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Abstract: The aim of this paper is to introduce a new methodology for the fault diagnosis of induction15

machines working in transient regime, when time-frequency analysis tools are used. The proposed16

method relies on the use of the optimized Slepian window for performing the short time Fourier17

transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite18

duration the Slepian window has the maximum concentration of energy, greater than can be reached19

with a gated Gaussian window, which is usually used as analysis window. In this paper the use20

and optimization of the Slepian window for fault diagnosis of induction machines is theoretically21

introduced and experimentally validated through the test of a 3.15 MW induction motor with broken22

bars during the start-up transient. The theoretical analysis and the experimental results show that the23

use of the Slepian window can highlight the fault components in the current’s spectrogram with a24

significant reduction of the required computational resources.25

Keywords: fault diagnosis; condition monitoring; short time Fourier transform ; Slepian window;26

prolate spheroidal wave functions; discrete prolate spheroidal sequences; time-frequency distributions27

1. Introduction28

Rotating electrical machines cover a broad range of applications in modern industrial installations.
Particularly, cage induction machines are the most widely used due to its robustness and low
maintenance requirements. Ensuring their proper functioning is essential to keep the production
processes running [1]. Thus, the early detection of induction machine (IM) faults and the machine
condition prognosis are crucial to reduce maintenance costs [2] and to avoid costly, unexpected
shut-downs [3]. Fault diagnosis via the current analysis in the frequency domain has become a
common method for machine condition evaluation because it is non-invasive, it requires a single
current sensor, either a current transformer, a Hall sensor, or a magnetoelectric current sensor [4],
and it can identify a wide variety of machine faults [5,6]. Traditionally, these techniques, known as
motor current signature analysis (MCSA), have focused on the detection of faults during the steady
state functioning of the machine through the current spectrum, which can be computed using the fast
Fourier transform (FFT) [7–10]. For example, bar breakages in the rotor cage produce components of
frequencies fbb [9,11–16]

fbb = |(1± 2ks)| fsupply k = 1, 2, 3 . . . , (1)
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a mixed eccentricity fault generates components of frequencies fecc [17–19]

fecc =

∣∣∣∣(1± k
1− s

p

)∣∣∣∣ fsupply k = 1, 2, 3 . . . , (2)

and bearing faults generate components of frequencies fbear [20–22]

fbear = | (1± k f0) | k = 1, 2, 3 . . . , (3)

where s is the slip, fsupply is the frequency of the power supply, p is the number of pole pairs, and fo29

corresponds to one of the characteristic vibration frequencies generated by the bearing fault, which30

depends on the bearing dimensions and on the mechanical rotor frequency [8,23]. However, in many31

applications the slip, the supply frequency and the mechanical rotor frequency can be variable, which32

render traditional MCSA techniques inadequate for fault diagnosis of electrical machines working33

in non-stationary conditions, such as start-up transients, continuous changes in load or speed [24],34

or variable frequency supply, especially in machines fed through variable speed drives (VSD). This35

inadequacy resides in the FFT being unsuitable to identify fault frequencies that are no longer constant.36

To extend MCSA to such working conditions, recently, transient MCSA (TMCSA) techniques37

have been developed using different approaches. One approach relies on using only time-domain38

features to isolate and to detect the fault: first the fault components of the current are extracted, using39

a band-pass filter tailored to the frequency band spanned by the fault harmonics during the transient40

conditions of the machine; and, second, the RMS value of these components is used to detect the fault.41

In [25,26] the empirical mode decomposition (EMD) is used to extract the fault components. In [27] the42

recursive undecimated wavelet packet transform (RUWPT) is used to isolate and to compute the RMS43

value of the components produced by a broken bar fault, using an extremely low sampling frequency44

(224 Hz) and a small number of current samples (1024 samples). Other approaches rely on tracking45

the evolution of the fault harmonics in the time-frequency domain, looking for characteristic patterns46

of each type of fault, as indicated by (1), (2) and (3); this technique allows the detection of different47

types of faults, even in the case of mixed faults, with the instantaneous presence of two faults, such as48

broken rotor bars in the presence of the intrinsic static eccentricity; as [28] states, rotor bars breakage49

causes the static eccentricity and it is possible that two faults occur simultaneously. TMCSA techniques50

have been developed in the technical literature using different time-frequency (TF) signal analysis51

tools [9,29], such as the discrete wavelet transform (DWT) [15,30–36], the discrete wavelet packet52

transform (DWPT) [37], the discrete harmonic wavelet transform (DHWT) [38], the continuous wavelet53

transform (CWT) [39,40], the complex CWT [41,42], and the Wigner-Ville distribution (WVD) [43,44],54

among others. Wavelet-based transforms require a proper choice of the mother wavelet and a precise55

adjustment of the sampling frequency and the number of bands of the decomposition to perform fault56

diagnosis. Quadratic-based transforms, such as the WVD, have, as main drawback, the appearance57

of the cross-terms effects that can smear the spectrogram of the current signal. The minimization of58

cross-terms effects has been widely discussed in the technical literature [43–47]. However, in the case59

of the STFT [44,48], which can be considered the natural extension of FFT-based MCSA techniques, the60

cross-terms effects do not appear, as the STFT is a linear transform. The STFT, as the WVD, can obtain61

a TF distribution with enough resolution to discriminate the different harmonic components of the62

signal, but without cross-terms effects[3]. Thus, a STFT based approach is proposed in this paper.63

The STFT is defined as [49]

S f (t, ω) =
∫

i(τ)g(t− τ)e−jωτdτ, (4)

where i(t) is the stator current and g(t) is the analysis window. The spectrogram PSP(t, ω) is given by

PSP(t, ω) = |S f (t, ω)|2, (5)
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which can be re-written as [50]

PSP(t, ω) =
1

2π

∫ ∫
Wi(τ, ν)Wg(τ − t, ν−ω)dτdν, (6)

where Wi(t, ω) and Wg(t, ω) are the WVD of the stator current and the analysis window respectively.64

Thus, the spectrogram can be considered as the 2D smoothing of the WVD of the current signal by the65

WVD of the analysis window [51]. In other words, the window involves smoothing the oscillatory66

interference between individual components which appear due to the quadratic nature of the WVD.67

Hence, the window must be selected with the aim of highlighting the TF information of the analyzed68

signal, and, at the same time with the goal of reducing to a minimum the smearing of the spectrogram69

[52]. In fact, the optimal window is the one that -for a given total duration- maximizes the amount of70

the total energy in a given bandwidth. But, as the uncertainty principle states, one cannot construct71

any signal for which both the standard deviation in time, σt, and the standard deviation in frequency,72

σω (i.e., the duration and the bandwidth) are arbitrarily small [53]. In fact, the minimum achievable73

values of σt and σω must satisfy the Heisenberg’s inequality [53]:74

σt · σω ≥ 0.5. (7)

The equality in (7) is only achieved by the Gaussian pulse of infinite length [54]. But real world75

signals have a finite duration, and a gated Gaussian window is often not a good choice, as stated in76

[55]. In fact, in fault diagnosis methods for IMs, the current is sampled during a limited time, so it is77

a time-limited signal. But, besides, due to the limited bandwidth of the measurement channels, the78

current signal is also a band-limited signal. Unfortunately, the uncertainty principle tells us that a79

signal cannot be simultaneously time- and band-limited. A natural assumption is thus to consider80

mathematically the current signal as an almost time- and almost band-limited signal, in the way81

proposed in [56,57]. That is, using the model [58] of band-limited, or almost band-limited, functions82

that are sufficiently concentrated in time for representing both the current signal and the window used83

for analyzing it.84

So, under this model, which is the optimal window? Thanks to the work presented in [59–61],85

the optimal orthogonal system for representing almost time- and almost band-limited functions is86

known. This system consists of the so called Slepians functions, also known as prolate spheroidal87

wave functions (PSWFs), which have two remarkable properties that make them optimal for being88

used as STFT windows:89

• The Slepians are the band-limited functions that are the most concentrated to a fixed time90

interval in L2-norm [62]. So, they can be considered as the optimal window for TF analysis of91

non-stationary currents [63], because they can highlight the energy content of the current signal92

in the joint time-frequency domain with the highest possible resolution among all the almost93

time- and band-limited windows, including the truncated Gaussian window.94

• Alternatively, the Slepians can be considered as the time-limited functions that are the most95

concentrated to a fixed frequency interval in L2-norm. That is, for a given bandwidth they are96

the shortest possible windows that can be used for generating the current spectrograms, which97

allows the reduction of the time needed to build such spectrograms.98

Both properties, the increase of the resolution of the current spectrogram and the reduction of99

the computing time needed to obtain it, will be assessed in the experimental section of this paper.100

The Slepian windows have been used in other fields such as medical image diagnostics [64], wireless101

transmission [65], acoustics [66], signal processing [67], etc. But, in spite of their benefits, up to the best102

knowledge of the authors, they have never been used before for the fault diagnosis of IMs through the103

analysis of the stator current.104

Therefore, the main goals of this work are, first, to introduce theoretically the Slepian window;105

second, to demonstrate its suitability for the fault diagnosis of electrical machines; and, finally, to106
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provide criteria for optimizing the parameters of the Slepian window depending on the type of the107

diagnosed fault. The broken bar fault is used in this paper to present the application of the Slepian108

window for the fault diagnosis of IMs, without any loss of generality, because the proposed method is109

valid for the diagnosis of any IM fault that generates a characteristic series of harmonics in the stator110

current, such as (1), (2) and (3).111

This paper is structured as follows: in Section 2 the Slepian window is theoretically introduced112

and compared with the Gaussian window in terms of energy concentration. Section 3 presents the113

proposed procedure for using the Slepian window for fault diagnosis; for illustrating this method, it is114

applied to a synthetic signal simulating the evolution of the left sideband harmonics (LSH) produced115

by a broken bar during the start-up transient of an IM. In Section 4 the proposed approach is validated116

using a high-power, high-voltage IM with a rotor broken bar fault. In Section 5 the practical advantages117

of the proposed method are highlighted. In this section it is proposed the use of a truncated Slepian118

window, which is able to display correctly the evolution of the fault harmonics in the TF domain with119

a huge reduction of the computational resources needed to obtain the spectrogram. In Section 6 the120

main conclusions of this work are presented.121

2. The Slepian Functions for Fault Diagnosis of Rotating Electrical Machines in Transient Regime122

From (6) it can be seen that the analysis window has a major effect in the spectrogram of the123

current. It highlights the harmonic components of the current, but, at the same time, it smears the124

spectrogram (6), so it has a major impact in the reliability of the fault diagnostic procedure. The election125

of a window maximally confined to a region of the TF plane with a limited duration and bandwidth is126

crucial to obtain a high resolution spectrogram, which accurately reflects the fault components of the127

current in the TF plane, with a minimum of the smearing due to use of the window. So, the spectrogram128

obtained with this optimal window can improve the diagnostic decision process, compared with the129

use of non-optimal windows. The type of windows that are optimally and maximally concentrated,130

for a finite duration and bandwidth, are the Slepians [61,68]. Accordingly, in this paper, the Slepian131

window is proposed for the fault diagnosis of IMs. In the following subsections its characteristics and132

the procedure to adjust its parameters are presented.133

2.1. Theoretical introduction to the Slepian functions134

The Slepians functions are defined [55,69,70] as the solutions of the integral equation

∫ T

−T
ϕ(x)

sin B(t− x)
π(t− x)

dx = λϕ(t) (8)

for eigenvalues λ = λn. There are infinite eigenvalues, all of them real numbers, positive and smaller
than 1,

1 > λ0 > λ1 > · · · > λn > · · · > 0. (9)

The integral equation (8) states that trimming the Slepian function of order n, ϕn(t), with a135

rectangular window in the [−T, T] interval will reproduce ϕn(t), except for a factor λn. Besides, the136

convolution kernel sin(Bt)/πt in (8) represents a sharp low-pass filtering process in the frequency137

domain. Hence, ϕn(t) is a low-pass function with almost no energy at angular frequencies outside the138

interval [−B, B].139

The Slepians have the remarkable property of orthogonality, both over an infinite and a finite
range of the independent variable [68]. Due to the fact that the functions ϕn(t) form a complete set of
orthonormal functions, band-limited functions y(t) can be expanded in terms of the Slepians with the
same bandwidth as

y(t) =
∞

∑
k=0

ak ϕk(t), (10)
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where
ak =

∫ ∞

−∞
y(t)ϕk(t)dt. (11)

Other remarkable property of the Splepians is that, as the Gaussian functions, each Slepian
function, ϕn(t), is proportional to its Fourier transform (FT), ϕ̂n(ω), in a finite interval

ϕ̂n(ω) ≈ ϕn

(
t =

T
B

ω

)
for |ω| < B, (12)

where T is half of the total duration and B is the positive bandwidth (in rad/s), equal to half of the
total bandwidth. Using (10) and (12), a time-limited signal y(t) can be expanded in terms of the FT of
the functions ϕk(t), ϕ̂k(ω), which vanish for −T < t < T

y(t) =
∞

∑
k=0

bk ϕ̂k

(
B
T

t
)

. (13)

where
bk =

∫ ∞

−∞
y(t)ϕk(t =

T
B

ω)dt. (14)

The main application of the Slepian functions is the design of band-limited signals with a140

maximum energy concentration in a given time and frequency interval. In the next subsections,141

the energy concentration of a Slepian window for a given duration and bandwidth is obtained, first142

separately in each domain, and, afterwards, in the joint TF domain.143

2.2. Energy of the Slepian windows in a time interval144

Given a band-limited signal, y(t), it can be expanded into the properly scaled functions ϕk(t) (10).
Taking into account the orthonormality of the Slepian functions [55]

∫ ∞

−∞
ϕk(t)ϕj(t)dt =

{
1 if k = j
0 if k 6= j

(15)

the total energy E of the signal can be computed as

E =
∫ ∞

−∞
|y(t)|2dt =

∞

∑
k=0

a2
k . (16)

The energy of the signal y(t) contained in the time interval of duration (−T, T), ET , is given by

ET =
∫ T

−T
|y(t)|2dt =

∞

∑
k=0

λka2
k . (17)

From (16) and (17), the energy fraction α = ET/E is

α =
∑∞

k=0 λka2
k

∑∞
k=0 a2

k
. (18)

So the band-limited window which is maximally concentrated to a time interval (−T, T) is given145

by the maximum value of the ratio (18). Since λ0 is greater than any other λk, this is achieved by setting146

all ak except a0 equal to 0 [55]. Hence, αmax = λ0, where λ0 depends on the time-bandwidth product147

(B · T). For example, if B · T = 1 then α ≈ 0.6. On the contrary, if α is required to be as high as 0.95148

then B · T ≈ 3 [60,61]. So, among all the band-limited functions with the same bandwidth, the zero149

order Slepian function, ϕ0(t), is the maximally concentrated one for a given duration.150
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2.3. Energy of the Slepian windows in a frequency interval151

The energy of the signal y(t) contained in the frequency interval of bandwidth (−B, B), EB, is
given by

EB =
∫ B

−B
|ŷ(ω)|2dω, (19)

and, applying (13) and (14), the energy fraction β = EB/E is equal to

β =
∑∞

k=0 λkb2
k

∑∞
k=0 b2

k
. (20)

As done in the previous subsection, since λ0 is greater than any other λk, the maximum ratio (20)152

is achieved by setting all bk except b0 equal to 0 [55]. So, among all the time-limited functions with the153

same duration, the zero order Slepian function, ϕ0(t), is the maximally concentrated one for a given154

bandwidth.155

2.4. Energy of the Slepian windows in the joint TF domain156

As can be deduced from (18) and (20), the largest energy concentration both in the time and in the
frequency domains, considered independently, is achieved by the zero order Slepian function, ϕ0(t).
Similarly, in the joint TF domain, the zero order Slepian function is also the function with the largest
possible product of energy fractions, α · β, which is obtained for α = β, as in [55]

(α · β)max =

(
1 +
√

λ0

2

)2

. (21)

2.5. Comparison between the Slepian window and the Gaussian window157

The Gaussian window g(t) is defined as [49]

g(t) =
( γ

π

)1/4
e
−

γt2

2 , (22)

being

γ =
1

2σ2
t

. (23)

As in the case of the Slepian window, the FT of the Gaussian window, ĝ(ω), is a scaled version of
itself [49]

ĝ(ω) =

(
1

γπ

)1/4
e
−

ω2

2γ , (24)

where
γ = 2σ2

ω . (25)

The Gaussian window of infinite length is optimal in terms of minimization of (7), but, for a158

finite duration and for a given bandwidth, the zero order Slepian function achieves the maximum159

concentration of energy in the joint TF domain. For example, for λ0 = 0.6, (B · T ≈ 1), the product of160

energy fractions (21) is (α · β)max = 0.787 in the case of the Slepian window. The Gaussian window161

has infinite length and infinite bandwidth, so for computing the energy fractions α and β the values of162

half of the total duration T and half of the total bandwidth B have been chosen as the values of the163

respective standard deviations, as in [55]. That is, T = σt and B = σω . With these settings, the product164

(α · β) for the Gaussian window is only about 0.466 [55].165
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Fig. 1 shows the Heisenberg boxes of the Slepian and of the Gaussian atoms in the TF plane.166

The Slepian atom has a rectangular shape, while the Gaussian atom extends radially from its center.167

Besides, the rectangular shape of the Slepian atom allows an efficient tiling of the TF domain, and is168

specially well suited for the proposed diagnostic approach, just by choosing the diagonal of the Slepian169

window to be parallel to the fault component trajectory in the TF plane [54], as will be developed in170

the next subsection.171

Figure 1. Time-frequency atoms of a Slepian window (top) and of a Gaussian window (bottom).

2.6. Proposed method for the choice of the parameters of the Slepian window172

In this subsection, the method for selecting the parameters that optimize the Slepian window173

for detecting a given fault is presented. As the frequencies of the different faults in (1), (2) and (3) are174

given in Hz, it is advisable to define this optimal window using its total bandwidth expressed in Hz,175

that is, BW = 2B
2π = B

π . Besides, the implementation of the STFT algorithms rely on the length of the176

window, so it is advisable also to characterize the Slepian window using its total duration in seconds,177

TW = 2T, as depicted in Fig. 2.178

Figure 2. Choice of the parameters of the Slepian window so that the aspect ratio of its Heisenberg box
coincides with the slope of the trajectory of the related fault component in the TF plane.
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Based on the characteristics of the Slepian window in terms of energy concentration in a limited
time-frequency region, the first criterion to determine the window parameters is to establish the
maximum energy concentration desired for the window, (α · β)max, which imposes the time-bandwidth
product, BW · TW . In this paper an energy concentration as high as possible is proposed, i.e. (α · β) ≈ 1,
which, from (21), gives λ0 ≈ 1. According to [60], this can be obtained with a time-bandwidth product
BW · TW = 8

(α · β)max ≈ 1→ λ0 ≈ 1→ BW · TW = 8 (26)

However, there are infinite combinations of BW and TW that meet condition (26), so an additional
criterion is needed to establish both BW and TW . These two parameters can be selected according to
different criteria. In [71] the optimal bandwidth of the window for signals with time-varying frequency
is found to be equal to the square root of the derivative of the instantaneous frequency (IF) of the
signal. In [54,72] the optimal parameters of the Gaussian window are those that minimize the TF area
occupied by a target component. To achieve this optimization, in this work the Slepian window is
selected to have the maximum overlap with the trajectory of the fault harmonic signal in the TF plane,
as in [54,73]. This condition is met when the magnitude of the slope of this trajectory, ρ f ault, and the
aspect ratio BW/TW of the Heisenberg’s box of the Slepian window coincide (Fig. 2), so that

BW
TW

= ρ f ault =

∣∣∣∣d( f f ault(t))
dt

∣∣∣∣. (27)

Hence, combining (26) and (27), the two conditions proposed for selecting the optimal parameters
of the Slepian window are

BW · TW = 8
BW
TW

= ρ f ault

 (28)

From (28), the optimal length of the Slepians window is given by

TW =

√
8

ρ f ault
(29)

which is valid for any type of fault. For example, ρ f ault can be computed from (1), (2) and (3)
for the detection of rotor broken bar, mixed eccentricity and bearing faults, respectively. In the
following sections the proposed approach has been applied to the diagnosis of rotor broken bars, as in
[9,11,13,15,32,74], without any loss of generality. In this case, ρ f ault is calculated as the derivative of (1)
with respect to the time. Taking into account that s = ns−n

ns
, where n is the mechanical speed of the

rotor (rpm) and ns = 60 fsupply/p is the synchronous speed of the machine, this derivative gives, in the
case of constant fsupply,

ρ f ault =

∣∣∣∣d((1± 2ks) fsupply)

dt

∣∣∣∣ = 2k fsupply

∣∣∣∣ds
dt

∣∣∣∣ = 2k fsupply

ns

∣∣∣∣dn
dt

∣∣∣∣ = kp
30

∣∣∣∣dn
dt

∣∣∣∣ k = 1, 2, 3 . . . (30)

That is, the slope of the broken bar fault harmonic at every time instant is simply the acceleration179

of the machine at that instant, up to a constant scale factor.180

The slope of the trajectory of the fault harmonic in the TF plane is computed at the center of the181

Slepian window, shown in Fig. 2, as in [75]. Assuming a low variation of the IF of the fault harmonic182

during the short duration of the window, a first order, linear approximation of this trajectory can be183

used, as in [76]. In case of long-term variations of the IF, the original current signal can be divided into184

a number of time segments where this approximation can be applied, as suggested in [75] and [77].185

The practical implementation of the proposed method is very simple with modern computing
software. Effective algorithms for computing the Slepian window can be found in [78]. In MATLAB
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there is a function that returns a Slepian sequence named dpss (discrete prolate spheroidal sequences),
which can be called as

dps_seq = dpss(seq_length, time_halfbandwidth, 1), (31)

where seq_length is the length of the Slepian window in samples, and time_halfbandwidth is equal to
BW · TW/2. Applying (28) and (29) to (31), the optimum Slepian window for detecting a given fault is
obtained easily as

dps_seq = dpss(round

(
fsampling ×

√
8

ρ f ault

)
, 4, 1), (32)

when using a sampling frequency fsampling.186

3. STFT of the Start-up Current of a Simulated IM using the Slepian Window187

In this section, the use of a Slepian window for the analysis of the current through the STFT is188

presented, and it is illustrated using the LSH generated during the start-up of a simulated machine189

with a rotor broken bar, whose main characteristics are given in Appendix A. The simulation has been190

performed during 2 seconds using a sampling frequency of 5 kHz, giving a total of 10000 samples.191

3.1. Evolution of the LSH during the start-up transient of an IM192

The evolution of the LSH of a IM with a broken bar during the start-up transient has been analyzed193

in [9,15,79,80]. In this work, the LSH evolution is extracted from the current signal of a simulated194

machine. Basically, the LSH fault component is a sinusoidal signal whose amplitude and frequency195

vary continuously depending on the slip s.196

The LSH amplitude (Fig. 3) follows a characteristic evolution. First the amplitude decreases until197

it disappears (slip s = 0.5, time t = 0.92 s). During the second half of the start-up transient (t > 0.92 s)198

the amplitude increases up to a maximum value, and, after, decreases towards its steady-state value.199

Figure 3. Time evolution of the amplitude of the LSH (top), of the motor speed (middle), and of the
motor slip (bottom) during the start-up transient of the simulated IM given in Appendix A. The vertical
line corresponds to the time when the slip s = 0.5 is reached.

The frequency of the LSH varies as shown in Fig. 4. The initial frequency of the LSH, at s = 1, is200

the same as the supply frequency ( fsupply = 50 Hz), and, after, it decreases, becoming null when the201

rotor slip is equal to 0.5. From this point, the frequency of the LSH increases again, keeping a constant202

value (slightly below the supply frequency) when the steady state regime is reached.203
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Figure 4. Evolution of the frequency of the LSH as a function of the rotor slip.

Traditional MCSA methods cannot be used for the diagnosis of this fault in transient regime. In204

the spectrum of the LSH shown in Fig. 5, there is no peak signaling the presence of LSH, because205

its frequency is not constant. Hence, the FFT cannot properly highlight the TF evolution of the fault206

harmonic component generated in the stator current by the fault.207

Figure 5. Spectrum of the LSH.

3.2. Choice of the Parameters of the Slepian Window208

The aim of this section is to build a Slepian window suitable for identifying the LSH during the
start-up transient of the IM. As deduced in Section 2.6, this implies to calculate the parameters BW , TW
from (28), and consequently, a value of ρ f ault has to be adopted. In this work, the value of ρ f ault in
(28) will be taken as its average value during the start-up transient. This is a reasonable assumption
whenever the acceleration of the machine during the start-up is quite regular, as happens if the inertia
factor is not very low (see Fig. 3). An approximated value of the averaged value of ρ f ault for the LSH is
obtained from (30), taking k = 1,

ρ f ault ≈ 2 fsupply

∣∣∣∣ ∆s
∆t

∣∣∣∣ s=0.5

s=1
= 2 fsupply

∣∣∣∣ 0.5− 1
ts=0.5 − 0

∣∣∣∣ = fsupply

ts=0.5
, (33)

or, also,

ρ f ault ≈ 2
fsupply

ns

∣∣∣∣ ∆n
∆t

∣∣∣∣ n=ns

n=0
≈

fsupply

tstartup/2
, (34)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2017                   doi:10.20944/preprints201712.0026.v2

Peer-reviewed version available at Sensors 2018, 18, 146; doi:10.3390/s18010146

http://dx.doi.org/10.20944/preprints201712.0026.v2
http://dx.doi.org/10.3390/s18010146


11 of 25

where ts=0.5 is the time which takes the rotor to reach half of the synchronous speed, and tstartup is the
start-up time. Therefore, the maximum overlapping conditions (28) and (33) are combined with the
level of maximum energy concentration (26), giving

BW · TW = 8
BW
TW

= ρ f ault =
fsupply

ts=0.5

 (35)

In this case, for the simulated machine, from Fig. 3, ts=0.5 = 0.92 s, and thus BW/TW = 50/0.92 =209

54.35 Hz/s. Therefore, the parameters of the optimal Slepian window are BW = 20.85 Hz and210

TW = 383.7 ms. This window is represented in separated time and frequency planes in Fig. 6, located211

at the center of the respective domains. Almost all the energy of the window is concentrated under the212

main lobe of the window in the frequency domain. On the other hand, in Fig. 7, the designed Slepian213

window has been represented in the TF plane, in 2 and 3 dimensions. Moreover, the slope of the LSH214

has been superimposed (white line) in Fig. 7, showing that the designed window is optimal for this215

signal, because it achieves the maximum overlapping with the fault component trajectory in the TF216

plane.217
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Figure 6. Slepian window (BW = 20.85 Hz, TW = 383.7 ms) optimized for the maximum overlap with
the LSH trajectory in the time domain (top) and in the frequency domain (bottom).
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Figure 7. Slepian window (BW = 20.85 Hz, TW = 383.7 ms) optimized for representing the LSH, as
a 2-D view (top) and as a 3-D view (bottom) in the time-frequency plane. The white line marks the
trajectory of the LSH in this plane.

The assumption of linear instantaneous frequency during the start-up transient is quite accurate218

in the case of large IMs (for which the condition monitoring is especially interesting), or IMs driving219

constant loads. In case of non-linear instantaneous frequency (IF) during the start-up, the total starting220

time can be sliced in time intervals with nearly constant IF slope (a first order approximation), as221

done in [81]. During each one of these time intervals, the procedure for selecting the parameters of222

the Slepian windows presented in this section can be applied, taking the value of ρ f ault in (28) as its223

average value in the interval.224

3.3. Detection of the LSH Fault Component with the Slepian Window225

Once the window parameters have been selected using (35), the Slepian window has been applied226

to obtain the STFT of the LSH fault component shown in Fig. 3. As it is shown in Fig. 8, a high227

resolution image of the TF pattern of the LSH (Fig. 4) has been obtained with this window. Besides,228

a linear scale has been used to represent the LSH spectrogram, so that the amplitude evolution of229

the LSH is visible. Initially, its amplitude decreases until it becomes null (s = 0.5, ts=0.5 = 0.92 s).230

During the second half of the start-up the amplitude increases reaching a maximum, an finally it231

decreases again towards the steady-state value. So, the generated pattern can identify not only the232

instantaneous frequency of the LSH, but also its instantaneous amplitude, improving the reliability of233

the fault diagnosis process.234
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Figure 8. Time-frequency-amplitude pattern generated by the LSH obtained with the optimized Slepian
window (BW = 20.85 Hz, TW = 383.7 ms), as a 2-D view (top) and as a 3-D view (bottom).

In this particular case,the optimal Slepian window has been achieved for BW/TW = 54.35 Hz/s.235

The validity of this particular choice and the sensitivity of the method to variations of this parameter236

can be assessed measuring the entropy of the current spectrogram obtained with different Slepian237

windows, because small entropy values correspond to good energy concentrations [82,83]. The238

entropy of the current spectrogram has been computed with the method presented in [54,84]. Fig. 9239

shows the entropy of the LSH analyzed with the Slepian window for BW · TW = 8 (level of energy240

concentration) and for different values of BW/TW , from 0 to 2000 Hz/s. As can be seen in Fig. 9, the241

criterion used to select the optimal value of BW/TW of the Slepian window, (BW/TW)opt = 54.35 Hz/s,242

corresponds indeed to the choice of the minimum entropy (maximum energy concentration) of the243

LSH representation in the TF plane. Besides, the entropy around the optimal value is a smooth curve,244

as can be seen in Fig. 9. This indicates that the computation process of BW/TW in (28) can tolerate245

small errors in determining the value of ρ f ault, which depends on the ts=0.5 value in (35). In this way,246

in the case of motors whose speed cannot be measured, it is still possible to use an estimated value of247

the time corresponding to a slip of 0.5 p.u. (ts=0.5), equal to half of the total duration of the start-up248

transient (Fig. 3), without any noticeable performance degradation of the diagnostic process.249
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Figure 9. a) Entropy of the time-frequency analysis of the LSH using the Slepian window, as a function
of the parameter BW /TW . b) Zoomed area of the entropy in the interval close to the optimum value
of BW /TW . The vertical line corresponds to the minimum entropy value, which coincides with the
criteria of maximum overlapping between the Slepian window and the LSH, as proposed in this paper.

4. Experimental Validation on a High-Power, High-Voltage IM250

The proposed method has been applied to the analysis of a high power (3.15 MW), high voltage251

(6 kV) IM working in an actual power plant, whose data are given in Appendix B. This IM has no252

sensor for speed measurement. The IM had a rotor broken bar, confirmed by visual inspection of the253

rotor (Fig. 10). On the other hand, in the same factory, another IM of same characteristics was installed.254

This second IM has not been reported for any anomaly and, thus, is meant to be in healthy condition.255

Nevertheless, it has never been subjected to a visual inspection of the rotor. The tests have been carried256

out during the start-up of the faulty and also of the healthy machine, powered directly from the mains257

( fsupply = 50 Hz). The sampled current during the start-up of the faulty machine is shown in Fig. 11.258

Both tests have been performed during 8.2 seconds using a sampling frequency of 6.4 kHz, with a total259

amount of 52480 samples.260

Broken barHealthy bar

Figure 10. Rotor of the high-power, high-voltage IM given in B (left), and detail of the rotor broken bar
(right), used in the experimental validation of the proposed method.
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Figure 11. Stator current during the start-up transient of the high-power, high-voltage IM given in
Appendix B with a broken bar fault.

4.1. Choice of the Parameters of the Slepian Window for the Tested IM261

The parameters of the Slepian window have been selected as proposed in Section 3. First, the262

value of the product BW · TW is selected to obtain a high energy concentration, so BW · TW = 8. Second,263

the ratio BW/TW is set to be equal to the slope ρ f ault of the LSH in the TF plane. For applying (35) it is264

necessary to know the time when the slip reaches the value 0.5, ts=0.5. In this case, as the speed is not265

measured, ts=0.5 must be estimated. Nevertheless, as it is shown in Fig. 9, the entropy curve around266

the optimal value is smooth, so ts=0.5 can be estimated as half of the total start-up transient duration267

(34), without penalizing the proposed diagnostic procedure. Applying this criterion to Fig. 11 gives268

ts=0.5 ' 3s. Hence269

BW · TW = 8
BW
TW

=
fsupply

ts=0.5
=

50
3

→ BW = 11.55 Hz
TW = 692.8 ms

(36)

Fig. 12 shows the Slepian window designed in separated time and frequency domains. In Fig. 13270

an atom of the Slepian window and the trajectory of the LSH are drawn in the TF plane. As can be271

seen, this window shape achieves the maximum overlap with the LSH trajectory, which coincides with272

the diagonal of the Slepian window.273
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Figure 12. Slepian window (BW = 11.55 Hz, TW = 692.8 ms), optimized for detecting the LSH during
the start-up of the high-power, high-voltage IM given in Appendix B, represented in the time (top) and
in the frequency (bottom) domains.

Figure 13. Heisenberg’s box of the atom of the Slepian window (BW = 11.55 Hz, TW = 692.8 ms),
optimized for detecting the LSH during the start-up transient of the high-power, high-voltage IM given
in Appendix B. The white line marks the estimated trajectory of the LSH in the time-frequency plane.
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Figure 14. Spectrogram of the stator current computed with the proposed Slepian window, optimized
for detecting the LSH during the start-up of the high-power, high-voltage IM given in Appendix B,
with a broken bar (top) and in healthy conditions (bottom).

4.2. Application of the Slepian Window to the Fault Diagnosis of the Tested IM274

After the selection of the parameters of the Slepian window, it has been applied to the STFT275

of the motor stator current, to obtain the spectrograms shown in Fig. 14 for both the faulty and the276

healthy IMs. In these cases, as the mains component has a much higher value than the amplitude of277

the LSH, a logarithmic scale (dB) has been applied to the spectrogram. In Fig. 14 the characteristic278

V-shaped signature of the LSH in the TF plane appears clearly for both IMs. Nevertheless, as expected,279

the amplitude of the harmonic component corresponding to a rotor broken bar fault is much greater280

in the case of the faulty IM (Fig. 14, top) than in the case of the healthy IM (Fig. 14, bottom), whose281

V-shape corresponds to its inherent asymmetry. Fig. 14 gives a visual representation, which enables a282

qualitative diagnosis. To add a quantitative criterion and to improve the reliability of the diagnosis,283

the amplitude of the ridges of the LSH during the start-up of both machines has been represented in284

Fig. 15. In this figure, it can be seen that the LSH of the faulty machine has greater amplitude (more285

than 10 dB) than the LSH of the healthy machine.286

Additionally, the average values of the LSH have been computed in healthy and faulty conditions.287

In the case of the healthy machine, the average amplitude of the LSH is −56.36 dB, whereas in the case288

of the faulty machine it is −41.67 dB, which corresponds to a higher level of energy that confirms the289

presence of the fault.290
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Figure 15. Amplitude of the LSH due to rotor broken bar during the start-up of a healthy and faulty
machine extracted from Fig. 14. The average value of the LSH of the healthy machine (blue line) is
−56.36 dB, and of the faulty machine (red line) is −41.67dB.

5. Cost Effective IM Fault Diagnosis Using the Truncated Slepian Window291

In fault diagnostic systems the spectrogram of the current is not computed on the continuous TF
domain, as indicated in (5), but on a discrete grid of points of the TF plane, as

PSP(m · ∆T, n · ∆F) = |S f (m · ∆T, n · ∆F)|2, n, m = 0, 1, 2, 3, . . . . (37)

In fact, the current signal is a discrete sequence which is acquired sampling the stator current at292

a frequency Fsampling during an acquisition time Ts. So, the most dense grid where the current293

spectrogram can be calculated using (37) corresponds to a value of ∆T = 1/Fsampling, that is, computing294

the FFT for every sample of the current, and to a value of ∆F = 1/Ts, that is, using a window with295

the length of the current signal. This gives a total number of successive FFTs to be computed equal to296

Ts × Fsampling, each one of length Ts × Fsampling samples. All the examples presented in the previous297

sections have been computed using this dense grid.298

From a practical point of view, this election of ∆T = 1/Fsampling and ∆F = 1/Ts in (37) is not299

the most adequate, because with these values the computing time and memory resources needed to300

obtain the current spectrogram are very high. For example, it takes 154 seconds and 186 Mb to obtain301

each of the current spectrograms shown in Fig. 14 on a personal computer (see Appendix C), which302

makes it difficult to implement this diagnostic technique in low power or embedded devices such303

as FPGAs or DSPs. To alleviate this problem, the spectrogram of the current signal can be obtained304

with a window shorter than the current signal, which reduces the length of the FFTs that must be305

performed at each time instant. Besides, since the local Fourier spectrum averages frequency variations306

taking place in the analysis window, it is not necessary to compute the successive FFTs for every307

sample of the discrete-time current signal, but they can be computed with some displacement [73].308

Therefore, decimation in time and in frequency is almost always performed [73] when computing the309

current spectrogram. So, a practical question is to find the minimum acceptable window length and310

the maximum acceptable shifting time that provide a high resolution diagnostic spectrogram of the311

stator current, keeping at a minimum the effort needed to obtain it.312

This question has not a simple answer in the case of a Gaussian window. The use of a window313

shorter than the current signal in the TF analysis has been seldom applied, due to the increase in314

bandwidth of the truncated window, which blurs the current spectrogram, rendering it useless. Some315

authors have proposed to truncate the Gaussian window when its value falls below a given threshold,316

such as 0.01% of its maximum value, or using a truncated window with a length equal to six times317

the standard deviation of the full-length window, 6× σt. Instead of truncating the Gaussian window,318

some authors propose to use an efficient computation of the DGT with the full-length Gaussian319
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window, based on a factorization algorithm [85–87], but this approach has a low penetration in the320

fault diagnosis field.321

In this work, and thanks to the particular properties of the Slepian window (almost compact322

support both in time and frequency of the discrete window), this problem is solved easily using an323

innovative and very cost-effective approach:324

• Reducing the length of the FFT to the time duration TW of the Slepian window in (35), much325

smaller than the length of the current signal Ts. That is, using a truncated Slepian window with326

a length equal to TW , instead of the length of the current signal. This is equivalent to setting327

∆F = 1/TW in (37).328

• Increasing the time shift of the window in successive FFTs to a value of 1/BW , where BW is the329

frequency bandwidth of the Slepian window in (35), much longer than the time step between330

consecutive samples of the current, 1/Fsampling. That is, setting ∆T = 1/BW in (37).331

The results obtained with the proposed approach are summarized in Table 1, and particularized332

in Table 2 for the example presented in Section 4. It can be observed in this table a huge reduction in333

the computational resources needed to obtain a diagnostic spectrogram when the proposed approach334

is used. The time needed for computing the spectrogram has been reduced from 154.65 seconds to just335

0.59 seconds (a 0.38% of the original time), and the amount of memory from 186608 kB to just 59 kB (a336

0.03% of the original memory usage).337

Table 1. Comparison of the parameters of the STFT of the current signal using the traditional full
length analysis and the proposed reduced length TF analysis, where Ts is the length of the current
signal, Fsampling is the sampling frequency, and TW and BW are the parameters of the Slepian window
obtained from (27).

Full length TF analysis Reduced length TF analysis

Window duration (s) Ts TW = 8/BW

Shift step (s) 1/Fsampling 1/BW

FFT length (samples) Ts · Fsampling TW · Fsampling

Number of FFTs Ts · Fsampling Ts · BW

Table 2. Comparison of the parameters of the STFT of the current signal using the full length and the
proposed reduced length TF analysis, applied to the example presented in Section 4, where Ts is the
length of the current signal, Fsampling is the sampling frequency, and TW and BW are the parameters of
the Slepian window obtained from (27).

Ts = 8.2 s , Fsampling = 6.4 kHz, T = 0.6928 s and B = 11.55 Hz

Full length TF analysis Reduced length TF analysis

Window’s length (seconds) 8.2 0.6928

Shift step (s) 1.56 · 10−4 0.087

FFT length (samples) 52480 4434

Number of FFTs 52480 95

Time needed for computing the spectrogram (seconds) 154.65 0.59

Memory needed for computing the spectrogram (kB) 186608 59
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Fig. 16 shows the spectrogram of the current of the faulty machine presented in Section 4, obtained338

using the traditional spectrogram (Fig. 16, top), with a length of the Slepian window equal to the339

length of the current signal, and using the proposed decimated spectrogram (Fig. 16, bottom), with a340

truncated Slepian window. Although the computing time has been greatly reduced to a 0.4% of the341

original time, the resultant spectrogram still shows clearly the LSH component generated by the fault.342
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Figure 16. TF distribution of the stator current of the faulty machine presented in Section 4, using
the full length TF analysis with a Slepian window (154.65 seconds, 186608 kB) (top), and using the
proposed reduced length TF analysis with the truncated Slepian window (0.59 seconds, 59 kB) (bottom).

5.1. Comparison between the Spectrograms Generated with the Truncated Gaussian Window and with the343

Truncated Slepian Window344

For comparison purposes, the spectrogram of the current of the faulty machine has been computed345

also with a truncated Gaussian window, using the values of window’s length and time shift obtained346

in the design of the truncated Slepian window presented in Table 2. Fig. 17 shows that, for the same347

length, the truncated Slepian window (Fig. 17, top) generates a current spectrogram much less blurred348

than the spectrogram generated with the truncated Gaussian window (Fig. 17, bottom), thanks to its349

greater energy concentration. In fact, in the spectrogram generated with the truncated Slepian window350

it is even possible to observe the signature of higher order fault harmonics (the V-shape with vertex at351

t=4 s), which are nearly indistinguishable in the spectrogram generated with the truncated Gaussian352

window. This increased resolution allows for a more accurate assessment of the motor’s condition.353
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Figure 17. Reduced spectrogram of the high-power, high-voltage faulty machine given in Appendix B
with a broken bar during the start-up transient using the truncated Slepian window (top) and using
the truncated Gaussian window (bottom).

6. Conclusions354

TMCSA methods can extend the field of application of traditional MCSA methods to the fault355

diagnosis of electrical machines working in transient conditions, such as the start-up transient of an356

IM, by replacing the FFT with the STFT, which is able to display the signature of the fault components357

in the TF domain.358

Traditionally, a gated Gaussian window has been used to perform the STFT, because an infinitely359

long Gaussian pulse achieves the minimum value of the Heisenberg’s uncertainty principle. But, in this360

paper, it has been highlighted that there is a special function type, the Slepian function, which achieves361

the highest energy concentration for a finite duration and a finite bandwidth. Moreover, its atoms have362

a rectangular shape in the TF plane. Both features improve the resolution of the current spectrograms,363

highlighting the fault components and enabling for more reliable diagnostic results. Besides, from a364

practical point of view, an important reduction in terms of computing time and memory resources can365

be achieved limiting the Fourier analysis to the length of the Slepian window, and shifting the window366

in time steps equal to the inverse of the bandwidth of the Slepian window.367

In this paper, the use of the Slepian window for performing the TMCSA of electrical machines in368

transient regime has been proposed, for the first time up to the best of the authors’ knowledge. The369

procedure for selecting the parameters of the Slepian window, depending on the type of the fault, has370

been also established, and validated both with a synthetic fault component and with the tested current371

of a high-power, high-voltage IM with a broken bar. In future works the proposed approach will be372

applied to the detection of other types of faults such as eccentricity or bearing faults.373
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Appendix A Simulated IM381

Three-phase induction machine. Rated characteristics: P = 1.1 kW, f = 50 Hz,382

U = 230/400 V, I = 2.7/4.6 A, n = 1410 rpm, cos ϕ = 0.8.383

Appendix B Industrial IM384

Three-phase induction machine, star connection. Rated characteristics: P = 3.15 MW,385

f = 50 Hz, U = 6 kV, I = 373 A, n = 2982 rpm, cos ϕ = 0.92.386

Appendix C Computer features387

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB, Matlab Version: 9.0.0.341360388

(R2016a)389
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