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Abstract: Background: Post-traumatic stress disorder (PTSD) is a common debilitating psychiatric 11 
condition for which pharmacological therapy is not always solvable. Various treatments have been 12 
suggested for these patients. Deep brain stimulation (DBS) is currently under investigation for 13 
patients affected by PTSD. 2) Methods: We review the neurocircuitry and up to date clinical 14 
concepts that may be of relevance for the implementation of DBS in posttraumatic stress disorder 15 
(PTSD). 3) Results: The role of DBS in treatment-refractory PTSD patients has been investigated 16 
relying on both preclinical and clinical studies. 4) Conclusions: DBS for PTSD is in its preliminary 17 
phases and likely to provide hope to patients with medical refractory PTSD following the results of 18 
randomized controlled studies. 19 
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1. Introduction 23 
After the inclusion of posttraumatic stress disorder (PTSD) in the DSM-III in 1980 as a fear and 24 

anxiety disorder, in the DSM-V [1] PTSD is described not only as a feeling of fear and helplessness 25 
but also as a disorder including negative cognitions, negative emotional states and reactivity 26 
symptoms. Victims of sexual assault, serious accidents, sudden death of a loved one or the military 27 
personnel deployed to war zones are exposed to a broad array of traumatic events and are at risk for 28 
PTSD and other readjustment problems. Posttraumatic stress disorder can be debilitating, especially 29 
when complicated by comorbid depression and substance use [2]. To make a diagnosis of PTSD, the 30 
patient must report the symptoms mentioned above for over one month following the traumatic 31 
event so much to complain an impairment in day-to day functioning. PTSD is a significant health 32 
and economic problem with an estimated prevalence in the United States around 5-8% and a greater 33 
tendency in the female sex [3]. The risk of suicide attempt or ideation is also associated to PTSD [4]. 34 
Other risk factors involved in the biological pathophysiology of PTSD include genetic 35 
polymorphism [5], endocrine dysregulation [6], reduced levels of neurotrophic factors [7] as well as 36 
abnormal monoamine [8] and neuropeptide levels [9]. 37 

2. Materials and Methods 38 
The anatomical structures involved in the neurocircuitry of fear conditioning are the amygdala, 39 

prefrontal cortex and the hippocampus. The main receiver of the considerable sensory afferences 40 
that reach the amygdala is the basolateral complex (BLA), consisting of the lateral nucleus (LA), the 41 
basal nucleus (BA) and the accessory basal nucleus. These afferences come from two sources: the 42 
thalamus sensory nuclei and the primary sensory areas of the cerebral cortex. For many types of 43 
emotions, and especially for fear, the amygdala is of great importance, and valuable information 44 
retransmitted through this path reaches the amygdala more rapidly than sensory information 45 
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retransmitted by the cortex. For example, lesions of the basolateral complex abolish the classic fear 46 
conditioning [10]. Other nuclei of amygdala are the cortical nucleus, the central nucleus (CE), 47 
intercalated cell clusters (ITC). The LA receives sensory fibers including auditory, visual and 48 
somatic, conveying a fast signal for danger [11,12]. From the LA the stimulus is propagated to the 49 
CE, which in turn projects to multiple brainstem and hypothalamic areas, that are responsible for 50 
autonomic responses associated with fear [13]. Neurocircuitry of fear extinction is a little different 51 
from that of fear conditioning. It involves the ventromedial prefrontal cortex (vmPFC), BLA, ITC of 52 
the amygdala and the hippocampus. Recent studies using lesion, infusion, and unit-recording 53 
techniques suggest that the infralimbic (IL) subregion of medial prefrontal cortex (mPFC) is 54 
necessary for the inhibition of conditioned fear following extinction [14]. Whereas the amygdala is 55 
important for extinction learning, the vmPFC is a site of neural plasticity that allows for the 56 
inhibition of fear during extinction recall [15]. In addition, animal models suggest that extinction 57 
depends, at least in part, on an increased inhibition of fear output CEm neurons. This increased 58 
inhibition is caused by an enhanced recruitment of GABAergic ITC cells by BLA inputs. Moreover, 59 
these changes require infralimbic activity during extinction training, suggesting that the infralimbic 60 
cortex drives extinction-related plasticity in the amygdala [16]. ITC neurons constitute probable 61 
mediators of extinction because they receive information about the conditioned stimulus from the 62 
basolateral amygdala (BLA), and contribute inhibitory projections to the CE, the main output station 63 
of the amygdala for conditioned fear responses [17]. Functional neuroimaging studies in PTSD 64 
include a number of different imaging modalities including single-photon emission tomography 65 
(SPECT), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) 66 
[18]. The target of study are the amygdala, hippocampus and prefrontal cortex. Studies found that 67 
PTSD patients exhibite increased cerebral blood perfusion in limbic regions (amygdala) and 68 
decreased perfusion in the superior frontal gyrus and parietal and temporal regions in comparison 69 
with those of the normal controls during emotional processing tasks and at rest [19,20]. Moreover, 70 
The dorsal anterior cingulate cortex and insula appear to be hyper-responsive in PTSD, as well as in 71 
other anxiety disorders. The hippocampus also appears to function abnormally in PTSD, although 72 
the direction of the abnormality tends to vary depending on the methods used [21]. 73 
Hypo-activations (comparison subjects > PTSD patients) are seen specifically in the inferior occipital 74 
gyrus, ventromedial prefrontal cortex, rostral anterior cingulate cortex, para-hippocampal gyrus, 75 
lingual gyrus, dorsal amygdala and anterior hippocampus, orbitofrontal cortex, putamen, middle 76 
occipital gyrus, dorso-medial prefrontal cortex, dorsal anterior cingulate cortex, and mid-cingulate. 77 
Probably that hypo-activity is associated with greater symptom severity [22]. 78 

3. Results 79 
Both psychotherapy and pharmacological interventions are effective for the treatment of PTSD. 80 

Effective psychotherapies included cognitive therapy, exposure therapy, and eye movement 81 
desensitization and reprocessing. Effective pharmacotherapies included paroxetine, sertraline, 82 
fluoxetine, risperidone, topiramate, and venlafaxine [23]. However, many patients do not have an 83 
adequate response to antidepressants or psychotherapies. It is unclear when a patient affected by 84 
PTSD can be considered treatment-resistant and if the coexistence of mental diseases or substance 85 
abuse are responsible for the refractoriness to conventional treatments [24]. The application of DBS 86 
in PTSD is under investigation, after that procedure has achieved promising results in the surgical 87 
treatment of other psychiatric disorders as major depression and obsessive-compulsive disorder. 88 
Targets studied in preclinical models are the basolateral amygdala, ventral striatum, hippocampus 89 
and prefrontal cortex.  90 

 91 
3.1 Basolateral amygdala 92 
Langevin et al presented the potential application of DBS to the treatment of PTSD through the 93 

stimulation of the BLn of the amygdala in rats, demonstrating a striking therapeutic response 94 
following the DBS treatment in a rat model. . DBS was conducted for 4 consecutive hours daily for 7 95 
days. The settings were: monopolar, 120 ms pulse width, 160 Hz frequency and 2.5 volts [25]. In 96 
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another rat PTSD model during defensive burying, amygdala DBS was compared with paroxetine, 97 
demonstrating that DBS may attenuate hyperactive amygdala function. The settings were: 98 
monopolar, 120 ms pulse width, 160 Hz frequency, and 2.5 V [26]. However, a potential side effect in 99 
animals stimulated with high current intensities in BLA is the development of epileptiform 100 
after-discharges [27].  101 

 102 
3.2 Ventral Striatum 103 
The effects of ventral striatum DBS (100–200 μA, 0.1-ms pulse duration, 130 Hz) have been 104 

tested in a rodent model. They found that DBS of the VS (the VC/VS homolog in rats) during 105 
extinction training reduced fear expression and strengthened extinction memory, while facilitation 106 
of extinction was observed for a specific zone of dorso-medial VS, just above the anterior 107 
commissure; stimulation of more ventro-lateral sites in VS impaired extinction [28]. 108 

 109 
3.3 Hippocampus and prefrontal cortex 110 
Disruptions of fear extinction-related potentiation of synaptic efficacy in the connection 111 

between the hippocampus (HPC) and the medial prefrontal cortex (mPFC) have been shown to 112 
impair the recall of extinction memory [29]. Instead, low-frequency hippocampal stimulation at 2 Hz 113 
delivered after extinction impaired extinction learning and the development of hippocampal-PFC 114 
plasticity [30].  115 

The only clinical use of DBS in human patients affected by PTSD is represented by Langevin’s 116 
study of 2014 where six combat veterans were treated with BLA DBS (the study has been registered 117 
at www.clinicaltrials.gov (PCC# 121657) [31]. Eligible subjects signed informed consent. After this, 118 
they underwent baseline evaluations spaced over a six-week period, including neuropsychological 119 
testing and a baseline 18FDG PET scan. Patients were reassessed with the Clinician Administered 120 
PTSD Rating Scale (CAPS) at the end of this baseline period, and only those who maintained a total 121 
CAPS score ≥85 and other inclusion and exclusion criteria could be kept in the study. An additional 122 
baseline evaluation was stipulated by California Law referring to ‘Psychosurgery’ (WIC Sec 5326.6): 123 
an independent team, consisting of neurosurgeons and psychiatrists uninvolved in the treatment or 124 
the study protocol, examined all the potential subjects, to ascertain capacity to consent, severity of 125 
illness, and inadequacy of response to standard treatments. The intracranial leads (two/subject) 126 
(Medtronic, model 3387) were implanted bilaterally in the BLA following a traditional transfrontal 127 
trajectory, a well-documented procedure traditionally used for stereotactic amygdalotomy. 128 
Stimulation initiated at that 4-week postoperative time point or after an additional 2 months 129 
randomly.  During the telemetry session, the electrodes were initially stimulated at 2.5 V, 120-μsec 130 
pulse width, and 160-Hz frequency. The amplitude was progressively increased slowly to a 131 
maximum of 7 V. The pulse width was increased to a maximum of 210 μsec. Finally, the frequency 132 
was increased to a maximum of 200 Hz [32,33]. A clinical response will be defined as a 30% 133 
reduction in CAPS [34] from baseline and a CGI-I [35] score of 1 (very much improved) or 2 (much 134 
improved), but this study is still actively recruiting patients.   135 

. 136 

4. Conclusions 137 
Treatment-resistant PTSD is a serious condition associated with substantial morbidity and 138 

likely early mortality. The application of DBS for PTSD is still strictly investigational. Preclinical 139 
models suggest that stimulation at high frequency delivered to the amygdala, ventral striatum, 140 
hippocampus and prefrontal cortex may facilitate fear extinction and improve anxiety-like behavior. 141 
Neuroimaging studies indicate that PTSD patients have alterations in cerebral perfusion of limbic 142 
regions and the frontal and temporal cortex without re-exposure to accident-related stimuli. This 143 
finding supports the hypothesis of the involvement of limbic regions, which might be associated 144 
with the regulation of emotion and memory, in the pathophysiology of PTSD. In the only clinical 145 
report available DBS of the bilateral BLA in treatment-refractory combat veterans has been 146 
proposed. The main concern is that the potential benefit of BLA DBS comes with the risks of any DBS 147 
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neurosurgical procedure, as well as risks associated with long-term neuromodulation or risks of 148 
seizures.  As PTSD is a multi-symptomatic disorder, patients included in investigational studies 149 
should ideally be treated and managed by multidisciplinary teams, including psychiatrists, 150 
psychologists, and neurosurgeons. Informed consent has to be carefully obtained, taking into 151 
account the competency of the patient, the coexistence of psychiatric illnesses and personality 152 
disorders, that represent an exclusion criteria for most of DBS trials. Optimal stimulation 153 
parameters, targets, mechanisms of action, and the kinetics of stimulation will also need to be 154 
characterized prior to the launch of larger scale studies. 155 
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