	1.0 W/(kg·°C)		
Wet thermal conductivity K_{wet}	3.1 W/(kg·°C)		
Production pressure P_w	0.5 P_0		

140 2.2. Design of the Production Well and Reservoir Stimulation Cracks

141 2.2.1. Production Well Design

142 In this paper, a single vertical well which had a 6m height production interval was located in the
 143 middle of NGH deposit with a radius of $r_w = 0.1$ m was used, and the simulation system was
 144 cylindrical (Fig. 2A). The production interval design referred to Su [22] and Li [35]'s studies. Setting
 145 the production well in the middle of NGH deposit was to reduce natural gas spillage through
 146 overburden (OB) and underburden (UB).

147

148 **Fig. 2.** (A) Design of the production well design, and (B) Diagram of the horizontal stimulation cracks.149 **2.2.2. Stimulated Cracks Design**

150 Reservoir stimulation was a complex process, the fracturing cracks morphology were affected
 151 by a lot of parameters such as the physical and mechanical properties of the formation, the stress
 152 distribution of target formation, and so on, complex and difficult to descript [23]. Therefore, in this
 153 work, in order to simplify the physical model, the fractured network system was simplified into
 154 multiple horizontal cracks. With different crack densities to represent the different stimulation effect,
 155 the larger crack quantity and smaller crack spacing represent the better stimulation effect, with dense
 156 fractured network in fracturing zone. Under the opposite conditions, represent the poor stimulation
 157 effect, with sparse fractured network in fracturing zone. According to the different stimulation effect,
 158 the cracks were divided into spacing categories, $\Delta l = 3$ m, 2m, 1m, respectively, for three, four, and
 159 five cracks, and these cracks were uniformly distributed in production well, which increased the
 160 communication between production well and NGH deposit. The parameters of cracks were showed
 161 in [Table 3](#). And the crack length was $L_f = 40$ m, and crack height was $h = 10$ mm, as shown in [Fig. 2B](#).

162

Table 3. Parameters of cracks.

Parameter	Value of Cracks
Crack quantity	3, 4, 5
Crack spacing Δl	3 m (three cracks), 2 m (four cracks) 1 m (five cracks)
permeability k_0	520md

163
164

The permeability of the cracks varied according to the porosity. The porosity and permeability have the following relationships [36-38]:

$$\frac{k}{k_0} = F_{\phi S} = \left(\frac{\Phi}{\Phi_0} \right)^n \quad (2-1)$$

$$\frac{k}{k_0} = F_{\phi S} = \left(\frac{\Phi - \Phi_c}{\Phi_0 - \Phi_c} \right)^n \quad (2-2)$$

165
166
167

Where k_0 is the formation permeability, k is the formation permeability after the porosity change, Φ_0 is the formation porosity, Φ is the porosity of the formation after the change, and Φ_c is a non-zero critical porosity. In Equation (2-1), n is 2 or 3; in Equation (2-2), n is 10 or more.

168
169

170 **3. Simulation Experiment Results and Discussion**171 **3.1. Factors significance and influence rules analysis**

172 In this work, we considered the interaction of various factors and used whole simulation
 173 experiments method ($L_{27}(3)^{13}$) to analyze the significance of intrinsic permeability k , initial NGH
 174 saturation S_{H0} and stimulation effect (represented by cracks quantity N) and their interaction on NGH
 175 conversion efficiency of NGH deposits in the Shenhua area. Because these factors and their interactions
 176 both would affect NGH conversion efficiency, it was inaccurate to use a single variable approach to
 177 describe the influence rules of these three factors on NGH conversion efficiency, a whole simulation
 178 experiments program which contained the interactions between these factors was necessary. In this
 179 work, using CH_4 cumulative volume Q_{cv} to represent NGH conversion efficiency, the
 180 depressurization exploitation time was set to five years, because the CH_4 production rates were
 181 stabilized at this time.

182 **Table 4.** The simulation experiments factor level table.

Level	Factor		
	intrinsic permeability k	initial NGH saturation S_{H0}	cracks quantity N
1	7.5mD	0.3	3
2	40mD	0.4	4
3	75mD	0.5	5

183 **Table 4** showed the levels of these three key factors, and **Table 5** showed the 3^3 whole simulation
 184 experiments program and the simulation experiments results. As shown in **Table 5**, for example, the
 185 $k \times S_{H0}$, $k \times N$ and $S_{H0} \times N$ meant the interaction column between intrinsic permeability k and initial
 186 NGH saturation S_{H0} , intrinsic permeability k and cracks quantity N , and initial NGH saturation S_{H0}
 187 and cracks quantity N , respectively, and the ninth, tenth, twelfth and thirteenth columns were used
 188 for error analysis, which were vacant columns and not written in **Table 5** in this work.

189 **Table 5.** $L_{27}(3)^{13}$ whole simulation experiments program and simulation experiments results.

Test number	k	S_{H0}	$k \times S_{H0}$		N	$k \times N$		$S_{H0} \times N$		Q_{cv} (m ³)
			1	2		3	4	5	6	
1	1(7.5mD)	1(0.3)	1	1	1(3)	1	1	1	1	306394.8
2	1	1	1	1	2(4)	2	2	2	2	201014.4
3	1	1	1	1	3(5)	3	3	3	3	305693.9
4	1	2(0.4)	2	2	1	1	1	2	3	159854.8
5	1	2	2	2	2	2	2	3	1	183312.3
6	1	2	2	2	3	3	3	1	2	202049.4
7	1	3(0.5)	3	3	1	1	1	3	2	154356.7
8	1	3	3	3	2	2	2	1	3	161279.1
9	1	3	3	3	3	3	3	2	1	208541.0
10	2(40mD)	1	2	3	1	2	3	1	1	697573.4
11	2	1	2	3	2	3	1	2	2	615799.1
12	2	1	2	3	3	1	2	3	3	692369.2
13	2	2	3	1	1	2	3	2	3	643712.3
14	2	2	3	1	2	3	1	3	1	541653.4
15	2	2	3	1	3	1	2	1	2	618998.9
16	2	3	1	2	1	2	3	3	2	473955.6
17	2	3	1	2	2	3	1	1	3	465767.0
18	2	3	1	2	3	1	2	2	1	531254.1
19	3(75mD)	1	3	2	1	3	2	1	1	964843.5
20	3	1	3	2	2	1	3	2	2	901046.6

21	3	1	3	2	3	2	1	3	3	1025723.8
22	3	2	1	3	1	3	2	2	3	898493.9
23	3	2	1	3	2	1	3	3	1	792966.1
24	3	2	1	3	3	2	1	1	2	939190.8
25	3	3	2	1	1	3	2	3	2	835660.1
26	3	3	2	1	2	1	3	1	3	688925.5
27	3	3	2	1	3	2	1	2	1	737725.1
T										1.493×10^7
\bar{x}_{1-cv}	211589.9	634495.4			570538.3					
\bar{x}_{2-cv}	582270.1	552043.6			505751.5					
\bar{x}_{3-cv}	864952.8	472273.8			582523.0					

190 As shown in Table 5, \bar{x} was the average value of the same level of each factor. As shown in Table
 191 6, analysis of variance was applied to analysis the significance and sensitivity of these three factors
 192 on NGH conversion efficiency. In these two tables,

$$SS_T = \sum Q_{cv}^2 - C, C = T_{cv}^2/n \quad (3-1)$$

$$SS_i = \sum_{k=SH0, N, k \times SH0, k \times N \text{ and } SH0 \times N} \frac{T_i^2}{K_i} - C, \quad (3-2)$$

$$SS_e = SS_T - \sum SS_i \quad (3-3)$$

193 Where, SS_T was total sum of square, C was correction parameter, n was test quantity and $n=27$. In
 194 equation 3-2 and 3-3, SS_i were the sum of square of each factor and SS_e was the error sum of square,
 195 the number of repetitions of each factor $K_i=9$.

$$df_T = n - 1 \quad (3-4)$$

$$df_j = k, SH0, N = x_j - 1, x_j = 3 \quad (3-5)$$

$$df_m = k \times SH0, k \times N, SH0 \times N = df_k + df_{SH0} = df_k + df_N = df_{SH0} + df_N \quad (3-6)$$

$$df_e = df_T - \sum df_j - \sum df_m \quad (3-7)$$

$$MS = SS/df \quad (3-8)$$

$$F = \frac{SS_i/df_i}{SS_e/df_e} \quad (3-9)$$

196 Where, df_T was the total degree of freedom, df_e was degree of freedom for error, $df_{j, m}$ were degree
 197 of freedom for factors j and m , x_j were the levels of each factor and MS was mean square. $F_{0.05(2,8)}$ and
 198 $F_{0.01(2,8)}$ were derived from the standard $F(f_1, f_2)$ table.

199 By comparing F_i and $F_{0.05(2,8)}$ and $F_{0.01(2,8)}$, the impact of factor i was significant when $F_i > F_{0.05(2,8)}$,
 200 and had a more significant influence when $F_i > F_{0.01(2,8)}$. As shown in Table 6, $F_k > F_{SH0} > F_{0.05(2,8)} > F_{0.01(2,8)}$,
 201 which meant intrinsic permeability k and initial NGH saturation S_{H0} had a more significant influence
 202 on CH_4 cumulative volume. And $F_{0.01(2,8)} > F_N > F_{0.05(2,8)}$, crack quantity N had a significant influence on
 203 CH_4 cumulative volume, which was smaller than that of k and S_{H0} , the significance of interaction
 204 between k , S_{H0} and N were small. The results showed that the impact of intrinsic permeability, initial
 205 NGH saturation and stimulation effect on NGH conversion efficiency were significant, however, the
 206 interaction had no significant effect.

207

208

209

210

211

Table 6. Analysis of variance of Q_{cv}

Parameters	SS	df	MS	F	$F_{0.05(2,8)}$	$F_{0.01(2,8)}$	Significance
k	1.933×10^{12}	2	9.663×10^{11}	506.59	4.46	8.65	***
S_{H0}	1.118×10^{11}	2	5.921×10^{10}	31.04	4.46	8.65	**
N	3.070×10^{10}	2	1.535×10^{10}	8.05	4.46	8.65	*
$k \times S_{H0}$	1.246×10^{10}	4	3.114×10^9	1.63			
$k \times N$	5.695×10^9	4	1.424×10^9	0.75			
$S_{H0} \times N$	2.028×10^9	4	5.069×10^8	0.27			
Error (e)	1.526×10^{10}	8	1.907×10^9				
Total (T)	2.117×10^{12}	26					

212 In order to identify the influence rules of each factor for NGH conversion efficiency, multiple
 213 comparisons of the three factors were used. As shown in [Table 7](#), [Table 8](#) and [Table 9](#), by comparing
 214 \bar{x}_{cv} of each level, the results showed, for intrinsic permeability k , NGH conversion efficiency was
 215 substantial increased with increasing k , however, the growth rate was decreasing. For initial NGH
 216 saturation S_{H0} , a lower S_{H0} led to a higher NGH conversion efficiency, and the reduction rate was
 217 decreasing. For crack quantity N , dense fractured network had a higher NGH conversion efficiency,
 218 but the impact of sparse fractured network was slightly less than that of dense fractured network. By
 219 comparing the difference between the maximum and minimum \bar{x}_{cv} of each level, it was showed that
 220 the influence on NGH conversion efficiency was increased by about 4 times, in comparison with S_{H0}
 221 and k .

222

Table 7. Multiple comparison of factor k .

Factor k	\bar{x}_{cv}	\bar{x}_{3-cv} -211589.9	\bar{x}_{3-cv} -582270.1
k_3	864952.8	653362.9 **	282682.7 *
k_2	582270.1	370680.2 **	
k_1	211589.9		

223

Table 8. Multiple comparison of factor S_{H0} .

Factor S_{H0}	\bar{x}_{cv}	\bar{x}_{1-cv} -472273.8	\bar{x}_{1-cv} -552043.6
S_{H01}	634495.4	162221.6 **	82451.8 **
S_{H02}	552043.6	79769.8 *	
S_{H03}	472273.8		

224

Table 9. Multiple comparison of factor N .

Factor N	\bar{x}_{cv}	\bar{x}_{3-cv} -505751.5	\bar{x}_{3-cv} -570538.3
N_3	582523.0	76771.5 **	11984.7 *
N_1	570538.3	64786.8 **	
N_2	505751.5		

225

3.2. Sensitivity to stimulation effect

226 3.2.1. Analyzed by Range Analysis Method

227 As shown in [Table 6](#), the sensitivity of stimulation effect (represented by crack quantity N) on
 228 cumulative volume of CH_4 was significant. In order to investigate the influence rules of stimulation
 229 effect on NGH conversion efficiency, by meant of range analysis method, we compared the values of
 230 CH_4 cumulative volume Q_{cv} under different stimulation effect, as shown in [Table 10](#) and [Table 11](#).

231 Where, \bar{x}_{cv} was the average value of CH_4 cumulative volume Q_{cv} . R_{cv} was the range of CH_4

232 cumulative volume Q_{cv} , and r_{cv} was rate of change between maximum \bar{x}_{cv} and minimum \bar{x}_{cv} . Value
 233 of R_{cv} was calculated by subtracting the minimum \bar{x} from the maximum \bar{x} , with following
 234 expression,

$$R = \bar{x}_{max} - \bar{x}_{min} \quad (3-10)$$

$$r = R / \bar{x}_{min} \quad (3-11)$$

235 As shown in [Table 10](#), r_{cv} was decreased with increasing S_{H0} , and the r_{cv} for case $S_{H0} = 0.3$ was the
 236 largest. This was because, a higher S_{H0} had a lower effective permeability, and stimulation effect was
 237 more obvious in lower effective permeability condition, which led to a less difference of Q_{cv} . The
 238 results showed that the sensitivity of variably stimulation effect on NGH conversion efficiency was
 239 significant in low-saturation condition.

240 As shown in [Table 11](#), r_{cv} for case $k = 7.5$ mD was much bigger than that for cases $k = 40$ mD and
 241 75 mD, and r_{cv} for cases $k = 40$ mD and $k = 75$ mD were similar. This was because, RST had a greater
 242 improvement on effective permeability in lower permeability condition, and there were enough
 243 seepage channels to the discharge of methane in higher permeability condition. The results showed
 244 that the sensitivity of variably stimulation effect on NGH conversion efficiency was significant in low-
 245 permeability condition.

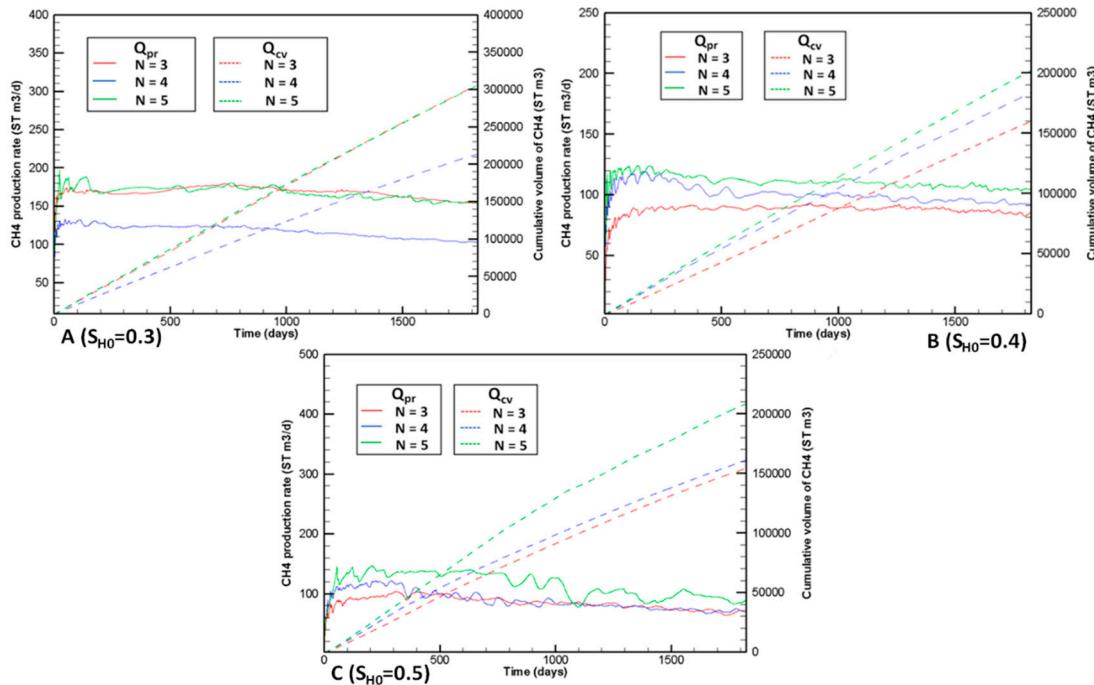
246 The influence of intrinsic permeability on sensitivity of stimulation effect on NGH conversion
 247 efficiency was bigger than that of initial NGH saturation, in comparison with r_{cv} of [Table 10](#) and [Table
 248 11](#).

249 **Table 10.** Range analysis of Q_{cv} of variably N in different S_{H0} conditions.

S_{H0}	N	\bar{x}_{cv} (m ³)	R_{cv}	r_{cv}
		($k = 7.5$ mD, 40mD, 75mD)		
0.3	3	656270.6	101975.6	0.178
	4	572620.0		
	5	674595.6		
	3	567353.7		
	4	505977.3		
	5	586746.4		
0.4	3	487990.8	80769.1	0.160
	4	438657.2		
	5	492506.7		
0.5	4	53849.5	53849.5	0.123
	5	0		

250 **Table 11.** Range analysis of Q_{cv} of variably N in different k conditions

k/mD	N	\bar{x}_{cv} (m ³)	R_{cv}	r_{cv}
		($S_{H0} = 0.3, 0.4, 0.5$)		
7.5	3	271034.4	89165.8	0.490
	4	181868.6		
	5	238761.4		
	3	605080.4		
	4	541073.2		
	5	614207.4		
40	3	899665.8	73134.2	0.135
	4	794312.7		
	5	900879.8		
75	4	106567.1	106567.1	0.134
	5	0		


251 3.4.2. Analyze under Low-Permeability Condition ($k = 7.5$ mD)

252 **Fig. 3** showed the CH_4 production rate Q_{pr} and the cumulative volume Q_{cv} curves under low-
 253 permeability and different N conditions. In **Fig. 3A**, $S_{\text{H}0} = 0.3$. As shown in Q_{pr} curves of **Fig. 3A**, in
 254 the early stage of exploitation, the Q_{pr} changed greatly, then, trended to stable after about 200 days.
 255 The Q_{pr} for cases $N = 3$ and $N = 5$ were similar and much bigger than that for case $N = 4$. As shown in
 256 Q_{cv} curves, the Q_{cv} for cases $N = 3$ and $N = 5$ were similar and much bigger than that for case $N = 4$,
 257 and the Q_{cv} increased by 52.4%, in comparison with cases $N = 3$, $N = 5$ and $N = 4$. This was because,
 258 the cracks spacing $\Delta l = 3\text{m}$ for case $N = 3$ was better to increase the interaction between cracks, the Q_{pr}
 259 and Q_{cv} had the largest values in this spacing under the same crack quantity condition. Also, dense
 260 fractured network had a better improvement effect under low-permeability condition.

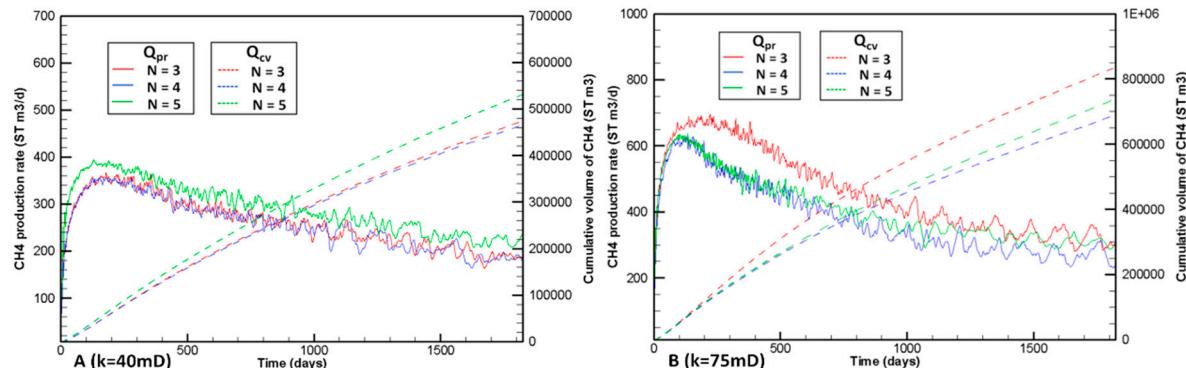
261 In **Fig. 3B**, $S_{\text{H}0} = 0.4$. As shown in Q_{pr} curves of **Fig. 3B**, the difference of Q_{pr} were small under
 262 three crack quantity conditions, and the Q_{pr} for case $N = 5$ was the largest. As shown in Q_{cv} curves,
 263 the Q_{cv} for case $N = 5$ was the largest, and increased by 26.4%, in comparison with cases $N = 3$ and N
 264 = 5.

265 In **Fig. 3C**, $S_{\text{H}0} = 0.5$. As shown in Q_{pr} curves of **Fig. 3C**, in the early stage of exploitation, the Q_{pr}
 266 for case $N = 5$ was the biggest, and the Q_{pr} for case $N = 4$ was bigger than that for case $N = 3$. As
 267 exploitation progressed, the Q_{pr} for case $N = 4$ decreased and trended to stability, the Q_{pr} for cases N
 268 = 3 and $N = 4$ were similar. As shown in Q_{cv} curves, the Q_{cv} for case $N = 5$ was much bigger than that
 269 for cases $N = 3$ and $N = 4$, and case $N = 4$ was slightly bigger than case $N = 3$. This was because, dense
 270 fractured network had more cracks in fracturing zone, with a high-density fractured network, which
 271 had a better improvement effect for the permeability of NGH deposit. In comparison with cases $N =$
 272 5 and $N = 3$, the Q_{cv} increased by 30.6%.

273 These results showed that, under low-permeability condition, the influence of dense fractured
 274 network on NGH conversion efficiency was most significantly, however, the influence were similar
 275 between dense and sparse fractured network, in low-permeability and low-saturation case.

276

277 **Fig. 3.** Q_{pr} and Q_{cv} from NGH deposit in the Shenhua area under low-permeability ($k=7.5\text{mD}$)
 278 conditions in different N ($N = 3, 4$, and 5).


279 3.4.3. Analyze under High-Saturation Condition ($S_{H0} = 0.5$)

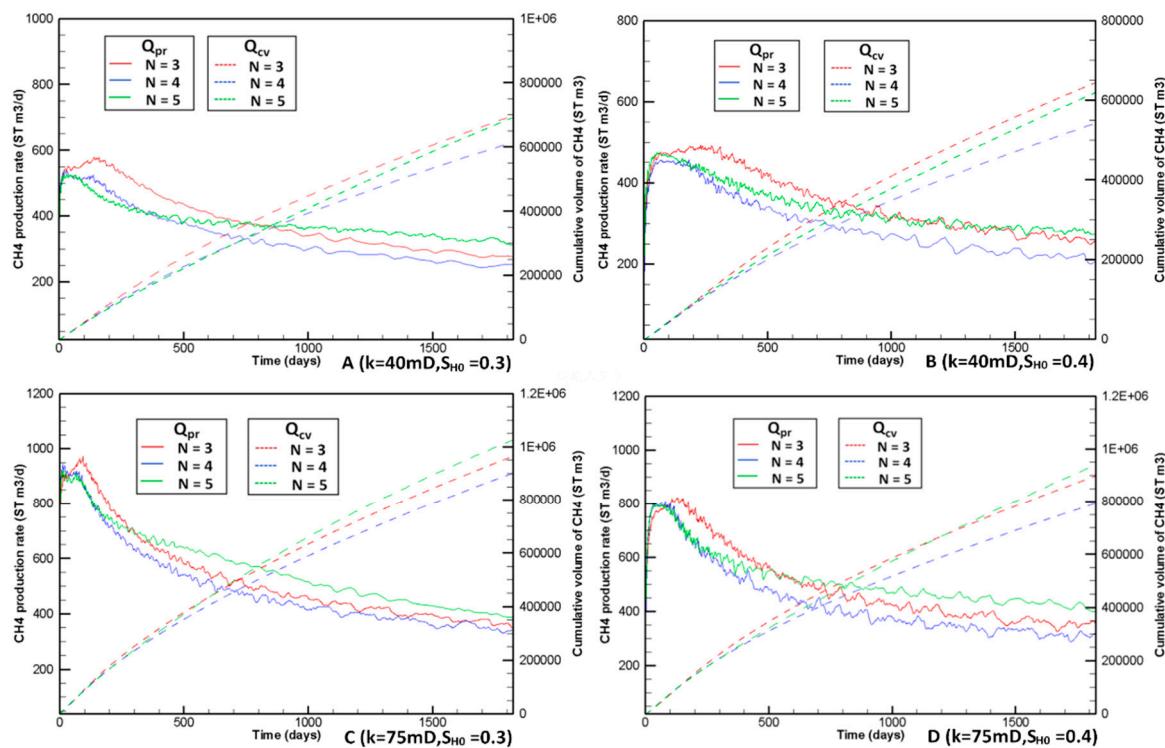
280 **Fig. 4** and **Fig. 3C** showed the CH_4 production rate Q_{pr} and the cumulative volume Q_{cv} curves
 281 under high-saturation ($S_{H0} = 0.5$) and different N conditions. By comparing the Q_{pr} curves of **Fig. 3C**,
 282 **Fig. 4A** and **Fig. 4B**, under $k = 7.5 \text{ mD}$ and 40 mD conditions, the Q_{pr} for case $N = 5$ was bigger than that
 283 for cases $N = 3$ and 4 during the whole exploitation process, and Q_{pr} for cases $N = 3$ and 4 were similar.
 284 In high-permeability case, the Q_{pr} and Q_{cv} for case $N = 3$ were the largest.

285 In **Fig. 4A**, $k = 40 \text{ mD}$. As shown in Q_{cv} curves, the Q_{cv} for case $N = 5$ was much bigger than that
 286 for cases $N = 3$ and $N = 4$, and the Q_{cv} for cases $N = 3$ and $N = 4$ were similar, and Q_{cv} increased by
 287 14.1%, in comparison with cases $N = 4$ and $N = 5$. In **Fig. 4B**, $k = 75 \text{ mD}$. As shown in Q_{cv} curves, the
 288 Q_{cv} for case $N = 3$ was the biggest, and the Q_{cv} for case $N = 5$ was bigger than that for case $N = 4$. The
 289 Q_{cv} increased by 21.3%, in comparison with cases $N = 3$ and $N = 4$.

290 This was because, $\Delta l = 3 \text{ m}$ was the best spacing to increase the interaction between cracks, the
 291 Q_{pr} and Q_{cv} had the largest values in this spacing under the same crack quantity condition, also, a
 292 lower saturation led to a higher effective permeability, there were enough seepage channels to the
 293 discharge of methane to production well in high-permeability condition, therefore, the improvement
 294 of dense fractured network for high-permeability of NGH deposit was not obvious. However, in low-
 295 permeability case, dense fractured network had more cracks in fracturing zone, with a high-density
 296 fractured network, which had a better improvement effect for the permeability of NGH deposit.

297 These results showed that, under high-saturation condition, the influence of dense fractured
 298 network on NGH conversion efficiency was most significantly, however, the influence of sparse
 299 fractured network was better in high-permeability and high-saturation case.

300
 301 **Fig. 4.** Q_{pr} and Q_{cv} from NGH deposit in the Shenhua area under high-saturation ($S_{H0} = 0.5$) conditions
 302 in different N ($N = 3, 4$, and 5).


303 3.4.4. Analyze under Other Accumulation Conditions

304 **Fig. 5** showed the CH_4 production rate Q_{pr} and the cumulative volume Q_{cv} curves under other
 305 accumulation conditions. As showed in Q_{pr} curves of **Fig. 5**, in the early stage of exploitation, the Q_{pr}
 306 for case $N = 5$ was smaller than that for case $N = 3$, however, As exploitation progressed, the Q_{pr} for
 307 case $N = 5$ reached the stable value earlier, and the stable value for case $N = 5$ was larger than that for
 308 case $N = 3$. By comparing the Q_{pr} curves of **Fig. 5**, the higher permeability, the lower saturation, the
 309 earlier the Q_{pr} for case $N = 5$ exceeded case $N = 3$. This was because, under higher permeability and
 310 lower saturation conditions, there were more seepage channels to the discharge of methane to
 311 production well, and NGH dissociation area was closed to the production well in the early stage of
 312 exploitation, therefore, the improvement effect of dense fractured network for NGH deposit
 313 permeability was not obvious. As exploitation progressed, the improvement effect of dense fractured
 314 network was increased with increasing the distance between production well and decomposition
 315 front. And in higher permeability and lower saturation case, the NGH dissociation rate were faster.

316 In **Fig. 5A**, $k = 40 \text{ mD}$, $S_{H0} = 0.3$. As shown in Q_{cv} curves, the Q_{cv} for cases $N = 3$ and $N = 5$ were

317 similar and bigger than that for case $N = 4$ at five years, and the Q_{cv} increased by about 13.3%, in
 318 comparison with cases $N = 3$, $N = 5$ and $N = 4$. And as exploitation progressed, the Q_{cv} for cases $N = 5$
 319 would bigger than that for case $N = 3$. In Fig. 5B, $S_{H0} = 0.4$. As shown in Q_{cv} curves, the Q_{cv} for case N
 320 = 3 was slightly bigger than that for case $N = 5$, and the Q_{cv} increased by 33.8%, in comparison with
 321 cases $N = 4$ and $N = 3$. In Fig. 5C, $S_{H0} = 0.3$. As shown in Q_{cv} curves, the Q_{cv} for case $N = 5$ was bigger
 322 than that for cases $N = 3$ and $N = 4$. And the Q_{cv} increased by 13.8%, in comparison with cases $N = 5$
 323 and $N = 4$. In Fig. 5D, $S_{H0} = 0.4$. As shown in Q_{cv} curves, the Q_{cv} for cases $N = 3$ and 5 were much bigger
 324 than that for case $N = 4$, and the Q_{cv} for cases $N = 5$ was the largest. The Q_{cv} increased by 18.4%, in
 325 comparison with cases $N = 4$ and $N = 5$.

326 These results showed that, the influence of dense fractured network on NGH conversion
 327 efficiency was most significantly, under these accumulation conditions.

328

329 **Fig 5.** Q_{pr} and Q_{cv} from NGH deposit in the Shenhua area under different accumulation conditions in
 330 different N ($N = 3, 4$, and 5).

331 4. Conclusions

332 In this paper, an NGH deposit in the Shenhua area, northern slope of the South China Sea area
 333 was simulated using TOUGH+HYDRATE v1.0 via RST and single vertical well depressurization
 334 method, based on the simulation results, the following conclusions were drawn:

- 335 1. Combining RST and single vertical well depressurization method to exploit NGH deposit under
 336 different intrinsic permeability and initial NGH saturation conditions, the sensitivity of
 337 stimulation effect on NGH conversion efficiency was significant, the sensitivity of intrinsic
 338 permeability was larger than that of initial NGH saturation, and the influence of interaction
 339 between these three factors were not obvious.
- 340 2. NGH conversion efficiency of stimulated NGH deposit was substantial increased with
 341 increasing intrinsic permeability, however, the growth rate was decreasing. A lower S_{H0} led to a
 342 higher NGH conversion efficiency of stimulated NGH deposit, and the reduction rate was
 343 decreasing. The influence on NGH conversion efficiency was increased by about 4 times, in
 344 comparison with initial NGH saturation and intrinsic permeability.

345 3. The sensitivity of variably stimulation effect on NGH conversion efficiency were decreased with
346 increasing initial NGH saturation and intrinsic permeability, respectively, and the sensitivity
347 was most significantly under lower intrinsic permeability condition. The influence of intrinsic
348 permeability on sensitivity of stimulation effect on NGH conversion efficiency was bigger than
349 that of initial NGH saturation.

350 4. The stimulation effects required for a higher NGH conversion efficiency were different under
351 different accumulation conditions. For loose fractured network, the influence was significant
352 under higher permeability and saturation conditions. And under lower permeability and
353 saturation conditions, the influence between loose and dense fractured network were similar.
354 For other accumulation cases, dense fracture network had a significant influence.

355 It should be stressed here the conclusions above are based on pure numerical simulations. With
356 the development of reservoir stimulation technique, it would be probably applied to exploit marine
357 gas hydrate and improve the conversion efficiency, will greatly enlarge the potential use of NGH as
358 a gas resource. Of course, it still need experimental verification that is under our right consideration.
359 And in this work, we provide a reference program.

360 **Acknowledgments:** This study has been supported by National Natural Science Foundation of China (Grant
361 No.41672361, Grant No. 41502343 and Grant No. 51474112), Scientific and Technological Development Program
362 of Jilin Province (Grant No. 20170414044GH and Grant No. 20160204011SF), New energy projects (Grant No.
363 SXGJSF2017-5), and Program for JLU Science and Technology Innovative Research Team (JLUSTIRT).

364 **Author Contributions:** Yang Lin analyzed the data and wrote the manuscript. Yang Lin, Chen Yong and Li
365 Xitong performed the simulations. Jia Rui, Yang Lin and Chen Chen conceived the original ideas. All authors
366 discussed the results and commented on the manuscript. Chen Chen, Sun Youhong and Guo Wei directed the
367 overall project.

368 **Conflicts of Interest:** The authors declare no conflicts of interest.

369 References

- 370 1. Sloan ED; Koh CA. Clathrate Hydrates of Natural Gases, 3rd ed; CRC Press: Boca Raton, FL, USA, 2008.
- 371 2. Qorbani, K.; Kvamme, B.; Kuznetsova, T. Using a reactive transport simulator to simulate CH₄ production
372 from bear island basin in the Barents Sea utilizing the depressurization method. *Energies* **2017**, *10*, 187.
- 373 3. Sun YH; Jia R; Guo W; Zhang YQ; Zhu YH; Li B; Li K. Design and experiment study of the steam mining
374 system for natural gas hydrates. *Energy Fuels* **2012**, *26*, 7280–7287.
- 375 4. Li YH, Song YC, Yu F, Liu WG, Zhao JF. Experimental study on mechanical properties of gas hydrate-
376 bearing sediments using kaolin clay. *China ocean engineering* **2011**, *25*, 113-122.
- 377 5. Max MD; Johnson AH. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for
378 Commercialization. Springer International Publishing AG: Basel, Switzerland, 2016; p. 405.
- 379 6. Ruan, X.; Li, X.S.; Xu, C.G. Numerical investigation of the production behavior of methane hydrate under
380 depressurization conditions combined with well-wall heating. *Energies* **2017**, *10*, 161.
- 381 7. Johnson AH. Gas Hydrate In: GEA, 2011: The Global Energy Assessment. IIASA, Laxenburg; Austria and
382 Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 35–43.
- 383 8. Lim JY, Kim E, Seo YW. Dual inhibition effects of diamines on the formation of methane gas hydrate and
384 their significance for natural gas production and transportation. *Energy Convers Manage* **2016**, *124*, 578–586.
- 385 9. Max MD; Johnson AH. Diagenetic methane hydrate formation in permafrost: A new gas play? In
386 Proceedings of the OTC Arctic Technology Conference, Houston, TX, USA, 7–9 February 2011.
- 387 10. Birkedal, K.A.; Hauge, L.P.; Graue, A.; Ersland, G. Transport Mechanisms for CO₂-CH₄ Exchange and Safe
388 CO₂ Storage in Hydrate-Bearing Sandstone. *Energies* **2015**, *8*, 4073–4095.
- 389 11. Max MD; Johnson AH. 2011. Methane Hydrate/Clathrate Conversion. In Clean Hydrocarbon Fuel
390 Conversion Technology, Woodhead Publishing Series in Energy No. 19; Khan, M.R., Ed.; Woodhead
391 Publishing Ltd.: Cambridge, UK; pp. 413–34; ISBN 1 84569 727 8, ISBN-13: 978 1 84569 727 3.
- 392 12. Konno Y, Masuda Y, Akamine K, Naiki M, Nagao J. Sustainable gas production from methane hydrate
393 reservoirs by the cyclic depressurization method. *Energy Convers Manage* **2016**, *108*, 439–445.
- 394 13. Wang B; Huo P; Luo T; Fan Z; Liu FL; Xiao B; Yang MJ; Zhao JF; Song YC. Analysis of the Physical
395 Properties of Hydrate Sediments Recovered from the Pearl River Mouth Basin in the South China Sea:
396 Preliminary Investigation for Gas Hydrate Exploitation. *Energies* **2017**, *10*, 531.

397 14. Li G; Moridis GJ; Zhang K; Li XS. Evaluation of NGH conversion potential from marine gas hydrate
398 deposits in Shenhua area of South China Sea. *Energy Fuels* **2010**, *24*, 6018–6033.

399 15. Zhang W; Liang JQ; Lu JA; Wei JG; Su PB; Fang YX; Guo YQ; Yang SX; Zhang GX. Accumulation
400 mechanisms of high saturation natural gas hydrate in Shenhua Area, northern South China Sea. *Petroleum
401 exploration and development* **2017**, *44*, 1–11.

402 16. He JX; Yan W; Zhu YH; Zhang W; Gong FX; Liu SL; Zhang JR; Gong XF. Bio-genetic and sub-biogenetic
403 gas resource potential and genetic types of natural gas hydrate in the northern marginal basins of South
404 China Sea. *Nat. Gas Ind.* **2013**, *33*, 121–134.

405 17. Su M; Yang R; Wu NY. Structural characteristics in the Shenhua Area, northern continental slope of South
406 China Sea, and their influence on gas hydrate. *Acta Geologica Sinica* **2014**, *88*, 318–326.

407 18. Liang JQ; Wang HB; Su X. Natural gas hydrate formation conditions and the associated controlling factors
408 in the northern slope of the South China Sea. *Nat. Gas Ind.* **2014**, *34*, 128–135.

409 19. McDonnell SL; Max MD; Cherkis NZ; Czarnecki MF. Tectono-sedimentary controls on the likelihood of
410 gas hydrate occurrence near Taiwan. *Mar. Pet. Geol.* **2000**, *17*, 929–936.

411 20. Guo YQ; Yang SX; Liang JQ; Lu JA.; Lin L; Kuang ZG. Characteristics of high gas hydrate distribution in
412 the Shenhua Area on the northern slope of the South China Sea. *Earth Science Frontiers* **2017**, *24*, 24–31.

413 21. Yang SX; Liang JQ; Liu CL; Sha ZB. Progresses of gas hydrate resources exploration in sea area. *Geological
414 Survey of China* **2017**, *4*, 1–8.

415 22. Su Z; Li H; Wu NY; Yang SX. Effect of thermal stimulation on NGH conversion from hydrate deposits in
416 Shenhua area of the South China Sea. *Earth Sci.* **2013**, *56*, 601–610.

417 23. Chen C; Yang L; Jia R; Sun YH; Guo W; Chen Y; Li XT. Simulation study on the effect of fracturing
418 technology on the production efficiency of natural gas hydrate. *Energies* **2017**, *10*, 1241.

419 24. Wu Q; Xu Y; Liu YZ; Ding YH; Wang XQ; Wang TF. The current situation of stimulated reservoir volume
420 for shale in U.S. and its inspiration to China. *Oil Drill. Product. Technol.* **2011**, *33*, 1–7.

421 25. Lancaster DE; Holditch SA; Mcketta SF; Hill RE; Guidry FK; Jochen JE. Reservoir evaluation, completion
422 techniques, and recent results from Barnett shale development in the fort worth basin. In Proceedings of
423 the SPE Annual Technical Conference and Exhibition, Washington, DC, USA, 4–7 October 1992.

424 26. Li Y; Cao G. Development technology for low-permeability sandstone reservoirs in Shengli Oil field. *Pet.
425 Explor. Dev.* **2005**, *32*, 123–126.

426 27. Wu Q; Xu Y; Wang TF; Wang XQ. The revolution of reservoir stimulation: An introduction of volume
427 fracturing. *Nat. Gas Ind.* **2011**, *31*, 7–12.

428 28. Zhang YJ; Li ZW; Guo LL; Gao P; Jin XP; Xu TF. Electricity generation from enhance geothermal systems
429 by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for
430 horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China. *Energy* **2014**, *78*, 788–805.

431 29. Sun YH; Li B; Wei G. Comparative Analysis of a Production Trial and Numerical Simulations of NGH
432 conversion from Multilayer Hydrate Deposits in the Qilian Mountain Permafrost. *J. Nat. Gas Sci. Eng.* **2014**,
433 *21*, 456–466.

434 30. Song Y; Zhang L; Lv Q; Yang M; Ling Z; Zhao J. Assessment of NGH conversion from natural gas hydrate
435 using depressurization, thermal stimulation and combined method. *RSC Adv.* **2016**, *6*, 47357–47367.

436 31. Qorbani K; Kvamme B. Non-equilibrium simulation of CH₄ production from gas hydrate reservoirs
437 through the depressurization method. *J. Nat. Gas Sci. Eng.* **2016**, *35*, 1544–1554.

438 32. Moridis GJ; Kowalsky MB; Pruess K. TOUGH+HYDRATE v1.0 User's Manual: A Code for the Simulation
439 of System Behavior in Hydrate-Bearing Geologic Media; Lawrence Berkeley National Laboratory: Berkeley,
440 CA, USA, 2008.

441 33. Moridis GJ; Seol Y; Kneafsey TJ. Studies of reaction kinetics of methane hydrate dissociation in porous
442 media. In The 5th International Conference on Gas Hydrate, Trondheim, Norway, 2005, pp.1004.

443 34. van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soil.
444 *Soil Sci. Soc. Am. J.* **1980**, *44*, 892–898.

445 35. Li G; Li XS; Chen Q; Chen ZY. Numerical simulation of NGH conversion from gas hydrate zone in Shenhua
446 are, South China Sea. *Acta Chimica Sinica* **2010**, *68*, 1083–1092.

447 36. Phillips OM. Flow and Reactions in Permeable in Permeable Rocks; Cambridge University Press:
448 Cambridge, UK, 1991.

449 37. Verma A; Pruess K. Thermohydrologic conditions and silica redistribution near high-level nuclear wastes
450 emplaced in saturated geological formations. *J. Geophys. Res.* **1988**, *93*, 1159–1173.

451 38. Xu T; Ontoy Y; Molling P; Spycher N; Parini M; Pruess K. Reactive transport Modeling of injection well
452 scaling and acidizing at Tiwi field, Philippines. *Geothermics* **2004**, *33*, 477–491.