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12 Abstract: This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-
13 space by means of ultra-wideband electromagnetic pulses. A receiver collects reflections from the
14 air-ground interface and from the gradients of dielectric permittivity in the half-space. This scenario
15 is of interest for ground penetrating radar (GPR) applications. For the analytical description of the
16 received signal, we developed and implemented a novel time-domain version of the coupled-wave
17 Wentzel-Kramers—Brillouin approximation. Our solution is in very good agreement with finite-
18 difference time-domain results, radically accelerates calculations, and effectively accounts for the
19 protracted return signals observed in the lower part of the GPR spectrum. The paper includes results
20 showing the application of the proposed technique to two case studies: in particular, the method
21 was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in
22 Russia, and to simulate GPR probing of the Moon surface, to detect smooth gradients of the
23 dielectric permittivity in lunar regolith.
24 Keywords: ground penetrating radar; electromagnetic propagation in nonhomogeneous media;
25 time-domain analysis
26

27 1. Introduction

28 The main goal of subsurface radar probing is the estimation of physical and geometrical
29  properties of a natural or manmade structure, by using electromagnetic waves [1,2]. Ground
30  penetrating radar (GPR) systems emit and receive electromagnetic waves over an ultra-wide
31  frequency range and can work in the time or spectral domain. Time-domain systems are based on the
32 transmission of short electromagnetic pulses; spectral-domain systems transmit a succession of
33 harmonic signals of linearly increasing frequency, in discrete steps. The signal impinging on a GPR
34 receiving antenna results from the interaction of the emitted signal with the structure under test; by
35  processing and interpreting the received signal, physical and geometrical information about the
36  scenario can be deduced. Through exploitation of the inverse Fourier Transform (from frequency to
37  time-domain), a spectral-domain GPR provides results equivalent to those of a pulsed GPR. The
38  frequency-domain approach is possible because the environment is regarded as a time-invariant
39  system and the received signal is considered as a linear function of the emitted one.

40 Laws regulating electromagnetic-pulse radiation and propagation in non-uniform media have
41  to be fully taken into account, in the development of reliable forward and inverse scattering
42 algorithms for the simulation, analysis and interpretation of GPR responses. Closed-form analytical
43 solutions can be found only for very simple scenarios related to canonical scattering problems.
44 Realistic scenarios are complicated and require massive numerical calculations.
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The most popular full-wave computational methods combine a relatively simple mathematical
formulation with a mostly numerical nature: they are easy to implement and versatile. For example,
the finite-difference time-domain (FDTD) technique [3-5] is a full-wave computational method
widely used in the GPR community. FDTD is an accurate method and allows to conveniently
simulating composite structures; the main drawbacks reside in the approximation limits of the FDTD
model itself, in terms of space and time discretization. The calculation time and memory
requirements can be prohibitive, for the solution of realistic problems. The criteria for accuracy,
stability, and convergence of results are not always straightforward for non-experienced researchers.

Other full-wave formulations have a higher analytical complexity: a deeper physical insight into
the considered problem is needed, to develop and implement such techniques [6-11]. Usually, these
approaches are less versatile, i.e., they are conceived to solve specific problems rather than to model
a wide range of different scenarios. The main advantages of such techniques reside in the possibility
to achieve a more comprehensive understanding of the electromagnetic phenomena occurring in the
subsurface or structure under test, and a deeper knowledge of how targets get translated into the
radargrams. When applicable, these methods turn out to be particularly fast and numerically
efficient, hence they are suitable to be embedded into inverse solvers requiring the iterative
evaluation of several forward problems.

Electromagnetic scattering problems involving media with one-dimensional (1D) variation of
the electromagnetic properties have been widely studied in the literature and still are of high interest
[11-16]. Approaches for the solution of such problems find application not only in the GPR field: they
are important for the interpretation of data measured with other electromagnetic non-destructive
testing methods as well, such as Time Domain Reflectometry (TDR) for moisture evaluation and
material analysis [17,18].

One-dimensional problems where the permittivity varies on a wavelength scale are difficult to
tackle and only a few permittivity profiles allow for exact analytical solutions [19]. Usually, scenarios
involving this kind of inhomogeneous media are modelled by using numerical techniques, such as
the already mentioned FDTD method, the finite integration technique (FIT) [20], time-domain
integral equation (TDIE) approaches [21], and more. The Green’s function method [22] offers some
advantages: if different incident waveforms need to be considered, the wave equation does not have
to be solved for each of them, and some simplifications can be done analytically [23]; moreover, the
wave field does not have to be computed throughout the entire medium but only at the receiver
position. Methods specifically conceived for dealing with absorbing inhomogeneous layers and
anisotropic inhomogeneous media have been also proposed and tested, with various degrees of
success, see for example [24] and [25].

When the permittivity variation takes place along one direction and in a much larger scale than
the wavelength, the propagation of electromagnetic waves can be successfully described by using
semi-analytical techniques. Substantially, Maxwell’s equations can be solved in a series of
homogeneous layers with constant permittivity, and the wave fields can be joined at the interfaces
with appropriate continuity conditions. If the thickness of the homogeneous layers tends to zero,
such a procedure results in a classical Wentzel-Kramers—Brillouin (WKB) approximation. This
approach, originally proposed in quantum mechanics [26], became a powerful tool for the
mathematical description of acoustical and electromagnetic wave propagation in natural media with
gradually varying dielectric permittivity [27]. Unfortunately, the standard version of the WKB
approach cannot deal with backward reflections originated by smooth permittivity gradients, which
are of interest in GPR applications. In that respect, the rectification of the WKB technique developed
in the frequency domain by Bremmer and Brekhovskikh looks particularly promising [27-29]. Such
method, also called “coupled-wave WKB method” or “two-way WKB”, consists in an iterative
solution of coupled ordinary differential equations of WKB type; it is capable to take into account the
backscattered signals and provides a good accuracy over a wide frequency range [27].

The possibility application of the two-way WKB method to GPR was studied in [30] for the first
time: it was demonstrated that the time-domain counterpart of the Bremmer-Brekhovskikh method
can accurately describe the waveform of the reflected signal in the presence of permittivity
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97 discontinuities or gradual variations. Moreover, it was shown that the method allows to effectively

98  reconstructing the properties of subsurface layers, starting from the signal received by the radar.

99 The aim of our work is to further develop the promising WKB approach and apply the Bremmer-

100 Brekhovskikh approximation to a more realistic scenario. In particular, we developed, implemented
101 and tested a new semi-analytical method, based on the coupled-wave version of the WKB
102  approximation, to study a two-dimensional (2D) back-scattering problem arising when a pulsed
103 electromagnetic signal impinges on a non-uniform dielectric half-space. Actually, the formulation of
104 our problem is “1.5-dimensional”: the subsurface medium is assumed to be horizontally stratified
105 (1D permittivity model) and the source is a line of current stretched along the air-ground interface,
106  which produces a two-dimensional (2D) transient electromagnetic field. We neglect energy losses in
107 the involved media.
108 The paper is structured as follows. The theoretical approach is presented in Section II. We
109 consider a simplified 1D-scenario in Subsection IL.A, in order to explain the basis of the technique; in
110  Subsection II.B, we extend the method to the above-mentioned 1.5-dimensional scenario. In the
111 numerical implementation of our technique, the key point is the solution of a functional equation, to
112 determine the complex poles of an integrand that appears in the explicit representation of the
113 analytical solution. Its physical interpretation in terms of geometrical optics is given in Subsection
114  II.C and a simplification achieved in case of moderate separation between the transmitting and
115  receiving antennas is discussed in Subsection I1.D. An accurate numerical quadrature algorithm for
116  the arising singular integrals is proposed in Section III. In Section IV, numerical results are presented.
117  Firstly, the proposed method is compared with the FDTD technique. A very good agreement is
118  obtained, for different soil parameters and configurations; moreover, an impressive acceleration of
119  computation is achieved with our method. Next, a successful application of our approach to real
120 scenarios is presented. In the first example, the method is employed to aid the interpretation of
121 radargrams collected in 2013 during an IZMIRAN expedition, where GPR was used to search for a
122 large fragment of the Chelyabinsk meteorite in Lake Chebarkul bottom [31, 32]. In the second
123 example, the method is used for the simulation of GPR probing aimed to the estimation of the water
124 content in lunar regolith near the poles [33]. Conclusions are drawn in Section V, where plans for
125  future work are also outlined.

126 2. Theoretical method

127 2.1. One-dimensional problem

128 In this Subsection, we resume the simplified 1D-probing scheme proposed in [30], in order to
129 explain the basis of our approach.
130 Let us consider the 1D propagation of an electromagnetic pulse, with electric field E(ct, z), in a

131  non-uniform half-space z > 0 characterized by a real-valued relative permittivity profile e(z) and
132 a vacuum magnetic permeability o (i.e., the half-space is assumed to be a lossless non-magnetic
133 medium). Here and in the following, ¢ is the time, z is the spatial coordinate and c is the light velocity
134 in vacuum. This phenomenon is governed by the wave equation

0%E(s,z)/0z% = £(2)0%E(s,2)/0s* (z>0,s > 0), (1)
135  where s = ct isintroduced for convenience, so that 9%/ds? = ¢~20%/dt%. The sourceisin z = 0. The

136  trivial initial conditions E =0 and dE/dt =0 in t =0, Vz, and a non-homogeneous boundary

137  condition given by
E(5,2)/05 |,=0 — &5/ *0E(5,2)/07 |,=0 = 2 df (s)/ds, 2

138  define a transient field E(s,z) generated by the pulse f(s) entering the non-uniform half-space z >
139 0 with g = &(z - +0). The total wave field at z = 0, can be written as E(s,0) = f(s) + g(s), where
140  g(s) is the cumulative backscattered signal born on the subsurface permittivity gradients.

141 In order to find a unique solution to the boundary-value problem, the radiation condition
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0E(s,2z)/0s~ e2/* 0E(s,2)/dz, 7z - » ©)

142 has to be imposed, excluding the waves coming from z = . In (3), &, = &(z = ). The application

143 of the Fourier integral transform

[ee)

Ek,2) = f E(s, z)exp(iks)ds 4)

0

144 reduces (1) to the 1D Helmholtz equation
02%E(k,2)/0z% + k?c(2)E(k,z) = 0 (5)
145  or to an equivalent set of first-order ordinary differential equations (ODE) [29]

0A*(k,2) €'(2)
0z  4e(2)

exp [¢2ik fzsl/z (z)dz] A*(k,2), (6)
0

146  with €'(z) = de/dz. Equations (6) govern the amplitudes A*(k,z) and A~ (k,z) of the direct and

147  backward waves in the total field representation
~ N 1/4 z z
Ek,2) = [@ {A+(k, z)exp [ikf sl/z(z)dz] + A= (k,z)exp [—ikf eY2(2)dz|, 7)
0 0

148  valid for z > 0. The equation set (6) can be solved iteratively, starting from dA*(k,z)/ 0z = 0. The

149  first approximation gives

A*(z,k) = f(k)

- f(k)fwf'(f) [ . fz ] ©)
A (z,k) ~ ——= exp |—=2ik | €V2(&)d¢|de.
(k) = === | S e |2k | e 0ae | ag
150 A backward Fourier transform yields an explicit formula relating the initial pulse f(s) with the

151  total signal E(s,0) = f(s) + g(s), that can be measured in z=0. In particular, the half-space
152 response to the input electromagnetic pulse is

1 (%€ () z
g(s) = _Zfo =) f [s — Zfo s(()l/zd{] dz. 9)

153  Equation (9), having the evident meaning of a sum of partial reflections due to the permittivity
154  gradients, can be considered as an integral equation for the unknown function &(z). As shown in
155  [30], this equation, having a convolution form, can be solved by exploiting the Fourier-Laplace

156  transform, yielding a parametric solution to the 1D inverse problem

(s(s) = gyexp [—4ISQ(r)dr]
; (10)

-1/2 .s r
80 I ’
= 2 dr'|ld
z(s) > foexp[ fOQ(r) r] r
157  where
1 ia+oo B
Q) =5 | g0 F G0 expl—ikr) d, a

158 and f(k), G(k) are the Fourier transforms of the initial pulse f(s) and received backscattered signal
159  g(s), calculated accoding to (4).

160 2.2. 1.5-dimensional problem

161 In this Subsection, we deal with a more realistic model. In particular, we consider a GPR with
162  separated antennas lying at the air-ground interface, we model the transmitting antenna as a line


http://dx.doi.org/10.20944/preprints201712.0035.v1
http://dx.doi.org/10.3390/rs10010022

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2017

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180
181

182

183

184

185
186
187
188
189

source, and we develop an analytical method that allows to describe the electromagnetic field
recorded by the receiving antenna, including the surface wave and all partial reflections by the
subsurface permittivity discontinuities and gradients.

We exploit the Fourier-Laplace transform and reduce the time-domain boundary value problem
to an ordinary differential equation, which is solved approximately by the Bremmer-Brekhovskikh
method. A backward integral transform yields an approximate representation of the time-domain
Green function, i.e., of the subsurface medium response to an elementary current jump in the GPR
transmitting antenna. This result, in combination with the Duhamel principle [34], gives an
approximate solution to the forward electromagnetic scattering problem for an arbitrary
electromagnetic pulse and permittivity profile.

Let us therefore consider the 1.5-dimensional scenario of short-pulsed radiation emitted by a
line source stretched along the surface of a non-uniform dielectric half-space z > 0. We assume that
the half-space is horizontally layered, with a real-valued relative permittivity. We also assume a
uniform current distribution along the thin wire, which is lying at x = z = 0, —c0 < y < oo. The wave
perturbation is excited by a current pulse I(t). The 2D wave equation governing the y-component of
the electric field E(t; x,z) is:

0°E 0%E €(2)9%E 4rm
—_—t— = — 12
ox2 | 972 c2 ot2 2 S(x)SI(), (12)

where 6(v) is the Dirac delta function. By using integral transforms and by imposing the initial
conditions E=0 and 0E/0t = 0¢(z) in t =0, Vz, equation (12) can be reduced to an ordinary

differential equation. In particular, we apply a Fourier transform with respect to the x coordinate:

- 1
(E(t; p,Z)= %J‘ exp(—ipx) E(t; x,z)dx

4

+oo (13)
LE (tx,z) = f exp(ipx) E(t; p, 2)dp
and we obtain the 2D counterpart of (5):
0°E e(2)0%E . 2 ;
R == 14
7~z gz~ P'E=38@I0. (14)
Then, by using the Laplace transform with respect to the time variable:
= +w ~
E(yip,2) = f exp(—yt) E(t; p, z)dt
0
B 1 a+ico ~ (15)
Bepd) =5 [ eyt ECrip2)dy
T )y ioo
we obtain the second-order ODE
Evipz) [v? - 2y o
oz gS(Z) +p*|E(v;p.2) = 0—25(2)1()/); (16)

where [(y) is the Laplace transform of the antenna current I(t). Equation (16) can be reduced to a
system of first-order ODE similar to (6). Such a system, satisfying the boundary conditions at the air-
ground interface, and the radiation condition for z — o, can be solved by iterations, starting from
zero wave perturbation. The first approximation gives an integral representation of the initial probing
wave and its subsurface reflections

1/2

EGip,z>0) = 4o (0,7) Kl";’T@{exp [— [ <
0

LI K@) :
~g e | [ x| [ e |2 ke dc}.
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190  as well as the “aerial” wave propagating in the upper half-space:

~ 1 r®k' ¢
Bipz <0 = aorpresstn) (15 [ |2 [ xoan|ac) a9

191 Here, k(2) = [q°e(2) + p*1'/?, Ko = k(0) = [q¢°eo +P*]"/?, K4 =[q* +p*]"/?, and q=7y/c. The
192 amplitude 4, canbe found from the excitation condition with a localized source 2y&(z)I(y)/c?. The
193 differentiation of (17) and (18) yields:

0E 1 (%K ¢

G ne=0= —aGomoft4g [t el -2 [kan|ac a9
194  and

oE 1 (%K ¢

S rinz=-0= o {1-5 [k Desp|-2 [ wen an| ac}, 0)

195  where it can be noticed that the derivative dE/dz has a jump at the interface, which is approximately
196  equal to —Ay(k, + k,). Taking this into account, we integrate (16) over the small interval —0 < z <

197  +0 and relate the wave amplitude 4, to the Laplace image of the driving current [(y):

4q (r,) —2yI(y)c™
o\¥,p) = ’ .
Ko — K4) oK (21)
Ko + Ky +( L > 4) Jo K((g)) exp [—2 fofx(n)dr]] dq¢
198 The electromagnetic field amplitude at the interface z = 0, where by assumption the receiver
199  antenna is placed, is given by the inverse Fourier-Laplace transform of the spectral distribution (17)-
200  (18):
1 +00 a+ioo ~
Btp0) =5 | explpndp | ess(OB(rip,0)dy, 22)
—00 a—ioco
201  where
. _ 1 =k'(0) (¢
Blyip0y = W) 772 U coml Wt i) G
T 2 (ko + Ky) 1Ko — Ky (oK' () ¢ -
0T Halq +7Kg — Js () &P [—2 Js x(n)dn] a¢ (23)
—2yI@) Ko f”K’(Z) [ ff ] ]
= 1-— exp|—2 | k(n)dn|dl|,
c?(ko + Ka) Ko +Kaly K(O) P 0 Grydn) d¢
202 In(23), we simplified the expression by exploiting the formula of geometric series.
203 It is convenient to represent the electromagnetic field excited by an arbitrary current pulse as a
204  convolution of the time-domain Green function with the current pulse I(t):
tdl
E(t;x,z) = f E(t —t"YG(ct';x, z)dt . (24)
0

205  Inorder to find the Green function, it is necessary to calculate the radiation produced by a unit current
206  step: I(t)=1for t >0 and I(t) =0 for t <0, corresponding to I(y) = 1/y = 1/cq. Having no
207  temporal scale, it is natural to use the uniform space-like variables (s = ct; x, z).
208 From (23), we find the boundary value of the spectral Green function:

-2
2o+ Ka)

_1 Ko . £'(2) _ z 1/ ] }
{1 2K0+KAJ; g(z)+(p/q)2exp[ ZQL[E(O'F(P/Q)] d{|dz;.

G (y;p,0) =
(25)
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This expression consists of two parts. The first term corresponds to direct pulse propagation along
the ground surface (the so-called “direct” wave), the second term represents the cumulative reflection

from the subsurface medium gradients.
The “direct” wave G4(s;x,z), with s = ct, can be explicitly found by applying a backward
Fourier-Laplace transform to the first term of (25):

i o

Gy(s;x,0) = m f_w exp(ipx) dp X

atico : (26)
dq
f exp(@)[@* + %) = @ + 4] 5
a—io

The inner integral in (26) can be rewritten as two integrals over closed paths circumventing the
corresponding branch points. After the substitution g = ipn and a change of integration order, the
following formula arises, which describes the direct-wave propagation as the sum of two

electromagnetic pulses (“aerial” and “ground” waves) moving along both sides of the z=0

interface:
4 50_1/2
Galsix0) = = [ 0= 170G + o) +
(&9 — e —gol/2
) . (27)
_ —201 _ .2 _ 2 2.\1/2 _ (42 _ .2\1/2
| =28t nsdn = s [0 - e e - (¢ a2

To find the cumulative signal reflected by the subsurface medium gradients, G,(s;x,0), we
transform into the space-time domain the second part of the spectral function (25), G.(s;x,0) =
) 000 &' (2)K (s; x,z)dz, where:

1 [ee]
K(s;x,2z) = tic f exp(ipx) dp x

atie g2 (p? + q2g)2exp{qs — 2 [ [p? + q*e({)]V/2d{}
-L—ioo [p? + q2e(2)][(P? + q20)V/2 + (p? + q2)V/2]?

In accordance with the problem geometry (absence of scaling parameters) the integrand in (28) is

(28)

dq.

homogeneous with respect to p and q, which allows to simplify calculations by making the

substitution g = |p|w:

1 (o]
K(s;x,z) = — J cos(px) dp x
0

atiow2(] + wzso)l/zexp{pws —2p foz[l + er(()]l/zdf} (29)
J:z—ioo [1+w2e@D]I(1 +w?g)V/2 + (1 +w?)V/2]2
We consider the inner Laplace integral in (29) under the two following conditions:
s<2[7eV?()dl and s>2[ eV2(Q)d]. (30)

In the former case, the integration path can be closed on the right half-plane and the integral vanishes
due to regularity of the integrand. In the latter case, the integration can be performed along the
steepest-descent path I' where the real part of the exponent is negative (red dashed line in Fig. 1).

After such path deformation, we can change the integration order and calculate the inner integral:

[oe]

K(s;x,z) = Fllcfr c(w, z)dwfo exp[p®(s; w, z)][exp(ipx) + exp(—ipx)]dp = 31)

1 1 1
=—1 C(w, [ - - ]d
2mic Jp (w,z) ¢(s;w,z)—1x+fb(s;w,z)+lx w

Here, the following notations are introduced:
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d(s;w,z) =ws —2 jz[l +w2e(O)]V2d¢
0

(32)
Clw,2) = w2(1 + w?gy)t/?
VI wie@IIA + wieg) /2 + (1 + w2) /2]
231  In the last integral of (31), the integrand vanishes at infinity, so it can be reduced to residues:
K(s; X,Z) = C_lz C(Wj;Z)/q),w(S; W]',Z) (33)
J

232 where w;(s; x,z) are the roots of the transcendent equation ®(s;w, z) = +ix, lying on the right half-

233 plane; the prime denotes differentiation with respect to w, and

o (s;w;,2) = s — 2w fo %d( (34)

234 The poles of the integrand in (31), lying at the level Re[®] = 0, are schematically marked with crosses
235  in Fig. 1. In Fig. 2, an example of exact solution to the functional equation ®(s;w,z) = tix is
236  presented, for a linear transition layer with €(z) = gy + (&, — &) (z — 24) /(21 — 2,). So, for a given
237  vertical permittivity distribution &(z), the calculation of the essential Green function component,
238  corresponding to the signal due to partial subsurface reflections, requires numerical localization of

239  the poles, summation of the corresponding residues, and substitution of the kernel K(s;x,z) into the
240  integral G,(s;x,0).

241 2.3. Geometrical-optics interpretation

242 Equations (31-33) provide an explicit approximate representation of the time-domain Green
243 function for an arbitrary permittivity profile €(z), which, in combination with the Duhamel principle
244 [34], solves the electromagnetic forward problem for an arbitrary probing pulse. The key point in the
245  numerical implementation resides in the evaluation of the following functional equation, to
246  determine the poles w;(s; x, z).

O(s;w,z) =ws —2 fz[l +w2e()]Y?%dl = +ix (35)
0

247 By inspecting Eq. (35), it can be noted that one of its solutions coincides with the geometro-
248  optical (GO) one, rendering a minimum to the Fermat functional:

S(p, Y, x,z) = fel/zda =

z (36)
xp/cos P + 2f [e(0) —p?1*2d¢, p=i/w

0

249  (optical path from an antenna element in x, = z, = 0, y, = x tan ), to the receiver point in (x,0,0),
250  with intermediate specular reflection from ¢ = z plan).

251 By differentiating (36) with respect to p, and by equating the derivatives dS/dp and 9S/dy
252  to zero, we have:

Y=0, x= 2pf [e(0) — p?]~Y/2d¢,

z 0 (37)

s=2 j e(Q[e() — p21™/2dg = S(x,2).
0

253  Here, p = P(x,z) is the solution of the second equation (37), s =S(x,z) being the result of its
254 substitution into the last line of (37), which, apparently, assures the fulfillment of the identity in (35).
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256 Figure 1. Color map of the exponential in (29), with the steepest descent path, and poles of
257 the integrand.
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258 Figure 2. Roots of the functional equation (35), corresponding to the upper (a) and lower
259 (b) sign in the right-hand side, forx=4m, ¢, =81, & =9, z, =2 m, z; = 6 m.
260 As follows from the laws of geometrical optics [19], equations (37) correspond to a ray trajectory

261  in a horizontally-layered medium, which starts from (x =0,y =0,z=0) at an angle 6, =
262 arcsin[P(x, z)g, 1 ?] with respect to the z-axis and comes to the observation point (x =X,y =0,z =
263 0) after specular reflection from a virtual mirror ¢ = z (see Fig. 3). This trajectory lies in the vertical
264  plane y = 0 and, evidently, provides the shortest optical path from the line current source to the
265  observation point, among ones touching the given level ¢ = z.
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(&)

¢

266

267 Figure 3. Partial reflection of the probing pulse due to the permittivity gradient. T and R
268 are the transmitter and receiver positions, respectively. The red dashed line represents the

269 GO path, the white dashed line refers to an effective level of partial reflection.

270 From physical considerations, one may expect that the main contribution to the time-domain

271  Green function G, is due to the values of w closest to GO. Ray interpretation suggests an efficient
272  method to solve the functional (36). Let us assume s = S(x,z) +u, w=+i/(p +v), |ul LS, |v] <
273  p. Substitution of these quantities into (36) gives an approximation, valid for small values of v:

S+u=p@+v)x+ ZpJ [e()—(p + v)Z]l/Zd( ~
0
P @42 [ Q) -y + a8
0
+2p(p ) [ Q) - p12a8 - 2 [ @) - 71,
0 0

274 By taking into account the GO equation (36) and defining

ren) =2 [ Q- p g p=PGa), (39)
0

275  we get u~—Tv?/2. As only the poles w=+i/(p +v) lying in the right half-plane give a
276  contribution, we define v = +i(2u/T)"? = +i{2[s — S(x,2)]/T(x,2)}*/> and obtain their
277  approximate representation:

1
WS = Gl S G AT DY A T iP(r, 7) “0)
278 Now it is easy to calculate the functions in (32) and (34):
: +1 _2V1/2
Cwo,z) ~ F ip(go + V(g —p?)
- [e(2) — p?1[(go — P?)V/2 + (1 — p2)¥/2]2 (41)
', (s;wy,2) = u Fp(2TR)Y?, u=s-—S(z)
279  and the kernel of the time-domain Green function:
i — p2)1/2 _ -1/2
K(s:x,2) ~ 2ip(eo — p*)*{2T (x, 2)[s — S(x, 2)]} (42)

cle(@ —p?ll(so —p»)Y? + (1 —p?)V/?)?

280 To conclude, in this quasi-optical approximation the search for the poles of (35), which depend
281  on the virtual reflection depth z and normalized time s, is reduced to the calculation of the
282  horizontal GO impulse P(x,z), depending only on z, and to the computation of the integrals S(x, z)
283  and T(x,z) via the explicit formulas given in (37) and (39).
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2.4. Quasi-vertical sounding

The above analysis reduces our time-domain back-scattering problem to the standard
geometrical optics. This provides an efficient modelling tool for the GPR probing of a horizontally
layered subsurface media. However, the obtained integral representation (42) is still too heavy for
practical applications and for attempts to solve inverse problems. A further simplification can be
achieved if the separation between the transmitter and receiver antennas is relatively small. Such a
situation is encountered when probing deeper layers of the subsurface medium (h = 10 m) with a
typical antenna offset x ~2 — 3 m. In this case, the angles of arrival are small, we can consider
p/eY/?~x/(2z) as a small parameter and look for the roots of (35) by applying the following
approximation:

w=i/p— o, s=+ix/w+ ZJ [£(0) + w2]Y/2d¢ ~
0

(43)
L(2w™2/2 +ix/w + Sy(2), |w| > o
where
So(z) =2 fozg(()l/zd(/ L(z) =2 fozg(()_l/zd(- (44)
In such a way, the equation becomes a quadratic one:
(S_So)W2$ixW_L/2 = 0, (45)

having two roots in the right half-plane:
wy(s;x,z) = {iix + [2L(s — S,) — xz]l/z}/[Z(s =Sl (46)
The functions introduced above take the form
Cwy,z) = 501/2/[Wi£(z)(801/2 + 1)2], |w| = oo
Fi[2L(s — Sy)/x? — 1]V/2 - (47)

Plsiwe2) = 26 = S0) T iR1 G = 50y /x% = 11172

and the kernel of the integral (28) becomes:
K(s;x,2) = &"/% (80" + 1) [2L(2) (s = So) — x*]7V/?/[ce(2)] (48)

So, for a moderate separation between the antennas, x < 2z, the essential component of the Green
function, responsible for the signal reflected by the permittivity gradients, can be written in a closed

form:

Gr(s;x,2) =~ [2L(2)(s = S,) — x*]7V/2dz. (49)

501/2 jz*“ '(2)
(2 + 1))y e(2)

Here, Z* isaroot of the equation 2L(z)(s — S,) — x* = 0, corresponding to the depth level from
where the partly reflected signal starts towards the receiver, along a geometric-optical path. In virtue
of the assumption p~ i/w, our approximation is similar to the method of coupled parabolic equations
that was used by Claerbout in the problem of seismic prospecting [35].

3. Numerical integration

In order to carry out an accurate numerical quadrature for (49), it is necessary to take into
account the algebraic singularity of the kernel K(s;x,z) at the end point Z*.

Let us introduce the notation F(z) = ¢'(z)/e(z), R(z) = 2L(2)Sy(z) + x* and a uniform
discretization grid z, = [0: h: z,,], where z,, correspondsto Z*(s,,). By decomposing the integral in
(49) into a sum of integrals over the intervals (z,_,,z,), we have:

do0i:10.20944/preprints201712.0035.v1
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' L gl (2 F(z)dz
G.(s;0,2) = m; jzu—1 [2L(2)(s — So) — x2]/% (50)

314 By expanding the functions F(z), L(z) and R(z) in Taylor series, we find:

£,/
Gr(s;0,2) = m X
i f - [Fucs + Fluma(z = 2400) + O(h®)]dz (51)
/
=z 2[Lys + Lyes (2 = 2yoa)Si) — Ryes = R'pea(z2 — 2,20) + O(hz)}l 2

315  where z, = ph, F',,_y = (F, — F,_1)/h, etc.
316 Thus, we have reduced (49) to a sum of standard algebraic integrals that may have singularity
317  of the order —1/2:

Zu
[ @t oG+ D07, (52)
Zy—1
318  In(52), the following quantities have been introduced:
Au = #Fu—l - (ﬂ - 1)51/ Al = 5,(0)/8(0) = 0/
B# = F[’L - Fll—l’ Bl = Fl/

m (53)
Gt = [uly-1 = = DLy |Rp /Ly — iR,y + (= DR,
CM =Ry =x% D" =[L,—Ly—y|Rm/Lm — Ry + Ry_1, D* = P\R;,/Py — Ry + x?
319 By substituting the well-known analytical expression of integrals (52) into (51), we obtain a

320  numerical quadrature, accurate to 0(h®/2) and suitable to correctly describe weak singularity of the
321  Green function on the reflected wave front:

2he,'/?
Gr(S; O,Z) = m X
m
1/2 1/2
> (- Bucr/om (6 + w0y = (6 + - vDR) /o (54
u=1

+B, [(cr +upp)** - (e + - 1)pp)** /3.

322  4.Results and discussion

323 In order to estimate the accuracy of our approximate analytical solution to the wave equation
324 (12), we compare our results with those obtained by using the open-source FDTD simulator gprMax
325  [4]. Input data for gprMax are: the geometrical and electromagnetic parameters of uniform fragments
326  of the computation domain, the positions of the transmitter and receiver, and the time-domain
327  waveform of the excitation current. In this paper, we are considering a horizontally layered medium
328  with permittivity gradually varying with depth. In our mathematical formulation of the problem,
329  such medium is defined via the analytical expression of the permittivity distribution &(z), to be
330  introduced into the integral representation of the signal received by the radar. As gprMax deals with
331  piecewise-uniform models, in order to carry out a thorough and accurate comparison between our
332  method and the FDTD technique, we use a uniform discretization grid where the discretization step
333 is the same as in gprMax calculations. For the excitation current waveform, we use the derivative of
334  Gaussian pulse, which in gprMax is referred to as “Ricker waveform”:

335 1(t) = —4m?f. (t — 1/f)exp[-2m2f,* (t — 1/f,)?] (55)
336  Here, f, is the central frequency of the pulse. In the examples presented below, f. = 20 MHz.

337 An idealized model of subsurface medium is shown in Fig. 4. It consists of a uniform layer with
338  dielectric permittivity &, (for 0 < z < z;) and a half-space with dielectric permittivity €1, separated
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339 Dby a transition layer where the dielectric permittivity is €(z), z, < z < z,. Note that here we call ¢,
340  therelative permittivity of the uniform upper layer occupying the region 0 < z < z, (not the absolute
341  permittivity of a vacuum in SI unit system). The transmitting and receiving antennas, T and R, are
342 placed on the earth surface, at z = 0. In the figure, the components of the emitted electromagnetic
343  pulse are shown: aw and gw indicate the “aerial” and “ground” waves, respectively; iw is the
344  incident wave impinging on the transition layer; rw and tw are the waves reflected and transmitted
345 Dby the transition layer, respectively.

346 Figs. 5(a) and 5(c) show the depth distribution of the dielectric permittivity, corresponding to a
347  gradual transition from pure water (g, = 81) to a hard soil (¢; = 25), in a sweet-water pond with silty
348  bottom. The permittivity profile of the transition layer is given by

+ -~ +
e(2) = & . & + & S & sin[ T (Z _ 2% - 21)] (56)

349  andislocated in 6 m < z < 8m for Fig. 5(a), in 4m < z < 10 m for Fig. 5(c). The distance between
350  the transmitter and receiver antennas is X = 3 m. In Figs. 5(b) and 5(d), synthetic radargrams (A-
351  scans) are presented for the scenarios of Figs. 5(a) and 5(c), respectively. Simulations were performed
352 Dby usingboth our coupled-WKB method (solid line) and gprMax (dashed line). The first double pulse
353 corresponds to the direct surface wave, propagating along both sides of the ground-air interface. A
354  weak signal with longer delay arises due to the cumulative partial reflection from the non-uniform

355  transition layer.

z
356
357 Figure 4. Geometry of the simulated scenario and schematic representation of the radar
358 signal components.
359 One can note that, notwithstanding the approximate character of WKB method and the

360  additional errors due to the quasi-vertical approximation, the agreement between the two methods
361  isexcellent. Itis worth pointing out that our semi-analytical approach, implemented in Matlab R2015,
362  provides a computation time about 100 times shorter than gprMax, version 3.0.0b13.

363
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364 Figure 5. Two vertical profiles of the dielectric permittivity are shown in (a) and (c). The
365 corresponding simulated A-scans (coupled WKB: solid line, gprMax: dashed line) are
366 shown in (b) and (d), respectively.
367 A satisfactory qualitative agreement between FDTD and coupled-WKB results persists even for

368  alarger separation between the antennas, when the propagation path is far from the vertical: see Fig.
369  6(a)-(b), where X =7 m and 11 m. These plots show an interesting effect: a higher amplitude of the
370  reflected signal when the propagation path is longer. This paradoxical behaviour, predicted both by
371  the coupled WKB method and by gprMax, can be explained by considering that, when the separation
372 between the antennas is increased, the propagation path follows a direction which is closer to the
373  total-reflection angle.

374
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Figure 6. A-scans simulated with (a) our coupled WKB method (solid lines) and (b) gprMax
(dashed lines), for larger distances between transmitter and receiver.

An application of the developed coupled-WKB simulation technique to a real case study is now
presented. In particular, the method is applied to the interpretation of GPR radargrams collected on
Lake Chebarkul (Chelyabinsk Region, Russia), on the slopes of the southern Urals, during the
IZMIRAN field mission in search of a big fragment of the Chelyabinsk meteorite residing in the silty
lake floor [31]. The Chelyabinsk meteor reached the Earth on February 15, 2013, and our data were
obtained in March 2013 with a low-frequency “Loza-N” GPR [36].

According to divers witnesses, the bottom of the lake was covered with a soft silt layer, 2 to 3 m
thick. The experienced “Loza-N" operators assumed that the protracted signals received by the GPR
were due to partial reflection from such a loose silt layer. Our numerical simulations with coupled-
wave WKB confirm this hypothesis. Indeed, in Fig. 7(a) we present an experimental A-scan showing
the aforementioned effect of cumulative partial reflection from a thick layer of bottom sludge; and in
Fig. 7(b) we display the numerical results obtained within the framework of our coupled-WKB
approximation.

The following values are employed to carry out the simulation. For the pulse radiated by the
line source, a damped sinusoid I(t) = sin(at)exp(—ft) is used, with central frequency f. =
(a? — p?)Y/2 = 20 MHz. For the ice layer, the relative permittivity is assumed to be & = 3, its
thickness is z; = 0.8 m. For the transition silt layer, an approximate permittivity profile deduced from
the divers” information and empirically optimized by comparing with the experimental A-scan is
£(z) = gy + (g, — gg)tanh*[(z — zy) /(2 — z,)] , with &g =81, =9, z,=1m and z; = 7 m.

The pulse received by the radar is calculated by convolving the approximate Green function
with the chosen current pulse waveform (Duhamel integral [34]), as follows:

E(t) = %.fot%(ct —sYG(s";x,0)ds’ (57)

As can be appreciated by comparing Figs. 7(a) and 7(b), the simulation qualitatively reproduces
the aforementioned effect of protracted reflected pulse; the fast oscillating signal in the left part of the
plot corresponds to the direct surface wave and its reflection from the lower ice surface. The similarity
of the measured and simulated A-scans confirms the applicability of our approach to real scenarios.

do0i:10.20944/preprints201712.0035.v1
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403 Figure 7. (a) Experimental A-scan with a protracted reflected pulse, recorded on the iced
404 surface of Lake Chebarkul by GPR probing the silty bottom; (b) Synthetic A-scan calculated
405 by using our coupled-wave WKB approach.
406 We finally present another possible application of the developed method, namely the

407  interpretation of data that could be obtained by GPR probing the lunar regolith during a planned
408  space mission. It is known that a considerable amount of ice is accumulated in lunar regolith near the
409  poles, which may be used in future space missions. In order to localize and estimate the available
410  volumes of water, mechanical drilling of lunar regolith [37] can be complemented with GPR probing.
411  The example presented in Fig. 8 shows that our semi-analytical approach can be successfully used to
412 model and simulate the electromagnetic propagation of a GPR pulse in the upper regolith layer,
413 characterized by smooth gradients of dielectric permittivity due to the changing ice proportion. For
414 this example, we calculate synthetic A-scans and the reference regolith parameters are taken from
415  literature [33]. A typical permittivity profile is plotted in Fig. 8(a) and the corresponding A-scan is
416  presented in (b). The main received signal is a bipolar pulse due to the direct wave propagating from
417  the transmitting to the receiving antenna. The backward reflection E,¢f is too weak to be seen in the
418  scale of the plot, we therefore multiplied it by 10 and plotted it as a separate curve. Its waveform
419  reveals the cumulative character of the return signal, which is a superposition of partial reflections
420  from the non-uniform transition layer. Despite the weak power level, the backward reflection can be
421  confidently detected with a deep penetration GPR [36]. Valuable information on the smooth
422 subsurface inhomogeneity can be retrieved by comparing simulation results produced with our
423  method and experimental results.
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424 Figure 8. GPR probing of lunar regolith (numerical simulation). (a) Reference permittivity
425 profile. (b) Received pulse including both the direct wave and weak subsurface reflection
426 (blue); magnified subsurface reflection (red).

427 5. Conclusions

428 We extended the coupled-wave Wentzel-Kramers-Brillouin method (“two-way WKB”
429  approximation) to the case of Ground-Penetrating Radar (GPR) probing of a horizontally-layered
430  dielectric half-space. In particular, we derived an analytical representation of the electromagnetic
431  field excited by a synchronous ultra wideband current pulse in a thin wire stretched along the
432 ground-air interface. A bistatic sounding scheme, commonly used in GPR surveys, was considered.
433 A physical interpretation of the obtained solution was given in terms of geometrical optics and partial
434  reflections from subsurface permittivity gradients. An efficient numerical algorithm was
435  implemented, including an approximate solution of a complex eikonal equation and a high-precision
436  quadrature of the arising singular integrals. Similarities with the coupled parabolic equation method
437  were pointed out.

438 Numerical results of our method were compared with finite-difference time-domain (FDTD)
439  calculations, with very good agreement.
440 Two applications to real scenarios were presented. First, our technique was applied to the

441  interpretation of GPR radargrams collected on Lake Chebarkul, in search of a fragment of the
442 Chelyabinsk meteorite. We showed how numerical simulation helps to analyse the protracted return
443 signals originated in smooth transition layers of subsurface dielectric medium. The second example
444 suggests that our method can be used for the estimation of water content in lunar regolith, the upper
445 layer of which contains smooth gradients of permittivity due to gradually increasing fraction of ice.
446 The good accuracy and numerical efficiency of our semi-analytical computational approach
447  make promising its further development. The approach can be extended to the case of a half-space
448  where the permittivity varies in two directions. Furthermore, we plan to take into account the
449  dissipative and frequency-dispersive behaviour of materials by using a complex-valued model of
450  dielectric permittivity in the frequency-domain. The finite length of the antennas and a three-
451 dimensional (3D) gradual variation of the medium parameters will be introduced in a 3D version of
452  the algorithm. We also wish to explore possibilities of hybridization of our approach with FDTD and
453  time-domain integral-equation methods, to capitalise on the strengths of each technique.

454
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