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Abstract: This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-12 
space by means of ultra-wideband electromagnetic pulses. A receiver collects reflections from the 13 
air-ground interface and from the gradients of dielectric permittivity in the half-space. This scenario 14 
is of interest for ground penetrating radar (GPR) applications. For the analytical description of the 15 
received signal, we developed and implemented a novel time-domain version of the coupled-wave 16 
Wentzel–Kramers–Brillouin approximation. Our solution is in very good agreement with finite-17 
difference time-domain results, radically accelerates calculations, and effectively accounts for the 18 
protracted return signals observed in the lower part of the GPR spectrum. The paper includes results 19 
showing the application of the proposed technique to two case studies: in particular, the method 20 
was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in 21 
Russia, and to simulate GPR probing of the Moon surface, to detect smooth gradients of the 22 
dielectric permittivity in lunar regolith. 23 
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 26 

1. Introduction 27 
The main goal of subsurface radar probing is the estimation of physical and geometrical 28 

properties of a natural or manmade structure, by using electromagnetic waves [1,2]. Ground 29 
penetrating radar (GPR) systems emit and receive electromagnetic waves over an ultra-wide 30 
frequency range and can work in the time or spectral domain. Time-domain systems are based on the 31 
transmission of short electromagnetic pulses; spectral-domain systems transmit a succession of 32 
harmonic signals of linearly increasing frequency, in discrete steps. The signal impinging on a GPR 33 
receiving antenna results from the interaction of the emitted signal with the structure under test; by 34 
processing and interpreting the received signal, physical and geometrical information about the 35 
scenario can be deduced. Through exploitation of the inverse Fourier Transform (from frequency to 36 
time-domain), a spectral-domain GPR provides results equivalent to those of a pulsed GPR. The 37 
frequency-domain approach is possible because the environment is regarded as a time-invariant 38 
system and the received signal is considered as a linear function of the emitted one. 39 

Laws regulating electromagnetic-pulse radiation and propagation in non-uniform media have 40 
to be fully taken into account, in the development of reliable forward and inverse scattering 41 
algorithms for the simulation, analysis and interpretation of GPR responses. Closed-form analytical 42 
solutions can be found only for very simple scenarios related to canonical scattering problems. 43 
Realistic scenarios are complicated and require massive numerical calculations. 44 
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The most popular full-wave computational methods combine a relatively simple mathematical 45 
formulation with a mostly numerical nature: they are easy to implement and versatile. For example, 46 
the finite-difference time-domain (FDTD) technique [3-5] is a full-wave computational method 47 
widely used in the GPR community. FDTD is an accurate method and allows to conveniently 48 
simulating composite structures; the main drawbacks reside in the approximation limits of the FDTD 49 
model itself, in terms of space and time discretization. The calculation time and memory 50 
requirements can be prohibitive, for the solution of realistic problems. The criteria for accuracy, 51 
stability, and convergence of results are not always straightforward for non-experienced researchers.   52 

Other full-wave formulations have a higher analytical complexity: a deeper physical insight into 53 
the considered problem is needed, to develop and implement such techniques [6-11]. Usually, these 54 
approaches are less versatile, i.e., they are conceived to solve specific problems rather than to model 55 
a wide range of different scenarios. The main advantages of such techniques reside in the possibility 56 
to achieve a more comprehensive understanding of the electromagnetic phenomena occurring in the 57 
subsurface or structure under test, and a deeper knowledge of how targets get translated into the 58 
radargrams. When applicable, these methods turn out to be particularly fast and numerically 59 
efficient, hence they are suitable to be embedded into inverse solvers requiring the iterative 60 
evaluation of several forward problems. 61 

Electromagnetic scattering problems involving media with one-dimensional (1D) variation of 62 
the electromagnetic properties have been widely studied in the literature and still are of high interest 63 
[11-16]. Approaches for the solution of such problems find application not only in the GPR field: they 64 
are important for the interpretation of data measured with other electromagnetic non-destructive 65 
testing methods as well, such as Time Domain Reflectometry (TDR) for moisture evaluation and 66 
material analysis [17,18].  67 

One-dimensional problems where the permittivity varies on a wavelength scale are difficult to 68 
tackle and only a few permittivity profiles allow for exact analytical solutions [19]. Usually, scenarios 69 
involving this kind of inhomogeneous media are modelled by using numerical techniques, such as 70 
the already mentioned FDTD method, the finite integration technique (FIT) [20], time-domain 71 
integral equation (TDIE) approaches [21], and more. The Green’s function method [22] offers some 72 
advantages: if different incident waveforms need to be considered, the wave equation does not have 73 
to be solved for each of them, and some simplifications can be done analytically [23]; moreover, the 74 
wave field does not have to be computed throughout the entire medium but only at the receiver 75 
position. Methods specifically conceived for dealing with absorbing inhomogeneous layers and 76 
anisotropic inhomogeneous media have been also proposed and tested, with various degrees of 77 
success, see for example [24] and [25]. 78 

When the permittivity variation takes place along one direction and in a much larger scale than 79 
the wavelength, the propagation of electromagnetic waves can be successfully described by using 80 
semi-analytical techniques. Substantially, Maxwell’s equations can be solved in a series of 81 
homogeneous layers with constant permittivity, and the wave fields can be joined at the interfaces 82 
with appropriate continuity conditions. If the thickness of the homogeneous layers tends to zero, 83 
such a procedure results in a classical Wentzel–Kramers–Brillouin (WKB) approximation. This 84 
approach, originally proposed in quantum mechanics [26], became a powerful tool for the 85 
mathematical description of acoustical and electromagnetic wave propagation in natural media with 86 
gradually varying dielectric permittivity [27]. Unfortunately, the standard version of the WKB 87 
approach cannot deal with backward reflections originated by smooth permittivity gradients, which 88 
are of interest in GPR applications. In that respect, the rectification of the WKB technique developed 89 
in the frequency domain by Bremmer and Brekhovskikh looks particularly promising [27-29]. Such 90 
method, also called “coupled-wave WKB method” or “two-way WKB”, consists in an iterative 91 
solution of coupled ordinary differential equations of WKB type; it is capable to take into account the 92 
backscattered signals and provides a good accuracy over a wide frequency range [27].  93 

The possibility application of the two-way WKB method to GPR was studied in [30] for the first 94 
time: it was demonstrated that the time-domain counterpart of the Bremmer-Brekhovskikh method 95 
can accurately describe the waveform of the reflected signal in the presence of permittivity 96 
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discontinuities or gradual variations. Moreover, it was shown that the method allows to effectively 97 
reconstructing the properties of subsurface layers, starting from the signal received by the radar.  98 

The aim of our work is to further develop the promising WKB approach and apply the Bremmer-99 
Brekhovskikh approximation to a more realistic scenario. In particular, we developed, implemented 100 
and tested a new semi-analytical method, based on the coupled-wave version of the WKB 101 
approximation, to study a two-dimensional (2D) back-scattering problem arising when a pulsed 102 
electromagnetic signal impinges on a non-uniform dielectric half-space. Actually, the formulation of 103 
our problem is “1.5-dimensional”: the subsurface medium is assumed to be horizontally stratified 104 
(1D permittivity model) and the source is a line of current stretched along the air-ground interface, 105 
which produces a two-dimensional (2D) transient electromagnetic field. We neglect energy losses in 106 
the involved media.  107 

The paper is structured as follows. The theoretical approach is presented in Section II. We 108 
consider a simplified 1D-scenario in Subsection II.A, in order to explain the basis of the technique; in 109 
Subsection II.B, we extend the method to the above-mentioned 1.5-dimensional scenario. In the 110 
numerical implementation of our technique, the key point is the solution of a functional equation, to 111 
determine the complex poles of an integrand that appears in the explicit representation of the 112 
analytical solution. Its physical interpretation in terms of geometrical optics is given in Subsection 113 
II.C and a simplification achieved in case of moderate separation between the transmitting and 114 
receiving antennas is discussed in Subsection II.D. An accurate numerical quadrature algorithm for 115 
the arising singular integrals is proposed in Section III. In Section IV, numerical results are presented. 116 
Firstly, the proposed method is compared with the FDTD technique. A very good agreement is 117 
obtained, for different soil parameters and configurations; moreover, an impressive acceleration of 118 
computation is achieved with our method. Next, a successful application of our approach to real 119 
scenarios is presented. In the first example, the method is employed to aid the interpretation of 120 
radargrams collected in 2013 during an IZMIRAN expedition, where GPR was used to search for a 121 
large fragment of the Chelyabinsk meteorite in Lake Chebarkul bottom [31, 32]. In the second 122 
example, the method is used for the simulation of GPR probing aimed to the estimation of the water 123 
content in lunar regolith near the poles [33]. Conclusions are drawn in Section V, where plans for 124 
future work are also outlined.  125 

2. Theoretical method 126 
2.1. One-dimensional problem 127 

In this Subsection, we resume the simplified 1D-probing scheme proposed in [30], in order to 128 
explain the basis of our approach.  129 

Let us consider the 1D propagation of an electromagnetic pulse, with electric field ݐܿ)ܧ,  in a 130 ,(ݖ
non-uniform half-space ݖ > 0 characterized by a real-valued relative permittivity profile (ݖ)ߝ and 131 
a vacuum magnetic permeability μ0 (i.e., the half-space is assumed to be a lossless non-magnetic 132 
medium). Here and in the following, t is the time, z is the spatial coordinate and c is the light velocity 133 
in vacuum. This phenomenon is governed by the wave equation 134 ߲ଶݏ)ܧ, ଶݖ߲/(ݖ = ,ݏ)ܧଶ߲(ݖ)ߝ ଶݏ߲/(ݖ ݖ) > 0, ݏ > 0), (1)

where ݏ = ଶݏ߲/is introduced for convenience, so that ߲ଶ ݐܿ = ܿିଶ߲ଶ/߲ݐଶ. The source is in ݖ = 0. The 135 
trivial initial conditions ܧ = 0 and ߲ܧ ݐ߲ = 0⁄  in ݐ = ݖ∀ ,0 , and a non-homogeneous boundary 136 
condition given by 137 ݏ)ܧ, ௭ୀ଴|  ݏ߲/(ݖ − ଴ିߝ ଵ/ଶ߲ݏ)ܧ, ݖ߲/(ݖ |௭ୀ଴ = 2 (2) ,ݏ݀/(ݏ)݂݀

define a transient field ݏ)ܧ, ݖ entering the non-uniform half-space (ݏ)݂ generated by the pulse (ݖ >138 0 with ߝ଴ = ݖ)ߝ → +0). The total wave field at ݖ = 0, can be written as ݏ)ܧ, 0) = (ݏ)݂ +  is the cumulative backscattered signal born on the subsurface permittivity gradients.  140 (ݏ)݃ where 139 ,(ݏ)݃
In order to find a unique solution to the boundary-value problem, the radiation condition 141 
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,ݏ)ܧ߲ (ݖ ⁄~ݏ߲ ஶିଵߝ ଶ⁄ ,ݏ)ܧ߲ (ݖ ⁄,ݖ߲ ݖ → ∞ (3)

has to be imposed, excluding the waves coming from ݖ = ∞. In (3), ߝஶ = ݖ)ߝ → ∞). The application 142 
of the Fourier integral transform 143 ܧ෨(݇, (ݖ = න ,ݏ)ܧ ஶݏ݀(ݏ݇݅)exp(ݖ

଴  (4)

reduces (1) to the 1D Helmholtz equation 144 ߲ଶܧ෨(݇, (ݖ ଶݖ߲ + ݇ଶܧ(ݖ)ߝ෨(݇, ⁄(ݖ = 0 (5)

or to an equivalent set of first-order ordinary differential equations (ODE) [29] 145 ߲ܣ±(݇, ݖ߲(ݖ = (ݖ)ߝ4(ݖ)ᇱߝ exp ቈ∓2݅݇ න ଵߝ ଶ⁄ ௭ݖ݀(ݖ)
଴ ቉ ,݇)∓ܣ (6) ,(ݖ

with ߝᇱ(ݖ) = ߝ݀ ⁄ݖ݀ .  Equations (6) govern the amplitudes ܣା(݇, ,݇)ିܣ and (ݖ  of the direct and 146  (ݖ
backward waves in the total field representation 147 ܧ෨(݇, (ݖ = ൤ ൨ଵ/ସ(ݖ)ߝ଴ߝ ቊܣା(݇, exp(ݖ ቈ݅݇ න ௭ݖ݀(ݖ)ଵ/ଶߝ

଴ ቉ + ,݇)ିܣ exp(ݖ ቈ−݅݇ න ௭ݖ݀(ݖ)ଵ/ଶߝ
଴ ቉ቋ, (7)

valid for ݖ > 0. The equation set (6) can be solved iteratively, starting from ߲ܣ±(݇, ݖ߲ /(ݖ = 0. The 148 
first approximation gives  149 

ቐ ,ݖ)ାܣ ݇) ≈ ሚ݂(݇)ݖ)ିܣ, ݇) ≈ − ሚ݂(݇)4 න (ߞ)ߝ(ߞ)′ߝ exp ቈ−2݅݇ න ଵߝ ଶ⁄ ఍ߦ݀(ߦ)
଴ ቉ ஶ.ߞ݀

௭  (8)

A backward Fourier transform yields an explicit formula relating the initial pulse ݂(ݏ) with the 150 
total signal ݏ)ܧ, 0) = (ݏ)݂ + (ݏ)݃ , that can be measured in ݖ = 0 . In particular, the half-space 151 
response to the input electromagnetic pulse is 152 ݃(ݏ) = − 14 න ஶ(ݖ)ߝ(ݖ)ᇱߝ

଴ ݂ ቈݏ − 2 න ଵ(ߞ)ߝ ଶ⁄ ௭ߞ݀
଴ ቉ (9) .ݖ݀

Equation (9), having the evident meaning of a sum of partial reflections due to the permittivity 153 
gradients, can be considered as an integral equation for the unknown function (ݖ)ߝ. As shown in 154 
[30], this equation, having a convolution form, can be solved by exploiting the Fourier-Laplace 155 
transform, yielding a parametric solution to the 1D inverse problem 156 

۔ۖەۖ
ۓ (ݏ)ߝ = ଴expߝ ቈ−4 න ௦ݎ݀(ݎ)ܳ

଴ ቉
(ݏ)ݖ = ଴ିߝ ଵ/ଶ2 න exp ቈ2 න ௥′ݎ݀(′ݎ)ܳ

଴ ቉ ௦ݎ݀
଴

 (10)

where  157 

(ݎ)ܳ = ߨ12 න ෤݃(݇) ሚ݂ିଵ(݇) exp(−݅݇ݎ) ݀݇,௜ఈାஶ
௜ఈିஶ  (11)

and ሚ݂(݇),  ෥݃ (݇) are the Fourier transforms of the initial pulse ݂(ݏ) and received backscattered signal 158 ݃(ݏ), calculated accoding to (4). 159 

2.2. 1.5-dimensional problem 160 
In this Subsection, we deal with a more realistic model. In particular, we consider a GPR with 161 

separated antennas lying at the air-ground interface, we model the transmitting antenna as a line 162 
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source, and we develop an analytical method that allows to describe the electromagnetic field 163 
recorded by the receiving antenna, including the surface wave and all partial reflections by the 164 
subsurface permittivity discontinuities and gradients.  165 

We exploit the Fourier-Laplace transform and reduce the time-domain boundary value problem 166 
to an ordinary differential equation, which is solved approximately by the Bremmer-Brekhovskikh 167 
method. A backward integral transform yields an approximate representation of the time-domain 168 
Green function, i.e., of the subsurface medium response to an elementary current jump in the GPR 169 
transmitting antenna. This result, in combination with the Duhamel principle [34], gives an 170 
approximate solution to the forward electromagnetic scattering problem for an arbitrary 171 
electromagnetic pulse and permittivity profile.  172 

Let us therefore consider the 1.5-dimensional scenario of short-pulsed radiation emitted by a 173 
line source stretched along the surface of a non-uniform dielectric half-space ݖ > 0. We assume that 174 
the half-space is horizontally layered, with a real-valued relative permittivity. We also assume a 175 
uniform current distribution along the thin wire, which is lying at ݔ = ݖ = 0, −∞ < ݕ < ∞. The wave 176 
perturbation is excited by a current pulse (ݐ)ܫ. The 2D wave equation governing the y-component of 177 
the electric field ݐ)ܧ; ,ݔ ଶݔ߲ܧis: 178 ߲ଶ (ݖ + ߲ଶݖ߲ܧଶ − ଶܿ(ݖ)ߝ ߲ଶݐ߲ܧଶ = ଶܿߨ4 (12) ,(ݐ)ܫ(ݕ)ߜ(ݔ)ߜ

where ߜ(∙)  is the Dirac delta function. By using integral transforms and by imposing the initial 179 
conditions E = 0 and ߲ܧ ⁄ݐ߲ = (ݖ)ߝ0  in ݐ = 0, ݖ∀ , equation (12) can be reduced to an ordinary 180 
differential equation. In particular, we apply a Fourier transform with respect to the x coordinate: 181 

۔ۖەۖ
;ݐ)෨ܧۓ ,݌ (ݖ = ߨ12 න exp(−݅ݔ݌) ;ݐ)ܧ ,ݔ ାஶݔ݀(ݖ

ିஶݐ)ܧ; ,ݔ (ݖ = න exp(݅ݔ݌)ାஶ
ିஶ ;ݐ)෨ܧ ,݌ ݌݀(ݖ  (13)

and we obtain the 2D counterpart of (5):  182 ߲ଶܧ෨߲ݖଶ − ଶܿ(ݖ)ߝ ߲ଶܧ෨߲ݐଶ − ෨ܧଶ݌ = 2ܿଶ (14) .(ݐ)ሶܫ(ݖ)ߜ

Then, by using the Laplace transform with respect to the time variable: 183 

۔ۖەۖ
;ߛ)෠ܧۓ ,݌ (ݖ = න exp(−ݐߛ) ;ݐ)෨ܧ ,݌ ାஶݐ݀(ݖ

଴ܧ෨(ݐ; ,݌ (ݖ = ݅ߨ12 න exp(ݐߛ)ఈା௜ஶ
ఈି௜ஶ ;ߛ)෠ܧ ,݌ (15) ߛ݀(ݖ

we obtain the second-order ODE    184 ܧ෠(ߛ; ,݌ ଶݖ߲(ݖ − ቈߛଶܿଶ (ݖ)ߝ + ଶ቉݌ ;ߛ)෠ܧ ,݌ (ݖ = ଶܿߛ2 (16) ,(ߛ)መܫ(ݖ)ߜ

where ܫመ(ߛ) is the Laplace transform of the antenna current (ݐ)ܫ. Equation (16) can be reduced to a 185 
system of first-order ODE similar to (6). Such a system, satisfying the boundary conditions at the air-186 
ground interface, and the radiation condition for ݖ → ∞, can be solved by iterations, starting from 187 
zero wave perturbation. The first approximation gives an integral representation of the initial probing 188 
wave and its subsurface reflections 189 

;ߛ)෠ܧ ,݌ ݖ > 0) = ଴ܣ ,݌) (ߛ (ݖ)ଵ/ଶߢ଴ଵ/ଶߢ ቊexp ቈ− න κ(ߞ)݀ߞ௭
଴− 12  exp ቈන κ(ߞ)݀ߞ௭

଴ ቉ න ஶ(ߞ)ߢ(ߞ)ᇱߢ
௭ exp ቈ−2 න κ(ߟ)݀ߟ఍

଴ ቉ ൡ, (17)ߞ݀
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as well as the “aerial” wave propagating in the upper half-space: 190 

;ߛ)෠ܧ ,݌ ݖ < 0) = ,ߛ)଴ܣ (ݖ஺ߢ)exp(݌ ቊ1 − 12 න ஶ(ߞ)ߢ(ߞ)ᇱߢ
௭ exp ቈ−2 න κ(ߟ)݀ߟ఍

଴ ቉ ቋ. (18)ߞ݀

Here, (ݖ)ߢ = (ݖ)ߝଶݍ] + ଶ]ଵ݌ ଶ⁄ ଴ߢ , = (0)ߢ  = ଴ߝଶݍ] + ଶ]ଵ݌ ଶ⁄ ஺ߢ , = ଶݍ] + ଶ]ଵ݌ ଶ⁄ , and ݍ = ߛ ܿ⁄ . The 191 
amplitude ܣ଴ can be found from the excitation condition with a localized source 2ܫ(ݖ)ߜߛመ(ߛ) ܿଶ⁄ . The 192 
differentiation of (17) and (18) yields: 193 ߲ܧ෠߲ݖ ;ߛ) ,݌ ݖ = +0) =  − ଴ܣ ,ߛ) ଴ߢ(݌ ቊ1 + 12 න (ߞ)ߢ(ߞ)′ߢ exp ቈ−2 න ఍(ߟ)ߢ

଴ ቉ߟ݀ ஶߞ݀
଴ ቋ, (19)

and 194 ߲ܧ෠߲ݖ ;ߛ) ,݌ ݖ = −0) = ଴ܣ  ,ߛ) ଴ߢ(݌ ቊ1 − 12 න (ߞ)ߢ(ߞ)′ߢ exp ቈ−2 න ఍(ߟ)ߢ
଴ ቉ߟ݀ ஶߞ݀

଴ ቋ, (20)

where it can be noticed that the derivative ߲ܧ෠ ⁄ݖ߲  has a jump at the interface, which is approximately 195 
equal to −ܣ଴(ߢ଴ + ஺). Taking this into account, we integrate (16) over the small interval −0ߢ < ݖ <196 +0 and relate the wave amplitude ܣ଴ to the Laplace image of the driving current ܫመ(ߛ): ܣ 197଴ ,ߛ) (݌ = ଴ߢଶିܿ(ߛ)መܫߛ2− + ஺ߢ + ଴ߢ) − ஺)2ߢ ׬ (ߞ)ߢ(ߞ)′ߢ exp ቂ−2 ׬ ఍଴ߟ݀(ߟ)ߢ ቃ ஶ଴ߞ݀ . (21)

The electromagnetic field amplitude at the interface ݖ = 0, where by assumption the receiver 198 
antenna is placed, is given by the inverse Fourier-Laplace transform of the spectral distribution (17)-199 
;ݐ)ܧ 200  :(18) ,݌ 0) = ݅ߨ12 න exp(݅ݔ݌)݀݌ න exp(ݐߛ)ܧ෠(ߛ; ,݌ ௔ା௜ஶߛ݀(0

௔ି௜ஶ
ାஶ

ିஶ , (22)

where 201 

;ߛ)෠ܧ ,݌ 0) = ଴ߢ)ଶܿ(ߛ)መܫߛ2− + (஺ߢ 1 − 12 ׬ (ߞ)ߢ(ߞ)ᇱߢ exp ቂ−2 ׬ ఍଴ߟ݀(ߟ)ߢ ቃ ஶ଴1ߞ݀ + 12 ଴ߢ − ଴ߢ஺ߢ + ஺ߢ ׬ (ߞ)ߢ(ߞ)ᇱߢ exp ቂ−2 ׬ ఍଴ߟ݀(ߟ)ߢ ቃ ஶ଴ߞ݀ ≈ 
≈ ଴ߢ)ଶܿ(ߛ)መܫߛ2− + (஺ߢ ቈ1 − ଴ߢ଴ߢ + ஺ߢ න (ߞ)ߢ(ߞ)ᇱߢ exp ቈ−2 න ఍ߟ݀(ߟ)ߢ

଴ ቉ ஶߞ݀
଴ ቉, (23)

In (23), we simplified the expression by exploiting the formula of geometric series. 202 
It is convenient to represent the electromagnetic field excited by an arbitrary current pulse as a 203 

convolution of the time-domain Green function with the current pulse ݐ)ܧ 204  :(ݐ)ܫ; ,ݔ (ݖ = න ݐ݀ܫ݀ ݐ) − ;ᇱݐܿ)ܩ(′ݐ ,ݔ ௧′ݐ݀(ݖ
଴ . (24)

In order to find the Green function, it is necessary to calculate the radiation produced by a unit current 205 
step: (ݐ)ܫ = 1 for ݐ > 0 and (ݐ)ܫ = 0  for ݐ < 0, corresponding to ܫመ(ߛ) = 1 ⁄ߛ = 1 ⁄ݍܿ . Having no 206 
temporal scale, it is natural to use the uniform space-like variables (ݏ = ;ݐܿ ,ݔ  207  .(ݖ

From (23), we find the boundary value of the spectral Green function:  208 ܩ ෡ ;ߛ) ,݌ 0) = −2ܿଶ(ߢ଴ + (஺ߢ × 

ቊ1 − 12 ଴ߢ଴ߢ + ஺ߢ න (ݖ)ߝ(ݖ)ᇱߝ + ݌) ⁄ݍ )ଶ exp ቈ−2ݍ න (ߞ)ߝ] + ݌) ⁄ݍ )ଶ]ଵ ଶ⁄ ௭ߞ݀
଴ ቉ ஶݖ݀

଴ ቋ. (25)
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This expression consists of two parts. The first term corresponds to direct pulse propagation along 209 
the ground surface (the so-called “direct” wave), the second term represents the cumulative reflection 210 
from the subsurface medium gradients. 211 

 The “direct” wave ܩௗ(ݏ; ,ݔ ݏ with ,(ݖ =  can be explicitly found by applying a backward 212 ,ݐܿ
Fourier-Laplace transform to the first term of (25):  213 ܩௗ(ݏ; ,ݔ 0) = ଴ߝ)ߨ݅ − 1)ܿ න exp(݅ݔ݌) ାஶ݌݀

ିஶ ×
න exp (ݏݍ)ൣ(݌ଶ + ଴)ଵ/ଶߝଶݍ − ଶ݌) + ଶ)ଵ/ଶ൧ݍ ଶ௔ା௜ஶݍݍ݀

௔ି௜ஶ
.  (26)

The inner integral in (26) can be rewritten as two integrals over closed paths circumventing the 214 
corresponding branch points. After the substitution ݍ =  and a change of integration order, the 215 ߟ݌݅
following formula arises, which describes the direct-wave propagation as the sum of two 216 
electromagnetic pulses (“aerial” and “ground” waves) moving along both sides of the ݖ = 0 217 
interface:  218 ܩௗ(ݏ; ,ݔ 0) = ଴ߝ)4 − 1)ܿ න ଶ(1ିߟ − ݔ)ߜ(଴ߝଶߟ + ఌబషభߟ݀(ݏߟ మ⁄

ିఌబభ మ⁄ +
− න ଶ(1ିߟ − ݔ)ߜ(ଶߟ + ଵߟ݀(ݏߟ

ିଵ = ଴ߝ)4 − ଶݔܿ(1 ଶݐ)ൣ − ଴)ଵߝଶݔ ଶ⁄ − ଶݐ) − ଶ)ଵݔ ଶ⁄ ൧. (27)

To find the cumulative signal reflected by the subsurface medium gradients, ܩ௥(ݏ; ,ݔ 0), we 219 
transform into the space-time domain the second part of the spectral function (25), ܩ௥(ݏ; ,ݔ 0) ׬ 220= ;ݏ)ܭ(ݖ)′ߝ ,ݔ ஶ଴ݖ݀(ݖ , where: 221 ݏ)ܭ; ,ݔ (ݖ = ܿ݅ߨ12   න exp(݅ݔ݌) ݌݀ ×ஶ

ିஶන ଶ݌)ଶݍ + ଴)ଵߝଶݍ ଶ⁄ exp൛ݏݍ − 2 ׬ ଶ݌] + ଵ[(ߞ)ߝଶݍ ଶ⁄ ௭଴ߞ݀ ൟ[݌ଶ + ଶ݌)][(ݖ)ߝଶݍ + ଴)ଵߝଶݍ ଶ⁄ + ଶ݌) + ଶ)ଵݍ ଶ⁄ ]ଶ ௔ା௜ஶ.ݍ݀
௔ି௜ஶ

 (28)

In accordance with the problem geometry (absence of scaling parameters) the integrand in (28) is 222 
homogeneous with respect to ݌  and ݍ , which allows to simplify calculations by making the 223 
substitution ݍ = ;ݏ)ܭ 224 :ݓ|݌| ,ݔ (ݖ = ܿ݅ߨ1   න cos(ݔ݌) ݌݀ ×ஶ

଴න ଶ(1ݓ + ଴)ଵߝଶݓ ଶ⁄ exp൛ݏݓ݌ − ݌2 ׬ [1 + ଵ[(ߞ)ߝଶݓ ଶ⁄ ௭଴ߞ݀ ൟ[1 + 1)][(ݖ)ߝଶݓ + ଴)ଵߝଶݓ ଶ⁄ + (1 + ଶ)ଵݓ ଶ⁄ ]ଶ ௔ା௜ஶ.ݓ݀
௔ି௜ஶ

 (29)

We consider the inner Laplace integral in (29) under the two following conditions:  225 ݏ < 2 ׬ ଵߝ ଶ⁄ ௭଴ߞ݀(ߞ)     and   ݏ > 2 ׬ ଵߝ ଶ⁄ ௭଴.ߞ݀(ߞ)                          (30)

In the former case, the integration path can be closed on the right half-plane and the integral vanishes 226 
due to regularity of the integrand. In the latter case, the integration can be performed along the 227 
steepest-descent path Γ where the real part of the exponent is negative (red dashed line in Fig. 1). 228 
After such path deformation, we can change the integration order and calculate the inner integral: 229 

;ݏ)ܭ ,ݔ (ݖ = ܿ݅ߨ12 න ,ݓ)ܥ ݓ݀(ݖ න exp[݌Φ(ݏ; ,ݓ (ݔ݌݅)exp][(ݖ + exp(−݅ݔ݌)]݀݌ =ஶ
଴

 
୻= ܿ݅ߨ12 න ,ݓ)ܥ (ݖ ൤ 1Φ(ݏ; ,ݓ (ݖ − ݔ݅ + 1Φ(ݏ; ,ݓ (ݖ + ൨ݔ݅  .ݓ݀

୻
 (31)

Here, the following notations are introduced:  230 
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Φ(ݏ; ,ݓ (ݖ = ݏݓ − 2 න [1 + ଵ[(ߞ)ߝଶݓ ଶ⁄ ௭ߞ݀
଴  

C(ݓ, (ݖ = ଶ(1ݓ + ଴)ଵߝଶݓ ଶ⁄[1 + 1)][(ݖ)ߝଶݓ + ଴)ଵߝଶݓ ଶ⁄ + (1 + ଶ)ଵݓ ଶ⁄ ]ଶ. (32)

In the last integral of (31), the integrand vanishes at infinity, so it can be reduced to residues: 231 ݏ)ܭ; ,ݔ (ݖ = ܿିଵ ෍ ,௝ݓ)ܥ (ݖ Φᇱ௪(ݏ; ,௝ݓ ௝⁄(ݖ  (33)

where ݓ௝(ݏ; ,ݔ ;ݏ)are the roots of the transcendent equation Φ (ݖ ,ݓ (ݖ =  lying on the right half-232 ,ݔ݅±
plane; the prime denotes differentiation with respect to ݓ, and 233 Φᇱ௪൫ݏ; ,௝ݓ ൯ݖ = ݏ − ݓ2 න 1](ߞ)ߝ + ଵ[(ߞ)ߝଶݓ ଶ⁄ ௭ߞ݀

଴  (34)

The poles of the integrand in (31), lying at the level Re[Φ] = 0, are schematically marked with crosses 234 
in Fig. 1. In Fig. 2, an example of exact solution to the functional equation Φ(ݏ; ,ݓ (ݖ = ݔ݅±  is 235 
presented, for a linear transition layer with ε(z) = ε଴ + ଵߝ) − ݖ)(଴ߝ − (଴ݖ ଵݖ) − ⁄(଴ݖ . So, for a given 236 
vertical permittivity distribution ε(z), the calculation of the essential Green function component, 237 
corresponding to the signal due to partial subsurface reflections, requires numerical localization of 238 
the poles, summation of the corresponding residues, and substitution of the kernel ݏ)ܭ; ,ݔ  into the 239 (ݖ
integral ܩ௥(ݏ; ,ݔ 0). 240 

2.3. Geometrical-optics interpretation 241 
Equations (31-33) provide an explicit approximate representation of the time-domain Green 242 

function for an arbitrary permittivity profile ε(z), which, in combination with the Duhamel principle 243 
[34], solves the electromagnetic forward problem for an arbitrary probing pulse. The key point in the 244 
numerical implementation resides in the evaluation of the following functional equation, to 245 
determine the poles ݓ௝(ݏ; ,ݔ ;ݏ)Φ 246  .(ݖ ,ݓ (ݖ ≡ ݏݓ − 2 න [1 + ଵ[(ߞ)ߝଶݓ ଶ⁄ ௭ߞ݀

଴ = (35) ݔ݅±

By inspecting Eq. (35), it can be noted that one of its solutions coincides with the geometro-247 
optical (GO) one, rendering a minimum to the Fermat functional:  248 S(݌, ߰, ,ݔ (ݖ ≡ න ଵߝ ଶ⁄ ߪ݀ ݌ݔ= cos ߰⁄ + 2 න (ߞ)ߝ] − ଶ]ଵ݌ ଶ⁄ ,ߞ݀ ݌ = ݅ ௭⁄ݓ

଴
 (36)

(optical path from an antenna element in ݔ଴ = ଴ݖ = ଴ݕ ,0 = ,ݔ) tan ߰, to the receiver point in ݔ 0,0), 249 
with intermediate specular reflection from ߞ =  plan).  250 ݖ

By differentiating (36) with respect to ݌, ߰ and by equating the derivatives ߲ܵ ⁄݌߲  and ߲ܵ ߲߰⁄  251 
to zero, we have:  252 ߰ = 0, ݔ = ݌2 න (ߞ)ߝ] − ଶ]ିଵ݌ ଶ⁄ ߞ݀ ,௭

଴ݏ =  2 න (ߞ)ߝ](ߞ)ߝ − ଶ]ିଵ݌ ଶ⁄ ߞ݀ ≡ ,ݔ)ܵ ௭.(ݖ
଴

 (37)

Here, ݌ = ,ݔ)ܲ (ݖ  is the solution of the second equation (37), ݏ = ,ݔ)ܵ (ݖ  being the result of its 253 
substitution into the last line of (37), which, apparently, assures the fulfillment of the identity in (35).  254 
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 255 

Figure 1. Color map of the exponential in (29), with the steepest descent path, and poles of 256 
the integrand. 257 

 (a) (b) 

Figure 2. Roots of the functional equation (35), corresponding to the upper (a) and lower 258 
(b) sign in the right-hand side, for x = 4 m, ߝ଴ = ଵߝ ,81 = ଴ݖ ,9 = 2 m, ݖଵ = 6 m.  259 

As follows from the laws of geometrical optics [19], equations (37) correspond to a ray trajectory 260 
in a horizontally-layered medium, which starts from (ݔ = 0, ݕ = 0, ݖ = 0)  at an angle ߠ଴ =261 arcsin [ܲ(ݔ, ଴ିߝ(ݖ ଵ ଶ⁄ ] with respect to the z-axis and comes to the observation point (ݔ = ܺ, ݕ = 0, ݖ =262 0) after specular reflection from a virtual mirror ߞ =  This trajectory lies in the vertical 263 .(see Fig. 3) ݖ 
plane ݕ = 0 and, evidently, provides the shortest optical path from the line current source to the 264 
observation point, among ones touching the given level ߞ =  265  .ݖ
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 266 

Figure 3. Partial reflection of the probing pulse due to the permittivity gradient. T and R 267 
are the transmitter and receiver positions, respectively. The red dashed line represents the 268 
GO path, the white dashed line refers to an effective level of partial reflection. 269 

From physical considerations, one may expect that the main contribution to the time-domain 270 
Green function ܩ௥ is due to the values of ݓ closest to GO. Ray interpretation suggests an efficient 271 
method to solve the functional (36). Let us assume ݏ = ,ݔ)ܵ (ݖ + ,ߤ ݓ = ± ݅ ݌) + |ߤ|   ,(ߥ ≪ ܵ,⁄ |ߥ|   273  :ߥ Substitution of these quantities into (36) gives an approximation, valid for small values of .݌ 272≫

߰ ܵ + ߤ = ݌) + ݔ(ߥ + ݌2 න (ߞ)ߝ] − ݌) + ଶ]ଵ(ߥ ଶ⁄ ߞ݀ ≈     ௭
଴≈ ݌) + ݔ(ߥ + 2 න (ߞ)ߝ](ߞ)ߝ − ଶ]ିଵ݌ ଶ⁄ ߞ݀ +                                             ௭

଴+2݌)݌ + (ߥ න (ߞ)ߝ] − ଶ]ିଵ݌ ଶ⁄ ߞ݀ − ଶߥ2 න (ߞ)ߝ] − ଶ]ିଷ݌ ଶ⁄ ௭.ߞ݀
଴      ௭

଴
 (38)

By taking into account the GO equation (36) and defining 274 ܶ(ݔ, (ݖ = 2 න (ߞ)ߝ] − ଶ]ିଷ݌ ଶ⁄ ,ߞ݀ ݌ = ,ݔ)ܲ ௭,(ݖ
଴  (39)

we get ߤ ≈ ଶߥܶ− 2⁄ . As only the poles ݓ = ±݅ ݌) + ⁄(ߥ  lying in the right half-plane give a 275 
contribution, we define ߥ = ±݅ ߤ2) ܶ)⁄ ଵ ଶ⁄ = ±݅ሼ2[ݏ − ,ݔ)ܵ ,ݔ)ܶ/[(ݖ ሽଵ(ݖ ଶ⁄  and obtain their 276 
approximate representation: 277 ݏ)±ݓ; ,ݔ (ݖ = 1ሼ2[ݏ − ,ݔ)ܵ [(ݖ ,ݔ)ܶ ⁄(ݖ ሽଵ ଶ⁄ ∓ ,ݔ)ܲ݅ (40) .(ݖ

Now it is easy to calculate the functions in (32) and (34):  278 ݓ)ܥ±, (ݖ ≈ ∓ ଴ߝ)݌݅ + ଴ߝ)(1 − ଶ)ଵ݌ ଶ⁄[(ݖ)ߝ − ଴ߝ)][ଶ݌ − ଶ)ଵ݌ ଶ⁄ + (1 − ଶ)ଵ݌ ଶ⁄ ]ଶΦᇱ௪(ݏ; ,±ݓ (ݖ = ߤ ∓ ଵ(ߤ2ܶ)݌ ଶ⁄ , ߤ = ݏ − ,ݔ)ܵ (ݖ  (41)

and the kernel of the time-domain Green function: 279 

;ݏ)ܭ ,ݔ (ݖ ≈ ଴ߝ)݌2݅ − ଶ)ଵ݌ ଶ⁄ ሼ2ܶ(ݔ, ݏ](ݖ − ,ݔ)ܵ ሽିଵ[(ݖ ଶ⁄ܿ[(ݖ)ߝ − ଴ߝ)][ଶ݌ − ଶ)ଵ݌ ଶ⁄ + (1 − ଶ)ଵ݌ ଶ⁄ ]ଶ  (42)

To conclude, in this quasi-optical approximation the search for the poles of (35), which depend 280 
on the virtual reflection depth ݖ  and normalized time ݏ , is reduced to the calculation of the 281 
horizontal GO impulse ܲ(ݔ, ,ݔ)ܵ and to the computation of the integrals ,ݖ depending only on ,(ݖ  282 (ݖ
and ܶ(ݔ,  via the explicit formulas given in (37) and (39).  283 (ݖ
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2.4. Quasi-vertical sounding 284 

The above analysis reduces our time-domain back-scattering problem to the standard 285 
geometrical optics. This provides an efficient modelling tool for the GPR probing of a horizontally 286 
layered subsurface media. However, the obtained integral representation (42) is still too heavy for 287 
practical applications and for attempts to solve inverse problems. A further simplification can be 288 
achieved if the separation between the transmitter and receiver antennas is relatively small. Such a 289 
situation is encountered when probing deeper layers of the subsurface medium (ℎ ≥ 10 m) with a 290 
typical antenna offset 2 ~ ݔ − 3 m. In this case, the angles of arrival are small, we can consider 291 ݌ ଵߝ ଶ⁄ ~ ݔ ⁄⁄(ݖ2)  as a small parameter and look for the roots of (35) by applying the following 292 
approximation:  293 

ݓ ≈ ݅ ݌ → ∞⁄ , ݏ = ± ݔ݅ ⁄ݓ + 2 න (ߞ)ߝ] + ଶ]ଵିݓ ଶ⁄ ߞ݀ ≈௭
଴ିݓ(ݖ)ܮଶ 2⁄ ± ݔ݅ ⁄ݓ + ܵ଴(ݖ), |ݓ| → ∞  (43)

where 294                                   ܵ଴(ݖ) = 2 ׬ ଵ(ߞ)ߝ ଶ⁄ ௭଴ߞ݀ (ݖ)ܮ , = 2 ׬ ଵି(ߞ)ߝ ଶ⁄ ௭଴.ߞ݀  (44)

In such a way, the equation becomes a quadratic one: 295                                              (ݏ − ܵ଴)ݓଶ ∓ ݓݔ݅ − ܮ 2⁄ = 0, (45)

having two roots in the right half-plane: 296 ݏ)±ݓ; ,ݔ (ݖ = ൛±݅ݔ + ݏ)ܮ2] − ܵ଴) − ଶ]ଵݔ ଶ⁄ ൟ ݏ)2] − ܵ଴)]⁄                           (46) 297 
The functions introduced above take the form 298 ݓ)ܥ±, (ݖ ≈ ଴ଵߝ ଶ⁄ ቂ(ݖ)ߝ±ݓ൫ߝ଴ଵ ଶ⁄ + 1൯ଶቃ, |ݓ| → ∞ൗΦᇱ௪(ݏ; ,±ݓ (ݖ = ݏ)2 − ܵ଴) ݏ)ܮ2]݅∓ − ܵ଴) ଶݔ − 1⁄ ]ଵ ଶ⁄1 ∓ ݏ)ܮ2]݅ − ܵ଴) ଶݔ − 1⁄ ]ଵ ଶ⁄ . (47)

and the kernel of the integral (28) becomes: 299 ݏ)ܭ; ,ݔ (ݖ = ଴ଵߝ ଶ⁄ ଴ଵߝ) ଶ⁄ + 1)ିଶ ݏ)(ݖ)ܮ2] − ܵ଴) − ଶ]ିଵݔ ଶ⁄ ⁄[(ݖ)ߝܿ]               (48) 300 

So, for a moderate separation between the antennas, ݔ <  the essential component of the Green 301 ,ݖ2
function, responsible for the signal reflected by the permittivity gradients, can be written in a closed 302 
form: 303 

;ݏ)௥ܩ ,ݔ (ݖ = ଴ଵߝ ଶ⁄ܿ(ߝ଴ଵ ଶ⁄ + 1)ଶ න ௓శ(ݖ)ߝ(ݖ)′ߝ
଴ ݏ)(ݖ)ܮ2] − ܵ଴) − ଶ]ିଵݔ ଶ⁄ (49) .ݖ݀

Here, ܼା is a root of the equation 2ݏ)(ݖ)ܮ − ܵ଴) − ଶݔ = 0, corresponding to the depth level from 304 
where the partly reflected signal starts towards the receiver, along a geometric-optical path. In virtue 305 
of the assumption ݌~ ݅ ⁄ݓ , our approximation is similar to the method of coupled parabolic equations 306 
that was used by Claerbout in the problem of seismic prospecting [35].  307 

3. Numerical integration 308 
In order to carry out an accurate numerical quadrature for (49), it is necessary to take into 309 

account the algebraic singularity of the kernel ݏ)ܭ; ,ݔ  at the end point ܼା.  310 (ݖ
Let us introduce the notation (ݖ)ܨ = (ݖ)′ߝ ⁄(ݖ)ߝ (ݖ)ܴ , = (ݖ)଴ܵ(ݖ)ܮ2 + ଶݔ  and a uniform 311 

discretization grid ݖఓ = [0: ℎ:  By decomposing the integral in 312 .(௠ݏ)௠ corresponds to ܼାݖ ௠], whereݖ
(49) into a sum of integrals over the intervals (ݖఓିଵ,  ఓ), we have:  313ݖ
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;ݏ)௥ܩ 0, (ݖ = ଴ଵߝ ଶ⁄ܿ(ߝ଴ଵ ଶ⁄ + 1)ଶ ෍ න ݏ)(ݖ)ܮ2]ݖ݀(ݖ)ܨ − ܵ଴) − ଶ]ଵݔ ଶ⁄௭ഋ௭ഋషభ
௠

ఓୀଵ . (50)

By expanding the functions (ݖ)ܮ ,(ݖ)ܨ and ܴ(ݖ) in Taylor series, we find: 314 ܩ௥(ݏ; 0, (ݖ = ଴ଵߝ ଶ⁄ܿ(ߝ଴ଵ ଶ⁄ + 1)ଶ ×
෍ න ఓିଵܨൣ + ݖᇱఓିଵ൫ܨ − ఓିଵ൯ݖ + ܱ(ℎଶ)൧݀ݖ൛2ൣܮఓିଵ + ݖᇱఓିଵ൫ܮ − ௠൧ݏఓିଵ൯ݖ − ܴఓିଵ − ܴᇱఓିଵ൫ݖ − ఓିଵ൯ݖ + ܱ(ℎଶ)ൟଵ ଶ⁄௭ഋ௭ഋషభ

௠
ఓୀଵ

 (51)

where ݖఓ = ఓିଵ′ܨ ,ℎߤ = ఓܨ) − (ఓିଵܨ ℎ⁄ , etc.  315 
Thus, we have reduced (49) to a sum of standard algebraic integrals that may have singularity 316 

of the order − 1 2⁄ :  317 න ఓܣ) + ఓܥ)(ߞఓܤ + ଵି(ߞఓܦ ଶ⁄ ௭ഋ௭ഋషభߞ݀ . (52)

In (52), the following quantities have been introduced: 318 ܣఓ = ఓିଵܨߤ − ߤ) − ଵܣ ,ఓܨ(1 = (0)ߝ/(0)′ߝ = ఓܤ ,0 = ఓܨ − ଵܤ ,ఓିଵܨ = ఓ௠ܥ  ,ଵܨ = ఓିଵܮߤൣ − ߤ) − ఓ൧ܴ௠ܮ(1 ௠ܮ − ఓିଵܴߤ + ߤ) − 1)ܴఓൗ ଵ௠ܥ , = ܴଵ = ఓ௠ܦ ,ଶݔ = ఓܮൣ − ఓିଵ൧ܴ௠ܮ ௠ܮ − ܴఓൗ + ܴఓିଵ, ܦଵ௠ = ଵܴܲ௠ ௠ܲ − ܴଵ + ⁄ଶݔ (53)

By substituting the well-known analytical expression of integrals (52) into (51), we obtain a 319 
numerical quadrature, accurate to ܱ(ℎଷ ଶ⁄ ) and suitable to correctly describe weak singularity of the 320 
Green function on the reflected wave front:  321 

;ݏ)௥ܩ 0, (ݖ = 2ℎߝ଴ଵ ଶ⁄ܿ(ߝ଴ଵ ଶ⁄ + 1)ଶ ×     
෍ ቄ(ܣఓ − ఓ௠ܥఓܤ ⁄ఓ௠ܦ ) ቂ൫ܥఓ௠ + ఓ௠൯ଵܦߤ ଶ⁄ − ൫ܥఓ௠ + ߤ) − ఓ௠൯ଵܦ(1 ଶ⁄ ቃ ఓ௠ൗ௠ܦ
ఓୀଵ + ఓܤ ቂ൫ܥఓ௠ + ఓ௠൯ଷܦߤ ଶ⁄ − ൫ܥఓ௠ + ߤ) − ఓ௠൯ଷܦ(1 ଶ⁄ ቃ ఓ௠ൗܦ3 .

  (54)

4. Results and discussion 322 
In order to estimate the accuracy of our approximate analytical solution to the wave equation 323 

(12), we compare our results with those obtained by using the open-source FDTD simulator gprMax 324 
[4]. Input data for gprMax are: the geometrical and electromagnetic parameters of uniform fragments 325 
of the computation domain, the positions of the transmitter and receiver, and the time-domain 326 
waveform of the excitation current. In this paper, we are considering a horizontally layered medium 327 
with permittivity gradually varying with depth. In our mathematical formulation of the problem, 328 
such medium is defined via the analytical expression of the permittivity distribution (ݖ)ߝ, to be 329 
introduced into the integral representation of the signal received by the radar. As gprMax deals with 330 
piecewise-uniform models, in order to carry out a thorough and accurate comparison between our 331 
method and the FDTD technique, we use a uniform discretization grid where the discretization step 332 
is the same as in gprMax calculations. For the excitation current waveform, we use the derivative of 333 
Gaussian pulse, which in gprMax is referred to as “Ricker waveform”:  334 (ݐ)ܫ = ଶߨ4− ௖݂ଶ(ݐ − 1 ௖݂⁄ )expൣ−2ߨଶ ௖݂ଶ(ݐ − 1 ௖݂⁄ )ଶ൧         (55) 335 
Here, ௖݂ is the central frequency of the pulse. In the examples presented below, ௖݂ = 20 MHz.  336 

An idealized model of subsurface medium is shown in Fig. 4. It consists of a uniform layer with 337 
dielectric permittivity ߝ଴ (for 0 ≤ ݖ ≤  ଴) and a half-space with dielectric permittivity ε1, separated 338ݖ
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by a transition layer where the dielectric permittivity is ݖ ,(ݖ)ߝ଴ ≤ ݖ ≤  ଴ 339ߝ ଵ. Note that here we callݖ
the relative permittivity of the uniform upper layer occupying the region 0 ≤ ݖ ≤  ଴ (not the absolute 340ݖ
permittivity of a vacuum in SI unit system). The transmitting and receiving antennas, T and R, are 341 
placed on the earth surface, at ݖ = 0. In the figure, the components of the emitted electromagnetic 342 
pulse are shown: aw and gw indicate the “aerial” and “ground” waves, respectively; iw is the 343 
incident wave impinging on the transition layer; rw and tw are the waves reflected and transmitted 344 
by the transition layer, respectively.  345 

Figs. 5(a) and 5(c) show the depth distribution of the dielectric permittivity, corresponding to a 346 
gradual transition from pure water (ߝ଴ = 81) to a hard soil (ߝଵ = 25), in a sweet-water pond with silty 347 
bottom. The permittivity profile of the transition layer is given by 348 

(ݖ)ߝ = ଴ߝ + ଵ2ߝ + ଴ߝ − ଵ2ߝ sin ൤ ଵݖߨ − ଴ݖ ൬ݖ − ଴ݖ + ଵ2ݖ ൰൨  (56)

and is located in 6 m ≤ ݖ ≤ 8 m for Fig. 5(a), in 4 m ≤ ݖ ≤ 10 m for Fig. 5(c). The distance between 349 
the transmitter and receiver antennas is ܺ = 3 m. In Figs. 5(b) and 5(d), synthetic radargrams (A-350 
scans) are presented for the scenarios of Figs. 5(a) and 5(c), respectively. Simulations were performed 351 
by using both our coupled-WKB method (solid line) and gprMax (dashed line). The first double pulse 352 
corresponds to the direct surface wave, propagating along both sides of the ground-air interface. A 353 
weak signal with longer delay arises due to the cumulative partial reflection from the non-uniform 354 
transition layer. 355 

 356 

Figure 4. Geometry of the simulated scenario and schematic representation of the radar 357 
signal components. 358 

One can note that, notwithstanding the approximate character of WKB method and the 359 
additional errors due to the quasi-vertical approximation, the agreement between the two methods 360 
is excellent. It is worth pointing out that our semi-analytical approach, implemented in Matlab R2015, 361 
provides a computation time about 100 times shorter than gprMax, version 3.0.0b13.  362 
 363 
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(a) 

 
(b) 

 
(c) (d) 

Figure 5. Two vertical profiles of the dielectric permittivity are shown in (a) and (c). The 364 
corresponding simulated A-scans (coupled WKB: solid line, gprMax: dashed line) are 365 
shown in (b) and (d), respectively. 366 

A satisfactory qualitative agreement between FDTD and coupled-WKB results persists even for 367 
a larger separation between the antennas, when the propagation path is far from the vertical: see Fig. 368 
6 (a)-(b), where ܺ = 7 m  and 11 m. These plots show an interesting effect: a higher amplitude of the 369 
reflected signal when the propagation path is longer. This paradoxical behaviour, predicted both by 370 
the coupled WKB method and by gprMax, can be explained by considering that, when the separation 371 
between the antennas is increased, the propagation path follows a direction which is closer to the 372 
total-reflection angle.  373 
 374 
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(a) (b) 
Figure 6. A-scans simulated with (a) our coupled WKB method (solid lines) and (b) gprMax 375 
(dashed lines), for larger distances between transmitter and receiver. 376 

An application of the developed coupled-WKB simulation technique to a real case study is now 377 
presented. In particular, the method is applied to the interpretation of GPR radargrams collected on 378 
Lake Chebarkul (Chelyabinsk Region, Russia), on the slopes of the southern Urals, during the 379 
IZMIRAN field mission in search of a big fragment of the Chelyabinsk meteorite residing in the silty 380 
lake floor [31]. The Chelyabinsk meteor reached the Earth on February 15, 2013, and our data were 381 
obtained in March 2013 with a low-frequency “Loza-N” GPR [36].  382 

According to divers witnesses, the bottom of the lake was covered with a soft silt layer, 2 to 3 m 383 
thick. The experienced “Loza-N” operators assumed that the protracted signals received by the GPR 384 
were due to partial reflection from such a loose silt layer. Our numerical simulations with coupled-385 
wave WKB confirm this hypothesis. Indeed, in Fig. 7(a) we present an experimental A-scan showing 386 
the aforementioned effect of cumulative partial reflection from a thick layer of bottom sludge; and in 387 
Fig. 7(b) we display the numerical results obtained within the framework of our coupled-WKB 388 
approximation.  389 

The following values are employed to carry out the simulation. For the pulse radiated by the 390 
line source, a damped sinusoid (ݐ)ܫ = sin(αݐ)exp(−βݐ)  is used, with central frequency ௖݂ ଶߙ) 391= − ଶ)ଵߚ ଶ⁄ = 20 MHz . For the ice layer, the relative permittivity is assumed to be ߝ௜ = 3 , its 392 
thickness is ݖ௜ = 0.8 m. For the transition silt layer, an approximate permittivity profile deduced from 393 
the divers’ information and empirically optimized by comparing with the experimental A-scan is 394 ε(ݖ) = ε଴ + (εଵ − ε଴)tanhସ[(ݖ − ଵݖ)/(଴ݖ − ଴ߝ ଴)] , withݖ = ଵߝ ,81 = ଴ݖ ,9 = 1 m and ݖଵ = 7 m.  395 

The pulse received by the radar is calculated by convolving the approximate Green function 396 
with the chosen current pulse waveform (Duhamel integral [34]), as follows:  397 (ݐ)ܧ = 1ܿ න ݐ݀ܫ݀ ݐܿ) − ;ᇱݏ)ܩ(′ݏ ,ݔ ௧′ݏ݀(0

଴  (57)

As can be appreciated by comparing Figs. 7(a) and 7(b), the simulation qualitatively reproduces 398 
the aforementioned effect of protracted reflected pulse; the fast oscillating signal in the left part of the 399 
plot corresponds to the direct surface wave and its reflection from the lower ice surface. The similarity 400 
of the measured and simulated A-scans confirms the applicability of our approach to real scenarios. 401 

 402 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2017                   doi:10.20944/preprints201712.0035.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 22; doi:10.3390/rs10010022

http://dx.doi.org/10.20944/preprints201712.0035.v1
http://dx.doi.org/10.3390/rs10010022


 

 

(a) (b) 
Figure 7. (a) Experimental A-scan with a protracted reflected pulse, recorded on the iced 403 
surface of Lake Chebarkul by GPR probing the silty bottom; (b) Synthetic A-scan calculated 404 
by using our coupled-wave WKB approach. 405 

We finally present another possible application of the developed method, namely the 406 
interpretation of data that could be obtained by GPR probing the lunar regolith during a planned 407 
space mission. It is known that a considerable amount of ice is accumulated in lunar regolith near the 408 
poles, which may be used in future space missions. In order to localize and estimate the available 409 
volumes of water, mechanical drilling of lunar regolith [37] can be complemented with GPR probing. 410 
The example presented in Fig. 8 shows that our semi-analytical approach can be successfully used to 411 
model and simulate the electromagnetic propagation of a GPR pulse in the upper regolith layer, 412 
characterized by smooth gradients of dielectric permittivity due to the changing ice proportion. For 413 
this example, we calculate synthetic A-scans and the reference regolith parameters are taken from 414 
literature [33]. A typical permittivity profile is plotted in Fig. 8(a) and the corresponding A-scan is 415 
presented in (b). The main received signal is a bipolar pulse due to the direct wave propagating from 416 
the transmitting to the receiving antenna. The backward reflection ܧ୰ୣ୤ is too weak to be seen in the 417 
scale of the plot, we therefore multiplied it by 10ଷ and plotted it as a separate curve. Its waveform 418 
reveals the cumulative character of the return signal, which is a superposition of partial reflections 419 
from the non-uniform transition layer. Despite the weak power level, the backward reflection can be 420 
confidently detected with a deep penetration GPR [36]. Valuable information on the smooth 421 
subsurface inhomogeneity can be retrieved by comparing simulation results produced with our 422 
method and experimental results.  423 

 
(a) (b) 
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Figure 8. GPR probing of lunar regolith (numerical simulation). (a) Reference permittivity 424 
profile. (b) Received pulse including both the direct wave and weak subsurface reflection 425 
(blue); magnified subsurface reflection (red). 426 

5. Conclusions 427 
We extended the coupled-wave Wentzel–Kramers–Brillouin method (“two-way WKB” 428 

approximation) to the case of Ground-Penetrating Radar (GPR) probing of a horizontally-layered 429 
dielectric half-space. In particular, we derived an analytical representation of the electromagnetic 430 
field excited by a synchronous ultra wideband current pulse in a thin wire stretched along the 431 
ground-air interface. A bistatic sounding scheme, commonly used in GPR surveys, was considered. 432 
A physical interpretation of the obtained solution was given in terms of geometrical optics and partial 433 
reflections from subsurface permittivity gradients. An efficient numerical algorithm was 434 
implemented, including an approximate solution of a complex eikonal equation and a high-precision 435 
quadrature of the arising singular integrals. Similarities with the coupled parabolic equation method 436 
were pointed out.  437 

Numerical results of our method were compared with finite-difference time-domain (FDTD) 438 
calculations, with very good agreement.  439 

Two applications to real scenarios were presented. First, our technique was applied to the 440 
interpretation of GPR radargrams collected on Lake Chebarkul, in search of a fragment of the 441 
Chelyabinsk meteorite. We showed how numerical simulation helps to analyse the protracted return 442 
signals originated in smooth transition layers of subsurface dielectric medium. The second example 443 
suggests that our method can be used for the estimation of water content in lunar regolith, the upper 444 
layer of which contains smooth gradients of permittivity due to gradually increasing fraction of ice. 445 

The good accuracy and numerical efficiency of our semi-analytical computational approach 446 
make promising its further development. The approach can be extended to the case of a half-space 447 
where the permittivity varies in two directions. Furthermore, we plan to take into account the 448 
dissipative and frequency-dispersive behaviour of materials by using a complex-valued model of 449 
dielectric permittivity in the frequency-domain. The finite length of the antennas and a three-450 
dimensional (3D) gradual variation of the medium parameters will be introduced in a 3D version of 451 
the algorithm. We also wish to explore possibilities of hybridization of our approach with FDTD and 452 
time-domain integral-equation methods, to capitalise on the strengths of each technique. 453 
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