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Abstract: Mitochondria function to generate ATP and also play important roles in cellular 10 
homeostasis, signaling, apoptosis, autophagy, and metabolism. The loss of mitochondrial function 11 
results in cell death and various types of diseases. Therefore, quality control of mitochondria via 12 
intra- and intercellular pathways is crucial. Intracellular quality control consists of biogenesis, 13 
fusion and fission, and degradation of mitochondria in the cell, whereas intercellular quality control 14 
involves tunneling nanotubes and extracellular vesicles. In this review, we outline the current 15 
knowledge on the intra- and intercellular quality control mechanisms of mitochondria. 16 
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1. Introduction  19 
 Mitochondria are double membrane organelles and are referred to as powerhouses of the cell 20 

because their major function is the generation of cellular ATP. Mitochondria also play important roles 21 
in other processes, including calcium homeostasis, reactive oxygen species production, apoptosis, 22 
autophagy, and the metabolism of amino acids, lipids, and glucose [1]. Loss of mitochondrial function 23 
is associated with various types of diseases [2]. Quality control of mitochondria is, therefore, crucial. 24 
A functional population of mitochondria is strictly controlled by intra- and intercellular quality 25 
control mechanisms. Intracellular quality control consists of biogenesis, fusion and fission, and 26 
degradation of mitochondria (Figure 1). On the other hand, intercellular quality control consists of 27 
tunneling nanotubes (TNTs) and extracellular vesicles (EVs) (Figure 2). 28 
  29 
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 30 

Figure 1. Schematic representation of intracellular quality control of mitochondria. Intracellular 31 
quality control of mitochondria consists of biogenesis, fusion, fission, and degradation (mitophagy) 32 
to maintain functions of mitochondria. Mitochondrial fission is necessary for the dissociation of 33 
damaged and dysfunctional mitochondria. Damaged and dysfunctional mitochondria are degraded 34 
by mitophagy. Mitochondrial biogenesis supplements decreased mitochondrial mass. Mitochondrial 35 
fusion leads to the exchange of mtDNAs, proteins, and metabolites between healthy and damaged 36 
mitochondria to prevent the accumulation of damaged contents in a single mitochondrion. 37 

 38 

Figure 2. Schematic showing intercellular quality control of mitochondria. Mitochondria are 39 
transported between cells via tunneling nanotubes (TNTs) and extracellular vesicles (EVs), which 40 
help rescue cells containing damaged mitochondria by transporting healthy mitochondria from the 41 
adjacent cells. In neurons, damaged mitochondria packed in a neuron are degraded by an adjacent 42 
astrocyte (transmitophagy). 43 

2. Intracellular quality control 44 

2.1. Biogenesis 45 
Mitochondria do not originate de novo; rather, proteins involved in the maintenance of 46 

mitochondrial population and mass regulate the biogenesis of mitochondria. These proteins are 47 
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encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial 48 
transcription factor A (TFAM), transcription factor B2, mitochondrial (TFB2M), nuclear respiratory 49 
factor 1 (NRF1) and NRF2, estrogen-related receptors (ERRs), and peroxisome proliferator-activated 50 
receptor gamma coactivator 1α (PGC-1α) play important roles in activating the transcription of genes 51 
required for mitochondrial biogenesis. 52 

TFAM is encoded by nDNA and transported from the cytosol to mitochondria. In mitochondria, 53 
TFAM plays dual roles: as a transcription factor (TF) for mitochondrial genes and as a regulator of 54 
mtDNA replication [3-5]. TFB2M is also encoded by nDNA and transported from the cytosol to 55 
mitochondria to function as TF for mitochondrial genes. By contrast, the mitochondrial transcription 56 
factor B1 (TFB1M), a paralog of TFB2M, is a dimethyltransferase that methylates adenine residues of 57 
mt12S rRNA [6]. TFAM binds to mtDNA and changes its structure. TFB2M and mitochondrial RNA 58 
polymerase (POLRMT) interact with TFAM to induce target gene expression. Mitochondrial 59 
transcription machinery composed of TFAM, TFB2M, and POLRMT initiates the expression of 60 
mtDNA [7-9]. A recent study has shown that POLRMT also functions as a switch between the 61 
transcription and replication of mtDNA [10].  62 

NRF1 and NRF2 are nuclear TFs. NRF1 binds to GC-rich palindromes [11, 12], whereas NRF2 63 
binds to direct tandem repeats with GGAA core motif [13, 14]. Human NRF2 consists of two subunits: 64 
α and β (β1 or β2) orγ(γ1 or γ2). Subunit α contains the DNA-binding domain, whereas subunit β or 65 
γ contains the transcription activation domain [15]. Both NRF1 and NRF2 positively regulate the 66 
expression of genes encoding proteins related to the oxidative phosphorylation system (OXPHOS) 67 
complexes, heme biosynthesis, mitochondrial protein import and assembly, and mitochondrial 68 
translation [16]. NRF1 and NRF2 also regulate the expression of TFAM [17] and TFB2M [18].  69 

ERRs α, β and γ are nuclear receptors (NRs) whose endogenous ligands are unknown [19]. ERRs 70 
bind to the ERR response element with a consensus DNA sequence of TCAAGGTCA. ERRα and 71 
ERRγ bind to promoters of genes encoding mitochondrial proteins. However, the role of ERRβ in the 72 
expression of mitochondrial genes is unknown. The transcriptional function of ERRs is positively 73 
regulated by PGC-1α [20, 21].  74 

PGC-1α is a coactivator that lacks DNA-binding activity but activates transcription of TFs or 75 
NRs by binding to these proteins. PGC-1α interacts with NRF1, NRF2, and ERRs to positively 76 
regulate these TFs and NRs for mitochondrial biogenesis [22]. Although PGC-1α is not a coactivator 77 
of TFAM and TFB2M, it indirectly activates the expression of TFAM and TFB2M via the activation of 78 
NRFs [17, 18]. Thus, PGC-1α is considered as a master regulator of mitochondrial biogenesis. PGC-79 
1α is a member of the PGC1 family, which also includes PGC-1β and PGC-related coactivator (PRC). 80 
PGC-1β associates with NRF1 and ERRs, and positively regulates the expression of mitochondrial 81 
biogenesis proteins [22]. PRC also binds to NRF1 and ERRα. In addition, PRC forms a complex with 82 
NRF2 by binding to the host cell factor 1 (HCF-1) [23]. Post-translational modifications of PGC-1α 83 
include phosphorylation, methylation, acetylation, and deacetylation, whereas those of PGC-1β and 84 
PRC remain unclear [24]. 85 

2.2. Fusion and fission 86 

2.2.1. Fusion of mitochondria 87 
Mitochondrial fusion results in the exchange of mtDNAs, proteins, and metabolites from healthy 88 

and damaged mitochondria, in order to repress the accumulation of damaged contents in a single 89 
mitochondrion. The fusion of the outer mitochondrial membrane (OMM) is controlled by mitofusin 90 
(MFN), whereas that of the inner mitochondrial membrane (IMM) is regulated by optic atrophy 1 91 
(OPA1).  92 

Two isoforms of MFN, MFN1 and MFN2, exist in mammals. Both MFNs are transmembrane 93 
GTPases, located in the OMM. MFNs play a crucial role in the tethering and fusion of the OMMs [25]. 94 
However, the GTPase and tethering activities of MFN1 are greater than that those of MFN2 [26]. Thus, 95 
MFN1 is considered as the main GTP-dependent membrane tethering protein for mitochondrial 96 
fusion. MFN2 is expressed on the mitochondria-associated endoplasmic reticulum (ER) membrane. 97 
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It tethers mitochondria to the ER by binding to MFNs on the OMM and functions in the uptake of 98 
mitochondrial Ca2+ from the ER [27].  99 

OPA1 is a GTPase and transmembrane protein localized to the IMM. The long form of OPA1 (L-100 
OPA1) is processed to its short form (S-OPA1) by OMA1 and YME1L1 [28, 29]. The transmembrane 101 
domain of L-OPA1 is anchored to the IMM. By contrast, S-OPA1 is cleaved and does not possess a 102 
transmembrane domain. Knockdown of OPA1 results in mitochondrial fragmentation, which is 103 
recovered by the induction of L-OPA1 [29]. In addition, decrease in the mitochondrial membrane 104 
potential induces complete conversion of L-OPA1 to S-OPA1 by OMA1, leading to the inhibition of 105 
mitochondrial fusion and induction of mitochondrial fragmentation [30]. Thus, L-OPA1 functions to 106 
regulate the fusion of the IMM. 107 

2.2.2. Fission of mitochondria 108 
It is known that mitochondrial fission is necessary for the transmission of mitochondria to 109 

daughter cells during mitosis and the dissociation of damaged DNA, proteins, and metabolites of 110 
mitochondria. Mitochondrial fission is mainly regulated by dynamin-related protein 1 (DRP1). DRP1 111 
is a cytosolic dynamin-like GTPase. It is recruited to the OMM to form multimeric ring-like structures 112 
at mitochondrial fission sites, which leads to the constriction and scission of mitochondria in a 113 
GTPase dependent manner. The activity of DRP1 is regulated by post-translational modifications, 114 
such as phosphorylation, ubiquitination, sumorylation, S-nitrosylation, and O-GlcNAcylation [31].  115 

The recruitment of Drp1 onto the OMM is mediated by OMM-localized DRP1 receptors, namely 116 
mitochondrial fission factor (MFF), fission mitochondrial 1 (FIS1), mitochondrial elongation factor 1 117 
[MIEF1; also known as the mitochondrial dynamic 51 kDa protein (MiD51)], and MIEF2 (also known 118 
as MiD49). MFF is localized to the OMM. Overexpression of MFF leads to the recruitment of DRP1 119 
to the OMM, whereas knockdown of MFF results in the elongation of mitochondria [32, 33]. FIS1 is 120 
also an anchored membrane protein and an ortholog of yeast Fis1. Yeast Fis1 acts as a receptor for 121 
Dnm1, the yeast ortholog of DRP1, and functions in the fission of yeast mitochondria [34]. 122 
Overexpression of FIS1 enhances the activity of mitochondrial fission, whereas blocking of FIS1 123 
results in the elongation of mitochondria [35-38]. MIEF1 and MIEF2 are anchored to the OMM. 124 
Overexpression of the MIEF proteins results in the elongation of mitochondria due to blocking of 125 
mitochondrial fission [35, 39, 40]. However, depletion of MIEFs also results in the elongation of 126 
mitochondria [35, 39, 41]. Recently, MIEFs and MFF have been shown to coordinately function with 127 
DRP1 on the OMM and used as models to demonstrate the contradictory results obtained from the 128 
overexpression and knockout of MIEFs. Although both MIEFs and MFF bind to DRP1, MIEFs have 129 
higher binding affinities to DRP1 than MFF. Thus, MIEF overexpression inhibits the binding of 130 
endogenous MFF to DRP1, leading to mitochondrial fusion. MIEFs also bind to MFF, thereby linking 131 
DRP1 to MFF and forming a DRP1-MIEF-MFF complex, resulting in mitochondrial fission. MIEF 132 
knockout inhibits the formation of this complex, thus leading to mitochondrial fusion [42].  133 

2.3. Degradation (Mitophagy) 134 
Damaged and dysfunctional mitochondria are deleterious to the cell. Degradation of such 135 

mitochondria is, therefore, crucial. Mitochondrial degradation is executed via the process of 136 
autophagy, which removes unwanted cytosolic components [43-45]. Selective degradation of 137 
mitochondria via autophagy is called mitophagy. Several proteins mediate the process of mitophagy, 138 
including phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1), Parkin, BCL2 139 
interacting protein 3 (BNIP3), NIX [also known as BNIP3 like (BNIP3L)], Bcl-2-like protein 13 (Bcl2-140 
L-13), and FUN14 domain containing 1 (FUNDC1). 141 

PINK1 is a serine/threonine kinase localized to mitochondria [46]. In healthy mitochondria, 142 
presenilin-associated rhomboid-like (PARL) processes PINK1, leading to the degradation of PINK1. 143 
In depolarized mitochondria, the processing of PINK1 by PARL is blocked. This results in the 144 
accumulation of PINK1 on the OMM [47-49]. PINK1 undergoes autophosphorylation and 145 
phosphorylates ubiquitin moieties of originally ubiquitinated OMM proteins. In addition, PINK1 146 
phosphorylates and activates Parkin, an E3 ubiquitin ligase that adds ubiquitin molecules to 147 
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originally ubiquitinated OMM proteins [50-52]. PINK1 also phosphorylates the ubiquitin molecules 148 
added by Parkin. The ubiquitin-binding autophagic adaptor proteins, nuclear dot protein 52 kDa 149 
(NDP52) and optineurin (OPTN) recruit microtubule-associated protein 1 light chain 3 (LC3) to the 150 
OMM proteins ubiquitinated and phosphorylated by PINK1 and Parkin, leading to mitophagy [53-151 
55].  152 

BNIP3, NIX, Bcl2-L-13, and FUNDC1 are localized to the OMM and mediate mitophagy by 153 
associating with the LC3 subfamily proteins, including LC3 alpha (LC3A), LC3 beta (LC3B), and 154 
LC3C, and the γ-aminobutyric-acid-type-A receptor-associated protein (GABARAP) subfamily 155 
proteins, including GABARAP, GABARAP-like 1 (GABARAPL1), and GABARAP-like 2 156 
(GABARAPL2) [56]. BNIP3, NIX, and Bcl2-L-13 belong to the BCL-2 family. Although Bcl-2 harbors 157 
four Bcl-2 homology motifs (BH1–4), BNIP3 harbors only the BH3 motif [57]. Overexpression of 158 
BNIP3 leads to the induction of mitophagy [58, 59], whereas BNIP3 knockdown suppresses 159 
mitophagy [60]. Phosphorylation of Ser17 of BNIP3 is necessary for the binding of BNIP3 to LC3B, 160 
whereas phosphorylation of both Ser17 and Ser24 mediates the binding of BNIP3 to GABARAPL2 161 
(also known as GATE-16) [61]. Like BNIP3, NIX also harbors only the BH3 motif. Deletion of NIX 162 
results in defective mitophagy [62, 63]. Although NIX associates with all members of the LC3 and 163 
GABARAP subfamilies [56], phosphorylation of Ser34 and Ser35 residues of NIX enhances its ability 164 
to bind to LC3A and LC3B [64]. Bcl2-L-13 is a Bcl-2 homolog protein that also plays key roles in 165 
mitophagy and mitochondrial fragmentation. Phosphorylation at Ser272 of Bcl2-L-13 is necessary for 166 
its interaction with LC3B [65]. FUNDC1, which is also located in the OMM, functions to link 167 
mitochondria with LC3. Casein kinase 2 (CK2) and Src kinase phosphorylate Ser13 and Tyr18 168 
residues of FUNDC1, respectively, blocking the induction of mitophagy. By contrast, 169 
dephosphorylation of Ser13 and Tyr18 residues of FUNDC1 by PGAM5, a mitochondrial 170 
phosphatase, or inhibition of CK2 and Src kinase results in the induction of mitophagy [66, 67]. 171 

3. Intercellular transport 172 
Mitochondria are transported between cells via TNTs and EVs (Figure 2). It has been reported 173 

that intercellular transport of mitochondria via TNTs rescues cells containing damaged mitochondria 174 
by sending healthy mitochondria from adjacent cells [68-73]. The transport of mitochondria via TNTs 175 
can be bidirectional [74]. It has been shown that mitochondrial rho GTPase 1 (MIRO1), also known 176 
as ras homolog family member T1 (RHOT1), plays an important role in the intercellular transport of 177 
mitochondria through TNTs [75]. MIRO1 is anchored to the OMM and is also related to the 178 
intracellular transport of mitochondria in the cell [76]. Knockdown of MIRO1 inhibits mitochondrial 179 
transport from mesenchymal stem cells (MSCs) to epithelial cells injured by rotenone without 180 
reducing TNT formation, whereas overexpression of MIRO1 leads to an increase in the transport of 181 
mitochondria from MSCs to rotenone-injured epithelial cells [75].  182 

EVs are divided into two types: exosomes (30–150 nm) and microvesicles (MVs) (30–1,000 nm) 183 
[77]. The intercellular transport of mitochondria via EVs has been demonstrated [73, 78, 79]. It has 184 
been recently shown that the release of mitochondria-containing EVs from the astrocyte mediated by 185 
CD38 - cyclic ADP ribose (cADPR) - Ca2+ signaling saves neurons damaged by oxygen-glucose 186 
deprivation or ischemic stroke [80]. CD38 is an ADP ribosyl cyclase that generates cADPR, leading 187 
to the release of Ca2+ ions [81]. Activation of CD38 and addition of cADPR enhances the release of 188 
mitochondria from astrocytes, whereas knockdown of CD38 or BAPTA-AM, intracellular Ca2 189 
chelator, reduced the release of mitochondria from astrocytes [80]. Damaged mitochondria are also 190 
transported into adjacent cells for their degradation. The retinal ganglion cells produce mitochondria-191 
containing protrusions surrounded by vesicles. The adjacent astrocyte tears off, internalizes these 192 
protrusions, and degrades the mitochondria in these protrusions. This process is termed 193 
transmitophagy [82].  194 

4. Concluding remarks 195 
Although the major function of mitochondria is the generation of energy, mitochondria are also 196 

associated with cellular homeostasis, cell signaling, metabolism, and cell death. Thus, intra- and 197 
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intercellular quality controls of mitochondria are crucial and rigorously regulated. The impairment 198 
of quality control results in the accumulation of damaged mitochondria, leading to cell death and 199 
various types of diseases. Modifications of molecules and/or signaling associated with intra- and 200 
intercellular quality controls of mitochondria helps rescue cells containing damaged mitochondria. 201 
Moreover, intercellular quality control of mitochondria via EVs can lead to the possibility of the 202 
delivering of healthy mitochondria into cells containing damaged mitochondria. The elucidation of 203 
detailed mechanisms of intra- and intercellular quality controls of mitochondria will help in the 204 
development of therapeutic strategies for the management of diseases caused by defective or 205 
dysfunctional mitochondria.  206 
Author Contributions: Y.K. and H. N. contributed to the writing of the review.  207 
Conflicts of Interest: The authors declare no conflict of interest. 208 
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