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10 Abstract: Mitochondria function to generate ATP and also play important roles in cellular
11 homeostasis, signaling, apoptosis, autophagy, and metabolism. The loss of mitochondrial function
12 results in cell death and various types of diseases. Therefore, quality control of mitochondria via
13 intra- and intercellular pathways is crucial. Intracellular quality control consists of biogenesis,
14 fusion and fission, and degradation of mitochondria in the cell, whereas intercellular quality control
15 involves tunneling nanotubes and extracellular vesicles. In this review, we outline the current
16 knowledge on the intra- and intercellular quality control mechanisms of mitochondria.
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19 1. Introduction

20 Mitochondria are double membrane organelles and are referred to as powerhouses of the cell
21  because their major function is the generation of cellular ATP. Mitochondria also play important roles
22 in other processes, including calcium homeostasis, reactive oxygen species production, apoptosis,
23 autophagy, and the metabolism of amino acids, lipids, and glucose [1]. Loss of mitochondrial function
24 isassociated with various types of diseases [2]. Quality control of mitochondria is, therefore, crucial.
25 A functional population of mitochondria is strictly controlled by intra- and intercellular quality
26  control mechanisms. Intracellular quality control consists of biogenesis, fusion and fission, and
27  degradation of mitochondria (Figure 1). On the other hand, intercellular quality control consists of
28 tunneling nanotubes (TNTs) and extracellular vesicles (EVs) (Figure 2).

29
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31 Figure 1. Schematic representation of intracellular quality control of mitochondria. Intracellular
32 quality control of mitochondria consists of biogenesis, fusion, fission, and degradation (mitophagy)
33 to maintain functions of mitochondria. Mitochondrial fission is necessary for the dissociation of
34 damaged and dysfunctional mitochondria. Damaged and dysfunctional mitochondria are degraded
35 by mitophagy. Mitochondrial biogenesis supplements decreased mitochondrial mass. Mitochondrial
36 fusion leads to the exchange of mtDNAs, proteins, and metabolites between healthy and damaged
37 mitochondria to prevent the accumulation of damaged contents in a single mitochondrion.
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39 Figure 2. Schematic showing intercellular quality control of mitochondria. Mitochondria are
40 transported between cells via tunneling nanotubes (TNTs) and extracellular vesicles (EVs), which
41 help rescue cells containing damaged mitochondria by transporting healthy mitochondria from the
42 adjacent cells. In neurons, damaged mitochondria packed in a neuron are degraded by an adjacent
43 astrocyte (transmitophagy).

44 2. Intracellular quality control

45  2.1. Biogenesis

46 Mitochondria do not originate de novo; rather, proteins involved in the maintenance of
47  mitochondrial population and mass regulate the biogenesis of mitochondria. These proteins are
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encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial
transcription factor A (TFAM), transcription factor B2, mitochondrial (TFB2M), nuclear respiratory
factor 1 (NRF1) and NREF2, estrogen-related receptors (ERRs), and peroxisome proliferator-activated
receptor gamma coactivator 1a (PGC-1a) play important roles in activating the transcription of genes
required for mitochondrial biogenesis.

TFAM is encoded by nDNA and transported from the cytosol to mitochondria. In mitochondria,
TFAM plays dual roles: as a transcription factor (TF) for mitochondrial genes and as a regulator of
mtDNA replication [3-5]. TFB2M is also encoded by nDNA and transported from the cytosol to
mitochondria to function as TF for mitochondrial genes. By contrast, the mitochondrial transcription
factor B1 (TFB1M), a paralog of TFB2M, is a dimethyltransferase that methylates adenine residues of
mt12S rRNA [6]. TFAM binds to mtDNA and changes its structure. TFB2M and mitochondrial RNA
polymerase (POLRMT) interact with TFAM to induce target gene expression. Mitochondrial
transcription machinery composed of TFAM, TFB2M, and POLRMT initiates the expression of
mtDNA [7-9]. A recent study has shown that POLRMT also functions as a switch between the
transcription and replication of mtDNA [10].

NRF1 and NRF2 are nuclear TFs. NRF1 binds to GC-rich palindromes [11, 12], whereas NRF2
binds to direct tandem repeats with GGAA core motif [13, 14]. Human NRF2 consists of two subunits:
aand B (B1 or (32) ory(y1 or y2). Subunit & contains the DNA-binding domain, whereas subunit 3 or
Y contains the transcription activation domain [15]. Both NRF1 and NRF2 positively regulate the
expression of genes encoding proteins related to the oxidative phosphorylation system (OXPHOS)
complexes, heme biosynthesis, mitochondrial protein import and assembly, and mitochondrial
translation [16]. NRF1 and NRF2 also regulate the expression of TFAM [17] and TFB2M [18].

ERRs o, 3 and y are nuclear receptors (NRs) whose endogenous ligands are unknown [19]. ERRs
bind to the ERR response element with a consensus DNA sequence of TCAAGGTCA. ERRa and
ERRy bind to promoters of genes encoding mitochondrial proteins. However, the role of ERRf in the
expression of mitochondrial genes is unknown. The transcriptional function of ERRs is positively
regulated by PGC-1a [20, 21].

PGC-1a is a coactivator that lacks DNA-binding activity but activates transcription of TFs or
NRs by binding to these proteins. PGC-1a interacts with NRF1, NRF2, and ERRs to positively
regulate these TFs and NRs for mitochondrial biogenesis [22]. Although PGC-1a is not a coactivator
of TFAM and TFB2M,, it indirectly activates the expression of TFAM and TFB2M via the activation of
NREFs [17, 18]. Thus, PGC-1a is considered as a master regulator of mitochondrial biogenesis. PGC-
la is a member of the PGC1 family, which also includes PGC-13 and PGC-related coactivator (PRC).
PGC-1p associates with NRF1 and ERRs, and positively regulates the expression of mitochondrial
biogenesis proteins [22]. PRC also binds to NRF1 and ERRa. In addition, PRC forms a complex with
NREF2 by binding to the host cell factor 1 (HCF-1) [23]. Post-translational modifications of PGC-1a
include phosphorylation, methylation, acetylation, and deacetylation, whereas those of PGC-1f3 and
PRC remain unclear [24].

2.2. Fusion and fission

2.2.1. Fusion of mitochondria

Mitochondrial fusion results in the exchange of mtDNAs, proteins, and metabolites from healthy
and damaged mitochondria, in order to repress the accumulation of damaged contents in a single
mitochondrion. The fusion of the outer mitochondrial membrane (OMM) is controlled by mitofusin
(MEN), whereas that of the inner mitochondrial membrane (IMM) is regulated by optic atrophy 1
(OPA1).

Two isoforms of MFN, MFN1 and MFN?2, exist in mammals. Both MFNs are transmembrane
GTPases, located in the OMM. MFNs play a crucial role in the tethering and fusion of the OMMs [25].
However, the GTPase and tethering activities of MFN1 are greater than that those of MFN2 [26]. Thus,
MENT1 is considered as the main GTP-dependent membrane tethering protein for mitochondrial
fusion. MFN2 is expressed on the mitochondria-associated endoplasmic reticulum (ER) membrane.
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98 It tethers mitochondria to the ER by binding to MFNs on the OMM and functions in the uptake of

99  mitochondrial Ca?* from the ER [27].
100 OPAL1 is a GTPase and transmembrane protein localized to the IMM. The long form of OPA1 (L-
101  OPALl) is processed to its short form (S-OPA1) by OMA1 and YME1L1 [28, 29]. The transmembrane
102 domain of L-OPA1 is anchored to the IMM. By contrast, S-OPA1 is cleaved and does not possess a
103 transmembrane domain. Knockdown of OPA1 results in mitochondrial fragmentation, which is
104  recovered by the induction of L-OPA1 [29]. In addition, decrease in the mitochondrial membrane
105  potential induces complete conversion of L-OPA1 to S-OPA1 by OMAL1, leading to the inhibition of
106  mitochondrial fusion and induction of mitochondrial fragmentation [30]. Thus, L-OPA1 functions to
107  regulate the fusion of the IMM.

108  2.2.2. Fission of mitochondria

109 It is known that mitochondrial fission is necessary for the transmission of mitochondria to
110 daughter cells during mitosis and the dissociation of damaged DNA, proteins, and metabolites of
111  mitochondria. Mitochondrial fission is mainly regulated by dynamin-related protein 1 (DRP1). DRP1
112 isacytosolic dynamin-like GTPase. It is recruited to the OMM to form multimeric ring-like structures
113 at mitochondrial fission sites, which leads to the constriction and scission of mitochondria in a
114  GTPase dependent manner. The activity of DRP1 is regulated by post-translational modifications,
115 such as phosphorylation, ubiquitination, sumorylation, S-nitrosylation, and O-GlcNAcylation [31].
116 The recruitment of Drp1 onto the OMM is mediated by OMM-localized DRP1 receptors, namely
117  mitochondrial fission factor (MFF), fission mitochondrial 1 (FIS1), mitochondrial elongation factor 1
118  [MIEF1; also known as the mitochondrial dynamic 51 kDa protein (MiD51)], and MIEF2 (also known
119 as MiD49). MFF is localized to the OMM. Overexpression of MFF leads to the recruitment of DRP1
120 to the OMM, whereas knockdown of MFF results in the elongation of mitochondria [32, 33]. FIS1 is
121 also an anchored membrane protein and an ortholog of yeast Fisl. Yeast Fisl acts as a receptor for
122 Dnml, the yeast ortholog of DRP1, and functions in the fission of yeast mitochondria [34].
123 Overexpression of FIS1 enhances the activity of mitochondrial fission, whereas blocking of FIS1
124 results in the elongation of mitochondria [35-38]. MIEF1 and MIEF2 are anchored to the OMM.
125 Overexpression of the MIEF proteins results in the elongation of mitochondria due to blocking of
126 mitochondrial fission [35, 39, 40]. However, depletion of MIEFs also results in the elongation of
127 mitochondria [35, 39, 41]. Recently, MIEFs and MFF have been shown to coordinately function with
128  DRP1 on the OMM and used as models to demonstrate the contradictory results obtained from the
129 overexpression and knockout of MIEFs. Although both MIEFs and MFF bind to DRP1, MIEFs have
130 higher binding affinities to DRP1 than MFF. Thus, MIEF overexpression inhibits the binding of
131  endogenous MFF to DRP1, leading to mitochondrial fusion. MIEFs also bind to MFF, thereby linking
132 DRP1 to MFF and forming a DRP1-MIEF-MFF complex, resulting in mitochondrial fission. MIEF
133 knockout inhibits the formation of this complex, thus leading to mitochondrial fusion [42].

134 2.3. Degradation (Mitophagy)

135 Damaged and dysfunctional mitochondria are deleterious to the cell. Degradation of such
136  mitochondria is, therefore, crucial. Mitochondrial degradation is executed via the process of
137  autophagy, which removes unwanted cytosolic components [43-45]. Selective degradation of
138  mitochondria via autophagy is called mitophagy. Several proteins mediate the process of mitophagy,
139 including phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1), Parkin, BCL2
140  interacting protein 3 (BNIP3), NIX [also known as BNIP3 like (BNIP3L)], Bcl-2-like protein 13 (Bcl2-
141  L-13), and FUN14 domain containing 1 (FUNDC1).

142 PINK1 is a serine/threonine kinase localized to mitochondria [46]. In healthy mitochondria,
143 presenilin-associated rhomboid-like (PARL) processes PINK1, leading to the degradation of PINKI.
144 In depolarized mitochondria, the processing of PINK1 by PARL is blocked. This results in the
145  accumulation of PINK1 on the OMM [47-49]. PINK1 undergoes autophosphorylation and
146 phosphorylates ubiquitin moieties of originally ubiquitinated OMM proteins. In addition, PINK1
147  phosphorylates and activates Parkin, an E3 ubiquitin ligase that adds ubiquitin molecules to
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148  originally ubiquitinated OMM proteins [50-52]. PINK1 also phosphorylates the ubiquitin molecules
149  added by Parkin. The ubiquitin-binding autophagic adaptor proteins, nuclear dot protein 52 kDa
150 (NDP52) and optineurin (OPTN) recruit microtubule-associated protein 1 light chain 3 (LC3) to the
151  OMM proteins ubiquitinated and phosphorylated by PINK1 and Parkin, leading to mitophagy [53-
152 55].

153 BNIP3, NIX, Bcl2-L-13, and FUNDC1 are localized to the OMM and mediate mitophagy by
154  associating with the LC3 subfamily proteins, including LC3 alpha (LC3A), LC3 beta (LC3B), and
155 LC3C, and the y-aminobutyric-acid-type-A receptor-associated protein (GABARAP) subfamily
156  proteins, including GABARAP, GABARAP-like 1 (GABARAPL1), and GABARAP-like 2
157  (GABARAPL2) [56]. BNIP3, NIX, and Bcl2-L-13 belong to the BCL-2 family. Although Bcl-2 harbors
158  four Bcl-2 homology motifs (BH1-4), BNIP3 harbors only the BH3 motif [57]. Overexpression of
159  BNIP3 leads to the induction of mitophagy [58, 59], whereas BNIP3 knockdown suppresses
160  mitophagy [60]. Phosphorylation of Ser17 of BNIP3 is necessary for the binding of BNIP3 to LC3B,
161  whereas phosphorylation of both Ser17 and Ser24 mediates the binding of BNIP3 to GABARAPL2
162 (also known as GATE-16) [61]. Like BNIP3, NIX also harbors only the BH3 motif. Deletion of NIX
163 results in defective mitophagy [62, 63]. Although NIX associates with all members of the LC3 and
164  GABARAP subfamilies [56], phosphorylation of Ser34 and Ser35 residues of NIX enhances its ability
165  to bind to LC3A and LC3B [64]. Bcl2-L-13 is a Bcl-2 homolog protein that also plays key roles in
166  mitophagy and mitochondrial fragmentation. Phosphorylation at Ser272 of Bcl2-L-13 is necessary for
167  its interaction with LC3B [65]. FUNDC1, which is also located in the OMM, functions to link
168  mitochondria with LC3. Casein kinase 2 (CK2) and Src kinase phosphorylate Ser13 and Tyr18
169  residues of FUNDCI, respectively, blocking the induction of mitophagy. By contrast,
170 dephosphorylation of Serl3 and Tyrl8 residues of FUNDCl by PGAM5, a mitochondrial
171  phosphatase, or inhibition of CK2 and Src kinase results in the induction of mitophagy [66, 67].

172 3. Intercellular transport

173 Mitochondria are transported between cells via TNTs and EVs (Figure 2). It has been reported
174 that intercellular transport of mitochondria via TNTSs rescues cells containing damaged mitochondria
175 by sending healthy mitochondria from adjacent cells [68-73]. The transport of mitochondria via TNTs
176  can be bidirectional [74]. It has been shown that mitochondrial tho GTPase 1 (MIROL1), also known
177  asras homolog family member T1 (RHOT1), plays an important role in the intercellular transport of
178  mitochondria through TNTs [75]. MIRO1 is anchored to the OMM and is also related to the
179  intracellular transport of mitochondria in the cell [76]. Knockdown of MIRO1 inhibits mitochondrial
180  transport from mesenchymal stem cells (MSCs) to epithelial cells injured by rotenone without
181  reducing TNT formation, whereas overexpression of MIRO1 leads to an increase in the transport of
182 mitochondria from MSCs to rotenone-injured epithelial cells [75].

183 EVs are divided into two types: exosomes (30-150 nm) and microvesicles (MVs) (30-1,000 nm)
184 [77]. The intercellular transport of mitochondria via EVs has been demonstrated [73, 78, 79]. It has
185  been recently shown that the release of mitochondria-containing EVs from the astrocyte mediated by
186  CD38 - cyclic ADP ribose (cADPR) - Ca? signaling saves neurons damaged by oxygen-glucose
187  deprivation or ischemic stroke [80]. CD38 is an ADP ribosyl cyclase that generates cADPR, leading
188 to the release of Ca?* ions [81]. Activation of CD38 and addition of cADPR enhances the release of
189  mitochondria from astrocytes, whereas knockdown of CD38 or BAPTA-AM, intracellular Ca2
190 chelator, reduced the release of mitochondria from astrocytes [80]. Damaged mitochondria are also
191  transported into adjacent cells for their degradation. The retinal ganglion cells produce mitochondria-
192 containing protrusions surrounded by vesicles. The adjacent astrocyte tears off, internalizes these
193 protrusions, and degrades the mitochondria in these protrusions. This process is termed
194 transmitophagy [82].

195 4. Concluding remarks

196 Although the major function of mitochondria is the generation of energy, mitochondria are also
197 associated with cellular homeostasis, cell signaling, metabolism, and cell death. Thus, intra- and
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198  intercellular quality controls of mitochondria are crucial and rigorously regulated. The impairment
199  of quality control results in the accumulation of damaged mitochondria, leading to cell death and
200  various types of diseases. Modifications of molecules and/or signaling associated with intra- and
201  intercellular quality controls of mitochondria helps rescue cells containing damaged mitochondria.
202 Moreover, intercellular quality control of mitochondria via EVs can lead to the possibility of the
203 delivering of healthy mitochondria into cells containing damaged mitochondria. The elucidation of
204  detailed mechanisms of intra- and intercellular quality controls of mitochondria will help in the
205  development of therapeutic strategies for the management of diseases caused by defective or
206  dysfunctional mitochondria.
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