

Article

Inexpensive Piezoelectric Elements for Nozzle Contact Detection and Build Platform Leveling in FFF 3D Printers

Mike Simpson ¹, Simon Khoury ²

¹ RepRap Project; mike@jackel.demon.co.uk

² RepRap Project; demon_dentist@yahoo.com

Abstract: Inexpensive piezoelectric diaphragms can be used as sensors to facilitate both nozzle height setting and build platform leveling in FFF (Fused Filament Fabrication) 3D printers. Tests simulating nozzle contact are conducted to establish the available output and an output of greater than 8 Volts found at 20°C, a value which is readily detectable by simple electronic circuits. Tests are also conducted at a temperature of 80°C and, despite a reduction of greater than 80% in output voltage, this is still detectable. The reliability of piezoelectric diaphragms is investigated by mechanically stressing samples over 100,000 cycles at both 20°C and 80°C and little loss of output over the test duration is found. The development of a nozzle contact sensor using a single piezoelectric diaphragm is described.

Keywords: 3D Printing; Open Source; RepRap; calibration; bed leveling

1. Introduction

RepRap printers are low cost 3D printers which can reproduce a substantial portion of the components that were used in its own construction. The RepRap project started at the University of Bath as an initiative to develop a low-cost 3D printer and now has many hundreds of collaborators. The stated goal of the RepRap project is *To produce a pure self-replicating device not for its own sake, but rather to put in the hands of individuals anywhere on the planet, for a minimal outlay of capital, a desktop manufacturing system that would enable the individual to manufacture many of the artifacts used in everyday life* [1]. In order to meet the requirement for a minimum outlay of capital, a core objective of the RepRap project is that RepRap printers should be able to print many of the parts that are used in their own construction. Those parts of a RepRap printer that cannot be printed should be both readily available and inexpensive [2]. Although designed as sounders, piezoelectric discs will also function as sensors they are useful components for making RepRap printers: This paper addresses the suitability of piezoelectric diaphragms as sensors for build platform leveling in FFF printers.

Piezoelectric diaphragms are readily available as they are used as in many manufactured goods and are also inexpensive: Prices for small quantities in December 2017 for branded diaphragms was £0.84 [3] while unbranded ones about £0.34 [4]. Piezoelectric discs may also be salvaged from many sources such as greetings cards and toys as well as electronic equipment such as phones.

A feature of piezoelectric discs which makes them suitable for use in RepRap printers, and possibly in similar applications, is that they are quite robust. With moderate care it is possible to drill holes through the ceramic and the diaphragm with only minor degradation of performance. Piezoelectric discs have also had the ceramic part segmented with the modified assembly used to provide mechanical scanning for a Maker built scanning tunnelling microscope [5].

33 Taken together, the low cost and ready availability of piezoelectric discs along with their
34 robustness make them an excellent component for use in RepRap printers and indeed in other
35 equipment for the Maker communities, in resource constrained locations and even for the quick
36 construction of prototypes and proof of concept models in well funded organizations. A selection of
37 piezoelectric discs are shown in **Figure 1** including two salvaged components and one with a drilled
38 hole.

Figure 1. A selection of piezoelectric diaphragms, from left to right - 35mm diameter, 27mm with drilled hole, 20mm diameter salvaged unit from greeting card on top, Murata unit below, 12mm salvaged unit on right.

39 FFF 3D printers, also known as FDM printers [6] produce a solid object by printing layers of
40 material one upon another on to a flat build platform. The adhesion of the first layer to the build
41 platform depends on several factors, the thickness of the first layer being a very important one [7] as
42 thick or thin areas can result in a print detaching from the build platform [8]. The nozzle height above
43 the build platform determines the first layer thickness and can be influenced by many things such as:
44 The build platform itself may be less flat than is needed for a good print; initial adjustment may have
45 been effected by thermal expansion of parts of the printer while routine changes of parts such as the
46 printer nozzle or build platform are likely to change the nozzle height and the first layer thickness.
47 Measuring the nozzle height at a number of positions over the area of the build platform before the
48 first layer is printed can allow manual correction or automatic optimization of the first layer or layers.

49 The early RepRap printers leveled the build platform manually by adjusting three or four sprung
50 adjusting screws. As manual adjustment was laborious and may be required frequently, methods
51 were sought to automatically check the height of the printer nozzle without resorting to tools such
52 as feeler gauges. Once the earliest automatic methods of measuring the relative distance from the
53 nozzle to the build platform it became possible to use software to compensate for distortion of the
54 build platform and ultimately to compensate for geometric errors in the printer itself.

55 The first methods used on RepRap, DIY and Maker built 3D printers for automatic build platform
56 leveling measured the distance between the print nozzle and the build platform using a switch which
57 could be manually, mechanically or electrically deployed. Proximity sensors have also been used
58 including inductive, capacitative, ultrasonic and optical sensors, both industrial and purpose built.
59 Proximity sensors are difficult to place close to the nozzle and will not measure the proximity of a
60 point directly under the nozzle. Other sensors detect the nozzle contact coming into contact with the
61 build platform so measuring the nozzle height as well as its horizontal position. The majority of the

available information of the various sensors used for build platform leveling in RepRap printers can be found on the RepRap Wiki where a range of sensor types are described [9].

Nozzle contact sensors include electrical contact types which detect a conductive nozzle making contact with a conductive part of the build platform; force sensors which use a switch or transducer to detect the force of the nozzle coming into contact with the build platform; accelerometer sensors which detect the deceleration of the nozzle and attached parts when they make contact with the build platform and microphonic types where a mechanical vibration is transmitted from a driven transducer to a sensor through the contacting nozzle.

Examples of the range of technologies used for build platform leveling and nozzle height setting are itemized below but this list is by no means exhaustive. Many of these were developed by hobbyists or other non-commercial groups before being adopted by manufacturers.

- The UP! Plus 2 3D Printer [11] uses two switches to set the level and the nozzle height. To establish the errors of tilt and flatness, a microswitch mounted to a carrier is connected to the nozzle and moved to contact with the build platform at a number of positions. As the microswitch actuator is directly below the nozzle this does not introduce any significant error in X or Y positions. To set the offset in the Z direction the microswitch carrier is removed and a second switch at the back and level with the surface of the build platform is contacted by the nozzle.
- The Lulzbot Mini [12] and the Lulzbot TAZ 6 use an electrical contact method where four electrically conductive contacts at the corners of the build platform are probed by the conductive nozzle. The nozzle and contacts must be free of any insulating material such as plastic residue for this to work and in addition this method cannot find any errors in flatness of the surface.
- The Prusa i3 [13] uses an inductive probe which the manufacturer refers to as a PINDA probe to find errors in tilt and flatness of the build surface and, but probing targets in the build platform, is also able to determine errors in XY orthogonality. Some manual setting is required after determining the errors as there is no absolute detection of the nozzle height.
- The Ultimaker 3 printer [14] uses a capacitive detection method in which the electrical capacitance between the nozzle itself and the build platform is measured. The capacitance will increase as the nozzle approached the platform until the nozzle contacts the build platform at which point the measured capacitance will stop rising [15]. This method combines nozzle contact methods and proximity sensor methods and has no X, Y or Z offsets.
- The Rostock Max V3 [16] uses an accelerometer [17] to detect the deceleration which occurs when the nozzle comes into contact with the build platform. There is no X or Y offset but the necessary contact speed is higher than other nozzle contact methods and a somewhat larger Z offset is to be expected.
- The Fusion3 F400 printer [18] uses an infra red proximity sensor [19] to detect errors of tilt and flatness. As the sensor is mounted alongside the nozzle there will be offsets in X, Y and Z which will need to be compensated for in the printer software. Too much or too little reflectivity along with multiple reflections from the top and bottom surfaces of a transparent build platform can cause problems

In addition to the methods used by commercial and kit printers, the RepRap, Maker and DIY community members have investigated a wide range of ways of detecting proximity or contact and a selection of these is itemized below.

- Early microswitch probes were often deployed by small servos designed for use in radio controlled models. These probes had disadvantages such as poor repeatability and high mass although the method of moving a switch actuator to a point beyond the nozzle is used in several products intended for the DIY 3D printer builder. The BLTouch [20] is an example of a deployable switch sensor which uses a solenoid to extend the switch actuator.

- 110 Capacitive, Inductive and Optical proximity sensors are popular and can have good
111 repeatability although they can be dependant on the correct build surface. A popular example
112 of a Capacitive sensor is the Baomain LJC18A3-H-Z/BX [21] while the Hictop SN04 [22] is a
113 frequently used Inductive Sensor.
- 114 An early example of nozzle contact sensors was the use of force sensitive resistors [23] placed
115 under the build platform and these are now a common accessory for delta 3D printers [24]
- 116 An example of a nozzle contact sensor using the strain gauge principle is the Delta Smart
117 Effector [25] in which the elements constituting the strain gauge are etched into the copper
118 clad laminate of a printed circuit board.

119 Although there had previously been discussion in public forums of the possible use of
120 piezoelectric diaphragms as sensors in RepRap printers, the first reported use of them was by Njal
121 Brekke [26].

122 The piezoelectric diaphragms described in this paper are typified by the Murata 7BB series [27]
123 and any functionally similar replacements from unidentified manufacturers. These diaphragms are
124 used in musical novelties, as the voice in toys, to produce the warning sound in alarms, to replace the
125 mechanical click sound in tactile keyboards and in a great many other ways.

126 Conversion of electrical energy to mechanical energy in piezoelectric diaphragms is by what is
127 correctly termed the "Inverse Piezoelectric Effect". However piezoelectric materials also exhibit the
128 "Direct Piezoelectric Effect" where mechanical energy is converted to electrical energy: It is this effect
129 which is used by the sensors described in this paper. The diaphragm consists of a piezo-active ceramic
130 disc bonded to a metal disk and a conductive layer on the opposite surface which form the electrical
131 connections.

132 The design intent of these piezoelectric diaphragms is the conversion of electrical energy to
133 mechanical movement when an electrical potential applied to the piezo-active ceramic causes the
134 centre of the diaphragm to bow relative to the periphery. The ceramic used will also operate in the
135 reverse sense, a pressure that causes the diaphragm to bow or to bend will generate an electrical
136 charge between the electrodes. In addition, a pressure applied directly between the face and the
137 substrate without causing it to bend will also generate an electrical charge.

138 In order to assess the usefulness of inexpensive piezoelectric diaphragms as sensors in FFF
139 printers an experiment has been designed and equipment constructed to simulate nozzle contact
140 events in FFF 3D printers. Various pressures are applied directly to a piezoelectric diaphragm and
141 the voltage generated are recorded.

142 It is known from earlier tests [28] that the response of piezoelectric diaphragms can be
143 considerably reduced with increasing temperatures although it should be noted these were only
144 records of a single pressure release event and would not be indicative of long term performance.
145 It was however noted that that some makes of piezoelectric diaphragms performed much better than
146 others.

147 The limitation of use at higher temperatures is investigated in this article as well as the effect of
148 large numbers of simulated nozzle contact events at room temperature and at temperatures near the
149 limit of sensitivity. Data is compared for diaphragms before and after thermal cycling to assess the
150 ageing of the diaphragms in service.

151 The development of a Z probe integrated into the printer hotend is described by Simon Khoury
152 in the discussions section of this article.

153 2. Materials and Methods

154 The experiments conducted were intended only to determine if piezoelectric discs could be
155 used reliably as a method of detecting a contact between the printer nozzle and the printer build
156 platform with an acceptable degree of accuracy. It was a further aim to determine if the reliability or
157 accuracy would be adversely affected by long term use or if higher temperatures would cause a loss
158 of reliability.

159 The upper and lower limits of thickness of all parts of the initial layer of plastic which will be
 160 fully adhered to the build platform can change with many factors: The thickness of the first layer, the
 161 nozzle diameter, the plastic material, linear speed of deposition, width of plastic laid down etc. For
 162 typical RepRap FFF printers with a nozzle size between 0.25mm and 0.5mm and a first layer thickness
 163 of 0.25mm to 0.3mm a commonly accepted variation from the desired thickness of $\pm 50\mu\text{m}$ is regarded
 164 as being acceptable.

165 An Electrical Response jig to simulate nozzle contacts was constructed and mounted in a Proxxon
 166 MF70 light milling machine [29] modified for CNC control which was controlled through Mach3
 167 software [30] to provide the required mechanical action. The jig is depicted in **Figure 2** and has a small
 168 table mounted on an actuator rod which is connected to a 3D printed parallel mechanism, the parallel
 169 mechanism transferring pressure to the piezoelectric diaphragm through a 3D printed pressure pad.
 170 A load spring maintains an upward pressure on the actuator rod and on the diaphragm through the
 171 parallel mechanism. A preload adjuster centres the pressure pad at its resting position and provides
 172 a small force on the piezoelectric disc after the spring load has been removed. The CNC machine
 173 is programmed to start a probe moving towards the actuator from 1mm above it and to continue
 174 for 0.5mm after striking the actuator. This was done to eliminate the effects of the acceleration and
 175 deceleration times which are a feature of CNC programs.

Figure 2. Test equipment for obtaining response data.

176 In order to check for loss of sensitivity in use including that at higher temperatures, a test rig
 177 was fabricated to stress piezoelectric discs by alternately applying a pressure to the disc and relaxing
 178 that pressure over a large number of cycles and over a range of temperatures. The rig consists of
 179 an aluminium block having a flat surface on which the piezoelectric disc is mounted and a pressure
 180 pad having a flat surface of the same diameter as the upper electrical contact of the disc. A force
 181 generated by a spring is applied by way of an actuator rod and a parallel mechanism to the pressure
 182 pad; an electrical solenoid acts to relax the major part of the pressure on the piezoelectric disc at
 183 regular intervals.

184 Provision is made to adjust the pressure on the pad due to the spring, the pressure due to
 185 the elasticity of the joints of the parallel mechanism and the mechanical travel of the armature and
 186 actuator rod. The rig, shown in **Figure 3**, is mounted on a stand which also carries a dial indicator for
 187 checking the travel of the actuator rod and the pressure pad adjusting screw during adjustment. An
 188 upward force is applied through the return spring adjusting eye with a spring dynamometer to set
 189 the spring pressure. Adjusting the preload applied by the parallel mechanism is done by lifting the
 190 free end of the parallel mechanism with a spring dynamometer with the solenoid operated. During

191 commissioning of the rig the following were found to be usable values: Force applied by the parallel
 192 mechanism alone to the piezoelectric disc 0.5N; force applied through the actuating rod 4.5N when
 193 lifted 0.25mm from its resting position; Armature to Solenoid clearance in the non-operated state
 194 0.8mm; overtravel of the actuator rod from the point that pressure is relaxed to full travel of the
 195 solenoid 0.3mm. The dial indicator is removed during cycling tests.

196 The temperature of the piezoelectric disc is maintained by a resistance heater in the heater block
 197 and a thermocouple temperature controller [31]. The voltage generated by the piezoelectric disc was
 198 recorded by a digital storage oscilloscope [32] and a X10 probe.

Figure 3. Test equipment for obtaining temperature response and ageing data.

199 3. Results

200 3.1. Electrical Response of Piezoelectric Diaphragms.

201 A first batch of 10 piezoelectric diaphragms were obtained on eBay, the manufacturer of these is
 202 unknown but they were similar in size and appearance to Murata 7BB-27-4LO. The traces below were
 203 all from one of these diaphragms fitted in the Electrical Response Jig shown in **Figure 2**.

Figure 4. 1mm per second with pre-travel and after-travel. Vertical 2V per cm, Horizontal 50ms per cm

204 In **Figure 4** the probe strikes the actuator at 1mm per second and the peak voltage obtained from
 205 the piezoelectric diaphragm was 8.1 Volts which occurred 90ms after the first contact. After initial
 206 contact there is a linear increase of voltage at 120 volts per second until the actuator rod loses contact
 207 with the parallel mechanism and the voltage across the diaphragm decays through the resistance
 208 of the oscilloscope probe. For a piezoelectric diaphragm (Murata 7BB-27-4LO) the capacitance is
 209 $20\text{nF} \pm 30\%$, measured with a $10\text{M}\Omega$ oscilloscope, the time constant $\tau=200\text{ms}$ which is quite close to
 210 the decay seen in **Figure 4**.

Figure 5. Cycling 1mm per second with increasing travel. Vertical 5V per cm, Horizontal 1 second per cm

211 The probe strikes the actuator and over-travels by $20\mu\text{m}$ each cycle from 20 to $220\mu\text{m}$. The
 212 voltage response is shown in **Figure 5**. The increase in peak voltage is again approximately linear.
 213 However the travel at greater than $120\mu\text{m}$ is 33% more than the $90\mu\text{m}$ implied by the first test. It is
 214 speculated that this is due to the deceleration phase from the CNC software although an exact value
 215 for this is not known.

216 To obtain data on the force response the solid probe was replaced with a light spring and travel
 217 was set so that with each cycle the force applied by the spring was increased by 20 grams force to

218 a maximum of 100 grams force. To obtain the required spring rate an Entex stock no. 3352 spring
 219 was shortened to give a rate of 125 grams per mm. The resulting voltage is shown in **Figure 6**, the
 220 available voltage being significantly reduced by resistive leakage through the oscilloscope probe.

Figure 6. Cycling 2mm per second with increasing force. Vertical 1V per cm, Horizontal 1 second per cm

221 The remaining nine piezoelectric diaphragms were all checked for basic voltage output and did
 222 not differ visually from the first one shown in **Figure 4**.

223 *3.2. Cycling tests to determine service life.*

224 Using the test equipment shown in **Figure 3**, a Murata 7BB-27-4LO piezoelectric diaphragm was
 225 mounted and subjected to 100,000 cycles of pressure at 5N relaxed every 5.4 seconds to 0.5N for 2
 226 seconds. After an initial hour to allow the equipment to settle the output was monitored and recorded
 227 every 25,000 cycles. The temperature was checked when each reading was taken and remained within
 228 $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at each reading. The first and final oscilloscope records are shown in **Figure 7** and the peak
 229 value graphed and shown in the top (blue) trace in **Figure 8**. During this test the peak voltage fell
 230 from 25V to 23.2V

Figure 7. Peak amplitude after 1 hour (642 cycles) and after 100,000 cycles. Vertical 10V per cm, Horizontal 50ms per cm

231 To investigate any change that may occur at higher temperatures the piezoelectric diaphragm
 232 was replaced with a new Murata unit and the temperature of the heater block raised to 50°C . The

233 peak amplitude was initially 12.0V but increased to 13.5V after 50,000 cycles. As this increase had been
 234 unexpected, a further new Murata piezoelectric diaphragm was fitted and the temperature increased
 235 to 80°C. At this higher temperature the peak amplitude increased from 3.8V to 6.0V over the duration
 236 of the 100,000 pressure cycles, this change being plotted in the red line in **Figure 8**.

Peak Amplitude Change with Time or Pressure Cycles

Figure 8. Change of peak amplitude with temperature and number of pressure cycles

237 To determine if the increase was an effect of the temperature alone a further test was devised.
 238 Using a new piezoelectric diaphragm the rig temperature was rapidly brought up to 80°C while the
 239 diaphragm was maintained at a pressure of 5N without pressure cycling. At several points the
 240 solenoid was operated for long enough for three pressure cycles to be applied and the resulting
 241 voltage to be recorded, about 15 seconds. The resulting peak amplitudes, recorded over 175 hours
 242 and plotted in the lower (green) trace in **Figure 8**, indicate that the higher temperature is the principle
 243 cause of the rise in output.

Figure 9. Effect of temperature on peak response before and after 50,000 pressure cycles at 80°C

244 In previous tests [28] a relatively rapid decline in sensitivity of piezoelectric diaphragms with
245 increasing temperature was found. A new test was conducted in order to better categorize this
246 in combination with the observed increase in high temperature sensitivity over time. A new
247 piezoelectric diaphragm was fitted to the temperature response rig **Figure 2** and the pressure cycled as
248 in earlier tests. The temperature was bought up rapidly in 10°C steps to 80°C and the peak amplitude
249 at each interval was recorded. The test was continued for 50,000 cycles with the temperature held at
250 80°C after which the heater was turned off and peak amplitude recorded every 10°C down to 30°C.
251 The results of this test are plotted in **Figure 9**, the lower (blue) line showing the peak values before
252 the heat soak and the upper (red) line showing the peak values after the soak.

253 **4. Discussion**

254 *4.1. Piezoelectric sensors in RepRap printers*

255 Since the introduction of this method of detecting nozzle contact, members of the RepRap
256 community have used a wide range of ways of applying piezoelectric diaphragms, not only for this
257 purpose; but also to replace limit switches used for detecting the homing position for delta printers as
258 well as Cartesian printers. A nozzle contact technique which has been successfully applied is to use a
259 single diaphragm in a fitting which holds the hot-end of the printer - an example of this is described
260 below and kits are available from [33]. Piezoelectric diaphragms may be fitted to detect upward
261 contact pressure at the nozzle end, or they may be used to sense the downward pressure on the build
262 platform by using a number of diaphragms - typically three - mounted between the platform and its
263 mountings.

264 The RepRap forum has been instrumental in the development of this technology with active
265 threads following the development of the idea [34], support of both the open source, and purchased
266 kits of piezoelectric Z probes as well as the development of conditioning circuitry [35], [36].

267 The conditioning circuitry typically consists of a resistance/diode protection circuit followed by
268 a high impedance low gain (unity to 5) amplifier and a comparator. There may be low pass filtering
269 of the input signal to remove mechanical and electrical noise and high pass filtering to remove the
270 effect of temperature drift on the piezoelectric diaphragm. The most commonly used conditioning
271 circuitry is that designed by Idris Nowell (Moriquendi) and is available through Precision Piezo [33]

272 There is some evidence that the use of piezoelectric diaphragms in Maker and DIY printers has
273 spread beyond the immediate RepRap community with kits being sold in South America [37] and
274 pirated copies being available from a Chinese source. [38]

275 *4.2. Piezo Electric Nozzle Contact Sensing by use of drilled piezo ceramic discs*

276 A further development in the use of piezo electric sensing systems, as discussed here, was made
277 by Simon Khoury. At the time (Jan 2017) the use of piezo electric sensing of nozzle contact by
278 placement of piezoelectric discs either beneath a 3D printer's build platform, or somewhere upon
279 its print head assembly, was already known. However, the system of placing the discs below the
280 build platform, required at least three piezo discs, sometimes four, so was considered more complex
281 than necessary.

282 The build platform assembly is frequently mounted on a moving axis, the Y-axis in some cases
283 (I3-type printers and their derivatives) or the Z-axis (for example corexy style printers) which results
284 in two potential issues: Firstly, if the axis in which the piezo electric diaphragms moves, and such
285 movement is required to bring the build platform and nozzle into contact this can, depending on
286 the design and the quality of linear motion components, create mechanical noise which reduces the
287 sensitivity of the apparatus. As such, the scheme of placing the sensors under the build platform is
288 especially suitable on a delta printer, where the bed is fixed in place, but less satisfactory on other
289 designs with moving build platforms especially in the z-axis direction; secondly the stability of the
290 build platform resting on mounts containing piezoelectric diaphragms, can be affected in this scheme,

resulting in a mobile build platform, which inevitably causes reduction in print quality. Mounts are either more stable though more complex and expensive to build, or less stable but often cheaper and easier to construct. It is required that as much of a 3D printer be as rigid as possible in use including the build platform and its substructure, primarily to ensure the accuracy of the printed objects, and secondarily to enable accurate probing to take place. Additionally since 3D printers enhance the adhesion of the deposited polymer to the build platform by the use of heat, usually in the range of 55°C to 115°C, the possibility that the piezoelectric discs would heat up in use existed, which would cause undesirable changes in performance (reduced sensitivity or erratic triggering.) This lead to the realisation that a simpler method of using piezoelectric discs as sensors for nozzle contact was possible.

The key innovation, was to drill a hole through the centre of the piezoelectric disc, in such a way that it would still function adequately afterwards. Indeed, the cutting by either spur point drill bit, utilizing moderate force and low rpm, or the use of lathe to cut the hole in the disc resulted in a hole through the upper conductor, ceramic and lower brass body of the disc of good quality. A hole of between 4.5mm and 5mm was chosen to minimize the amount of ceramic material removed, which generates the voltage during deformation, and to allow the 3D printing polymer (filament) to pass through the disc. In the case of the more common 1.75mm diameter filament type, a PTFE guide tube (2mm ID 4mm OD) was used to surround it, which prevents undesirable flexing of the filament as it is driven into the melting chamber above the printers nozzle (hotend). In the case of a 3mm filament no guide tube was used (as this filament is stiffer due to its larger diameter). It is noteworthy that while piezo-ring devices already exist with holes centrally located, the cost of these devices is higher than for piezoelectric discs described here and they are available only from specialist suppliers.

Having determined by test probing, and testing of various drilled piezo electric discs on an oscilloscope, that the disc still functioned as it did when un-drilled, albeit with a reduction in voltage generated equal to the proportion of ceramic material removed, but well within the range at which detection with high sensitivity is possible, the next step was to mount the disc above the extruded polymer heater assembly.

An extruded polymer heating assembly - referred to generally as a hotend - typically consists of a metal block with an electrical heating element placed into it, a nozzle threaded into the metal block through which the polymer is extruded, and a thermistor or PT100 sensor to provide closed loop control by PID of the temperature. This is attached to an externally threaded metal tube (ceramic/polymer in some types) which is threaded into the metal block (hotend) at one end, butted tightly against the mating surface of the nozzle, and at the other end into a (typically) aluminium heat-sink (correctly known as a coldend), the purpose of which is to prevent the heat in the hotend, (often between 180°C and 270°C) from rising by conduction to the print-head which can often be made of printable polymers, such as ABS, to enable parts to be printed by the machine itself. These polymers would soften at around 130°C, and deform without the heatsink, and typically a fan with duct to pass air through it.

Construction of the sensor units shown in **Figure 10** consisted initially of two 3D printed polymer (ABS) components and a piezoelectric disc (Murata 7BB 27mm). The lower part incorporated a clamp that held the heat-sink mentioned above with its hotend attached, and which incorporated a surface on its upper aspect which contacted the piezoelectric disc. The upper part on its lower aspect incorporated a surface for contacting the piezo electric disc, fixing holes for attachment to the lower part and some method of attachment to the print-head. As such the design, in its most basic form, is a piezo electric disc (with the hole drilled) sandwiched between two 3D printed polymer parts - one attached to the printhead and the other to the hotend/coldend assembly. The filament can pass through the sensor assembly and piezoelectric disc due to its centrally drilled hole, and into the heat-sink, hotend and reach, ultimately, the nozzle.

Figure 10. Piezo Z Probe

339 When the nozzle and build platform are brought together so that contact occurs, a force is
 340 generated which is transmitted directly upwards through the assembly. The force required to register
 341 contact is only in the order of 10-15g depending on the hardness of the printing surface on the build
 342 platform, of which many types are in common use. This force can be modified by changing the speed
 343 at which the nozzle and build platform are brought together during probing. When this occurs a
 344 voltage is generated by the piezoelectric diaphragm which can be detected an amplifier circuit.

345 One of the key requirements of a sensor within a mounting system for the hotend/coldend
 346 assembly is for the hotend/coldend assembly mounted using it, to be as rigid as possible. Having
 347 lateral movement of the nozzle greater than $20-30\mu\text{m}$ during printing is highly undesirable, and
 348 would result in low accuracy printing, especially during the deposition of external perimeters. As
 349 each layer of material is deposited its upper surface is rarely uniform enough for the nozzle not to
 350 occasionally contact it when it passes over during printing of the next layer. Vertical movement of the
 351 nozzle is also undesirable but so long as it is less then $100\mu\text{m}$, its effect on the accuracy of the print
 352 is acceptable. The sensor unit's design therefore is a compromise between having high sensitivity
 353 for nozzle contact which would be achieved by having a relatively loose assembly which allows for
 354 greater compression/flex in the piezoelectric disc, yet an unstable nozzle, and having an extremely
 355 tight assembly which would have much less sensitivity due to pre-loading of the piezoelectric disc,
 356 but exhibit greater nozzle stability.

357 Another aspect considered was that in the first prototype shown here, which used a 27mm
 358 piezoelectric disc, the mechanism by which force was imparted to the piezoelectric disc was by
 359 uniform compression. Whilst this achieves reasonable sensitivity, greater sensitivity can be achieved
 360 by flexing the disc. In this version four screws were used to hold the assembly together. This allowed a
 361 reasonably firm assembly to be constructed. Another version with three screws holding the assembly
 362 together was deemed to be too flexible and polymer pins were introduced alongside the screws, the
 363 idea being that the lower part could slide on the pins, the pins acting to limit lateral movement in the
 364 assembly and attached hotend/nozzle. This was later designed-out as the unit became smaller and
 365 this lateral movement was reduced.

366 Later versions shown here used a flange on the uppermost aspect of the lower part which
 367 engaged the piezoelectric diaphragm just lateral to the hole drilled into it and was 8mm internal
 368 diameter and 10mm external diameter. The upper part of the assembly incorporated a recess, with a
 369 lip into which the piezoelectric diaphragm sits. As such when these two components are attached to

370 one another the diaphragm is bent centrally against its upper support and placed in light pre-load.
371 This enhances sensitivity whilst achieving much less movement laterally at the nozzle. Another
372 change was to make the unit smaller, in order to do the size of piezoelectric disc reduced from 27mm
373 to 20mm.

374 5. Conclusions

375 The results of the equipment tests have been limited to determining if the output was sufficient
376 even without conditioning circuitry to be reliably detected with either an analog or digital input
377 of an controller, typically an Arduino, such as is often used with RepRap printers. The tests did
378 demonstrate that a useful level of reliability, sensitivity and repeatability of piezoelectric diaphragms
379 can be expected and the cyclic tests have indicated that a long service life should also be expected.
380 The tests conducted at 80°C, both with pressure cycling and statically, do not extend to a long term
381 but the relatively small change in output over the short term gives no reason to expect unreliability.

382 Piezoelectric diaphragms have other useful characteristics such as robustness, high availability
383 and low cost. Some weaknesses such as the variability of response, temperature drift and polarization
384 are known and are largely due to the uses described here relying on parameters not specified for
385 manufacturing. Despite the foregoing, the output from these components is so large that even a poor
386 quality piezoelectric diaphragm is able to give an output much greater than is needed for accurate
387 detection of the 3D printer build surface.

388 In order to promote the widespread adoption of this technology and method of probing the
389 build platform of a 3D printer, the company Precision Piezo [33] has been formed which has, during
390 its first 6 months of operation sold some 125 units. These have been performing extremely well and
391 the variety of 3D printers on which they are used increases daily. The technology which is discussed
392 here is open source in nature and rooted in the RepRap community where ideas such as this continue
393 to be discussed, developed and shared for the good of all.

394 **Acknowledgments:** This work is unfunded, the participants having covered their own material and equipment
395 costs. Where monetary transfer between participants has been needed or where items have been sold the income
396 has been limited to not more than the costs. MDPI has waived the Article Processing Charge.

397 **Author Contributions:** Mike Simpson designed the experiments to investigate electrical response and service
398 life of piezoelectric diaphragms; Simon Khoury designed several practical implementations of Z probes using
399 piezoelectric diaphragms and maintains them in the public domain.

400 **Conflicts of Interest:** Mike Simpson declares no conflict of interest; Simon Khoury declares that he has a financial
401 interest and is trading as "Precision Piezo". All information required to construct piezoelectric systems described
402 in this article are open source and no patents are held nor copyrights enforced.

403 Abbreviations

404 The following abbreviations are used in this manuscript:

405

406 MDPI: Multidisciplinary Digital Publishing Institute

407 FFF: Fused Filament Fabrication (equivalent to FDM)

408 FDM: Fused Deposition Modelling (term is protected by Stratasys Inc.) ABS: Acrylonitrile Butadiene
409 Styrene

410

411 References

- 412 1. All3DP, The Official History of the RepRap Project, 2016, Available online <https://all3dp.com/history-of-the-reprap-project/>
- 413 2. Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. Reprap—The replicating rapid
414 prototype. *Robotica* **2011**, *29*, 1, 177–191

416 3. RS Online Catalogue. Available online: <https://uk.rs-online.com/web/p/piezo-buzzer-components/8712001/> (accessed 10th December 2017)

417 4. Rapidonline Catalogue. Available online: <https://www.rapidonline.com/rvfm-ft-20t-6a1-uncased-piezo-transducer-35-0200> (accessed 10th December 2017)

418 5. Matt Freund, Cheap-diy-microscope-sees-individual-atoms, Hackaday. Available online <https://hackaday.com/2015/01/13/cheap-diy-microscope-sees-individual-atoms/> (accessed 10th December 2017)

419 6. Griffey, J. The types of 3-D printing, Library Technology Reports, 2014, 50, 5, 8-12. Available online: <https://journals.ala.org/index.php/ltr/article/view/4796/5747>

420 7. Volpato, N.; Aguiomar Foggiatto, J.; Coradini Schwarz, D. The influence of support base on FDM accuracy in Z. Rapid prototyping journal 2014, 20(3), 182-191, doi:10.1108/RPJ-12-2012-0116.

421 8. Steuben, J; Van Bossuyt, D; Turner, C. Design for fused filament fabrication additive manufacturing. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2015, V004T05A050–V004T05A050. Available online: https://www.researchgate.net/profile/Douglas_Van_Bossuyt/publication/282133348_Design_for_Fused_Filament_Fabrication_Additive_Manufacturing/links/56042ee808ae5e8e3f2fd1e2/Design-for-Fused-Filament-Fabrication-Additive-Manufacturing.pdf

422 9. RepRapWiki contributors, 'Z Probe', 8th March 2017, Available online: http://reprap.org/wiki/Z_probe (accessed 17th December 2017)

423 10. Duet3D forum page, available online: <https://www.duet3d.com/forum/thread.php?id=1330>

424 11. 3D Printing Systems. UP PLUS 2 Users Manual 2013, Available online: <http://3dprintingsystems.com/UP%20Plus%202%203D%20Printer%20Manual.pdf> (Accessed 8th January 2018)

425 12. Aleph Objects Inc. Lulzbot Mini Users Manual 2015, Available online: https://download.lulzbot.com/Mini/1.0/documentation/manual/LulzBot_Mini_manual.pdf (Accessed 9th January 2018)

426 13. Prusa Research. 3D Printing Handbook 2017, Available online: https://www.prusa3d.com/downloads/manual/prusa3d_manual_mk3_en.pdf?4 (Accessed 9th January 2018)

427 14. Ultimaker, Ultimaker 3 Installation and user manual 2016. Available online: <https://ultimaker.com/download/61355/Ultimaker%203%20manual%20%28EN%29.pdf> (Accessed 8th January 2018)

428 15. "Inside the Ultimaker 3 - Day 6 - Active leveling". Available online: <https://community.ultimaker.com/topic/15687-inside-the-ultimaker-3-day-6-active-leveling/> (Accessed 8th January 2018)

429 16. SeeMeCNC, Available online: <https://www.seemecnc.com/collections/3d-printers/products/rostock-max-v3-desktop-3d-printer-diy-kit> (Accessed 9th January 2018)

430 17. SeeMeCNC, Available online: <https://www.seemecnc.com/products/hotend-accelerometer-probe-pcb-board-rev-5c> (Accessed 89h January 2018)

431 18. Fusion3. Fusion 3 F400 Users Manual, Available online: <https://www.fusion3design.com/wp-content/uploads/2017/11/F400-User-Manual-Rev-16-11-9-17.pdf> (Accessed 8th January 2018)

432 19. Available online: <https://store.fusion3design.com/collections/f400-s-replacement-parts/products/f400-bed-leveling-z-probe> (Accessed 8th January 2018)

433 20. BLTouch. Available online: <https://www.antclabs.com/bltouch> (Accessed 10th January 2018)

434 21. Capacitive Sensor, Baomain LJC18A3-H-Z/BX. Available online: <https://www.amazon.co.uk/Baomain-LJC18A3-H-Z-1-10mm-Capacitance-Proximity/dp/B015PCW2R6> (Accessed 9th January 2018)

435 22. Hictop Inductive Sensor. Available online: <https://www.hic3dprinter.com/products/hictop-3d-printer-self-leveling-upgrade-auto-leveling-sensor-bed-self-adjustment-inductive-proximity-sensor> (Accessed 9th January 2018)

436 23. "Force Sensing Resistors Make for Auto Bed Levelling for 3D Printers", 3D Printing Industry, 05/03/2014. Available online: <https://3dprintingindustry.com/news/force-sensing-resistors-make-auto-bed-levelling-3d-printers-24533/> (Accessed 18th December 2017)

437 24. FSR Kit. Available online: <https://www.ultibots.com/fsr-kit/> (Accessed 18th December 2017)

438 25. Delta Smart Effector. Available online: <https://www.duet3d.com/DeltaSmartEffector> (Accessed 10th January 2018)

439 26. Leggett, C. Norwegian Physicist Uses Piezo Discs to Add Auto Bed Leveling to His 3D Printer. Available online: <https://3dprint.com/84479/piezo-3d-print-leveling/> (accessed on 29th July 2017).

468 27. Piezoelectric Sound Components (P37E.pdf), Apr. 25,2017), pp 19-21. Available online: <http://www.murata.com/~/media/webrenewal/support/library/catalog/products/sound/p37e.ashx> (accessed 2nd October 2017)

469 28. Entry in RepRap forum discussion. Available online: <http://forums.reprap.org/read.php?1,635075,655510#msg-655510> (accessed 2nd October 2017)

470 29. Proxxon MF70 Light Milling Machine Users Manual. 10c Available online: http://pdf.lowes.com/operatingguides/4645489_oper.pdf (accessed 1st October 2017)

471 30. Mach3 software Version R3.043.066. Available online <http://www.machsupport.com/software/mach3/>

472 31. Operating Manual CAL3300 (1997). Available online: <http://www.advindsys.com/Manuals/CALManuals/Cal3300.pdf> (accessed 1st October 2017)

473 32. User Manual Portable LCD Digital Storage Oscilloscope. Available online: http://owon.co.uk/wsb4318264101/down/PDS%20Series%20USER_MANUAL%20for%20UK%20users.pdf (accessed 2nd October 2017)

474 33. Precision Piezo Website. Available online: <https://www.precisionpiezo.co.uk/shop> (Accessed 18th December 2017)

475 34. RepRap General Forum 'Piezoelectric disks for Z contact detect and bed levelling'. Available online: <http://forums.reprap.org/read.php?1,635075> (Accessed 18th December 2017)

476 35. RepRap General Forum 'Precision Piezo Z-probe Now available'. Available online: <http://forums.reprap.org/read.php?1,767998> (Accessed 18th December 2017)

477 36. RepRap General Forum 'Precision Piezo bounty'. Available online: <http://forums.reprap.org/read.php?1,787755> (Accessed 18th December 2017)

478 37. Z-probe Sensor Auto Nivelamento Impressora 3d Hotend E3d V6. Available online: <https://produto.mercadolivre.com.br/MLB-857051279-z-probe-sensor-auto-nivelamento-impressora-3d-hotend-e3d-v6-JM> (Accessed 18th December 2017)

479 38. Trianglelab Precision Piezo Z-probe Universal Kit. Available online: https://www.aliexpress.com/store/product/trianglelab-Precision-Piezo-Z-probe-Universal-Kit-Z-probe-for-3D-printers-revolutionary-auto-bed-leveling/1654223_32832426899.html?spm=2114.12010615.0.0.48d9e4c57rbLvu (Accessed 18th December 2017)

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494