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Abstract: Optimal dividend payment under a ruin constraint is a two objective control problem1

which – in simple models – can be solved numerically by three essentially different methods. One2

is based on a modified Bellman equation and the policy improvement method (see (2003)). In this3

paper we use explicit formulas for running allowed ruin probabilities which avoid a complete search4

and speed up and simplify the computation. The second is also a policy improvement method, but5

without the use of a dynamic equation (see (2003)). It is based on closed formulas for first entry6

probabilities and discount factors for the time until first entry (see (2016)). Third a new, faster and7

more intuitive method which uses appropriately chosen barrier levels and a closed formula for8

the corresponding dividend value. Using the running allowed ruin probabilities, a simple test for9

admissibility – concerning the ruin constraint – is given. All these methods work for the discrete10

De Finetti model and are applied in a numerical example. The non stationary Lagrange multiplier11

method suggested in (2016), section 2.2.2 does also yield optimal dividend strategies which differ12

from those in all other methods, and Lagrange gaps are present here. These gaps always exist in De13

Finetti models, see (2017).14
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1. Introduction17

Let S(t), t = 0, 1, ... be the time t surplus of a company and D(t), t = 0, 1, ... the adapted18

non-decreasing sequence of accumulated dividends. For fixed discount factor 0 < r < 1 the dividend19

value under D(t) = d(1) + ... + d(t) is given by20

VD(s) = E

[
∞

∑
0

rtd(t)|S(0) = s

]
,

where s ≥ 0 is the initial surplus. The with dividend ruin time of the company is21

τD = inf{t ≥ 0 : S(t)− D(t) < 0},

and ψD(s) is the corresponding with dividend ruin probability22

ψD(s) = P{τD < ∞|S(0) = s}. (1)

We assume in the following that dividends are never paid at or after ruin. The object to be23

investigated is24

V(s, α) = sup
D
{VD(s) : ψD(s) ≤ α}, s ≥ 0, 0 < α ≤ 1. (2)
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The value V(s, 1) is sometimes called value of the company. A lot of research has been done on this25

quantity, starting with the seminal work of De Finetti (1957) and Gerber (1969), Choulli, Taksar, Zhou26

(2003) and Albrecher and Thonhauser (2008) as well as Schmidli’s book (2007, Sec 2.4), and Loeffen27

(2008), Avanzi (2008) and Feng, Volkmer, Zhang, Zhu (2015) for related work. The concept leading to28

V(s, α) is a possible answer to the problem posed in 1963 by Karl Borch (1963) who wrote:29

If the general manager of our insurance company wants to run the company strictly as a business enterprise,30

he will probably always seek out the decisions which maximize V(s, 1). If, however, he is concerned with the31

social responsibility of the company, and the security which it offers to policy holders, he may also consider32

ψ0(s) [the ruin probability without dividend payment] when making his decisions. He will probably try33

to balance the two elements, but it is not easy to specify how this should be done.34

One approach for the computation of the value function is based on a modified35

Hamilton-Jacobi-Bellman equation for the corresponding stationary Markov process with a bivariate36

state variable (see 2003). This approach needs a fine discretization of the values for the ruin probability,37

and a large number of iteration steps. In the ruin probability grid, a complete search was necessary38

in the old version of the policy improvement method. A second approach is the iteration method39

presented in 2016. Here, we have shorter but still long computation times. Also here we have a40

complete search, but in the much smaller set of possible surplus values.41

The purpose of this paper is to study the form of optimal dividend strategies and use running42

allowed ruin probabilities to speed up the computation of the first method. This enables a big number43

of iterations for this first method even for fine discretizations. Compared with the iteration method,44

the second approach, we obtained slightly higher company values caused by the larger number of45

iterations. Finally, we show that optimal dividend strategies are barrier type, and we present analytic46

formulas for the dividend value of these barrier type strategies. In a numerical example we show how47

optimal barrier levels can be found.48

The quantity company value under a ruin constraint should later serve as an objective function49

for finding optimal reinsurance or investment strategies. For this we need simple algorithms for50

the computation of V(s, α) with a possible chance to use them also in the corresponding control51

problem. We restrict ourselves to the following very simple space and time discrete model in which52

such algorithms can easier be found.53

Let Z1, Z2, ... be independent random variables with 1/2 < p ≤ 1 and S(t) = s + Z1 + ... + Zt54

with P{Z = 1} = p,P{Z = −1} = 1− p = q. This is the classical De Finetti model which is skip free55

(upwards and downwards). In the insurance framework, t labels periods in which premia of size 156

come in and claims of size 2 go out. In this discrete model, each dividend payment can be assumed to57

be integral (see Schmidli 2007, Lemma 1.9). In 2016, Lemma 2, it is shown that for58

rp > 1/2 (3)

and for fixed s ≥ 0 the function α→ V(s, α) is continuous (notice that the continuity statement in59

2003, Lemma 2 e), is not correct, and its proof has a gap; a correct proof can be found in 2016, Lemma60

2). This shows that a purely discrete model can lead to a a situation with a continuous parameter α. To61

avoid technical problems we will assume in the following that (3) holds. The function α→ V(s, α) is62

strictly increasing on ψ0(s) ≤ α ≤ 1, and V(s, α) = 0 for α ≤ ψ0(s). For the De Finetti model we have63

the following fundamental difference equations for functions f (s), s ≥ −1:64

f (s) = p f (s + 1) + q f (s− 1) (4)

f (s) = r(p f (s + 1) + q f (s− 1)) (5)

which hold for s ≥ 0, where we assume in addition f (−1) = 0. The equations are homogeneous,65

and the set of solutions is one-dimensional. Equation (4) is the defining equation for the survival66

probability 1− ψ0(s) without dividends, which is the unique solution satisfying f (∞) = 1. A solution67

f (s) of (4) can be written f (s) = γ(1 − ψ0(s)) with a constant γ which can be specified by the68
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value of f (s) at some fixed point s0. Equation (5) defines the company value V(s, 1) in the range69

without dividend payment: let W(s) be the unique solution with W(1) = 1. Find M ≥ 0 for which70

W(M + 1)−W(M) ≤W(s + 1)−W(s) for all s ≥ 0. Then71

V(s, 1) = W(s)/(W(M + 1)−W(M)), s ≤ M.

M is the barrier for dividend payment: V(s, 1) = V(M, 1) + s−M for s ≥ M. If 0 ≤ s < B then72

the probability p(s, B) that S(t) reaches B from s before ruin satisfies (4), and p(B, B) = 1 leads to73

p(s, B) = (1− ψ0(s))/(1− ψ0(B)).

Similarly, for the waiting time τ(s, B) to reach B from s before ruin, the expected discount factor74

W(s, B) = E[rτ(s,B)] is a solution of (5). So W(s, B) is proportional to the solution W(s) of (5):75

E[rτ(s,B)] = W(s)/W(B).

2. Methods76

2.1. A modified Bellman equation77

Our first numerical method for the company value with ruin constraint is based on a modified78

Bellman equation. We use the following dynamic equations for V(s, α) (see 2003, formula (4)):79

V(s, α) = max{V(s− 1, α) + 1, G(s, α)}, (6)

G(s, α) = sup
A(s,α)

{rpV(s + 1, β1) + rqV(s− 1, β2)} (7)

A(s, α) = {(β1, β2) ∈ B(s, α) : pβ1 + qβ2 = α} (8)

B(s, α) = {(β1, β2) : ψ0(s + 1) ≤ β1 ≤ 1, ψ0(s− 1) ≤ β2 ≤ 1}. (9)

These equations hold in the range s = 0, 1, 2, ... and ψ0(s) ≤ α ≤ 1, and we use the values80

V(−1, α) = 0 and ψ0(−1) = 1. The dynamic equations define the optimal dividend strategy in81

feedback form: Equation (6) tells us when a dividend of size 1 is paid. Equation (7) gives the value82

function when no dividend is paid, depending on the next period in which the surplus can go up83

with probability p or down with probability q. The number α is the running allowed ruin probability,84

which changes to β1 or β2 in the next period depending on an up- or down-move of the surplus.85

Equation (8) implies that the process of running allowed ruin probabilities is a martingale with mean86

α. Computation is based on an iteration which is the well known policy improvement procedure (see87

2003): we start from V0(s, α) = 0, and when Vn(s, α) is given for all s and α, we compute Vn+1(s, α)88

from equations (6)-(9) where we use the functions Vn on the right hand side of (7) and obtain Vn+1 on89

the left hand side of (6):90

Gn(s, α) = sup
A(s,α)

{rpVn(s + 1, β1) + rqVn(s− 1, β2)} (10)

Vn+1(s, α) = max{Vn+1(s− 1, α) + 1, Gn(s, α)}. (11)

One can show that the sequence of functions Vn(s, α) is non-decreasing and bounded, and its91

limit is a solution of the dynamic equations above (see 2003, Lemma 2 a)). The classical verification92

argument yields that the limit is the value function of our control problem, and a solution to the93

dynamic equations (6)-(9) see also 2003, Lemma 2. b), c) and d)). By continuity, the supremum in (7) is94

attained. The optimal dividend strategy can be given in feedback form: starting from an initial state95

(s0, α0), s0 the initial surplus and α0 the allowed ruin probability, after one step the surplus goes up or96
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down to s + 1 or s− 1. With surplus s + 1 we may pay a dividend of size 1, and we are back in the97

original state (s0, α0). Or we do not pay dividends, and then we come to a new state (s0 + 1, β1), where98

(β1, β2) is the maximizer in equation (7) which exists because of continuity. With surplus s− 1 we do99

not pay dividends and come to a new state (s0 − 1, β2). This produces a bivariate process (S(t), α(t))100

for the surplus S(t) and the allowed ruin probability α(t) at time t. Notice that for all t ≥ 0 we have101

ψ(S(t)) ≤ α(t) ≤ 1. (12)

The optimal dividend action chosen at time t depends on the vector (S(t), α(t)). The second102

component α(t) makes the optimal dividend strategy path dependent. Each payment of size 1 does not103

change the state, so during dividend payment we stay in the same state until the next claim (downward104

jump). This implies that there exists a function M(α) such that dividends are paid above M(α) when105

the allowed ruin probability equals α. The function M(α) is a non-increasing step function. Below,106

we study the running allowed ruin probabilities α(t) in more detail. In the above computation based107

on the modified Bellman equation we first used a complete search for the maximizer β1, β2. Here we108

replaced each complete search by an easy computation of running allowed ruin probabilities which109

speeds up a lot.110

2.2. Iteration method111

The iteration method is based on the observation that, starting at initial surplus s, we either pay112

dividends immediately, or we wait until we arrive at some larger surplus B. If at B the ruin probability113

a(B) is allowed, then we continue with a dividend strategy producing a dividend value (close to)114

V(B, a(B)). If we start with an initial function V0(s, α) (e.g. V0(sα) = 0), and if Vn−1(s, α) is given, then115

our iteration reads116

Vn(s, α) = max
B≥s
{W(s, B)V(s, a(B))} (13)

Vn(s, α) ≥ Vn(s− 1, α) + 1 if ψ(s− 1) ≤ α, (14)

α = p(s, B) + (1− p(s, B))a(B). (15)

Here, p(s, B) is the probability that the without dividend process S(t) falls below zero before117

reaching B, and W(s, B) is the discounting factor E[rτ(s,B))] for τ(s, B) the waiting time to reach B from118

s before ruin. This device produces a monotone sequence of functions Vn which converges to the value119

function V(s, α). The first equation (13) covers the case in which no dividends are paid before reaching120

B, while equation (14) allows for immediate dividend payment at surplus s. The numerical results121

verify that the optimal dividend strategies are barrier type.122

2.3. Running allowed ruin probabilities123

The running allowed ruin probabilities are ruin probabilities for optimal dividend strategies: if D124

is the optimal dividend strategy with initial surplus s and allowed ruin probability α, then the ruin125

probability of the with dividend process S(u)− D(u), u ≥ 0, equals α. At time t the dividend strategy126

Dt(u) = D(t + u) is the optimal strategy for (S(t), a(t)), and so a(t) is the ruin probability for the127

with dividend process S(t + u)− Dt(u), u ≥ 0. Let B0 ≥ s0 be the surplus above which dividends128

are paid first, i.e. dividends of size 1 are paid at state B0 + 1 which produces a constant value B0 for129

the with dividend process until the next claim (downward jump). Let τ be the time from state s until130

reaching B0 + 1 before ruin (i.e. τ = ∞ if ruin happens before reaching B0 + 1). Then on 0 ≤ t < τ the131

process a0(S(t), t) is a martingale which satisfies a0(−1) = 1 and (4). This implies that for 0 ≤ s ≤ B0132

we have a0(s) = 1− γ0 + γ0ψ0(s) for some 0 < γ0 ≤ 1, and γ0 can be computed from a0(s0) = α0.133

During dividend payment, a0(s) stays on the level α0 = a0(B0), it leaves this level at the first claim.134

Let B1 ≥ B0 be the level above which we first pay dividends after leaving B0. Repeating the above135
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reasoning with B1 instead of B0 and B0 − 1 instead of s0, we obtain a function a1(s), s ≤ B1, which136

is the ruin probability of the with dividend process for the initial pair (B0, α0). Since the transition137

from B0 to B0 − 1 is certain, we get a1(B0 − 1) = α0. This value determines γ1 in the representation138

a1(s) = 1− γ1 + γ1ψ(s). Proceeding in this way, for a non-decreasing sequence of barriers Bi, i ≥ 0,139

we obtain a non-decreasing sequence of numbers γi, i ≥ 0 satisfying the recursion140

γi+1 = γi
1− ψ0(Bi)

1− ψ0(Bi − 1)
. (16)

The dividend strategy which pays dividends at the levels Bi satisfies the ruin constraint ψD(s0) ≤141

a0 provided142

sup
i
{γi} ≤ 1. (17)

If we stop the sequence Bi at some finite number n, this means that after visiting n barrier levels143

we stop paying dividends for ever, i.e. γi = 1 for i > n.144

2.4. The barrier method145

The barrier method does not use iteration or discretization, it is more interactive and simpler. We146

start with a (finite) sequence of barrier levels B(i), i = 1, ..., n and compute the dividend value with147

an analytic formula in which all dividends which are paid on one of these levels are appropriately148

discounted and added. The value of dividend payments on the level Bi, discounted to the time when149

we reach Bi + 1 after leaving Bi−1 − 1, does not depend on i and equals150

A =
∞

∑
k=0

pnrn = 1/(1− rp).

So the dividend value consists of the sum of all these payments, discounted over the times elapsed151

between s and B0 + 1 (for the payments at level B0), then over this time plus the time elapsed between152

B0− 1 and B1 + 1 plus the time spent on level B0 (for the payments at level B1), and so on. The discount153

factor for the time spent on level Bi is again independent of i, it equals154

C =
∞

∑
k=1

qpn−1rn = qr/(1− rp).

The present value for payments on level B0 is155

A
W(s)

W(B0 + 1)
,

for level B1 we obtain the present value156

A
W(s)

W(B0 + 1)
C

W(B0 − 1)
W(B1 + 1)

and so on. A closed formula for the total dividend value of the dividend strategy D is157

VD(s) = A
W(s)

W(B0 + 1)

∞

∑
k=0

Ck
k

∏
i=1

W(Bi−1 − 1)
W(Bi + 1)

. (18)

One method to find barrier levels uses the function M(α), which might come from the computation158

with one of the above numerical methods:159

M(α) = min{s : V(s + 1, α) = V(s, α) + 1}.
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Figure 1. The function M(α) and the running ruin probabilities ai(s)

The function M(α) (see Figure 1 left below) is combined with the running ruin probabilities ai(s)160

defined sequentially as follows: a0(s) is computed from the initial data (s0, α0). The intersection of161

a0(s) with M(α), plotted in the same diagram, is barrier B0. from the data (B0, a0(B0)) we compute162

a1(s), and so on (see Figure 1 right below): the intersection points of ai(s) with M(α) are the barriers163

Bi. The figure shows the functions ai(s), i = 0, ..., 15 intersecting M(α) at level s = 4 or s = 5.164

Another, more precise method is an (almost) complete search in the vectors of non-decreasing165

n−tuples of numbers k, k + 1, ..., K, where k is the barrier in the unconstrained problem and K a suitable166

limit of the state space for s. Search for the smallest – in lexicographical order – vector for which the167

maximal γi is smaller than 1. Finally we apply formula (18) to the smallest vector. The computation168

of the γ′s is very simple, and the test checks for an appropriate with dividend ruin probability. A169

numerical example is given below. Following our intuition we searched for a barrier sequence only in170

the set of all non decreasing sequences. That intuition does not fail in this situation can be seen with171

the following argument. The functions ai(s) are defined by ai(−1) = 1, equation (4) for 0 ≤ s ≤ Bi − 1,172

and some value for ai(s0) with 0 ≤ s0 ≤ Bi. The functions are concatenated by the value in which the173

with dividend surplus jumps after leaving the barrier level Bi. For Bi+1 ≥ Bi − 1 this produces the174

recursion (16), but for Bi+1 < Bi − 1 after a jump to Bi − 1 we pay out dividends immediately which175

leads us to Bi+1. In this case the recursion reads176

γi+1 = γi
1− ψ0(Bi)

1− ψ0(Bi+1)
.

With a next barrier Bi+2 ≥ Bi+1 − 1 we obtain177

γi+2 = γi
1− ψ0(Bi)

1− ψ0(Bi+1 − 1)
(19)

If we replace Bi by B̂i = Bi+1 + 1 < Bi we obtain for the barriers B̂i, Bi+1, Bi+2 a parameter178

γ̂i+2 = γi
1− ψ0(B̂i)

1− ψ0(Bi+1 − 1)
≤ γi+2,

and the same value appears for the non decreasing threetuple Bi+1, B̂i, Bi+2. The dividend value179

for these barriers is larger than before, since we pay dividends earlier. Repeating this argument step by180

step, we can replace an arbitrary admissible sequence of barriers by an admissible non decreasing one181

which leads to a higher dividend value.182
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2.5. The Lagrange multiplier approach183

For the Lagrange multiplier method we choose a constant L > 0 and maximize the company184

value minus the weighted corresponding ruin probability:185

V(s, L) = sup
D
{VD(s)− LψD(s)}, s ≥ 0. (20)

We used a non-stationary approach and computed the quantities for time t186

V(s, L, t) = sup
D
{VD(s, t)− LψD(s, t)}, s ≥ 0,

VD(s, t) = E

[
∞

∑
t

rud(u)|S(t) = s

]
,

ψD(s, t) = P{S(u)− D(u) < 0 for some u ≥ t|S(t) = s}

via the recursion187

V(s, L, t− 1) = max{V(s− 1, L, t− 1) + rt−1, pV(s + 1, L, t) + qV(s− 1, L, t)} (21)

with V(−1, L, t) = −L. The resulting optimal dividend strategy is a time dependent barrier188

strategy M(t) with which dividends are paid at t when the with dividend surplus is above M(t). Using189

the barrier function M(t) one can compute the ruin probability for the optimal dividend strategy via190

the recursion191

ψ(s, t− 1) = max(pψ(s + 1, t) + qψ(s− 1, t), ψ(M(t− 1), t).

The value V(s, L) = V(s, L, 0) can efficiently be approximated via a backward recursion starting192

at V(s, L, T) = −Lψ(s) and ψ(s, T) = ψ0(s) for some large T, a computation which turned out to be193

easy. Numerical experiments indicate that the approach produces dividend strategies which differ194

from the ones computed with the other methods: The resulting optimal dividend strategies for V(s, L)195

are state and time dependent, but not path dependent.196

3. Numerical example197

All computations in this section are done with MatLab (modified Bellman, policy improvement,198

and Lagrange) or with Maple (Barrier method). We consider the case with parameters p = 0.7, r =199

1/1.03, s0 = 4 and a0 = 0.2. We have200

ψ0(s) = (q/p)s+1, s ≥ 0,

W(s) = Kzs
1 + (1− K)zs

2, s ≥ 0,

z1 = 1.07142857142857142,

z2 = 0.4,

K = 1.5957446808510638298,

A = 103/33,

C = 10/11,

γ0 = 0.804988026.

We used the iteration method with 150 repetitions and a step size 1/100, 000 for α and obtained201

V(4, 0.2) = 12.8162.
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The unconstrained company value is202

V(4, 1) = 13.1004.

This shows that a ruin constraint is rather cheap. The method using the modified Bellman203

equation described in 2003 is done – slightly modified – with the same step size 1/100, 000 for α, which204

results with 700 iterations in a somewhat larger value:205

12.8557.

The modification, which speeds up a lot and allows for a small step size and a large number of206

iterations, is the specification of the maximizers β1 and beta2 when s and α are given. We use again the207

running ruin probabilities for states without dividend payment a(x) = 1− γ + γψ(x) with γ derived208

from a(s) = α and set209

β1 = a(s + 1), β2 = a(s− 1). (22)

The larger value obtained with the old method indicates that the iteration method was used210

with an insufficient number of repetitions. Since the iteration method uses a complete search over211

the possible surplus values (reducing the search to one over a small region leads to wrong results),212

and larger numbers of iterations are not acceptable even for a patient user. Finally, for the iteration213

method we do not have a proof for convergence to the value function. Of course the best results can214

be obtained using the barrier method which is based on exact formulas. We computed V(4, 0.2) from215

given barrier levels B0, ..., B100. Stopping dividend payment after visiting 100 not necessarily different216

barriers produces a numerical result below the true value, but the small size of this error can be seen in217

the (worst) case α = 1 : V(4, 1) = 13.1003845, while with 100 steps we obtain 13.1003469. We used the218

barriers219

Bi = 4, 0 ≤ i ≤ 6,

Bi = 5, 7 ≤ i ≤ 14,

Bi = 8, 15 ≤ i ≤ 19,

Bi = 12, 20 ≤ i ≤ 30,

Bi = 15, 31 ≤ i ≤ 40,

Bi = 18, 41 ≤ i ≤ 50,

Bi = 24, 51 ≤ i ≤ 100

and Bi = 50 for i ≥ 51. All corresponding γi are smaller than 1. With these we obtained the value220

V(4, 0.2) = 12.9099.

The barriers are found in an interactive procedure: we started with three regions221

[0, ..., 6], [7, ..., 13], [14, ..., 19] in which all barriers have the same value a, b, c, respectively. We took a = 4222

which is the barrier in the unconstrained problem, b = 6 and b = 7. All other barriers are K. To avoid223

γi > 1 we increased step by step to c = 8. Then we reduced the size of barriers in the remaining224

groups. We are close to the optimal value when γK < 1 is very close to one. The difference between the225

dividend values 12.8557 and 12.9099 is caused by the discretization of α; even a step size of 1/100, 000226

results in a rather big error due to the large number of calculations.227

For the Lagrange multiplier method we wanted to use the above numerical methods with a factor228

L for which the ruin probability equals 0.2. This L, however, does not exist, there is a Lagrange gap229

at this point. We computed with L = 2.94 the values α = 0.1998175 and V(4, α) = V(4, L) + αL =230
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Figure 2. The function M(t) for t = 1, ..., 500

12.84498, and for L = 2.93 the values are α = 0.20149665 and V(4, α) = 12.84499. These numbers231

are close to the numbers with other numerical methods, but still there is an essential difference: the232

corresponding dividend strategies have a barrier strategy M(t) which are state and time dependent233

but not path dependent. The function M(t) is a non decreasing step function, see the figure below.234

4. Other models235

The proposed policy improvement method without dynamic equation works also for more236

general models which are skip-free upwards and have independent stationary increments, e.g. classical237

Lundberg models with arbitrary claim size distribution or Brownian motions with drift. For these238

models the fist entrance probabilities and the discount factors for first entry waiting times are available.239

For Lundberg models the policy improvement method based on a modified Bellman equation can240

probably be applied, in particular with the explicit form of running allowed ruin probabilities. The241

barrier method does not seem to be adaptable to problems with a continuous state space: one has to242

discretize the space, and the resulting grid will be too large for the selection of optimal barriers.243

5. Appendix244

Here we include the source code of five programs which are used for the problem in section 3.245

Three MatLab codes are titled Policy improvement with Bellman, Policy improvement without dynamic246

equation, and Lagrange method. The code DeFinettiModel is used in all these three mentioned MatLab247

codes and specifies the parameters of the problem and the method. In addition we give the code of a248

MAPLE program which is used for the Barrier method.249

DeFinettiModel.m250

ds=1; S0=300; S=0:ds:S0; KS=length(S);251

W=zeros(1,KS); V1=W; V2=W; V0=W;252

p=0.7; q=1-p; r=1/1.03;253

a1=1.0714285; a2=0.4;254

b2=-.5957446812; b1=1-b2;255

for k=1:KS W(k)=b1*a1∧(k-1)+b2*a2∧(k-1); end256

kk=6; C=1/(W(kk)-W(kk-1));257

for k=1:kk V0(k)=W(k)*C; end258

g=(1-p)/p; Psi=g.∧(1:1:KS);259

for i=(kk+1):KS V0(i)=V0(i-1)+1; end260

261
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Policy improvement with Bellman, with new formulas for beta1 and beta2262

DeFinettiModel;263

da=1/100000; Alpha=da:da:1; KA=length(Alpha);264

V1=zeros(KS,KA); V2=V1;265

for L=1:600266

for al=1:KA V2(1,al)=r*p*V1(2,al); end267

for s=2:KS-1268

for al=1:KA269

alpha=al*da; if Psi(s)>=alpha V1(s,al)=0;270

else271

ga=(1-alpha)/(1-Psi(s));272

beta1=floor((1-ga+ga*Psi(s+1))/da);273

beta2=floor((1-ga+ga*Psi(s-1))/da);274

beta1=max(1,beta1); beta2=max(1,beta2);275

x=r*p*V1(s+1,beta1)+r*q*V2(s-1,beta2);276

if Psi(s-1)<al & x<V2(s-1,al)+1277

x=V2(s-1,al)+1;278

end279

V2(s,al)=max(V1(s,al),x);280

end end end281

V1=V2;282

[L V2(5,20000)]′283

end284

Policy improvement without dynamic equation285

clear; DeFinettiModel;286

da=1/100000; Alpha=da:da:1; KA=length(Alpha);287

V1=zeros(KS,KA); V2=V1;288

V1(:,KA)=V0; M0=round(0.2/da);289

for L=1:150290

M=zeros(1,KA);291

for s=1:KS292

for al=max(round(Psi(s)/da),1):KA-1293

Feld=zeros(1,KS);294

alpha=al*da;295

if M(al)>0 & s>M(al) & Psi(s-1)<alpha296

V1(s,al)=V1(s-1,al)+1;297

end298

for B=s+1:KS299

x1=(Psi(s)-Psi(B))/(1-Psi(B));300

x2=1-x1;301

aB=floor((alpha-x1)/x2*KA);302

if aB==0 VF=0; end;303

if aB>0 VF=V1(B,aB); end304

Feld(B-s)=W(s)/W(B)*VF;305

end306

x=max(Feld);307

if s>1308

y=V2(s-1,al)+ds;309

if Psi(s-1)<alpha & x<y310

V2(s,al)=max(V1(s,al),y);311
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if M(al)==0 M(al)=s; end312

else V2(s,al)=max(V1(s,al),x);313

end end end314

V2(s,KA)=V0(s);315

end316

V1=V2;317

end318

Lagrange method319

DeFinettiModel;320

T0=2000; T=0:T0; KT=length(T);321

V=zeros(KS,KT); W=V;322

M=zeros(1,KT);323

L=2.93; s0=5; a0=0.2; p=0.7; r=1/1.03;324

V(:,T0)=-L*Psi;325

for k=1:T0-1 t=T0-k; rt=r∧(t-1);326

V(1,t)=p*V(2,t+1)-q*L;327

for i=2:KS-1328

V(i,t)=max(p*V(i+1,t+1)+q*V(i-1,t+1),V(i-1,t)+rt);329

if p*V(i+1,t+1)+q*V(i-1,t+1)<V(i-1,t)+rt330

if M(t+1)==0 M(t+1)=i-1; end end end end331

W(:,T0)=Psi;332

for k=1:T0-1333

t=T0-k; W(1,t)=p*W(2,t+1)+q;334

for i=2:KS-1 W(i,t)=p*W(i+1,t+1)+q*W(i-1,t+1);335

if i>M(t+1) W(i,t)=W(M(t+1),t); end336

end end337

V(5,1) W(5,1) V(5,1)+L*W(5,1)

’338

339

And finally the MAPLE code for the barrier method:340

Barrier.mw341

> restart; Digits := 25;342

> p := .7; q := 1-p; r := 1/1.03;343

> Ps := s->(q/p)∧(s+1);344

> z := solve(r*(p*x∧2+q) = x, x);345

> B0 := solve((1-B)*z[2]+B*z[1] = 0, B);346

> W := s->(1-B0)*z[1]∧s+B0*z[2]∧s;347

> s0 := 4; a0 := .2;348

> for i from 0 to 6 do B[i] := 4 end do;349

> for i from 7 to 14 do B[i] := 5 end do;350

> for i from 15 to 19 do B[i] := 8 end do;351

> for i from 20 to 30 do B[i] := 12 end do;352

> for i from 31 to 40 do B[i] := 15 end do;353

> for i from 41 to 50 do B[i] := 18 end do;354

> for i from 51 to 101 do B[i] := 24 end do;355

> g[0] := (1-a0)/(1-Ps(s0));356

> a[0] := 1-g[0]+g[0]*Ps(B[0]);357

> for i from 0 to 100 do a[i] := 1-g[i]+g[i]*Ps(B[i]);358

> g[i+1] := (1-a[i])/(1-Ps(B[i]-1)) end do;359

> g[100];360
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> A1 := (103/33)*W(s0)/W(B[0]+1); C := 10/11;361

> U[1] := 1; for i from 2 to 100 do U[i] := U[i-1]*C*W(B[i-1]-1)/W(B[i]+1) end do;362

> F := evalf(A1*(sum(U[k], k = 1 .. 100)));363
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